1
|
Singh G, Thakur N, Kumar R. Nanoparticles in drinking water: Assessing health risks and regulatory challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174940. [PMID: 39047836 DOI: 10.1016/j.scitotenv.2024.174940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Nanoparticles (NPs) pose a significant concern in drinking water due to their potential health risks and environmental impact. This review provides a comprehensive analysis of the current understanding of NP sources and contamination in drinking water, focusing on health concerns, mitigation strategies, regulatory frameworks, and future perspectives. This review highlights the importance of nano-specific pathways, fate processes, health risks & toxicity, and the need for realistic toxicity assessments. Different NPs like titanium dioxide, silver, nanoplastics, nanoscale liquid crystal monomers, copper oxide, and others pose potential health risks through ingestion, inhalation, or dermal exposure, impacting organs and potentially leading to oxidative stress, inflammatory responses, DNA damage, cytotoxicity, disrupt intracellular energetic mechanisms, reactive oxygen species generation, respiratory and immune toxicity, and genotoxicity in humans. Utilizing case studies and literature reviews, we investigate the health risks associated with NPs in freshwater environments, emphasizing their relevance to drinking water quality. Various mitigation and treatment strategies, including filtration systems (e.g., reverse osmosis, and ultra/nano-filtration), adsorption processes, coagulation/flocculation, electrocoagulation, advanced oxidation processes, membrane distillation, and ultraviolet treatment, all of which demonstrate high removal efficiencies for NPs from drinking water. Regulatory frameworks and challenges for the production, applications, and disposal of NPs at both national and international levels are discussed, emphasizing the need for tailored regulations to address NP contamination and standardize safety testing and risk assessment practices. Looking ahead, this review underscores the necessity of advancing detection methods and nanomaterial-based treatment technologies while stressing the pivotal role of public awareness and tailored regulatory guidelines in upholding drinking water quality standards. This review emphasizes the urgency of addressing NP contamination in drinking water and provides insights into potential solutions and future research directions. Lastly, this review worth concluded with future recommendations on advanced analytical techniques and sensitive sensors for NP detection for safeguarding public health and policy implementations.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Biosciences (UIBT), Chandigarh University, Ludhiana, Punjab 140413, India
| | - Neelam Thakur
- Department of Zoology, Sardar Patel University, Vallabh Government College, Campus, Mandi, Himachal Pradesh 175001, India.
| | - Rakesh Kumar
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
2
|
Ponce M, Zuasti E, Anguís V, Fernández-Díaz C. Anti-Bacterial and Immunostimulatory Properties of Ulvan-Loaded Chitosan Nanoparticles for Use in Aquaculture. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:19-27. [PMID: 38110743 DOI: 10.1007/s10126-023-10272-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/29/2023] [Indexed: 12/20/2023]
Abstract
Alternative prophylactic strategies to limit farm animal infection are needed in order to avoid the use of antibiotics. Anti-bacterial and immunostimulatory properties of bioactive compounds are of great interest in aquaculture. Marine derived polysaccharides, such as chitosan and ulvan, together with nanotechnology, have become the focus of attention in the scientific community due to their wide range of biological properties. In this work, chitosan and ulvan-loaded chitosan nanoparticles (referred as CS-TPP NPs and CS-UL-TPP NPs, respectively), obtained by the ionotropic gelation method, had round shape, and the mean sizes were 137.00 ± 5.44 and 325.50 ± 4.95 nm, respectively. No study about the anti-bacterial activity of both types of NPs against Photobacterium damselae subsp. piscicida, an important fish pathogen, has been reported so far. Furthermore, the potential immunostimulatory effects of CS-UL-TPP NPs after oral administration in fish have not yet been evaluated. The percentage of bacterial inhibition against P. damselae subsp. piscicida was determined through in vitro assays, and it was significantly higher in CS-UL-TPP NPs than in CS-TPP NPs at concentrations below 0.03 mg mL-1. The effects on the immune system of CS-TPP and CS-UL-TPP NPs were evaluated in Solea senegalensis juveniles at 30 days after oral administration. Lysozyme activity as well as gene expression levels of il1b, il6, hamp1, tf and c3 was significantly higher in CS-UL-TPP NP-treated groups than in the controls, and no significant differences were observed in CS-TPP NP-treated groups. Thus, ulvan extracted from the macroalgae Ulva ohnoi could improve anti-bacterial and immunostimulant properties of CS-TPP NPs thereby making them suitable to be used as vaccine adjuvant or as immunostimulant.
Collapse
Affiliation(s)
- Marian Ponce
- IFAPA Centro El Toruño, Camino Tiro Pichón S/N, 11500, El Puerto de Santa Maria, Cadiz, Spain.
| | - Eugenia Zuasti
- IFAPA Centro El Toruño, Camino Tiro Pichón S/N, 11500, El Puerto de Santa Maria, Cadiz, Spain
| | - Victoria Anguís
- IFAPA Centro El Toruño, Camino Tiro Pichón S/N, 11500, El Puerto de Santa Maria, Cadiz, Spain
| | - Catalina Fernández-Díaz
- IFAPA Centro El Toruño, Camino Tiro Pichón S/N, 11500, El Puerto de Santa Maria, Cadiz, Spain
| |
Collapse
|
3
|
Xuan L, Ju Z, Skonieczna M, Zhou P, Huang R. Nanoparticles-induced potential toxicity on human health: Applications, toxicity mechanisms, and evaluation models. MedComm (Beijing) 2023; 4:e327. [PMID: 37457660 PMCID: PMC10349198 DOI: 10.1002/mco2.327] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Nanoparticles (NPs) have become one of the most popular objects of scientific study during the past decades. However, despite wealth of study reports, still there is a gap, particularly in health toxicology studies, underlying mechanisms, and related evaluation models to deeply understanding the NPs risk effects. In this review, we first present a comprehensive landscape of the applications of NPs on health, especially addressing the role of NPs in medical diagnosis, therapy. Then, the toxicity of NPs on health systems is introduced. We describe in detail the effects of NPs on various systems, including respiratory, nervous, endocrine, immune, and reproductive systems, and the carcinogenicity of NPs. Furthermore, we unravels the underlying mechanisms of NPs including ROS accumulation, mitochondrial damage, inflammatory reaction, apoptosis, DNA damage, cell cycle, and epigenetic regulation. In addition, the classical study models such as cell lines and mice and the emerging models such as 3D organoids used for evaluating the toxicity or scientific study are both introduced. Overall, this review presents a critical summary and evaluation of the state of understanding of NPs, giving readers more better understanding of the NPs toxicology to remedy key gaps in knowledge and techniques.
Collapse
Affiliation(s)
- Lihui Xuan
- Department of Occupational and Environmental HealthXiangya School of Public HealthCentral South UniversityChangshaHunanChina
| | - Zhao Ju
- Department of Occupational and Environmental HealthXiangya School of Public HealthCentral South UniversityChangshaHunanChina
| | - Magdalena Skonieczna
- Department of Systems Biology and EngineeringInstitute of Automatic ControlSilesian University of TechnologyGliwicePoland
- Biotechnology Centre, Silesian University of TechnologyGliwicePoland
| | - Ping‐Kun Zhou
- Beijing Key Laboratory for RadiobiologyDepartment of Radiation BiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Ruixue Huang
- Department of Occupational and Environmental HealthXiangya School of Public HealthCentral South UniversityChangshaHunanChina
| |
Collapse
|
4
|
Caloudova H, Blahova J, Mares J, Richtera L, Franc A, Garajova M, Tichy F, Lenz J, Caloudova J, Enevova V, Kopel P, Havelkova B, Lakdawala P, Svobodova Z. The effects of dietary exposure to Magnéli phase titanium suboxide and titanium dioxide on rainbow trout (Oncorhynchus mykiss). CHEMOSPHERE 2022; 293:133689. [PMID: 35063564 DOI: 10.1016/j.chemosphere.2022.133689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Magnéli phase titanium suboxides (Magnéli TiOx) are promising, novel materials with superior properties compared to TiO2, they are substoichiometric titanium oxides with the chemical formula TinO2n-1 (where n ≥ 1). In this study, for the first time, subchronic effects of dietary intake of Magnéli TiOx were evaluated and compared with TiO2 particles of similar size, in concentrations 0.1% and 0.01% of feed. The experiment consisted of 38 d of an exposition period and 14 d of a depuration period. Minor effects on plasma biochemical profile and morphological parameters were recorded. A reduced count of leukocytes was found in the blood of both Magnéli TiOx and TiO2 exposed fish, suggesting immunotoxic effects. Erythrocytosis was specific for Magnéli TiOx. Indices of oxidative stress, namely increased lipid peroxidation in liver, increased activity of superoxide dismutase in liver, kidney and gills and glutathione S-transferase (GST) in gills, as well as decreased activity of ceruloplasmin and GST in liver were found predominantly in fish exposed to TiO2. Histopathological examination revealed increased lipid-like vacuolation in the liver, the presence of hyaline droplets in renal tubules and multiplication of mucous glands in the epidermis in both tested substances and intestine damage in TiO2 groups. Overall, in Magnéli TiOx exposed groups, fewer adverse effects compared to TiO2 expositions were recorded. Their wider practical implementation in place of TiO2 is therefore beneficial.
Collapse
Affiliation(s)
- Hana Caloudova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho Tr. 1946/1, 612 42, Brno, Czech Republic
| | - Jana Blahova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho Tr. 1946/1, 612 42, Brno, Czech Republic
| | - Jan Mares
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1665/1, 613 00, Brno, Czech Republic
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1665/1, 613 00, Brno, Czech Republic
| | - Ales Franc
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, Brno, Palackeho Tr. 1946/1, 612 42, Brno, Czech Republic
| | - Michaela Garajova
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, Brno, Palackeho Tr. 1946/1, 612 42, Brno, Czech Republic
| | - Frantisek Tichy
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackeho Tr. 1946/1, 612 42, Brno, Czech Republic
| | - Jiri Lenz
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackeho Tr. 1946/1, 612 42, Brno, Czech Republic
| | - Jana Caloudova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho Tr. 1946/1, 612 42, Brno, Czech Republic; Department of Plant Origin Food Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho Tr. 1946/1, 612 42, Brno, Czech Republic
| | - Vladimira Enevova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho Tr. 1946/1, 612 42, Brno, Czech Republic
| | - Pavel Kopel
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, 17. Listopadu 12, CZ-771 46, Olomouc, Czech Republic
| | - Barbora Havelkova
- Department of Ecology and Diseases of Zooanimals, Game, Fish and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho Tr. 1946/1, 612 42, Brno, Czech Republic
| | - Pavla Lakdawala
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho Tr. 1946/1, 612 42, Brno, Czech Republic.
| | - Zdenka Svobodova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho Tr. 1946/1, 612 42, Brno, Czech Republic
| |
Collapse
|
5
|
Rastgar S, Alijani Ardeshir R, Segner H, Tyler CR, J G M Peijnenburg W, Wang Y, Salati AP, Movahedinia A. Immunotoxic effects of metal-based nanoparticles in fish and bivalves. Nanotoxicology 2022; 16:88-113. [PMID: 35201945 DOI: 10.1080/17435390.2022.2041756] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is a global research interest in metal nanoparticles (MNPs) due to their diverse applications, rapidly increasing use, and increased presence in the aquatic environment. Currently, most MNPs in the environment are at levels unlikely to cause overt toxicity. Sub-lethal effects that MNPs may induce, notable immunotoxicity, could however have significant health implications. Thus, deciphering the immunological interactions of MNPs with aquatic organisms constitutes a much-needed area of research. In this article, we critically assess the evidence for immunotoxic effects of MNPs in bivalves and fish, as key wildlife sentinels with widely differing ecological niches that are used as models in ecotoxicology. The first part of this review details the properties, fate, and fundamental physicochemical behavior of MNPs in the aquatic ecosystem. We then consider the toxicokinetics of MNP uptake, accumulation, and deposition in fish and bivalves. The main body of the review then focuses on immune reactions in response to MNPs exposure in bivalves and fish illustrating their immunotoxic potential. Finally, we identify major knowledge gaps in our current understanding of the implications of MNPs exposure for immunological functions and the associated health consequences for bivalves and fish, as well as the general lessons learned on the immunotoxic properties of the emerging class of nanoparticulate contaminants in fish and bivalves.
Collapse
Affiliation(s)
- Sara Rastgar
- Department of Marine Biology, Faculty of Marine Sciences, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | | | - Helmut Segner
- Centre for Fish and Wildlife Health, Department of Pathobiology and Infectious Diseases, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK.,Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter, UK
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, Leiden, the Netherlands.,Centre for Safety of Substances and Products, National Institute of Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, PR China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, PR China
| | - Amir Parviz Salati
- Department of Fisheries, Faculty of Marine Natural resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | - Abdolali Movahedinia
- Department of Marine Biology, Faculty of Marine Sciences, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
6
|
Brandts I, Solà R, Martins MA, Tvarijonaviciute A, Barreto A, Teles M, Oliveira M. A baseline study on the impact of nanoplastics on the portals of entry of xenobiotics in fish. MARINE POLLUTION BULLETIN 2021; 173:113018. [PMID: 34653883 DOI: 10.1016/j.marpolbul.2021.113018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Mediterranean waters are particularly vulnerable to plastic pollution, with plastic particles concentrations comparable to those found in oceanic gyres. This work aimed to assess the impact of polymethylmethacrylate nanoplastics (PMMA-NPs) on the most important mucosal barriers of the gilthead seabream (Sparus aurata), a highly consumed fish species in the Mediterranean area. Fish were waterborne exposed to NPs (0.001-10 mg/L) for 24 and 96 h, and biochemical parameters associated with oxidative status (total oxidative status and total antioxidant capacity) and immune function (adenosine deaminase, ADA, acetylcholinesterase activity, AChE, and esterase activity, EA) were assessed in gills, intestine, and skin. In intestine, PMMA-NPs led to oxidative status alterations and decreased ADA and EA. In gills, PMMA-NPs induced EA decrease and AChE activity increase. Total protein values were significantly increased in skin. Overall, more alterations were observed in intestine, suggesting it may be one of the most affected tissues by exposure to NPs.
Collapse
Affiliation(s)
- I Brandts
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - R Solà
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - M A Martins
- Department of Physics & CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
| | - A Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis INTERLAB-UMU, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, Murcia 30100, Spain
| | - A Barreto
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - M Teles
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
| | - M Oliveira
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
7
|
Schuijt LM, Peng FJ, van den Berg SJP, Dingemans MML, Van den Brink PJ. (Eco)toxicological tests for assessing impacts of chemical stress to aquatic ecosystems: Facts, challenges, and future. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148776. [PMID: 34328937 DOI: 10.1016/j.scitotenv.2021.148776] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Monitoring of chemicals in the aquatic environment by chemical analysis alone cannot completely assess and predict the effects of chemicals on aquatic species and ecosystems. This is primarily because of the increasing number of (unknown) chemical stressors and mixture effects present in the environment. In addition, the ability of ecological indices to identify underlying stressors causing negative ecological effects is limited. Therefore, additional complementary methods are needed that can address the biological effects in a direct manner and provide a link to chemical exposure, i.e. (eco)toxicological tests. (Eco)toxicological tests are defined as test systems that expose biological components (cells, individuals, populations, communities) to (environmental mixtures of) chemicals to register biological effects. These tests measure responses at the sub-organismal (biomarkers and in vitro bioassays), whole-organismal, population, or community level. We performed a literature search to obtain a state-of-the-art overview of ecotoxicological tests available for assessing impacts of chemicals to aquatic biota and to reveal datagaps. In total, we included 509 biomarkers, 207 in vitro bioassays, 422 tests measuring biological effects at the whole-organismal level, and 78 tests at the population- community- and ecosystem-level. Tests at the whole-organismal level and biomarkers were most abundant for invertebrates and fish, whilst in vitro bioassays are mostly based on mammalian cell lines. Tests at the community- and ecosystem-level were almost missing for organisms other than microorganisms and algae. In addition, we provide an overview of the various extrapolation challenges faced in using data from these tests and suggest some forward looking perspectives. Although extrapolating the measured responses to relevant protection goals remains challenging, the combination of ecotoxicological experiments and models is key for a more comprehensive assessment of the effects of chemical stressors to aquatic ecosystems.
Collapse
Affiliation(s)
- Lara M Schuijt
- Aquatic Ecology and Water Quality Management group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands.
| | - Feng-Jiao Peng
- Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Sanne J P van den Berg
- Aquatic Ecology and Water Quality Management group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Milou M L Dingemans
- KWR Water Research Institute, Nieuwegein, the Netherlands; Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
8
|
Dos Santos Almeida S, Silva Oliveira V, Ribeiro Dantas M, Luiz Borges L, Teixeira de Sabóia-Morais SM, Lopes Rocha T, Luiz Cardoso Bailão EF. Environmentally relevant concentrations of benzophenone-3 induce differential histopathological responses in gills and liver of freshwater fish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:44890-44901. [PMID: 33852111 DOI: 10.1007/s11356-021-13839-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
BP-3 is one of the most used organic UV filters. However, its widespread use and release into aquatic environment can induce ecotoxicological impact on aquatic organisms. Thus, the aim of the current study is to evaluate the gills and liver of freshwater fish Poecilia reticulata subjected to acute exposure (96 h) to BP-3 at environmentally relevant concentrations (10-1000 ng L-1). The study was based on adopting qualitative and semi-quantitative approach to assess histopathological changes and integrated the biomarker response in order to investigate organ-specific responses to BP-3 exposure. BP-3 has induced high histopathological index associated with circulatory disturbances, as well as with regressive and immunological changes in gills, whereas the hepatic histopathological index was associated with circulatory disturbances. Moreover, lower BP-3 concentrations were mostly associated with changes in gills, whereas higher BP-3 concentration was mostly linked to hepatic changes. In conclusion, acute exposure to BP-3 at environmentally relevant concentrations had stronger impact on gills than on the liver of P. reticulata, which confirmed organ-specific responses to UV filters.
Collapse
Affiliation(s)
- Sara Dos Santos Almeida
- Laboratory of Biotechnology, Central Campus, State University of Goiás, Anápolis, Goiás, 75.132-903, Brazil
| | - Vinícius Silva Oliveira
- Laboratory of Biotechnology, Central Campus, State University of Goiás, Anápolis, Goiás, 75.132-903, Brazil
| | - Mariana Ribeiro Dantas
- Laboratory of Biotechnology, Central Campus, State University of Goiás, Anápolis, Goiás, 75.132-903, Brazil
| | - Leonardo Luiz Borges
- Laboratory of Biotechnology, Central Campus, State University of Goiás, Anápolis, Goiás, 75.132-903, Brazil
- School of Medical, Pharmaceutical and Biomedical Sciences, Pontifical Catholic University of Goiás, Goiânia, Goiás, Brazil
| | | | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | | |
Collapse
|
9
|
Brandts I, Balasch JC, Gonçalves AP, Martins MA, Pereira ML, Tvarijonaviciute A, Teles M, Oliveira M. Immuno-modulatory effects of nanoplastics and humic acids in the European seabass (Dicentrarchus labrax). JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125562. [PMID: 34030413 DOI: 10.1016/j.jhazmat.2021.125562] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/11/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Pernicious effects of plastic particles, emergent contaminants worldwide, have been described in different species. In teleost species, alterations of immune function after exposure to nanoplastics (NPs) have been reported, but the interaction with cortisol - hypothalamic-pituitary-adrenal (HPI) axis has not yet been explored. Furthermore, the role of dissolved organic matter on the effects of NPs is poorly known. Thus, the aims of this research were to assess if polystyrene NPs (PSNPs) acted as a stressor on juvenile European seabass (Dicentrarchus labrax), interfering with the immune response, as well as to elucidate if humic acids (HA) modulated the potential effects of PSNPs. A short-term exposure to PSNPs and HA elicited an immuno-modulatory response, with an activation of steroidogenic stress-related pathways. An upregulation of anti-inflammatory cytokine (il10, tgfb) and stress-related (mc2r, gr1) transcripts were observed after exposure to HA and PSNPs both individually and in co-exposure. No notable alteration of inflammatory markers was consistently found, which may reflect a protective anti-inflammatory effect of HA in the presence of PSNPs. Nevertheless, there seems to be a more complex interaction between both components. Overall, data show that understanding the interaction of NPs with dissolved organic substances is key to deciphering their environmental risks.
Collapse
Affiliation(s)
- I Brandts
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - J C Balasch
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - A P Gonçalves
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - M A Martins
- CICECO-Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - M L Pereira
- CICECO-Aveiro Institute of Materials, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - A Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis INTERLAB-UMU, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, Murcia 30100, Spain
| | - M Teles
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - M Oliveira
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
10
|
Rashidian G, Lazado CC, Mahboub HH, Mohammadi-Aloucheh R, Prokić MD, Nada HS, Faggio C. Chemically and Green Synthesized ZnO Nanoparticles Alter Key Immunological Molecules in Common Carp ( Cyprinus carpio) Skin Mucus. Int J Mol Sci 2021; 22:ijms22063270. [PMID: 33806904 PMCID: PMC8004943 DOI: 10.3390/ijms22063270] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023] Open
Abstract
This study was conducted to compare the effects of commercially available (C) and green synthesized (GS) Zinc oxide nanoparticles (ZnO-NPs) on immunological responses of common carp (Cyprinus carpio) skin mucus. GS ZnO-NPs were generated using Thymus pubescent and characterized by UV–vis diffuse reflectance spectroscopy (DRS), Fourier-transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), scanning electron microscope (SEM), and energy-dispersive X-ray spectroscopy (EDX). Fish (n = 150) were randomly allocated into five groups in triplicate and received a waterborne concentration of 0% (control), 25%, and 50% of LC50 96 h of commercially available (C1 and C2) and green synthesized ZnO-NPs (GS1 and GS2) for 21 days. Results from XRD displayed ZnO-NPs with 58 nm in size and UV-vis DRS, EDX, and FT-IR analysis showed that some functional groups from plant extract bonded to the surface of NPs. The SEM images showed that ZnO-NPs have conical morphology. Acute toxicity study showed a higher dose of LC5096h for green synthesized ZnO-NPs (78.9 mg.L−1) compared to the commercial source (59.95 mg.L−1). The highest activity of lysozyme and alternative complement activity (ACH50) were found in control and GS1 groups. A significant decrease in alkaline phosphatase activity (ALP) was found in C1 and C2 groups compared to other treatments. Protease activity (P) was significantly decreased in the C2 group compared to the control and GS groups. Total immunoglobulin (total Ig) content was the highest in the control. In addition, total Ig in the GS1 group was higher than GS2. The exposure to ZnO-NPs lowered total protein content in all experimental groups when compared to control. Present findings revealed lower induced immunosuppressive effects by green synthesized ZnO-NPs on key parameters of fish skin mucus.
Collapse
Affiliation(s)
- Ghasem Rashidian
- Department of Aquaculture, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor 4641776489, Iran
- Correspondence: (G.R.); (C.F.); Tel.:+98-9359487330 (G.R.); +39-090-6765213 (C.F.)
| | - Carlo C. Lazado
- Nofima, Norwegian Institute of Food Fisheries and Aquaculture Research, 1433 Ås, Norway;
| | - Heba H. Mahboub
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | | | - Marko D. Prokić
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia;
| | - Hend S. Nada
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 S Agata-Messina, Italy
- Correspondence: (G.R.); (C.F.); Tel.:+98-9359487330 (G.R.); +39-090-6765213 (C.F.)
| |
Collapse
|
11
|
Silva DDS, Gonçalves B, Rodrigues CC, Dias FC, Trigueiro NSDS, Moreira IS, de Melo E Silva D, Sabóia-Morais SMT, Gomes T, Rocha TL. A multibiomarker approach in the caged neotropical fish to assess the environment health in a river of central Brazilian Cerrado. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141632. [PMID: 32889457 DOI: 10.1016/j.scitotenv.2020.141632] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/05/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
Water safety is a world-wide concern and several efforts have been made in order to ensure the conservation of aquatic ecosystems. Water quality monitoring must be performed with an integrated approach using biomonitor organisms allied to water parameters. Nonetheless, very few studies have focused on biomarker responses in neotropical fish, especially in the freshwater ecosystem of Brazilian Cerrado savanna. In present study, the active biomonitoring of the João Leite river (central Brazilian Cerrado river) was performed through the evaluation of biomarker responses in caged Astyanax lacustris in combination with land use classification and analysis of water parameters. Caged fish were exposed for seven days at four sites along the river and two control groups were kept in a tank under controlled conditions. Results showed that pasture was the predominant land use in the João Leite river basin (54.07%), followed by natural vegetation (34.92%) and other kind of land use (11.01%). Water analyses showed metal concentrations (Mn and Fe) above the maximum allowed by Brazilian regulation, with particularly higher concentrations at Site 2 (near to pasture area). Biomarker responses did not show significant differences for somatic and mutagenic biomarkers between sites. However, the comet assay showed high DNA damage at Sites 2 and 3, indicating genotoxic effects in caged fish at pasture areas. Histopathological analysis showed highest frequency of leukocyte infiltration in liver of fish from Site 2, confirming the ecotoxic effects on A. lacustris in streams impacted by grazing activities. DNA damage and leukocyte infiltration in fish hepatic tissues were sensitive biomarkers in the neotropical fish A. lacustris to assess the environment health of the Cerrado river. These results showed the importance of using a multibiomarker approach in environmental risk assessment, especially in areas more at risk from anthropogenic pollution.
Collapse
Affiliation(s)
- Douglas Dos Santos Silva
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil
| | - Bruno Gonçalves
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil
| | - Cândido Carvalho Rodrigues
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil
| | - Felipe Cirqueira Dias
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil
| | - Nicholas Silvestre de Souza Trigueiro
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil
| | - Izabella Soares Moreira
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil
| | - Daniela de Melo E Silva
- Laboratory of Mutagenesis, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Simone Maria Teixeira Sabóia-Morais
- Laboratory of Cellular Behaviour, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Tânia Gomes
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil.
| |
Collapse
|
12
|
Sharifinia M, Bahmanbeigloo ZA, Keshavarzifard M, Khanjani MH, Lyons BP. Microplastic pollution as a grand challenge in marine research: A closer look at their adverse impacts on the immune and reproductive systems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111109. [PMID: 32798751 DOI: 10.1016/j.ecoenv.2020.111109] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 05/06/2023]
Abstract
Microplastic (MP) pollution of the marine environment is now a growing global concern posing a threat to a variety of species through the ingestion and transfer within food webs. This is considered a potential toxicological threat to marine species due to the chemical additives used to make many plastic products, or the persistent organic pollutants that may accumulate on them while residing in the environment. While the presence of MPs in the marine environment is widely documented, there are no other review articles providing a summary of published effect studies of MPs on the immune and reproductive systems of marine species. This manuscript reviews reproductive and immune-system changes in response to MPs in 7 and 9 species, respectively. Some species such as Mytilus galloprovincialis and oyster Crassostrea gigas were investigated in multiple papers. Most studies have been conducted on invertebrates, and only 3 studies have been performed on vertebrates, with exposure times ranging between 30 min and 60 days. A review of the literature revealed that the most common MPs types studied in relation to adverse impacts on immune system and reproductive success in marine species were polystyrene (PS) and polyethylene (PE). The immune system's responses to MPs exposure varied depending on the species, with altered organismal defense mechanisms and neutrophil function observed in fish and changes in lysosomal membrane stability and apoptotic-like nuclear alterations in phagocytes reported in invertebrate species. Reproductive responses to MPs exposure, varied depending on species, but included significant reduction in gamete and oocyte quality, fecundity, sperm swimming speed, and quality of offspring. The lack of published data means that developing a clear understanding of the impact across taxonomic groups with different feeding and behavioral traits is often difficult. Further work is required to better understand the risk MPs pose to the immune and reproductive systems of marine species in order to fully evaluate the impact these ubiquitous pollutants are having on marine ecosystems and the associated goods and services they provide.
Collapse
Affiliation(s)
- Moslem Sharifinia
- Shrimp Research Center, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Bushehr, Iran.
| | | | - Mehrzad Keshavarzifard
- Shrimp Research Center, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Bushehr, Iran.
| | - Mohammad Hossein Khanjani
- Department of Fisheries Science and Engineering, Faculty of Natural Resources, University of Jiroft, Jiroft, Kerman, Iran
| | - Brett P Lyons
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Barrack Road, Weymouth, Dorset, DT4 8UB, UK
| |
Collapse
|
13
|
Garate OF, Gazzaniga S, Cochón AC. A comparative study of enzymatic and immunological parameters in Planorbarius corneus and Biomphalaria glabrata exposed to the organophosphate chlorpyrifos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 225:105544. [PMID: 32569998 DOI: 10.1016/j.aquatox.2020.105544] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 05/24/2023]
Abstract
This study aimed to investigate the acute effects of chlorpyrifos on biomarkers related to neurotoxicity and immunotoxicity in two allopatric freshwater gastropod species belonging to the family Planorbidae. For this purpose, Planorbarius corneus and Biomphalaria glabrata were exposed to chlorpyrifos (active ingredient or commercial formulation) for 48 h at environmentally realistic concentrations (1 and 7.5 μg L-1). Basal acetylcholinesterase activity in soft tissues and hemolymph was almost one order of magnitude higher in P. corneus than in B. glabrata. However, upon chlorpyrifos exposure, statistically significant inhibition of enzymatic activity was registered in both species. Acetylcholinesterase was more sensitive to inhibition in soft tissues than in hemolymph. The highest inhibition was observed in the B. glabrata soft tissues exposed to the commercial formulation (88 % at 1 μg L-1 and 93 % at 7.5 μg L-1). Hemocyte number and lysosomal membrane stability did not show significant changes with respect to controls in any of the exposed groups. Superoxide anion generation was diminished (21-46 %) in P. corneus hemocytes exposed to the active ingredient and in B. glabrata hemocytes exposed to the active ingredient or the formulation. In contrast, hemocyte phagocytic activity increased in all exposed groups. Phagocytosis was most stimulated (89 %) in hemocytes sampled from B. glabrata treated with 7.5 μg L-1 chlorpyrifos. Altogether the results suggest that the freshwater gastropods P. corneus and B. glabrata are suitable model animals for environmental monitoring studies in the Northern Hemisphere and Latin America, respectively. Furthermore, these results add information on the relevance of testing pesticide formulations and on the usefulness of acetylcholinesterase inhibition and immunological parameters as biomarkers of the acute effects of chlorpyrifos in these species.
Collapse
Affiliation(s)
- Octavio F Garate
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Ciudad Universitaria, Intendente Güiraldes 2160, 1428, Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvina Gazzaniga
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Ciudad Universitaria, Intendente Güiraldes 2160, 1428, Ciudad Autónoma de Buenos Aires, Argentina
| | - Adriana C Cochón
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Ciudad Universitaria, Intendente Güiraldes 2160, 1428, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
14
|
Sueiro MC, Awruch C, Gilardoni C, Demetrio M, Palacios MG. Immunity and health of two wild marine fishes naturally exposed to anthropogenic pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 726:138303. [PMID: 32305751 DOI: 10.1016/j.scitotenv.2020.138303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
There are increasing global concerns of the alarming pollution impacts on marine life, thus it is becoming essential to generate reliable tools to monitor and understand the effects of these impacts on aquatic organisms. We performed a field study assessing how exposure to anthropogenic pollution impacts immunological and health-state parameters and parasite infection of a wild marine fish, the Brazilian sandperch Pinguipes brasilianus. Then we compared this information to previously published data of a sympatric species, the Patagonian rockfish Sebastes oculatus inhabiting the same polluted and pristine areas. The field study revealed that exposed P. brasilianus showed chronic stress, poor immune condition and higher prevalence and abundance of acanthocephalan parasites. By comparing these former results with already published in S. oculatus, we concluded that, although both species exhibited physiological alterations associate to inhabiting sites exposed to pollution, their specific immunological and health-state responses differed. Our results demonstrate that Patagonian reef-fish assemblages inhabiting sites exposed to pollutant are being affected in their immune and heath condition, which could potentially result in higher susceptibility to disease and in turn population decline. These findings highlight the necessity of more studies incorporating interspecific comparisons to assess variation in fish susceptibility in an ecoimmunotoxicological context and get a more profound understanding of anthropogenic impacts on wildlife.
Collapse
Affiliation(s)
- María Cruz Sueiro
- Centro para el Estudio de Sistemas Marinos (CESIMAR), Centro Nacional Patagónico - Consejo Nacional de Investigaciones Científicas y Técnicas (CENPAT - CONICET) Puerto Madryn, Chubut, Argentina.
| | - Cynthia Awruch
- Centro para el Estudio de Sistemas Marinos (CESIMAR), Centro Nacional Patagónico - Consejo Nacional de Investigaciones Científicas y Técnicas (CENPAT - CONICET) Puerto Madryn, Chubut, Argentina; School of Natural Sciences, University of Tasmania, Tasmania 7001, Australia.
| | - Carmen Gilardoni
- Laboratorio de Parasitología (LAPA), Instituto de Biología de Organismos Marinos (IBIOMAR), Centro Nacional Patagónico - Consejo Nacional de Investigaciones Científicas y Técnicas (CENPAT - CONICET) Puerto Madryn, Chubut, Argentina.
| | - Muriel Demetrio
- Laboratorio de Parasitología (LAPA), Instituto de Biología de Organismos Marinos (IBIOMAR), Centro Nacional Patagónico - Consejo Nacional de Investigaciones Científicas y Técnicas (CENPAT - CONICET) Puerto Madryn, Chubut, Argentina
| | - María Gabriela Palacios
- Centro para el Estudio de Sistemas Marinos (CESIMAR), Centro Nacional Patagónico - Consejo Nacional de Investigaciones Científicas y Técnicas (CENPAT - CONICET) Puerto Madryn, Chubut, Argentina.
| |
Collapse
|
15
|
Razmara P, Sharpe J, Pyle GG. Rainbow trout (Oncorhynchus mykiss) chemosensory detection of and reactions to copper nanoparticles and copper ions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:113925. [PMID: 32369894 DOI: 10.1016/j.envpol.2020.113925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/20/2019] [Accepted: 01/05/2020] [Indexed: 06/11/2023]
Abstract
Copper is known to interfere with fish olfaction. Although the chemosensory detection and olfactory toxicity of copper ions (Cu2+) has been heavily studied in fish, the olfactory-driven detection of copper nanoparticles (CuNPs)-a rapidly emerging contaminant to aquatic systems-remains largely unknown. This study aimed to investigate the olfactory response of rainbow trout to equitoxic concentrations of CuNPs or Cu2+ using electro-olfactography (EOG, a neurophysiological technique) and olfactory-mediated behavioural assay. In the first experiment, the concentration of contaminants known to impair olfaction by 20% over 24 h (EOG-based 24-h IC20s of 220 and 3.5 μg/L for CuNPs and Cu2+, respectively) were tested as olfactory stimuli using both neurophysiological and behavioural assays. In the second experiment, to determine whether the presence of CuNPs or Cu2+ can affect the ability of fish to perceive a social cue (taurocholic acid (TCA)), fish were acutely exposed to one form of Cu-contaminants (approximately 15 min). Following exposure, olfactory sensitivity was measured by EOG and olfactory-mediated behaviour within a choice maze was recorded in the presence of TCA. Results of neurophysiological and behavioural experiments demonstrate that rainbow trout can detect and avoid the IC20 of CuNPs. The IC20 of Cu2+ was below the olfactory detection threshold of rainbow trout, as such, fish did not avoid Cu2+. The high sensitivity of behavioural endpoints revealed a lack of aversion response to TCA in CuNP-exposed fish, despite this change not being present utilizing EOG. The reduced response to TCA during the brief exposure to CuNPs may be a result of either olfactory fatigue or blockage of olfactory sensory neurons (OSNs) by CuNPs. The observed behavioural interference caused by CuNP exposure may indicate that CuNPs have the ability to interfere with other behaviours potentially affecting fitness and survival. Our findings also revealed the differential response of OSNs to CuNPs and Cu2+.
Collapse
Affiliation(s)
- Parastoo Razmara
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada.
| | - Justin Sharpe
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
| | - Gregory G Pyle
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
| |
Collapse
|
16
|
Ewald JD, Soufan O, Crump D, Hecker M, Xia J, Basu N. EcoToxModules: Custom Gene Sets to Organize and Analyze Toxicogenomics Data from Ecological Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4376-4387. [PMID: 32106671 DOI: 10.1021/acs.est.9b06607] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Traditional results from toxicogenomics studies are complex lists of significantly impacted genes or gene sets, which are challenging to synthesize down to actionable results with a clear interpretation. Here, we defined two sets of 21 custom gene sets, called the functional and statistical EcoToxModules, in fathead minnow (Pimephales promelas) to (1) re-cast predefined molecular pathways into a toxicological framework and (2) provide a data-driven, unsupervised grouping of genes impacted by exposure to environmental contaminants. The functional EcoToxModules were identified by re-organizing KEGG pathways into biological processes that are more relevant to ecotoxicology based on the input from expert scientists and regulators. The statistical EcoToxModules were identified using co-expression analysis of publicly available microarray data (n = 303 profiles) measured in livers of fathead minnows after exposure to 38 different conditions. Potential applications of the EcoToxModules were demonstrated with two case studies that represent exposure to a pure chemical and to environmental wastewater samples. In comparisons to differential expression and gene set analysis, we found that EcoToxModule responses were consistent with these traditional results. Additionally, they were easier to visualize and quantitatively compare across different conditions, which facilitated drawing conclusions about the relative toxicity of the exposures within each case study.
Collapse
Affiliation(s)
- Jessica D Ewald
- Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue H9X 3V9, Canada
| | - Othman Soufan
- Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue H9X 3V9, Canada
| | - Doug Crump
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa K1A 0H3, Canada
| | - Markus Hecker
- School of the Environment & Sustainability and Toxicology Centre, University of Saskatchewan, Saskatoon S7N 5B3, Canada
| | - Jianguo Xia
- Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue H9X 3V9, Canada
| | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue H9X 3V9, Canada
| |
Collapse
|
17
|
Bai C, Tang M. Toxicological study of metal and metal oxide nanoparticles in zebrafish. J Appl Toxicol 2019; 40:37-63. [DOI: 10.1002/jat.3910] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Changcun Bai
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public HealthSoutheast University Nanjing People's Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public HealthSoutheast University Nanjing People's Republic of China
| |
Collapse
|
18
|
Cazenave J, Ale A, Bacchetta C, Rossi AS. Nanoparticles Toxicity in Fish Models. Curr Pharm Des 2019; 25:3927-3942. [DOI: 10.2174/1381612825666190912165413] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/29/2019] [Indexed: 12/27/2022]
Abstract
The increasing production and use of nanoparticles (NP) have raised concerns regarding the potential
toxicity to human and environmental health. In this review, we address the up to date information on nanotoxicity
using fish as models. Firstly, we carried out a systematic literature search (articles published up to February 2019
in the Scopus database) in order to quantitatively assess the scientific research on nanoparticles, nanotoxicity and
fish. Next, we carried out a narrative synthesis on the main factors and mechanisms involved in NP toxicity in
fish. According to the bibliometric analysis, there is a low contribution of scientific research on nanotoxicity
compared with the general nanoparticles scientific production. The literature search also showed that silver and
titanium NP are the most studied nanomaterials and Danio rerio is the fish species most used. In comparison with
freshwater fish, the effects of nanomaterials on marine fish have been little studied. After a non-systematic literature
analysis, we identified several factors involved in nanotoxicity, as well as the effects and main toxicity
mechanisms of NP on fish. Finally, we highlighted the knowledge gaps and the need for future research.
Collapse
Affiliation(s)
- Jimena Cazenave
- Instituto Nacional de Limnologia, CONICET, UNL, Santa Fe, Argentina, Paraje El Pozo, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina
| | - Analía Ale
- Instituto Nacional de Limnologia, CONICET, UNL, Santa Fe, Argentina, Paraje El Pozo, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina
| | - Carla Bacchetta
- Instituto Nacional de Limnologia, CONICET, UNL, Santa Fe, Argentina, Paraje El Pozo, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina
| | - Andrea Silvana Rossi
- Instituto Nacional de Limnologia, CONICET, UNL, Santa Fe, Argentina, Paraje El Pozo, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina
| |
Collapse
|