1
|
Zhao L, Jin S, Wang S, Zhang Z, Wang X, Chen Z, Wang X, Huang S, Zhang D, Wu H. Tertiary lymphoid structures in diseases: immune mechanisms and therapeutic advances. Signal Transduct Target Ther 2024; 9:225. [PMID: 39198425 PMCID: PMC11358547 DOI: 10.1038/s41392-024-01947-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Tertiary lymphoid structures (TLSs) are defined as lymphoid aggregates formed in non-hematopoietic organs under pathological conditions. Similar to secondary lymphoid organs (SLOs), the formation of TLSs relies on the interaction between lymphoid tissue inducer (LTi) cells and lymphoid tissue organizer (LTo) cells, involving multiple cytokines. Heterogeneity is a distinguishing feature of TLSs, which may lead to differences in their functions. Growing evidence suggests that TLSs are associated with various diseases, such as cancers, autoimmune diseases, transplant rejection, chronic inflammation, infection, and even ageing. However, the detailed mechanisms behind these clinical associations are not yet fully understood. The mechanisms by which TLS maturation and localization affect immune function are also unclear. Therefore, it is necessary to enhance the understanding of TLS development and function at the cellular and molecular level, which may allow us to utilize them to improve the immune microenvironment. In this review, we delve into the composition, formation mechanism, associations with diseases, and potential therapeutic applications of TLSs. Furthermore, we discuss the therapeutic implications of TLSs, such as their role as markers of therapeutic response and prognosis. Finally, we summarize various methods for detecting and targeting TLSs. Overall, we provide a comprehensive understanding of TLSs and aim to develop more effective therapeutic strategies.
Collapse
Affiliation(s)
- Lianyu Zhao
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Song Jin
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyao Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Zhe Zhang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Xuan Wang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Zhanwei Chen
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Xiaohui Wang
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyun Huang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Dongsheng Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Haiwei Wu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| |
Collapse
|
2
|
Karabayas M, Ibrahim HE, Roelofs AJ, Reynolds G, Kidder D, De Bari C. Vascular disease persistence in giant cell arteritis: are stromal cells neglected? Ann Rheum Dis 2024; 83:1100-1109. [PMID: 38684323 PMCID: PMC11420755 DOI: 10.1136/ard-2023-225270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/05/2024] [Indexed: 05/02/2024]
Abstract
Giant cell arteritis (GCA), the most common systemic vasculitis, is characterised by aberrant interactions between infiltrating and resident cells of the vessel wall. Ageing and breach of tolerance are prerequisites for GCA development, resulting in dendritic and T-cell dysfunction. Inflammatory cytokines polarise T-cells, activate resident macrophages and synergistically enhance vascular inflammation, providing a loop of autoreactivity. These events originate in the adventitia, commonly regarded as the biological epicentre of the vessel wall, with additional recruitment of cells that infiltrate and migrate towards the intima. Thus, GCA-vessels exhibit infiltrates across the vascular layers, with various cytokines and growth factors amplifying the pathogenic process. These events activate ineffective repair mechanisms, where dysfunctional vascular smooth muscle cells and fibroblasts phenotypically shift along their lineage and colonise the intima. While high-dose glucocorticoids broadly suppress these inflammatory events, they cause well known deleterious effects. Despite the emerging targeted therapeutics, disease relapse remains common, affecting >50% of patients. This may reflect a discrepancy between systemic and local mediators of inflammation. Indeed, temporal arteries and aortas of GCA-patients can show immune-mediated abnormalities, despite the treatment induced clinical remission. The mechanisms of persistence of vascular disease in GCA remain elusive. Studies in other chronic inflammatory diseases point to the fibroblasts (and their lineage cells including myofibroblasts) as possible orchestrators or even effectors of disease chronicity through interactions with immune cells. Here, we critically review the contribution of immune and stromal cells to GCA pathogenesis and analyse the molecular mechanisms by which these would underpin the persistence of vascular disease.
Collapse
Affiliation(s)
- Maira Karabayas
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Hafeez E Ibrahim
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Anke J Roelofs
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Gary Reynolds
- Centre for Immunology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Dana Kidder
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Cosimo De Bari
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
3
|
van der Geest KSM, Sandovici M, Bley TA, Stone JR, Slart RHJA, Brouwer E. Large vessel giant cell arteritis. THE LANCET. RHEUMATOLOGY 2024; 6:e397-e408. [PMID: 38574745 DOI: 10.1016/s2665-9913(23)00300-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 04/06/2024]
Abstract
Giant cell arteritis is the principal form of systemic vasculitis affecting people over 50. Large-vessel involvement, termed large vessel giant cell arteritis, mainly affects the aorta and its branches, often occurring alongside cranial giant cell arteritis, but large vessel giant cell arteritis without cranial giant cell arteritis can also occur. Patients mostly present with constitutional symptoms, with localising large vessel giant cell arteritis symptoms present in a minority of patients only. Large vessel giant cell arteritis is usually overlooked until clinicians seek to exclude it with imaging by ultrasonography, magnetic resonance angiography (MRA), computed tomography angiography (CTA), or [18F]fluorodeoxyglucose-PET-CT. Although the role of imaging in treatment monitoring remains uncertain, imaging by MRA or CTA is crucial for identifying aortic aneurysm formation during patient follow up. In this Series paper, we define the large vessel subset of giant cell arteritis and summarise its clinical challenges. Furthermore, we identify areas for future research regarding the management of large vessel giant cell arteritis.
Collapse
Affiliation(s)
- Kornelis S M van der Geest
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.
| | - Maria Sandovici
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Thorsten A Bley
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Wuerzburg, University of Wuerzburg, Wuerzburg, Germany
| | - James R Stone
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Riemer H J A Slart
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Netherlands; Department of Biomedical Photonic Imaging, Faculty of Science and Technology, University of Twente, Enschede, Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
4
|
Xu S, Jiemy WF, Brouwer E, Burgess JK, Heeringa P, van der Geest KSM, Alba-Rovira R, Corbera-Bellalta M, Boots AH, Cid MC, Sandovici M. Current evidence on the role of fibroblasts in large-vessel vasculitides: From pathogenesis to therapeutics. Autoimmun Rev 2024; 23:103574. [PMID: 38782083 DOI: 10.1016/j.autrev.2024.103574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/29/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Large-vessel vasculitides (LVV) comprise a group of chronic inflammatory diseases of the aorta and its major branches. The most common forms of LVV are giant cell arteritis (GCA) and Takayasu arteritis (TAK). Both GCA and TAK are characterized by granulomatous inflammation of the vessel wall accompanied by a maladaptive immune and vascular response that promotes vascular damage and remodeling. The inflammatory process in LVV starts in the adventitia where fibroblasts constitute the dominant cell population. Fibroblasts are traditionally recognized for synthesizing and renewing the extracellular matrix thereby being major players in maintenance of normal tissue architecture and in tissue repair. More recently, fibroblasts have emerged as a highly plastic cell population exerting various functions, including the regulation of local immune processes and organization of immune cells at the site of inflammation through production of cytokines, chemokines and growth factors as well as cell-cell interaction. In this review, we summarize and discuss the current knowledge on fibroblasts in LVV. Furthermore, we identify key questions that need to be addressed to fully understand the role of fibroblasts in the pathogenesis of LVV.
Collapse
Affiliation(s)
- Shuang Xu
- University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, the Netherlands
| | - William F Jiemy
- University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, the Netherlands
| | - Elisabeth Brouwer
- University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, the Netherlands
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, the Netherlands
| | - Peter Heeringa
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, the Netherlands
| | - Kornelis S M van der Geest
- University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, the Netherlands
| | - Roser Alba-Rovira
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marc Corbera-Bellalta
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Annemieke H Boots
- University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, the Netherlands
| | - Maria C Cid
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Maria Sandovici
- University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, the Netherlands.
| |
Collapse
|
5
|
Palamidas DA, Chatzis L, Papadaki M, Gissis I, Kambas K, Andreakos E, Goules AV, Tzioufas AG. Current Insights into Tissue Injury of Giant Cell Arteritis: From Acute Inflammatory Responses towards Inappropriate Tissue Remodeling. Cells 2024; 13:430. [PMID: 38474394 DOI: 10.3390/cells13050430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Giant cell arteritis (GCA) is an autoimmune disease affecting large vessels in patients over 50 years old. It is an exemplary model of a classic inflammatory disorder with IL-6 playing the leading role. The main comorbidities that may appear acutely or chronically are vascular occlusion leading to blindness and thoracic aorta aneurysm formation, respectively. The tissue inflammatory bulk is expressed as acute or chronic delayed-type hypersensitivity reactions, the latter being apparent by giant cell formation. The activated monocytes/macrophages are associated with pronounced Th1 and Th17 responses. B-cells and neutrophils also participate in the inflammatory lesion. However, the exact order of appearance and mechanistic interactions between cells are hindered by the lack of cellular and molecular information from early disease stages and accurate experimental models. Recently, senescent cells and neutrophil extracellular traps have been described in tissue lesions. These structures can remain in tissues for a prolonged period, potentially favoring inflammatory responses and tissue remodeling. In this review, current advances in GCA pathogenesis are discussed in different inflammatory phases. Through the description of these-often overlapping-phases, cells, molecules, and small lipid mediators with pathogenetic potential are described.
Collapse
Affiliation(s)
- Dimitris Anastasios Palamidas
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Loukas Chatzis
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Maria Papadaki
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Ilias Gissis
- Department of Thoracic and Cardiovascular Surgery, Evangelismos General Hospital, 11473 Athens, Greece
| | - Konstantinos Kambas
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Evangelos Andreakos
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Andreas V Goules
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Athanasios G Tzioufas
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- Research Institute for Systemic Autoimmune Diseases, 11527 Athens, Greece
| |
Collapse
|
6
|
Huard B, Chemkhi Z, Giovannini D, Barre M, Baillet A, Cornec D, Harada K, Sturm N. Presence of ectopic germinal center structures in autoimmune hepatitis. Clin Immunol 2024; 259:109876. [PMID: 38145857 DOI: 10.1016/j.clim.2023.109876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/27/2023]
Abstract
Autoimmune tissues may contain ectopic germinal centers (EGCs). However, these structures have never been described in the liver of patients suffering from autoimmune hepatitis (AIH). We retrospectively reviewed histological features of 120 definite AIH cases, and found 10 cases harboring markers of EGCs. In these cases, CD21+ follicular dendritic cells were intermixed with CD3+ T and CD20+ B lymphocytes. The latter expressed the GC-specific marker bcl6, and some were proliferative as assessed by Ki67 expression. Antibody-secreting cells (ASCs) defined by expression of the mum-1 transcription factor and presence of cytoplasmic IgMs were usually present in the periphery of these structures, but some were also present within the EGCs. Notably, some ASCs were IgG-switched. Common treatment applied to AIH patients achieved biochemical normalization as efficiently as in patients without EGCs. In the present study, we provide the proof for the occurrence of functional EGCs enabling differentiation of B cells into ASCs and occurrence of immunoglobulin switch in AIH livers.
Collapse
Affiliation(s)
- B Huard
- T-RAIG, TIMC, University Grenoble-Alpes/CNRS UMR5525, La Tronche, France.
| | - Z Chemkhi
- T-RAIG, TIMC, University Grenoble-Alpes/CNRS UMR5525, La Tronche, France.
| | - D Giovannini
- T-RAIG, TIMC, University Grenoble-Alpes/CNRS UMR5525, La Tronche, France; Department of Anatomocytopathology, University Hospital, Grenoble, France.
| | - M Barre
- T-RAIG, TIMC, University Grenoble-Alpes/CNRS UMR5525, La Tronche, France.
| | - A Baillet
- T-RAIG, TIMC, University Grenoble-Alpes/CNRS UMR5525, La Tronche, France; Department of Rhumatology, University Hospital, Grenoble, France.
| | - D Cornec
- Lymphocyte B and Autoimmunity, INSERM, UMR 1227, Department of Rhumatology, Brest university, Brest, France.
| | - K Harada
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan.
| | - N Sturm
- T-RAIG, TIMC, University Grenoble-Alpes/CNRS UMR5525, La Tronche, France; Department of Anatomocytopathology, University Hospital, Grenoble, France.
| |
Collapse
|
7
|
Paroli M, Caccavale R, Accapezzato D. Giant Cell Arteritis: Advances in Understanding Pathogenesis and Implications for Clinical Practice. Cells 2024; 13:267. [PMID: 38334659 PMCID: PMC10855045 DOI: 10.3390/cells13030267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
Giant cell arteritis (GCA) is a noninfectious granulomatous vasculitis of unknown etiology affecting individuals older than 50 years. Two forms of GCA have been identified: a cranial form involving the medium-caliber temporal artery causing temporal arteritis (TA) and an extracranial form involving the large vessels, mainly the thoracic aorta and its branches. GCA generally affects individuals with a genetic predisposition, but several epigenetic (micro)environmental factors are often critical for the onset of this vasculitis. A key role in the pathogenesis of GCA is played by cells of both the innate and adaptive immune systems, which contribute to the formation of granulomas that may include giant cells, a hallmark of the disease, and arterial tertiary follicular organs. Cells of the vessel wall cells, including vascular smooth muscle cells (VSMCs) and endothelial cells, actively contribute to vascular remodeling responsible for vascular stenosis and ischemic complications. This review will discuss new insights into the molecular and cellular pathogenetic mechanisms of GCA, as well as the implications of these findings for the development of new diagnostic biomarkers and targeted drugs that could hopefully replace glucocorticoids (GCs), still the backbone of therapy for this vasculitis.
Collapse
Affiliation(s)
- Marino Paroli
- Department of Clinical, Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Polo Pontino, 04100 Latina, Italy; (R.C.); (D.A.)
| | | | | |
Collapse
|
8
|
Kaymakci MS, Warrington KJ, Kermani TA. New Therapeutic Approaches to Large-Vessel Vasculitis. Annu Rev Med 2024; 75:427-442. [PMID: 37683286 DOI: 10.1146/annurev-med-060622-100940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Giant cell arteritis (GCA) and Takayasu arteritis (TAK) are large-vessel vasculitides affecting the aorta and its branches. Arterial damage from these diseases may result in ischemic complications, aneurysms, and dissections. Despite their similarities, the management of GCA and TAK differs. Glucocorticoids are used frequently but relapses are common, and glucocorticoid toxicity contributes to significant morbidity. Conventional immunosuppressive therapies can be beneficial in TAK, though their role in the management of GCA remains unclear. Tumor necrosis factor inhibitors improve remission rates and appear to limit vascular damage in TAK; these agents are not beneficial in GCA. Tocilizumab is the first biologic glucocorticoid-sparing agent approved for use in GCA and also appears to be effective in TAK. A better understanding of the pathogenesis of both conditions and the availability of targeted therapies hold much promise for future management.
Collapse
Affiliation(s)
- Mahmut S Kaymakci
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA; ,
| | - Kenneth J Warrington
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA; ,
| | - Tanaz A Kermani
- Division of Rheumatology, Department of Medicine, University of California Los Angeles, Santa Monica, California, USA;
| |
Collapse
|
9
|
Graver JC, Jiemy WF, Altulea DHA, van Sleen Y, Xu S, van der Geest KSM, Verstappen GMPJ, Heeringa P, Abdulahad WH, Brouwer E, Boots AMH, Sandovici M. Cytokine producing B-cells and their capability to polarize macrophages in giant cell arteritis. J Autoimmun 2023; 140:103111. [PMID: 37703805 DOI: 10.1016/j.jaut.2023.103111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/15/2023]
Abstract
OBJECTIVE The lack of disease-specific autoantibodies in giant cell arteritis (GCA) suggests an alternative role for B-cells readily detected in the inflamed arteries. Here we study the cytokine profile of tissue infiltrated and peripheral blood B-cells of patients with GCA. Moreover, we investigate the macrophage skewing capability of B-cell-derived cytokines. METHODS The presence of various cytokines in B-cell areas in temporal artery (n = 11) and aorta (n = 10) was identified by immunohistochemistry. PBMCs of patients with GCA (n = 11) and polymyalgia rheumatica (n = 10), and 14 age- and sex-matched healthy controls (HC) were stimulated, followed by flow cytometry for cytokine expression in B-cells. The skewing potential of B-cell-derived cytokines (n = 6 for GCA and HC) on macrophages was studied in vitro. RESULTS The presence of IL-6, GM-CSF, TNFα, IFNγ, LTβ and IL-10 was documented in B-cells and B-cell rich areas of GCA arteries. In vitro, B-cell-derived cytokines (from both GCA and HC) skewed macrophages towards a pro-inflammatory phenotype with enhanced expression of IL-6, IL-1β, TNFα, IL-23, YKL-40 and MMP-9. In vitro stimulated peripheral blood B-cells from treatment-naïve GCA patients showed an enhanced frequency of IL-6+ and TNFα+IL-6+ B-cells compared to HCs. This difference was no longer detected in treatment-induced remission. Erythrocyte sedimentation rate positively correlated with IL-6+TNFα+ B-cells. CONCLUSION B-cells are capable of producing cytokines and steering macrophages towards a pro-inflammatory phenotype. Although the capacity of B-cells in skewing macrophages is not GCA specific, these data support a cytokine-mediated role for B-cells in GCA and provide grounds for B-cell targeted therapy in GCA.
Collapse
Affiliation(s)
- Jacoba C Graver
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - William F Jiemy
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Dania H A Altulea
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Yannick van Sleen
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Shuang Xu
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Kornelis S M van der Geest
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Gwenny M P J Verstappen
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Wayel H Abdulahad
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Annemieke M H Boots
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Maria Sandovici
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
10
|
Sun X, Lu Y, Wu J, Wen Q, Li Z, Tang Y, Shi Y, He T, Liu L, Huang W, Weng C, Wu Q, Xiao Q, Yuan H, Xu Q, Cai J. Meta-Analysis of Single-Cell RNA-Seq Data Reveals the Mechanism of Formation and Heterogeneity of Tertiary Lymphoid Organ in Vascular Disease. Arterioscler Thromb Vasc Biol 2023; 43:1867-1886. [PMID: 37589134 PMCID: PMC10521807 DOI: 10.1161/atvbaha.123.318762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Tertiary lymphoid organs (TLOs) are ectopic lymphoid organs developed in nonlymphoid tissues with chronic inflammation, but little is known about their existence in different types of vascular diseases and the mechanism that mediated their development. METHODS To take advantage of single-cell RNA sequencing techniques, we integrated 28 single-cell RNA sequencing data sets containing 5 vascular disease models (atherosclerosis, abdominal aortic aneurysm, intimal hyperplasia, isograft, and allograft) to explore TLOs existence and environment supporting its growth systematically. We also searched Medline, Embase, PubMed, and Web of Science from inception to January 2022 for published histological images of vascular remodeling for histological evidence to support TLO genesis. RESULTS Accumulation and infiltration of innate and adaptive immune cells have been observed in various remodeling vessels. Interestingly, the proportion of such immune cells incrementally increases from atherosclerosis to intimal hyperplasia, abdominal aortic aneurysm, isograft, and allograft. Importantly, we uncovered that TLO structure cells, such as follicular helper T cells and germinal center B cells, present in all remodeled vessels. Among myeloid cells and lymphocytes, inflammatory macrophages, and T helper 17 cells are the major lymphoid tissue inducer cells which were found to be positively associated with the numbers of TLO structural cells in remodeled vessels. Vascular stromal cells also actively participate in vascular TLO genesis by communicating with myeloid cells and lymphocytes via CCLs (C-C motif chemokine ligands), CXCL (C-X-C motif ligand), lymphotoxin, BMP (bone morphogenetic protein) chemotactic, FGF-2 (fibroblast growth factor-2), and IGF (insulin growth factor) proliferation mechanisms, particularly for lymphoid tissue inducer cell aggregation. Additionally, the interaction between stromal cells and immune cells modulates extracellular matrix remodeling. Among TLO structure cells, follicular helper T, and germinal center B cells have strong interactions via TCR (T-cell receptor), CD40 (cluster of differentiation 40), and CXCL signaling, to promote the development and maturation of the germinal center in TLO. Consistently, by reviewing the histological images from the literature, TLO genesis was found in those vascular remodeling models. CONCLUSIONS Our analysis showed the existence of TLOs across 5 models of vascular diseases. The mechanisms that support TLOs formation in different models are heterogeneous. This study could be a valuable resource for understanding and discovering new therapeutic targets for various forms of vascular disease.
Collapse
Affiliation(s)
- Xuejing Sun
- Department of Cardiology (X.S., J.W., Q. Wen, Z.L., Y.T., Y.S., T.H., L.L., W.H., C.W., J.C.), Central South University, Changsha, China
| | - Yao Lu
- The Center of Clinical Pharmacology (Y.L., H.Y.), Central South University, Changsha, China
| | - Junru Wu
- Department of Cardiology (X.S., J.W., Q. Wen, Z.L., Y.T., Y.S., T.H., L.L., W.H., C.W., J.C.), Central South University, Changsha, China
| | - Qing Wen
- Department of Cardiology (X.S., J.W., Q. Wen, Z.L., Y.T., Y.S., T.H., L.L., W.H., C.W., J.C.), Central South University, Changsha, China
| | - Zhengxin Li
- Department of Cardiology (X.S., J.W., Q. Wen, Z.L., Y.T., Y.S., T.H., L.L., W.H., C.W., J.C.), Central South University, Changsha, China
| | - Yan Tang
- Department of Cardiology (X.S., J.W., Q. Wen, Z.L., Y.T., Y.S., T.H., L.L., W.H., C.W., J.C.), Central South University, Changsha, China
| | - Yunmin Shi
- Department of Cardiology (X.S., J.W., Q. Wen, Z.L., Y.T., Y.S., T.H., L.L., W.H., C.W., J.C.), Central South University, Changsha, China
| | - Tian He
- Department of Cardiology (X.S., J.W., Q. Wen, Z.L., Y.T., Y.S., T.H., L.L., W.H., C.W., J.C.), Central South University, Changsha, China
| | - Lun Liu
- Department of Cardiology (X.S., J.W., Q. Wen, Z.L., Y.T., Y.S., T.H., L.L., W.H., C.W., J.C.), Central South University, Changsha, China
| | - Wei Huang
- Department of Cardiology (X.S., J.W., Q. Wen, Z.L., Y.T., Y.S., T.H., L.L., W.H., C.W., J.C.), Central South University, Changsha, China
| | - Chunyan Weng
- Department of Cardiology (X.S., J.W., Q. Wen, Z.L., Y.T., Y.S., T.H., L.L., W.H., C.W., J.C.), Central South University, Changsha, China
| | - Qing Wu
- The Third Xiangya Hospital and High-Performance Computing Center (Q. Wu), Central South University, Changsha, China
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (Q. Xiao, Q. Xu)
| | - Hong Yuan
- The Center of Clinical Pharmacology (Y.L., H.Y.), Central South University, Changsha, China
| | - Qingbo Xu
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (Q. Xiao, Q. Xu)
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, China (Q. Xu)
| | - Jingjing Cai
- Department of Cardiology (X.S., J.W., Q. Wen, Z.L., Y.T., Y.S., T.H., L.L., W.H., C.W., J.C.), Central South University, Changsha, China
| |
Collapse
|
11
|
Sato Y, Jain A, Ohtsuki S, Okuyama H, Sturmlechner I, Takashima Y, Le KPC, Bois MC, Berry GJ, Warrington KJ, Goronzy JJ, Weyand CM. Stem-like CD4 + T cells in perivascular tertiary lymphoid structures sustain autoimmune vasculitis. Sci Transl Med 2023; 15:eadh0380. [PMID: 37672564 PMCID: PMC11131576 DOI: 10.1126/scitranslmed.adh0380] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023]
Abstract
Autoimmune vasculitis of the medium and large elastic arteries can cause blindness, stroke, aortic arch syndrome, and aortic aneurysm. The disease is often refractory to immunosuppressive therapy and progresses over decades as smoldering aortitis. How the granulomatous infiltrates in the vessel wall are maintained and how tissue-infiltrating T cells and macrophages are replenished are unknown. Single-cell and whole-tissue transcriptomic studies of immune cell populations in vasculitic arteries identified a CD4+ T cell population with stem cell-like features. CD4+ T cells supplying the tissue-infiltrating and tissue-damaging effector T cells survived in tertiary lymphoid structures around adventitial vasa vasora, expressed the transcription factor T cell factor 1 (TCF1), had high proliferative potential, and gave rise to two effector populations, Eomesodermin (EOMES)+ cytotoxic T cells and B cell lymphoma 6 (BCL6)+ T follicular helper-like cells. TCF1hiCD4+ T cells expressing the interleukin 7 receptor (IL-7R) sustained vasculitis in serial transplantation experiments. Thus, TCF1hiCD4+ T cells function as disease stem cells and promote chronicity and autonomy of autoimmune tissue inflammation. Remission-inducing therapies will require targeting stem-like CD4+ T cells instead of only effector T cells.
Collapse
Affiliation(s)
- Yuki Sato
- Department of Medicine, Mayo Clinic College of Medicine and
Science, Rochester, MN 55905, USA
- Department of Cardiovascular Disease, Mayo Clinic College
of Medicine and Science, Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic College of Medicine
and Science, Rochester, MN 55905, USA
| | - Abhinav Jain
- Department of Immunology, Mayo Clinic College of Medicine
and Science, Rochester, MN 55905, USA
| | - Shozo Ohtsuki
- Department of Medicine, Mayo Clinic College of Medicine and
Science, Rochester, MN 55905, USA
- Department of Cardiovascular Disease, Mayo Clinic College
of Medicine and Science, Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic College of Medicine
and Science, Rochester, MN 55905, USA
| | - Hirohisa Okuyama
- Department of Immunology, Mayo Clinic College of Medicine
and Science, Rochester, MN 55905, USA
| | - Ines Sturmlechner
- Department of Immunology, Mayo Clinic College of Medicine
and Science, Rochester, MN 55905, USA
| | - Yoshinori Takashima
- Department of Medicine, Mayo Clinic College of Medicine and
Science, Rochester, MN 55905, USA
- Department of Cardiovascular Disease, Mayo Clinic College
of Medicine and Science, Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic College of Medicine
and Science, Rochester, MN 55905, USA
| | - Kevin-Phu C Le
- Department of Medicine, Mayo Clinic College of Medicine and
Science, Rochester, MN 55905, USA
- Department of Cardiovascular Disease, Mayo Clinic College
of Medicine and Science, Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic College of Medicine
and Science, Rochester, MN 55905, USA
| | - Melanie C. Bois
- Department of Laboratory Medicine and Pathology, Mayo
Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Gerald J. Berry
- Department of Pathology, School of Medicine, Stanford
University, Stanford, CA 94305, USA
| | - Kenneth J. Warrington
- Department of Medicine, Mayo Clinic College of Medicine and
Science, Rochester, MN 55905, USA
| | - Jorg J. Goronzy
- Department of Medicine, Mayo Clinic College of Medicine and
Science, Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic College of Medicine
and Science, Rochester, MN 55905, USA
- Department of Medicine, School of Medicine, Stanford
University, Stanford, CA 94305, USA
| | - Cornelia M. Weyand
- Department of Medicine, Mayo Clinic College of Medicine and
Science, Rochester, MN 55905, USA
- Department of Cardiovascular Disease, Mayo Clinic College
of Medicine and Science, Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic College of Medicine
and Science, Rochester, MN 55905, USA
- Department of Medicine, School of Medicine, Stanford
University, Stanford, CA 94305, USA
| |
Collapse
|
12
|
Régnier P, Le Joncour A, Maciejewski-Duval A, Darrasse-Jèze G, Dolladille C, Meijers WC, Bastarache L, Fouret P, Bruneval P, Arbaretaz F, Sayetta C, Márquez A, Rosenzwajg M, Klatzmann D, Cacoub P, Moslehi JJ, Salem JE, Saadoun D. CTLA-4 Pathway Is Instrumental in Giant Cell Arteritis. Circ Res 2023; 133:298-312. [PMID: 37435729 DOI: 10.1161/circresaha.122.322330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 06/28/2023] [Indexed: 07/13/2023]
Abstract
BACKGROUND Giant cell arteritis (GCA) causes severe inflammation of the aorta and its branches and is characterized by intense effector T-cell infiltration. The roles that immune checkpoints play in the pathogenesis of GCA are still unclear. Our aim was to study the immune checkpoint interplay in GCA. METHODS First, we used VigiBase, the World Health Organization international pharmacovigilance database, to evaluate the relationship between GCA occurrence and immune checkpoint inhibitors treatments. We then further dissected the role of immune checkpoint inhibitors in the pathogenesis of GCA, using immunohistochemistry, immunofluorescence, transcriptomics, and flow cytometry on peripheral blood mononuclear cells and aortic tissues of GCA patients and appropriated controls. RESULTS Using VigiBase, we identified GCA as a significant immune-related adverse event associated with anti-CTLA-4 (cytotoxic T-lymphocyte-associated protein-4) but not anti-PD-1 (anti-programmed death-1) nor anti-PD-L1 (anti-programmed death-ligand 1) treatment. We further dissected a critical role for the CTLA-4 pathway in GCA by identification of the dysregulation of CTLA-4-derived gene pathways and proteins in CD4+ (cluster of differentiation 4) T cells (and specifically regulatory T cells) present in blood and aorta of GCA patients versus controls. While regulatory T cells were less abundant and activated/suppressive in blood and aorta of GCA versus controls, they still specifically upregulated CTLA-4. Activated and proliferating CTLA-4+ Ki-67+ regulatory T cells from GCA were more sensitive to anti-CTLA-4 (ipilimumab)-mediated in vitro depletion versus controls. CONCLUSIONS We highlighted the instrumental role of CTLA-4 immune checkpoint in GCA, which provides a strong rationale for targeting this pathway.
Collapse
Affiliation(s)
- Paul Régnier
- Immunology-Immunopathology-Immunotherapy (i3) Laboratory, INSERM UMR-S 959, Sorbonne Université, Paris, France (P.R., A.L.J., A.M.-D., G.D.-J., M.R., D.K., P.C., D.S.), Assistance Publique-Hôpitaux de Paris (AP-HP), France
- Biotherapy Unit (CIC-BTi), Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Groupe Hospitalier Pitié-Salpêtrière (P.R., A.L.J., A.M.-D., M.R., D.K., P.C., D.S.), Assistance Publique-Hôpitaux de Paris (AP-HP), France
| | - Alexandre Le Joncour
- Immunology-Immunopathology-Immunotherapy (i3) Laboratory, INSERM UMR-S 959, Sorbonne Université, Paris, France (P.R., A.L.J., A.M.-D., G.D.-J., M.R., D.K., P.C., D.S.), Assistance Publique-Hôpitaux de Paris (AP-HP), France
- Biotherapy Unit (CIC-BTi), Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Groupe Hospitalier Pitié-Salpêtrière (P.R., A.L.J., A.M.-D., M.R., D.K., P.C., D.S.), Assistance Publique-Hôpitaux de Paris (AP-HP), France
- Département de Médecine Interne et Immunologie Clinique, Sorbonne Université, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Paris, France (A.L.J., P.C., D.S.)
- Centre National de Référence Maladies Autoimmunes Systémiques Rares, Centre National de Référence Maladies Autoinflammatoires et Amylose Inflammatoire, Inflammation-Immunopathology-Biotherapy Department (DMU 3iD), Paris, France (A.L.J., P.C., D.S.)
| | - Anna Maciejewski-Duval
- Immunology-Immunopathology-Immunotherapy (i3) Laboratory, INSERM UMR-S 959, Sorbonne Université, Paris, France (P.R., A.L.J., A.M.-D., G.D.-J., M.R., D.K., P.C., D.S.), Assistance Publique-Hôpitaux de Paris (AP-HP), France
- Biotherapy Unit (CIC-BTi), Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Groupe Hospitalier Pitié-Salpêtrière (P.R., A.L.J., A.M.-D., M.R., D.K., P.C., D.S.), Assistance Publique-Hôpitaux de Paris (AP-HP), France
| | - Guillaume Darrasse-Jèze
- Immunology-Immunopathology-Immunotherapy (i3) Laboratory, INSERM UMR-S 959, Sorbonne Université, Paris, France (P.R., A.L.J., A.M.-D., G.D.-J., M.R., D.K., P.C., D.S.), Assistance Publique-Hôpitaux de Paris (AP-HP), France
- Faculté de Médecine Paris Descartes (G.D.-J.), Université de Paris, France
| | - Charles Dolladille
- Normandie University, University of Caen Normandy, Centre Hospitalier Universitaire (CHU) de Caen Normandie, PICARO Cardio-Oncology Program, Department of Pharmacology, INSERM ANTICIPE U1086: Unité de Recherche Interdisciplinaire pour la Prévention et le Traitement des Cancers, Centre François Baclesse, France (C.D.)
| | - Wouter C Meijers
- Department of Cardiology, University Medical Center Groningen, University of Groningen, the Netherlands (W.C.M., J.-E.S.)
| | - Lisa Bastarache
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN (L.B.)
| | - Pierre Fouret
- Service d'anatomie et cytologie pathologiques, Groupe Hospitalier Pitié-Salpêtrière (P.F.), Assistance Publique-Hôpitaux de Paris (AP-HP), France
| | - Patrick Bruneval
- Service d'anatomie pathologie, Hôpital Européen Georges Pompidou (P.B.), Assistance Publique-Hôpitaux de Paris (AP-HP), France
| | - Floriane Arbaretaz
- Centre d'Histologie, d'Imagerie et de Cytométrie, Centre de Recherche des Cordeliers, Sorbonne Université, INSERM (F.A.), Université de Paris, France
| | - Célia Sayetta
- ICM Institut du Cerveau, CNRS UMR7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France (C.S.)
| | - Ana Márquez
- Instituto de Parasitología y Biomedicina "López-Neyra," CSIC, PTS Granada, Spain (A.M.)
- Systemic Autoimmune Disease Unit, Instituto de Investigación Biosanitaria de Granada, Spain (A.M.)
| | - Michelle Rosenzwajg
- Immunology-Immunopathology-Immunotherapy (i3) Laboratory, INSERM UMR-S 959, Sorbonne Université, Paris, France (P.R., A.L.J., A.M.-D., G.D.-J., M.R., D.K., P.C., D.S.), Assistance Publique-Hôpitaux de Paris (AP-HP), France
- Biotherapy Unit (CIC-BTi), Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Groupe Hospitalier Pitié-Salpêtrière (P.R., A.L.J., A.M.-D., M.R., D.K., P.C., D.S.), Assistance Publique-Hôpitaux de Paris (AP-HP), France
| | - David Klatzmann
- Immunology-Immunopathology-Immunotherapy (i3) Laboratory, INSERM UMR-S 959, Sorbonne Université, Paris, France (P.R., A.L.J., A.M.-D., G.D.-J., M.R., D.K., P.C., D.S.), Assistance Publique-Hôpitaux de Paris (AP-HP), France
- Biotherapy Unit (CIC-BTi), Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Groupe Hospitalier Pitié-Salpêtrière (P.R., A.L.J., A.M.-D., M.R., D.K., P.C., D.S.), Assistance Publique-Hôpitaux de Paris (AP-HP), France
| | - Patrice Cacoub
- Immunology-Immunopathology-Immunotherapy (i3) Laboratory, INSERM UMR-S 959, Sorbonne Université, Paris, France (P.R., A.L.J., A.M.-D., G.D.-J., M.R., D.K., P.C., D.S.), Assistance Publique-Hôpitaux de Paris (AP-HP), France
- Biotherapy Unit (CIC-BTi), Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Groupe Hospitalier Pitié-Salpêtrière (P.R., A.L.J., A.M.-D., M.R., D.K., P.C., D.S.), Assistance Publique-Hôpitaux de Paris (AP-HP), France
- Département de Médecine Interne et Immunologie Clinique, Sorbonne Université, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Paris, France (A.L.J., P.C., D.S.)
- Centre National de Référence Maladies Autoimmunes Systémiques Rares, Centre National de Référence Maladies Autoinflammatoires et Amylose Inflammatoire, Inflammation-Immunopathology-Biotherapy Department (DMU 3iD), Paris, France (A.L.J., P.C., D.S.)
| | - Javid J Moslehi
- Section of Cardio-Oncology and Immunology, Division of Cardiology and the Cardiovascular Research Institute, University of California San Francisco (J.J.M.)
| | - Joe-Elie Salem
- Department of Pharmacology, INSERM, CIC-1901, UNICO-GRECO Cardiooncology Program, Sorbonne Université (J.-E.S.), Assistance Publique-Hôpitaux de Paris (AP-HP), France
- Department of Cardiology, University Medical Center Groningen, University of Groningen, the Netherlands (W.C.M., J.-E.S.)
| | - David Saadoun
- Immunology-Immunopathology-Immunotherapy (i3) Laboratory, INSERM UMR-S 959, Sorbonne Université, Paris, France (P.R., A.L.J., A.M.-D., G.D.-J., M.R., D.K., P.C., D.S.), Assistance Publique-Hôpitaux de Paris (AP-HP), France
- Biotherapy Unit (CIC-BTi), Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Groupe Hospitalier Pitié-Salpêtrière (P.R., A.L.J., A.M.-D., M.R., D.K., P.C., D.S.), Assistance Publique-Hôpitaux de Paris (AP-HP), France
- Département de Médecine Interne et Immunologie Clinique, Sorbonne Université, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Paris, France (A.L.J., P.C., D.S.)
- Centre National de Référence Maladies Autoimmunes Systémiques Rares, Centre National de Référence Maladies Autoinflammatoires et Amylose Inflammatoire, Inflammation-Immunopathology-Biotherapy Department (DMU 3iD), Paris, France (A.L.J., P.C., D.S.)
| |
Collapse
|
13
|
van Nieuwland M, Esen I, Reitsema RD, Abdulahad WH, van Sleen Y, Jiemy WF, Sandovici M, Brouwer E, van Bon L. Evidence for increased interferon type I activity in CD8+ T cells in giant cell arteritis patients. Front Immunol 2023; 14:1197293. [PMID: 37398666 PMCID: PMC10312374 DOI: 10.3389/fimmu.2023.1197293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction Giant cell arteritis (GCA) is a vasculitis of the medium- and large-sized arteries. Interferon type I (IFN-I) is increasingly recognized as a key player in autoimmune diseases and might be involved in GCA pathogenesis, however evidence is limited. IFN-I activates Janus kinase/signal transducers and activators of transcription (JAK-STAT) pathways, leading to increased expression of interferon stimulated genes. In this study, IFN-I activity in GCA is explored, focusing on CD8+ T cells. Methods Expression of phospho-STAT (pSTAT) 1, 3 and 5 was investigated in IFN-α-stimulated peripheral mononuclear cells (PBMCs) gated separately for CD8+ T cells of patients with GCA (n=18), healthy controls (HC, n=15) and infection controls (n=11) by Phosphoflow method combined with fluorescent cell barcoding technique. Furthermore, IFN-I induced myxovirus-resistance protein A (MxA) and CD8+ T cell expression was investigated by immunohistochemistry in temporal artery biopsies (TAB) of GCA patients (n=20) and mimics (n=20), and in aorta tissue of GCA (n=8) and atherosclerosis patients (n=14). Results pSTAT1 expression was increased in IFN-α stimulated CD8+ T cells from GCA patients, whereas no difference was observed in pSTAT3 and pSTAT5 expression. MxA was present in TABs of 13/20 GCA patients compared to 2/20 mimics and in 8/8 GCA+ compared to 13/14 GCA- aorta tissues. MxA location partially co-localized with CD8+T cells. Conclusions Our results provide evidence for increased IFN-I activity in CD8+ T cells of GCA patients, both systemically and locally. These findings warrant further investigation regarding IFN-I induced biomarkers and IFN-I related novel therapeutic options in GCA.
Collapse
Affiliation(s)
- Marieke van Nieuwland
- Department of Rheumatology and Clinical Immunology, Hospital Group Twente (Ziekenhuisgroep Twente), Almelo, Netherlands
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Idil Esen
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Rosanne D. Reitsema
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Wayel H. Abdulahad
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Yannick van Sleen
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - William F. Jiemy
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Maria Sandovici
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Lenny van Bon
- Department of Rheumatology and Clinical Immunology, Hospital Group Twente (Ziekenhuisgroep Twente), Almelo, Netherlands
| |
Collapse
|
14
|
Schäfer VS, Brossart P, Warrington KJ, Kurts C, Sendtner GW, Aden CA. The role of autoimmunity and autoinflammation in giant cell arteritis: A systematic literature review. Autoimmun Rev 2023; 22:103328. [PMID: 36990133 DOI: 10.1016/j.autrev.2023.103328] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Giant cell arteritis is the most common form of large vessel vasculitis and preferentially involves large and medium-sized arteries in patients over the age of 50. Aggressive wall inflammation, neoangiogenesis and consecutive remodeling processes are the hallmark of the disease. Though etiology is unknown, cellular and humoral immunopathological processes are well understood. Matrix metalloproteinase-9 mediated tissue infiltration occurs through lysis of basal membranes in adventitial vessels. CD4+ cells attain residency in immunoprotected niches, differentiate into vasculitogenic effector cells and enforce further leukotaxis. Signaling pathways involve the NOTCH1-Jagged1 pathway opening vessel infiltration, CD28 mediated T-cell overstimulation, lost PD-1/PD-L1 co-inhibition and JAK/STAT signaling in interferon dependent responses. From a humoral perspective, IL-6 represents a classical cytokine and potential Th-cell differentiator whereas interferon-γ (IFN- γ) has been shown to induce chemokine ligands. Current therapies involve glucocorticoids, tocilizumab and methotrexate application. However, new agents, most notably JAK/STAT inhibitors, PD-1 agonists and MMP-9 blocking substances, are being evaluated in ongoing clinical trials.
Collapse
|
15
|
Wang L, Zhang W, Li C, Chen X, Huang J. Identification of biomarkers related to copper metabolism in patients with pulmonary arterial hypertension. BMC Pulm Med 2023; 23:31. [PMID: 36690956 PMCID: PMC9868507 DOI: 10.1186/s12890-023-02326-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/13/2023] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The pathogenesis of pulmonary arterial hypertension (PAH) and associated biomarkers remain to be studied. Copper metabolism is an emerging metabolic research direction in many diseases, but its role in PAH is still unclear. METHODS PAH-related datasets were downloaded from the Gene Expression Omnibus database, and 2067 copper metabolism-related genes (CMGs) were obtained from the GeneCards database. Differential expression analysis and the Venn algorithm were used to acquire the differentially expressed CMGs (DE-CMGs). DE-CMGs were then used for the coexpression network construction to screen candidate key genes associated with PAH. Furthermore, the predictive performance of the model was verified by receiver operating characteristic (ROC) analysis, and genes with area under the curve (AUC) values greater than 0.8 were selected as diagnostic genes. Then support vector machine, least absolute shrinkage and selection operator regression, and Venn diagrams were applied to detect biomarkers. Moreover, gene set enrichment analysis was performed to explore the function of the biomarkers, and immune-related analyses were utilized to study the infiltration of immune cells. The drug-gene interaction database was used to predict potential therapeutic drugs for PAH using the biomarkers. Biomarkers expression in clinical samples was verified by real-time quantitative PCR. RESULTS Four biomarkers (DDIT3, NFKBIA, OSM, and PTGER4) were screened. The ROC analysis showed that the 4 biomarkers performed well (AUCs > 0.7). The high expression groups for the 4 biomarkers were enriched in protein activity-related pathways including protein export, spliceosome and proteasome. Furthermore, 8 immune cell types were significantly different between the two groups, including naive B cells, memory B cells, and resting memory CD4 T cells. Afterward, a gene-drug network was constructed. This network illustrated that STREPTOZOCIN, IBUPROFEN, and CELECOXIB were shared by the PTGER4 and DDIT3. Finally, the results of RT-qPCR in clinical samples further confirmed the results of the public database for the expression of NFKBIA and OSM. CONCLUSION In conclusion, four biomarkers (DDIT3, NFKBIA, OSM, and PTGER4) with considerable diagnostic values were identified, and a gene-drug network was further constructed. The results of this study may have significant implications for the development of new diagnostic biomarkers and actionable targets to expand treatment options for PAH patients.
Collapse
Affiliation(s)
- Lei Wang
- grid.452672.00000 0004 1757 5804Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University (Xibei Hospital), Xi’an, 710004 Shaanxi China
| | - Wei Zhang
- grid.452438.c0000 0004 1760 8119Department of Emergency, The First Affiliated Hospital Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Cong Li
- grid.452672.00000 0004 1757 5804Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University (Xibei Hospital), Xi’an, 710004 Shaanxi China
| | - Xin Chen
- grid.452672.00000 0004 1757 5804Department of Radiology, The Second Affiliated Hospital of Xi’an Jiaotong University (Xibei Hospital), Xi’an, 710004 Shaanxi China
| | - Jing Huang
- grid.452438.c0000 0004 1760 8119Department of Rheumatism and Immunology, The First Affiliated Hospital Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| |
Collapse
|
16
|
Szekeres D, Al Othman B. Current developments in the diagnosis and treatment of giant cell arteritis. Front Med (Lausanne) 2022; 9:1066503. [PMID: 36582285 PMCID: PMC9792614 DOI: 10.3389/fmed.2022.1066503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Giant cell arteritis is the most common vasculitis in adults above 50 years old. The disease is characterized by granulomatous inflammation of medium and large arteries, particularly the temporal artery, and is associated acutely with headache, claudication, and visual disturbances. Diagnosis of the disease is often complicated by its protean presentation and lack of consistently reliable testing. The utility of color doppler ultrasound at the point-of-care and FDG-PET in longitudinal evaluation remain under continued investigation. Novel techniques for risk assessment with Halo scoring and stratification through axillary vessel ultrasound are becoming commonplace. Moreover, the recent introduction of the biologic tocilizumab marks a paradigm shift toward using glucocorticoid-sparing strategies as the primary treatment modality. Notwithstanding these developments, patients continue to have substantial rates of relapse and biologic agents have their own side effect profile. Trials are underway to answer questions about optimal diagnostic modality, regiment choice, and duration.
Collapse
Affiliation(s)
- Denes Szekeres
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY, United States
| | - Bayan Al Othman
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
17
|
Taylor JA, Hutchinson MA, Gearhart PJ, Maul RW. Antibodies in action: the role of humoral immunity in the fight against atherosclerosis. Immun Ageing 2022; 19:59. [PMID: 36461105 PMCID: PMC9717479 DOI: 10.1186/s12979-022-00316-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
The sequestering of oxidation-modified low-density lipoprotein by macrophages results in the accumulation of fatty deposits within the walls of arteries. Necrosis of these cells causes a release of intercellular epitopes and the activation of the adaptive immune system, which we predict leads to robust autoantibody production. T cells produce cytokines that act in the plaque environment and further stimulate B cell antibody production. B cells in atherosclerosis meanwhile have a mixed role based on subclass. The current model is that B-1 cells produce protective IgM antibodies in response to oxidation-specific epitopes that work to control plaque formation, while follicular B-2 cells produce class-switched antibodies (IgG, IgA, and IgE) which exacerbate the disease. Over the course of this review, we discuss further the validation of these protective antibodies while evaluating the current dogma regarding class-switched antibodies in atherosclerosis. There are several contradictory findings regarding the involvement of class-switched antibodies in the disease. We hypothesize that this is due to antigen-specificity, and not simply isotype, being important, and that a closer evaluation of these antibodies' targets should be conducted. We propose that specific antibodies may have therapeutical potential in preventing and controlling plaque development within a clinical setting.
Collapse
Affiliation(s)
- Joshua A. Taylor
- grid.419475.a0000 0000 9372 4913Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD USA ,grid.21107.350000 0001 2171 9311Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Mark A. Hutchinson
- grid.419475.a0000 0000 9372 4913Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD USA
| | - Patricia J. Gearhart
- grid.419475.a0000 0000 9372 4913Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD USA
| | - Robert W. Maul
- grid.419475.a0000 0000 9372 4913Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD USA
| |
Collapse
|
18
|
Stamatis P, Turesson C, Michailidou D, Mohammad AJ. Pathogenesis of giant cell arteritis with focus on cellular populations. Front Med (Lausanne) 2022; 9:1058600. [PMID: 36465919 PMCID: PMC9714577 DOI: 10.3389/fmed.2022.1058600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/31/2022] [Indexed: 08/27/2023] Open
Abstract
Giant cell arteritis (GCA), the most common non-infectious vasculitis, mainly affects elderly individuals. The disease usually affects the aorta and its main supra-aortic branches causing both general symptoms of inflammation and specific ischemic symptoms because of the limited blood flow due to arterial structural changes in the inflamed arteries. The pathogenesis of the GCA is complex and includes a dysregulated immune response that affects both the innate and the adaptive immunity. During the last two decades several studies have investigated interactions among antigen-presenting cells and lymphocytes, which contribute to the formation of the inflammatory infiltrate in the affected arteries. Toll-like receptor signaling and interactions through the VEGF-Notch-Jagged1 pathway are emerging as crucial events of the aberrant inflammatory response, facilitating among others the migration of inflammatory cells to the inflamed arteries and their interactions with the local stromal milieu. The increased use of checkpoint inhibitors in cancer immunotherapy and their immune-related adverse events has fed interest in the role of checkpoint dysfunction in GCA, and recent studies suggest a dysregulated check point system which is unable to suppress the inflammation in the previously immune-privileged arteries, leading to vasculitis. The role of B-cells is currently reevaluated because of new reports of considerable numbers of plasma cells in inflamed arteries as well as the formation of artery tertiary lymphoid organs. There is emerging evidence on previously less studied cell populations, such as the neutrophils, CD8+ T-cells, T regulatory cells and tissue residing memory cells as well as for stromal cells which were previously considered as innocent bystanders. The aim of this review is to summarize the evidence in the literature regarding the cell populations involved in the pathogenesis of GCA and especially in the context of an aged, immune system.
Collapse
Affiliation(s)
- Pavlos Stamatis
- Rheumatology, Department of Clinical Sciences, Lund University, Lund, Sweden
- Rheumatology, Sunderby Hospital, Luleå, Sweden
| | - Carl Turesson
- Rheumatology, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Despina Michailidou
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Aladdin J. Mohammad
- Rheumatology, Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
19
|
Macaluso F, Marvisi C, Castrignanò P, Pipitone N, Salvarani C. Comparing treatment options for large vessel vasculitis. Expert Rev Clin Immunol 2022; 18:793-805. [PMID: 35714219 DOI: 10.1080/1744666x.2022.2092098] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Giant cell arteritis (GCA) and Takayasu arteritis (TAK) are the major forms of large vessel vasculitis (LVV).Glucocorticoids represent the cornerstone of LVV treatment, however, relapses and recurrences frequently occur when they are tapered or stopped, determining a prolonged exposure to glucocorticoids and a subsequent increased risk of glucocorticoid-related side effects. Therefore, conventional and biologic immunosuppressive drugs have been proposed to obtain a glucocorticoid-sparing effect. AREAS COVERED We searched PubMed® using the keywords "giant cell arteritis/drug therapy" and "Takayasu Arteritis/drug therapy" OR "Takayasu Arteritis/surgery". This review focuses on the management of LVV, based on the current evidence while highlighting the differences in terms of therapeutic management of TAK and GCA. EXPERT OPINION Conventional disease modifying anti-rheumatic drugs, such as methotrexate or azathioprine, are recommended in association to glucocorticoids for selected GCA and all TAK patients. Two randomized placebo-controlled trials recently demonstrated the efficacy of tocilizumab in reducing relapses and cumulative prednisone dosage in GCA patients with newly diagnosed or relapsing disease. Observational evidence and two small randomized controlled trials support the use of TNF-alpha inhibitors and tocilizumab as glucocorticoid-sparing agents in relapsing TAK, albeit high-quality evidence regarding the management of TAK is still lacking.
Collapse
Affiliation(s)
- Federica Macaluso
- Rheumatology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy.,Department of Precision Medicine, Section of Rheumatology, Università della Campania L Vanvitelli, Naples, Italy
| | - Chiara Marvisi
- Rheumatology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy.,Rheumatology Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Paola Castrignanò
- Rheumatology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy.,Rheumatology Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Nicolò Pipitone
- Rheumatology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Carlo Salvarani
- Rheumatology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy.,Rheumatology Unit, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
20
|
van der Geest KSM, Sandovici M, Nienhuis PH, Slart RHJA, Heeringa P, Brouwer E, Jiemy WF. Novel PET Imaging of Inflammatory Targets and Cells for the Diagnosis and Monitoring of Giant Cell Arteritis and Polymyalgia Rheumatica. Front Med (Lausanne) 2022; 9:902155. [PMID: 35733858 PMCID: PMC9207253 DOI: 10.3389/fmed.2022.902155] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/13/2022] [Indexed: 12/26/2022] Open
Abstract
Giant cell arteritis (GCA) and polymyalgia rheumatica (PMR) are two interrelated inflammatory diseases affecting patients above 50 years of age. Patients with GCA suffer from granulomatous inflammation of medium- to large-sized arteries. This inflammation can lead to severe ischemic complications (e.g., irreversible vision loss and stroke) and aneurysm-related complications (such as aortic dissection). On the other hand, patients suffering from PMR present with proximal stiffness and pain due to inflammation of the shoulder and pelvic girdles. PMR is observed in 40-60% of patients with GCA, while up to 21% of patients suffering from PMR are also affected by GCA. Due to the risk of ischemic complications, GCA has to be promptly treated upon clinical suspicion. The treatment of both GCA and PMR still heavily relies on glucocorticoids (GCs), although novel targeted therapies are emerging. Imaging has a central position in the diagnosis of GCA and PMR. While [18F]fluorodeoxyglucose (FDG)-positron emission tomography (PET) has proven to be a valuable tool for diagnosis of GCA and PMR, it possesses major drawbacks such as unspecific uptake in cells with high glucose metabolism, high background activity in several non-target organs and a decrease of diagnostic accuracy already after a short course of GC treatment. In recent years, our understanding of the immunopathogenesis of GCA and, to some extent, PMR has advanced. In this review, we summarize the current knowledge on the cellular heterogeneity in the immunopathology of GCA/PMR and discuss how recent advances in specific tissue infiltrating leukocyte and stromal cell profiles may be exploited as a source of novel targets for imaging. Finally, we discuss prospective novel PET radiotracers that may be useful for the diagnosis and treatment monitoring in GCA and PMR.
Collapse
Affiliation(s)
- Kornelis S. M. van der Geest
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Maria Sandovici
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Pieter H. Nienhuis
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Riemer H. J. A. Slart
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Biomedical Photonic Imaging Group, University of Twente, Enschede, Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - William F. Jiemy
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
21
|
New Insights into the Pathogenesis of Giant Cell Arteritis: Mechanisms Involved in Maintaining Vascular Inflammation. J Clin Med 2022; 11:jcm11102905. [PMID: 35629030 PMCID: PMC9143803 DOI: 10.3390/jcm11102905] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
The giant cell arteritis (GCA) pathophysiology is complex and multifactorial, involving a predisposing genetic background, the role of immune aging and the activation of vascular dendritic cells by an unknown trigger. Once activated, dendritic cells recruit CD4 T cells and induce their activation, proliferation and polarization into Th1 and Th17, which produce interferon-gamma (IFN-γ) and interleukin-17 (IL-17), respectively. IFN-γ triggers the production of chemokines by vascular smooth muscle cells, which leads to the recruitment of additional CD4 and CD8 T cells and also monocytes that differentiate into macrophages. Recent data have shown that IL-17, IFN-γ and GM-CSF induce the differentiation of macrophage subpopulations, which play a role in the destruction of the arterial wall, in neoangiogenesis or intimal hyperplasia. Under the influence of different mediators, mainly endothelin-1 and PDGF, vascular smooth muscle cells migrate to the intima, proliferate and change their phenotype to become myofibroblasts that further proliferate and produce extracellular matrix proteins, increasing the vascular stenosis. In addition, several defects in the immune regulatory mechanisms probably contribute to chronic vascular inflammation in GCA: a defect in the PD-1/PD-L1 pathway, a quantitative and qualitative Treg deficiency, the implication of resident cells, the role of GM-CSF and IL-6, the implication of the NOTCH pathway and the role of mucosal‑associated invariant T cells and tissue‑resident memory T cells.
Collapse
|
22
|
Wang C, Deng H, Liu F, Yin Q, Xia L. The Role of Gut Microbiota in the Immunopathology of Atherosclerosis: focus on immune cells. Scand J Immunol 2022; 96:e13174. [PMID: 35474231 DOI: 10.1111/sji.13174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/27/2022] [Accepted: 04/12/2022] [Indexed: 11/27/2022]
Abstract
Gut microbiota (GM) play important roles in multiple organ function, homeostasis and several diseases. More recently, increasing evidences have suggested that the compositional and functional alterations of GM play a crucial role in the accumulation of foam cells and the formation of atherosclerotic plaque in atherosclerosis. In particular, the effects of bacterial components and metabolites on innate and adaptive immune cells have been explored as the underlying mechanisms. Understanding the effects of GM and metabolites on immunoregulation are important for clinical therapy for atherosclerosis. Herein, we summarize the potential role of the GM (such as bacterial components lipopolysaccharide and peptidoglycan) and GM-derived metabolites (such as short-chain fatty acids, trimethylamine N-oxide and bile acids) in the immunopathology of atherosclerosis. Based on that, we further discuss the anti-atherosclerotic effects of GM-directed dietary bioactive factors such as dietary fibers, dietary polyphenols and probiotics. Because of drug-induced adverse events in anti-inflammatory therapies, personalized dietary interventions would be potential therapies for atherosclerosis, and the interactions between GM-derived products and immune cells should be studied further.
Collapse
Affiliation(s)
- Chong Wang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.,International Genome Center, Jiangsu University, Zhenjiang, China
| | - Hualing Deng
- Operating room, Weihai Municipal Hospital, Weihai, China
| | - Fang Liu
- International Genome Center, Jiangsu University, Zhenjiang, China
| | - Qing Yin
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lin Xia
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.,International Genome Center, Jiangsu University, Zhenjiang, China
| |
Collapse
|
23
|
Sandovici M, van der Geest N, van Sleen Y, Brouwer E. Need and value of targeted immunosuppressive therapy in giant cell arteritis. RMD Open 2022; 8:e001652. [PMID: 35149602 PMCID: PMC8845325 DOI: 10.1136/rmdopen-2021-001652] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/17/2022] [Indexed: 11/30/2022] Open
Abstract
Despite the heterogeneity of the giant cell arteritis (GCA) at the level of clinical manifestations and the cellular and molecular players involved in its pathogenesis, GCA is still treated with standardised regimens largely based on glucocorticoids (GC). Long-term use of high dosages of GC as required in GCA are associated with many clinically relevant side effects. In the recent years, the interleukin-6 receptor blocker tocilizumab has become available as the only registered targeted immunosuppressive agent in GCA. However, immunological heterogeneity may require different pathways to be targeted in order to achieve a clinical, immunological and vascular remission in GCA. The advances in the targeted blockade of various molecular pathways involved in other inflammatory and autoimmune diseases have catalyzed the research on targeted therapy in GCA. This article gives an overview of the studies with targeted immunosuppressive treatments in GCA, with a focus on their clinical value, including their effects at the level of vascular inflammation.
Collapse
Affiliation(s)
- Maria Sandovici
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, Groningen, Netherlands
| | - Niels van der Geest
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, Groningen, Netherlands
| | - Yannick van Sleen
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, Groningen, Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, Groningen, Netherlands
| |
Collapse
|
24
|
Bolha L, Hočevar A, Suljič A, Jurčić V. Inflammatory Cell Composition and Immune-Related microRNA Signature of Temporal Artery Biopsies From Patients With Giant Cell Arteritis. Front Immunol 2022; 12:791099. [PMID: 35003111 PMCID: PMC8733475 DOI: 10.3389/fimmu.2021.791099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/29/2021] [Indexed: 12/30/2022] Open
Abstract
Objectives The aim of this study was to quantitatively assess distinct immune cell subsets comprising inflammatory infiltrate in temporal artery biopsies (TABs) from patients with giant cell arteritis (GCA), and to link the obtained histopathological data with expression profiles of immune-related microRNAs (miRNAs). Methods The study included 68 formalin-fixed, paraffin-embedded TABs from treatment-naïve patients, including 30 histologically positive GCA and 16 negative GCA TABs, and 22 control non-GCA TABs. Quantitative assessment of histological parameters was performed using histopathological and immunohistochemical techniques. miRNA expression analysis was performed by quantitative real-time PCR. Results Intense transmural mononuclear inflammatory infiltrates in TAB-positive GCA arteries were predominantly composed of CD3+, CD4+ and CD8+ T lymphocytes, and CD68+ macrophages, accompanied by a strong nuclear overexpression of the nuclear factor of activated T cells, cytoplasmic 1 (NFATC) in the lymphocyte infiltrate fraction. Furthermore, TAB-positive GCA arteries were characterized by significant overexpression of nine pro-inflammatory miRNAs (miR-132-3p/-142-3p/-142-5p/-155-5p/-210-3p/-212-3p/-326/-342-5p/-511-5p) and a significant under-expression of six regulatory immune-related miRNAs (miR-30a-5p/-30b-5p/-30c-5p/-30d-5p/-30e-5p/-124-3p), whose expression levels significantly associated with most evaluated histopathological parameters. Notably, we revealed miR-132-3p/-142-3p/-142-5p/-155-5p/-212-3p/-511-5p as major promoters of arterial inflammation and miR-30a-5p/-30c-5p/-30d-5p as putative regulators of NFATC signaling in TAB-positive GCA arteries. Conclusion Overall, we demonstrated that an altered arterial tissue-specific pro-inflammatory miRNA signature favors enhanced T cell-driven inflammation and macrophage activity in TAB-positive GCA arteries. Moreover, dysregulation of several immune-related miRNAs seems to contribute crucially to GCA pathogenesis, through impairing their regulatory activity towards T cell-mediated immune responses driven by the calcineurin (CaN)/NFAT signaling pathway, indicating their therapeutic, diagnostic and prognostic potential.
Collapse
Affiliation(s)
- Luka Bolha
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Alojzija Hočevar
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Alen Suljič
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Vesna Jurčić
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
25
|
Pugh D, Karabayas M, Basu N, Cid MC, Goel R, Goodyear CS, Grayson PC, McAdoo SP, Mason JC, Owen C, Weyand CM, Youngstein T, Dhaun N. Large-vessel vasculitis. Nat Rev Dis Primers 2022; 7:93. [PMID: 34992251 PMCID: PMC9115766 DOI: 10.1038/s41572-021-00327-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 02/08/2023]
Abstract
Large-vessel vasculitis (LVV) manifests as inflammation of the aorta and its major branches and is the most common primary vasculitis in adults. LVV comprises two distinct conditions, giant cell arteritis and Takayasu arteritis, although the phenotypic spectrum of primary LVV is complex. Non-specific symptoms often predominate and so patients with LVV present to a range of health-care providers and settings. Rapid diagnosis, specialist referral and early treatment are key to good patient outcomes. Unfortunately, disease relapse remains common and chronic vascular complications are a source of considerable morbidity. Although accurate monitoring of disease activity is challenging, progress in vascular imaging techniques and the measurement of laboratory biomarkers may facilitate better matching of treatment intensity with disease activity. Further, advances in our understanding of disease pathophysiology have paved the way for novel biologic treatments that target important mediators of disease in both giant cell arteritis and Takayasu arteritis. This work has highlighted the substantial heterogeneity present within LVV and the importance of an individualized therapeutic approach. Future work will focus on understanding the mechanisms of persisting vascular inflammation, which will inform the development of increasingly sophisticated imaging technologies. Together, these will enable better disease prognostication, limit treatment-associated adverse effects, and facilitate targeted development and use of novel therapies.
Collapse
Affiliation(s)
- Dan Pugh
- British Hearth Foundation/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Maira Karabayas
- Centre for Arthritis & Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Neil Basu
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, UK
| | - Maria C Cid
- Department of Autoimmune Diseases, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Ruchika Goel
- Department of Clinical Immunology & Rheumatology, Christian Medical College, Vellore, India
| | - Carl S Goodyear
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, UK
| | - Peter C Grayson
- National Institute of Arthritis & Musculoskeletal & Skin Diseases, National Institutes of Health, Bethesda, MA, USA
| | - Stephen P McAdoo
- Department of Immunology & Inflammation, Imperial College London, London, UK
| | - Justin C Mason
- National Heart & Lung Institute, Imperial College London, London, UK
| | | | - Cornelia M Weyand
- Centre for Translational Medicine, Stanford University, Stanford, California, USA
| | - Taryn Youngstein
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Neeraj Dhaun
- British Hearth Foundation/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
26
|
Poznyak AV, Bezsonov EE, Popkova TV, Starodubova AV, Orekhov AN. Immunity in Atherosclerosis: Focusing on T and B Cells. Int J Mol Sci 2021; 22:ijms22168379. [PMID: 34445084 PMCID: PMC8395064 DOI: 10.3390/ijms22168379] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is the major cause of the development of cardiovascular disease, which, in turn, is one of the leading causes of mortality worldwide. From the point of view of pathogenesis, atherosclerosis is an extremely complex disease. A huge variety of processes, such as violation of mitophagy, oxidative stress, damage to the endothelium, and others, are involved in atherogenesis; however, the main components of atherogenesis are considered to be inflammation and alterations of lipid metabolism. In this review, we want to focus on inflammation, and more specifically on the cellular elements of adaptive immunity, T and B cells. It is known that various T cells are widely represented directly in atherosclerotic plaques, while B cells can be found, for example, in the adventitia layer. Of course, such widespread and well-studied cells have attracted attention as potential therapeutic targets for the treatment of atherosclerosis. Various approaches have been developed and tested for their efficacy.
Collapse
Affiliation(s)
- Anastasia V. Poznyak
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia
- Correspondence: (A.V.P.); (A.N.O.)
| | - Evgeny E. Bezsonov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia;
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
| | - Tatyana V. Popkova
- V.A. Nasonova Institute of Rheumatology, 34A Kashirskoye Shosse, 115522 Moscow, Russia;
| | - Antonina V. Starodubova
- Federal Research Centre for Nutrition, Biotechnology and Food Safety, 2/14 Ustinsky Passage, 109240 Moscow, Russia;
- Medical Faculty, Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, 117997 Moscow, Russia
| | - Alexander N. Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia;
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
- Correspondence: (A.V.P.); (A.N.O.)
| |
Collapse
|
27
|
Graver JC, Abdulahad W, van der Geest KSM, Heeringa P, Boots AMH, Brouwer E, Sandovici M. Association of the CXCL9-CXCR3 and CXCL13-CXCR5 axes with B-cell trafficking in giant cell arteritis and polymyalgia rheumatica. J Autoimmun 2021; 123:102684. [PMID: 34237649 DOI: 10.1016/j.jaut.2021.102684] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE B-cells are present in the inflamed arteries of giant cell arteritis (GCA) patients and a disturbed B-cell homeostasis is reported in peripheral blood of both GCA and the overlapping disease polymyalgia rheumatica (PMR). In this study, we aimed to investigate chemokine-chemokine receptor axes governing the migration of B-cells in GCA and PMR. METHODS We performed Luminex screening assay for serum levels of B-cell related chemokines in treatment-naïve GCA (n = 41), PMR (n = 31) and age- and sex matched healthy controls (HC, n = 34). Expression of chemokine receptors on circulating B-cell subsets were investigated by flow cytometry. Immunohistochemistry was performed on GCA temporal artery (n = 14) and aorta (n = 10) and on atherosclerosis aorta (n = 10) tissue. RESULTS The chemokines CXCL9 and CXCL13 were significantly increased in the circulation of treatment-naïve GCA and PMR patients. CXCL13 increased even further after three months of glucocorticoid treatment. At baseline CXCL13 correlated with disease activity markers. Peripheral CXCR3+ and CXCR5+ switched memory B-cells were significantly reduced in both patient groups and correlated inversely with their complementary chemokines CXCL9 and CXCL13. At the arterial lesions in GCA, CXCR3+ and CXCR5+ B-cells were observed in areas with high CXCL9 and CXCL13 expression. CONCLUSION Changes in systemic and local chemokine and chemokine receptor pathways related to B-cell migration were observed in GCA and PMR mainly in the CXCL9-CXCR3 and CXCL13-CXCR5 axes. These changes can contribute to homing and organization of B-cells in the vessel wall and provide further evidence for an active involvement of B-cells in GCA and PMR.
Collapse
Affiliation(s)
- Jacoba C Graver
- Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Wayel Abdulahad
- Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Kornelis S M van der Geest
- Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Peter Heeringa
- Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Annemieke M H Boots
- Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Elisabeth Brouwer
- Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Maria Sandovici
- Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, the Netherlands.
| |
Collapse
|
28
|
Desbois AC, Régnier P, Quiniou V, Lejoncour A, Maciejewski-Duval A, Comarmond C, Vallet H, Rosenzwag M, Darrasse-Jèze G, Derian N, Pouchot J, Samson M, Bienvenu B, Fouret P, Koskas F, Garrido M, Sène D, Bruneval P, Cacoub P, Klatzmann D, Saadoun D. Specific Follicular Helper T Cell Signature in Takayasu Arteritis. Arthritis Rheumatol 2021; 73:1233-1243. [PMID: 33538119 DOI: 10.1002/art.41672] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/09/2020] [Accepted: 01/28/2021] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Our aim was to compare transcriptome and phenotype profiles of CD4+ T cells and CD19+ B cells in patients with Takayasu arteritis (TAK), patients with giant cell arteritis (GCA), and healthy donors. METHODS Gene expression analyses, flow cytometry immunophenotyping, T cell receptor (TCR) gene sequencing, and functional assessments of cells from peripheral blood and arterial lesions from TAK patients, GCA patients, and healthy donors were performed. RESULTS Among the most significantly dysregulated genes in CD4+ T cells of TAK patients compared to GCA patients (n = 720 genes) and in CD4+ T cells of TAK patients compared to healthy donors (n = 1,447 genes), we identified a follicular helper T (Tfh) cell signature, which included CXCR5, CCR6, and CCL20 genes, that was transcriptionally up-regulated in TAK patients. Phenotypically, there was an increase in CD4+CXCR5+CCR6+CXCR3- Tfh17 cells in TAK patients that was associated with a significant enrichment of CD19+ B cell activation. Functionally, Tfh cells helped B cells to proliferate, differentiate into memory cells, and secrete IgG antibodies. Maturation of B cells was inhibited by JAK inhibitors. Locally, in areas of arterial inflammation, we found a higher proportion of tertiary lymphoid structures comprised CD4+, CXCR5+, programmed death 1+, and CD20+ cells in TAK patients compared to GCA patients. CD4+CXCR5+ T cells in the aortas of TAK patients had an oligoclonal α/β TCR repertoire. CONCLUSION We established the presence of a specific Tfh cell signature in both circulating and aorta-infiltrating CD4+ T cells from TAK patients. The cooperation of Tfh cells and B cells might be critical in the occurrence of vascular inflammation in patients with TAK.
Collapse
Affiliation(s)
- A C Desbois
- Sorbonne Université, Centre National de Références Maladies Autoimmunes et Systémiques Rares et Maladies Autoinflammatoires Rares, INSERM UMR 959, Groupe Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - P Régnier
- Sorbonne Université, Centre National de Références Maladies Autoimmunes et Systémiques Rares et Maladies Autoinflammatoires Rares, INSERM UMR 959, Groupe Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - V Quiniou
- Sorbonne Université, INSERM UMR 959, Groupe Hospitalier Pitié-Salpêtrière, AP-HP, Paris, France
| | - A Lejoncour
- Sorbonne Université, Centre National de Références Maladies Autoimmunes et Systémiques Rares et Maladies Autoinflammatoires Rares, INSERM UMR 959, Groupe Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - A Maciejewski-Duval
- Sorbonne Université, INSERM UMR 959, Groupe Hospitalier Pitié-Salpêtrière, AP-HP, Paris, France
| | - C Comarmond
- Sorbonne Université, Centre National de Références Maladies Autoimmunes et Systémiques Rares et Maladies Autoinflammatoires Rares, INSERM UMR 959, Groupe Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - H Vallet
- Sorbonne Université, INSERM UMR 959, Groupe Hospitalier Pitié-Salpêtrière, AP-HP, Paris, France
| | - M Rosenzwag
- Sorbonne Université, INSERM UMR 959, Groupe Hospitalier Pitié-Salpêtrière, AP-HP, Paris, France
| | - G Darrasse-Jèze
- Sorbonne Université, INSERM UMR 959, Groupe Hospitalier Pitié-Salpêtrière, AP-HP, Paris, France
| | - N Derian
- Sorbonne Université, INSERM UMR 959, Groupe Hospitalier Pitié-Salpêtrière, AP-HP, Paris, France
| | - J Pouchot
- Hôpital Européen Georges-Pompidou, AP-HP, Université Paris Descartes, Paris, France
| | - M Samson
- Centre Hospitalier Universitaire Dijon Bourgogne, Université Bourgogne-Franche Comté, INSERM EFS Bourgogne-Franche Comté UMR1098, Dijon, France
| | - B Bienvenu
- Centre Hospitalier Universitaire Caen, Caen, France
| | - P Fouret
- Groupe Hospitalier Pitié-Salpétrière, Paris, France
| | - F Koskas
- Groupe Hospitalier Pitié-Salpétrière, Paris, France
| | - M Garrido
- Sorbonne Université, INSERM UMR 959, Groupe Hospitalier Pitié-Salpêtrière, AP-HP, Paris, France
| | - D Sène
- Hôpital Lariboisière, Paris, France
| | - P Bruneval
- Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - P Cacoub
- Sorbonne Université, Centre National de Références Maladies Autoimmunes et Systémiques Rares et Maladies Autoinflammatoires Rares, INSERM UMR 959, Groupe Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - D Klatzmann
- Sorbonne Université, INSERM UMR 959, Groupe Hospitalier Pitié-Salpêtrière, AP-HP, Paris, France
| | - D Saadoun
- Sorbonne Université, Centre National de Références Maladies Autoimmunes et Systémiques Rares et Maladies Autoinflammatoires Rares, INSERM UMR 959, Groupe Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| |
Collapse
|
29
|
Clifford AH, Cohen Tervaert JW. Cardiovascular events and the role of accelerated atherosclerosis in systemic vasculitis. Atherosclerosis 2021; 325:8-15. [PMID: 33873090 DOI: 10.1016/j.atherosclerosis.2021.03.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/17/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022]
Abstract
The spectrum of inflammatory blood vessel diseases includes both atherosclerosis and the primary systemic vasculitides. Although the inciting triggers differ, significant overlap exists in the mechanisms that contribute to sustained inflammation and vascular damage in both entities. With improvement in therapeutics to control acute vasculitis leading to longer survival, cardiovascular morbidity and mortality has emerged as the leading cause of death for vasculitis patients. Cardiovascular events likely occur as a consequence of vasculitis, vascular damage from prior inflammation causing a sustained procoagulant state, and accelerated atherosclerosis. In this review, we discuss the latest evidence regarding risk of cardiovascular events in patients with major forms of primary systemic vasculitis, and review the mechanisms by which accelerated atherosclerosis may occur.
Collapse
Affiliation(s)
- Alison H Clifford
- Division of Rheumatology, Department of Medicine, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Jan Willem Cohen Tervaert
- Division of Rheumatology, Department of Medicine, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada.
| |
Collapse
|
30
|
Mulhearn B, Cooper E, Knights S. Rituximab fails to treat giant cell arteritis in a patient with ACPA-positive rheumatoid arthritis. Rheumatol Adv Pract 2021; 5:rkab020. [PMID: 33768194 PMCID: PMC7983063 DOI: 10.1093/rap/rkab020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Affiliation(s)
- Ben Mulhearn
- Royal National Hospital for Rheumatic Diseases, Royal United Hospitals Bath NHS Foundation Trust.,Department of Pharmacy and Pharmacology, University of Bath, Bath
| | - Edwin Cooper
- Yeovil District Hospital NHS Foundation Trust, Yeovil, UK
| | - Sally Knights
- Yeovil District Hospital NHS Foundation Trust, Yeovil, UK
| |
Collapse
|
31
|
Akiyama M, Ohtsuki S, Berry GJ, Liang DH, Goronzy JJ, Weyand CM. Innate and Adaptive Immunity in Giant Cell Arteritis. Front Immunol 2021; 11:621098. [PMID: 33717054 PMCID: PMC7947610 DOI: 10.3389/fimmu.2020.621098] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 12/24/2020] [Indexed: 12/15/2022] Open
Abstract
Autoimmune diseases can afflict every organ system, including blood vessels that are critically important for host survival. The most frequent autoimmune vasculitis is giant cell arteritis (GCA), which causes aggressive wall inflammation in medium and large arteries and results in vaso-occlusive wall remodeling. GCA shares with other autoimmune diseases that it occurs in genetically predisposed individuals, that females are at higher risk, and that environmental triggers are suspected to beget the loss of immunological tolerance. GCA has features that distinguish it from other autoimmune diseases and predict the need for tailored diagnostic and therapeutic approaches. At the core of GCA pathology are CD4+ T cells that gain access to the protected tissue niche of the vessel wall, differentiate into cytokine producers, attain tissue residency, and enforce macrophages differentiation into tissue-destructive effector cells. Several signaling pathways have been implicated in initiating and sustaining pathogenic CD4+ T cell function, including the NOTCH1-Jagged1 pathway, the CD28 co-stimulatory pathway, the PD-1/PD-L1 co-inhibitory pathway, and the JAK/STAT signaling pathway. Inadequacy of mechanisms that normally dampen immune responses, such as defective expression of the PD-L1 ligand and malfunction of immunosuppressive CD8+ T regulatory cells are a common theme in GCA immunopathology. Recent studies are providing a string of novel mechanisms that will permit more precise pathogenic modeling and therapeutic targeting in GCA and will fundamentally inform how abnormal immune responses in blood vessels lead to disease.
Collapse
Affiliation(s)
- Mitsuhiro Akiyama
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Shozo Ohtsuki
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Gerald J Berry
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - David H Liang
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Jörg J Goronzy
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Cornelia M Weyand
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
32
|
Karabayas M, Dospinescu P, Fluck N, Kidder D, Fordyce G, Hollick RJ, De Bari C, Basu N. Evaluation of adjunctive mycophenolate for large vessel giant cell arteritis. Rheumatol Adv Pract 2020; 4:rkaa069. [PMID: 33381680 PMCID: PMC7756006 DOI: 10.1093/rap/rkaa069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/11/2020] [Indexed: 12/25/2022] Open
Abstract
Objectives GCA patients with large vessel involvement (LV-GCA) experience greater CS requirements and higher relapse rates compared with classical cranial GCA. Despite the distinct disease course, interventions in LV-GCA have yet to be investigated specifically. This study aimed to evaluate the CS-sparing effect and tolerability of first-line mycophenolate in LV-GCA. Methods A retrospective cohort study was conducted in patients with LV-GCA identified from a regional clinical database between 2005 and 2019. All cases were prescribed mycophenolate derivatives (MYC; MMF or mycophenolic acid) at diagnosis and were followed up for ≥2 years. The primary outcome was the cumulative CS dose at 1 year. Secondary outcomes included MYC tolerance, relapse rates and CRP levels at 1 and 2 years. Results A total of 37 patients (65% female; mean age 69.4 years, SD 7.9 years) were identified. All cases demonstrated large vessel involvement via CT/PET (n = 34), CT angiography (n = 5) or magnetic resonance angiography (n = 2). After 2 years, 31 patients remained on MYC, whereas 6 had switched to MTX or tocilizumab owing to significant disease relapse. The mean (±SD) cumulative prednisolone dose at 1 year was 4960 (±1621) mg. Relapse rates at 1 and 2 years were 16.2 and 27%, respectively, and CRP levels at 1 and 2 years were 4 [interquartile range (IQR) 4–6] and 4 (IQR 4–4) mg/l, respectively. Conclusion To our knowledge, this is the first attempt to assess the effectiveness of any specific agent in LV-GCA. MYC might be both effective in reducing CS exposure and well tolerated in this subpopulation. A future randomized controlled trial is warranted.
Collapse
Affiliation(s)
- Maira Karabayas
- Aberdeen Centre for Arthritis & Musculoskeletal Health, University of Aberdeen.,Rheumatology Service, NHS Grampian
| | | | - Nick Fluck
- Renal Unit, Aberdeen Royal Infirmary, NHS Grampian, Aberdeen
| | - Dana Kidder
- Renal Unit, Aberdeen Royal Infirmary, NHS Grampian, Aberdeen
| | | | - Rosemary J Hollick
- Aberdeen Centre for Arthritis & Musculoskeletal Health, University of Aberdeen.,Rheumatology Service, NHS Grampian
| | - Cosimo De Bari
- Aberdeen Centre for Arthritis & Musculoskeletal Health, University of Aberdeen.,Rheumatology Service, NHS Grampian
| | - Neil Basu
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, UK
| |
Collapse
|
33
|
Aortic adventitial thickness as a marker of aortic atherosclerosis, vascular stiffness, and vessel remodeling in systemic lupus erythematosus. Clin Rheumatol 2020; 40:1843-1852. [PMID: 33025269 DOI: 10.1007/s10067-020-05431-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/13/2020] [Accepted: 09/24/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION There is limited human imaging data on the association of adventitial thickness (AT) with arterial disease. Systemic lupus erythematosus (SLE) is a prototypical disease model for studying markers of premature arterial disease. OBJECTIVE To determine if increased aortic AT is associated with aortic atherosclerosis [increased intima media thickness (IMT) or plaques], stiffness [increased pressure-strain elastic modulus (PSEM)], and vessel remodeling. METHODS In total, 70 SLE patients and 26 age- and sex-matched controls underwent transesophageal echocardiography (TEE). Two-dimensional guided M-mode images were obtained to assess AT, IMT, and plaques, and PSEM at the proximal, mid, and distal thoracic aorta. Images were interpreted by 3 observers unaware of the subjects' clinical data and each other's measurements. Abnormal aortic AT, IMT, and PSEM were defined as > 2SD above the overall mean values in controls and corresponded to > 1 mm, > 1 mm, and > 10.6 Pascal units, respectively. Plaques were defined as focal-protruding IMT > 50% of the surrounding vessel wall. RESULTS Abnormal aortic AT, atherosclerosis, and abnormal stiffness were more frequent in SLE patients than in controls (all p ≤ 0.02). In SLE patients, abnormal AT combined with atherosclerosis was associated with larger aortic end-diastolic diameters than in controls (p ≤ 0.05). In SLE patients, aortic AT was greater in patients with atherosclerosis and in those with abnormal stiffness than in patients without these abnormalities (all p ≤ 0.02). In patients with abnormal AT, the degree of aortic stiffness was similar to those with atherosclerosis (p = 0.22). CONCLUSION In patients with SLE, increased aortic AT is associated with aortic atherosclerosis, abnormal stiffness, and eccentric vessel remodeling. Key Points • In patients with SLE, abnormal aortic adventitial thickness is associated with aortic atherosclerosis, abnormal stiffness, and eccentric vessel remodeling. • In patients with SLE, aortic adventitial thickening may contribute to the extent of aortic atherosclerosis, abnormal aortic stiffness, and vessel remodeling. • To our knowledge, this is the first human imaging study to characterize the aortic adventitial layer and delineate its association with aortic disease.
Collapse
|
34
|
Deshayes S, de Boysson H, Dumont A, Vivien D, Manrique A, Aouba A. An overview of the perspectives on experimental models and new therapeutic targets in giant cell arteritis. Autoimmun Rev 2020; 19:102636. [DOI: 10.1016/j.autrev.2020.102636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022]
|
35
|
Abstract
Large vessel vasculitides comprise two distinct entities, giant cell arteritis (GCA) and Takayasu arteritis (TAK). GCA is the most common vasculitis in central Europe, becoming manifested at an age over 50 years. In contrast, the much rarer TAK affects almost exclusively young adults and mostly women. Both vasculitides are granulomatous arteritides affecting mainly the aorta and its major arterial branches. GCA and TAK are associated with different major histocompatibility complex genes. Infections possibly play a role in the initiation of large vessel vasculitides. Activation of dendritic cells in the adventitia induces chemokine and cytokine-mediated recruitment and maturation of T‑helper (Th)1 and Th17 cells and macrophages producing cytokines, growth factors and matrix metalloproteinases. In GCA, CD4+ T‑helper cells and macrophages are predominantly found in the inflammatory infiltrate. In TAK, the infiltrate also contains cytotoxic CD8+ T‑cells and γδ T‑cells. This could indicate different antigenic triggers in GCA and TAK. Inflammatory infiltration with T‑cells and macrophages and activation of myofibroblasts and smooth muscular cells induce vascular remodeling with intimal hyperplasia and destruction of the media. Remodeling is histologically characterized by progressive arterial wall fibrosis, vascular stenosis and obstruction. In summary, GCA and TAK represent two different entities with a distinct human leukocyte antigen (HLA) and potentially etiopathogenetic background. Clinically, inflammation-related general symptoms and signs of ischemia are encountered, accompanied by increased levels of serological markers of inflammation.
Collapse
Affiliation(s)
- S Arnold
- Klinik für Rheumatologie und klinische Immunologie, Universität zu Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Deutschland
| | - K Holl Ulrich
- Pathologie - Hamburg, Labor Lademannbogen MVZ GmbH, Hamburg, Deutschland
| | - P Lamprecht
- Klinik für Rheumatologie und klinische Immunologie, Universität zu Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Deutschland.
| |
Collapse
|
36
|
Clément M, Lareyre F, Loste A, Sannier A, Burel-Vandenbos F, Massiot N, Carboni J, Jean-Baptiste E, Caligiuri G, Nicoletti A, Raffort J. Vascular Remodeling and Immune Cell Infiltration in Splenic Artery Aneurysms. Angiology 2020; 72:539-549. [PMID: 32851875 DOI: 10.1177/0003319720952290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rupture of splenic artery aneurysms (SAAs) is associated with a high mortality rate. The aim of this study was to identify the features of SAAs. Tissue sections from SAAs were compared to nonaneurysmal splenic arteries using various stains. The presence of intraluminal thrombus (ILT), vascular smooth muscle cells (VSMCs), cluster of differentiation (CD)-68+ phagocytes, myeloperoxidase+ neutrophils, CD3+, and CD20+ adaptive immune cells were studied using immunofluorescence microscopy. Analysis of SAAs revealed the presence of atherosclerotic lesions, calcifications, and ILT. Splenic artery aneurysms were characterized by a profound vascular remodeling with a dramatic loss of VSMCs, elastin degradation, adventitial fibrosis associated with enhanced apoptosis, and increased matrix metalloproteinase 9 expression. We observed an infiltration of immune cells comprising macrophages, neutrophils, T, and B cells. The T and B cells were found in the adventitial layer of SAAs, but their organization into tertiary lymphoid organs was halted. We failed to detect germinal centers even in the most organized T/B cell follicles and these lymphoid clusters lacked lymphoid stromal cells. This detailed histopathological characterization of the vascular remodeling during SAA showed that lymphoid neogenesis was incomplete, suggesting that critical mediators of their development must be missing.
Collapse
Affiliation(s)
- Marc Clément
- Université de Paris, LVTS, 121283INSERM U1148, Paris, France
| | - Fabien Lareyre
- Department of Vascular Surgery, 26992University Hospital of Nice, France.,Department of Vascular Surgery, University Hospital of Antibes-Juan-les-Pins, France.,439710Université Côte d'Azur, CHU, INSERM U1065, C3M, Nice, France
| | - Alexia Loste
- Université de Paris, LVTS, 121283INSERM U1148, Paris, France
| | - Aurélie Sannier
- Université de Paris, LVTS, 121283INSERM U1148, Paris, France
| | | | - Nicolas Massiot
- Department of Vascular Surgery, 26992University Hospital of Nice, France
| | - Joseph Carboni
- Department of Vascular Surgery, 26992University Hospital of Nice, France
| | - Elixène Jean-Baptiste
- Department of Vascular Surgery, 26992University Hospital of Nice, France.,439710Université Côte d'Azur, CHU, INSERM U1065, C3M, Nice, France
| | | | | | - Juliette Raffort
- 439710Université Côte d'Azur, CHU, INSERM U1065, C3M, Nice, France.,Clinical Chemistry Laboratory, 121283University Hospital of Nice, France
| |
Collapse
|
37
|
Dos Santos JP, Artigiani Neto R, Mangueira CLP, Filippi RZ, Gutierrez PS, Westra J, Brouwer E, de Souza AWS. Associations between clinical features and therapy with macrophage subpopulations and T cells in inflammatory lesions in the aorta from patients with Takayasu arteritis. Clin Exp Immunol 2020; 202:384-393. [PMID: 32639582 DOI: 10.1111/cei.13489] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
Takayasu arteritis (TAK) is a large-vessel granulomatous vasculitis; the inflammatory infiltration in arteries comprises macrophages, multi-nucleated giant cells, CD4+ and CD8+ T cells, γδ T cells, natural killer (NK) cells and neutrophils. However, it is unknown which subtype of macrophages predominates. This study aims to evaluate macrophages subpopulations in the aorta in TAK. Immunohistochemistry was performed in the aorta from TAK patients (n = 22), patients with atherosclerotic disease (n = 9) and heart transplant donors (n = 8) using the markers CD68, CD86, CD206, CD3, CD20 and CD56. Active disease was observed in 54·5% of patients and active histological lesions were found in 40·9%. TAK patients presented atherosclerotic lesions in 27·3% of cases. The frequency of macrophages, M1 macrophages, T, B and NK cells was higher in the aorta from TAK and atherosclerotic patients compared to heart transplant donors. In TAK, macrophages and T cells were the most abundant cells in the aorta, and the expression of CD206 was higher than CD86 (P = 0·0007). No associations were found between the expression of cell markers and active disease or with atherosclerotic lesions. In TAK patients, histological disease activity led to higher T cell counts than chronic fibrotic lesions (P = 0.030), whereas prednisone use was associated with lower T cell counts (P = 0·035). In conclusion, M1 macrophages were more frequent in TAK and atherosclerotic patients compared to heart transplant donors, while M2 macrophages dominated M1 macrophages in TAK. T cells were associated with histological disease activity and with prednisone use in TAK.
Collapse
Affiliation(s)
- J P Dos Santos
- Rheumatology Division, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil
| | - R Artigiani Neto
- Department of Pathology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil
| | - C L P Mangueira
- Clinical Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - R Z Filippi
- Pathology Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - P S Gutierrez
- Heart Institute of São Paulo (InCor), HC-FMUSP, São Paulo, SP, Brazil
| | - J Westra
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - E Brouwer
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - A W S de Souza
- Rheumatology Division, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil
| |
Collapse
|
38
|
Carvajal Alegria G, van Sleen Y, Graver JC, Sandovici M, Devauchelle-Pensec V, Brouwer E, Cornec D. Aortic involvement in giant cell arteritis. Joint Bone Spine 2020; 88:105045. [PMID: 32649986 DOI: 10.1016/j.jbspin.2020.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/22/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Guillermo Carvajal Alegria
- UMR 1227 « Lymphocytes B et Autoimmunité », Inserm, Labex IGO, University of Brest, Brest, France; Rheumatology department, CERAINO « Centre de référence des maladies auto-immunes rares », CHRU Cavale Blanche, Brest, France
| | - Yannick van Sleen
- Vasculitis Expertise Center Groningen, Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jacoba Carolien Graver
- Vasculitis Expertise Center Groningen, Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Maria Sandovici
- Vasculitis Expertise Center Groningen, Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Valérie Devauchelle-Pensec
- UMR 1227 « Lymphocytes B et Autoimmunité », Inserm, Labex IGO, University of Brest, Brest, France; Rheumatology department, CERAINO « Centre de référence des maladies auto-immunes rares », CHRU Cavale Blanche, Brest, France
| | - Elisabeth Brouwer
- Vasculitis Expertise Center Groningen, Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Divi Cornec
- UMR 1227 « Lymphocytes B et Autoimmunité », Inserm, Labex IGO, University of Brest, Brest, France; Rheumatology department, CERAINO « Centre de référence des maladies auto-immunes rares », CHRU Cavale Blanche, Brest, France.
| |
Collapse
|
39
|
Editorial: Introduction, vasculitis 2020. Curr Opin Rheumatol 2020; 32:1-2. [DOI: 10.1097/bor.0000000000000675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
|
41
|
Tinajero MG, Gotlieb AI. Recent Developments in Vascular Adventitial Pathobiology: The Dynamic Adventitia as a Complex Regulator of Vascular Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 190:520-534. [PMID: 31866347 DOI: 10.1016/j.ajpath.2019.10.021] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 12/20/2022]
Abstract
The adventitia, the outer layer of the blood vessel wall, may be the most complex layer of the wall and may be the master regulator of wall physiology and pathobiology. This review proposes a major shift in thinking to apply a functional lens to the adventitia rather than only a structural lens. Human and experimental in vivo and in vitro studies show that the adventitia is a dynamic microenvironment in which adventitial and perivascular adipose tissue cells initiate and regulate important vascular functions in disease, especially intimal hyperplasia and atherosclerosis. Although well away from the blood-wall interface, where much pathology has been identified, the adventitia has a profound influence on the population of intimal and medial endothelial, macrophage, and smooth muscle cell function. Vascular injury and dysfunction of the perivascular adipose tissue promote expansion of the vasa vasorum, activation of fibroblasts, and differentiation of myofibroblasts. This regulates further biologic processes, including fibroblast and myofibroblast migration and proliferation, inflammation, immunity, stem cell activation and regulation, extracellular matrix remodeling, and angiogenesis. A debate exists as to whether the adventitia initiates disease or is just an important participant. We describe a mechanistic model of adventitial function that brings together current knowledge and guides the design of future investigations to test specific hypotheses on adventitial pathobiology.
Collapse
Affiliation(s)
- Maria G Tinajero
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Avrum I Gotlieb
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
42
|
Benhuri B, ELJack A, Kahaleh B, Chakravarti R. Mechanism and biomarkers in aortitis--a review. J Mol Med (Berl) 2019; 98:11-23. [PMID: 31664480 DOI: 10.1007/s00109-019-01838-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 09/11/2019] [Accepted: 09/22/2019] [Indexed: 12/26/2022]
Abstract
Aortitis can be the manifestation of an underlying infectious or noninfectious disease process. An autoimmune cause is suggested in a large proportion of noninfectious causes. Similar to other autoimmune diseases, the pathophysiology of aortitis has been investigated in detail, but the etiology remains unknown. Most cases of aortitis often go undetected for a long time and are often identified at late stages of the disease. Recent advances in imaging techniques have significantly improved the diagnosis of aortitis. However, significant challenges associated with the imaging techniques limit their use. Several routine inflammation-based markers, such as erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and inflammatory cytokines, are nonspecific and, therefore, have limited use in the diagnosis of aortitis. The search for more specific serum biomarkers, which can facilitate detection and progression is under progress. Several autoantibodies have been identified, but assigning their role in the pathogenesis as well as their specificity remains a challenge. The current review addresses some of these issues in detail. KEY MESSAGES: • Noninfectious aortitis is an autoimmune disease. • Several biomarkers, including cytokines and autoantibodies, are increased in aortitis. • Imaging techniques, commonly used to detect aortitis, are associated with the high cost and technical challenges. • There is a need to develop low-cost biomarker-based detection tools. • The knowledge of biomarkers in aortitis detection is discussed.
Collapse
Affiliation(s)
- Benjamin Benhuri
- Department of Physiology & Pharmacology, College of Medical & Life Sciences, University of Toledo College of Medicine, 3000 Arlington Ave, Toledo, OH, 43614, USA.,Department of Internal Medicine, Mount Sinai Beth Israel, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ammar ELJack
- Department of Physiology & Pharmacology, College of Medical & Life Sciences, University of Toledo College of Medicine, 3000 Arlington Ave, Toledo, OH, 43614, USA.,Depatment of Intenal Medicine, Beaumont Hospital, Dearborn, MI, 48124, USA
| | - Bashar Kahaleh
- Division of Rheumatology, University of Toledo College of Medicine, 3000 Arlington Ave, Toledo, OH, 43614, USA
| | - Ritu Chakravarti
- Department of Physiology & Pharmacology, College of Medical & Life Sciences, University of Toledo College of Medicine, 3000 Arlington Ave, Toledo, OH, 43614, USA.
| |
Collapse
|
43
|
[Physiopathology of giant cell arteritis: From inflammation to vascular remodeling]. Presse Med 2019; 48:919-930. [PMID: 31543394 DOI: 10.1016/j.lpm.2019.07.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/10/2019] [Accepted: 07/23/2019] [Indexed: 12/13/2022] Open
Abstract
Giant cell arteritis (GCA) is a large-vessel vasculitis involving the aorta and its main branches, especially supra aortic branches. Although much progress has been made, the pathophysiology remains incompletely understood. An initial trigger, suspected of infectious origin, lead to the maturation and recruitment of dendritic cells (DC). The lack of migration of these DC allows the local recruitment of T-lymphocytes (LT). These LT- CD4+ polarize in Type 1 helper (Th1), Th17 but also Th9. A qualitative and quantitative deficit in regulatory T cells (Treg) is observed under the influence of IL-21 overproduction. In addition, an imbalance in the Th17/Treg balance is favored by IL-6. The secretion of IFN-γ, IL-17, IL-6, IL-33 is responsible for a sustained local inflammatory reaction that is organized around tertiary lymphoid follicles. Locally recruited macrophages secrete reactive forms of oxygen together with VEGF and PDGF. These growth factors, together with neurotrophins and endothelin contribute to increase the proliferation of vascular smooth muscle cells (VSMCs). The imbalance between matrix metalloproteases (MMP)-2, MMP-9 and MMP-14 and tissue inhibitors of metalloproteases (TIMP)-1 and TIMP-2 also contribute to the remodeling process occurring in the vessel wall. Finally, arterial neovascularization contribute to the perpetuation of lymphocyte recruitment. This persistent remodeling is sometimes complicated by ischemic events responsible for the initial severity of the disease.
Collapse
|
44
|
van Sleen Y, Graver JC, Abdulahad WH, van der Geest KSM, Boots AMH, Sandovici M, Brouwer E. Leukocyte Dynamics Reveal a Persistent Myeloid Dominance in Giant Cell Arteritis and Polymyalgia Rheumatica. Front Immunol 2019; 10:1981. [PMID: 31507597 PMCID: PMC6714037 DOI: 10.3389/fimmu.2019.01981] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/05/2019] [Indexed: 12/14/2022] Open
Abstract
Giant cell arteritis (GCA) and polymyalgia rheumatica (PMR) are inflammatory diseases requiring long-term glucocorticoid treatment. Limited data on dynamics in leukocyte counts before, during and after treatment are available. Leukocyte counts were measured, as cellular markers of inflammation, at fixed time points in our prospectively studied cohort of pre-treatment glucocorticoid-naive GCA (N = 42) and PMR (N = 31) patients. Values were compared with age-matched healthy controls (HCs; N = 51) and infection controls (N = 16). We report that before start of treatment monocyte and neutrophil counts were higher in GCA and PMR patients than in HCs, while NK- and B-cell counts were lower. C-reactive protein (CRP) levels correlated positively with monocyte counts in GCA, and negatively with B-cell and NK-cell counts in PMR. During glucocorticoid treatment, myeloid subsets remained elevated whereas lymphoid subsets tended to fluctuate. Interestingly, erythrocyte sedimentation rate (ESR) outperformed CRP as marker for relapses in GCA. We defined stable treatment-free remission groups in both GCA and PMR. GCA patients in treatment-free remission still demonstrated elevated monocytes, neutrophils, ESR, and platelets. PMR patients in treatment-free remission had normalized levels of inflammation markers, but did have elevated monocytes, lowered CD8+ T-cell counts and lowered NK-cell counts. Finally, we showed that low hemoglobin level was predictive for long-term GC treatment in PMR. Overall, leukocyte composition shifts toward the myeloid lineage in GCA and PMR. This myeloid profile, likely induced by effects of inflammation on hematopoietic stem cell differentiation, persisted during glucocorticoid treatment. Surprisingly, the myeloid profile was retained in treatment-free remission, which may reflect ongoing subclinical inflammation.
Collapse
Affiliation(s)
- Yannick van Sleen
- Vasculitis Expertise Centre Groningen, Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands
| | - Jacoba C Graver
- Vasculitis Expertise Centre Groningen, Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands
| | - Wayel H Abdulahad
- Vasculitis Expertise Centre Groningen, Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands
| | - Kornelis S M van der Geest
- Vasculitis Expertise Centre Groningen, Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands
| | - Annemieke M H Boots
- Vasculitis Expertise Centre Groningen, Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands
| | - Maria Sandovici
- Vasculitis Expertise Centre Groningen, Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands
| | - Elisabeth Brouwer
- Vasculitis Expertise Centre Groningen, Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands
| |
Collapse
|