1
|
Yu J, Wang X, Zhou Y, Hu J, Gu L, Zhou H, Yue C, Zhou P, Li Y, Zhao Q, Zhang C, Hu Y, Zeng F, Zhao F, Li G, Feng Y, He M, Huang S, Wu W, Huang N, Cui K, Li J. EDIL3 alleviates Mannan-induced psoriatic arthritis by slowing the intracellular glycolysis process in mononuclear-derived dendritic cells. Inflammation 2024:10.1007/s10753-024-02134-y. [PMID: 39289212 DOI: 10.1007/s10753-024-02134-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/12/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024]
Abstract
Psoriatic arthritis (PsA) is an immune-mediated, chronic inflammatory joint disease that commonly occurs as a complication of psoriasis. EGF-like repeats and discoidal I-like domain 3 (EDIL3) is a secreted protein with multiple structural domains and associated with various physiological functions. In this study, we employed a mannan-induced psoriatic arthritis model to investigate the impact of EDIL3 on PsA pathogenesis. Notably, a downregulation of EDIL3 expression was observed in the PsA model, which correlated with increased disease severity. EDIL3 knockout mice exhibited a more severe phenotype of PsA, which was ameliorated upon re-infusion of recombinant EDIL3 protein. The mitigation effect of EDIL3 on PsA depends on its regulation of the activation of monocyte-derived DCs (MoDCs) and T-help 17 cells (Th17). After inhibiting the function of MoDCs and Th17 cells with neutralizing antibodies, the beneficial effects of EDIL3 on PsA were lost. By inducing adenosine monophosphate (AMP)-activated protein kinase (AMPK) phosphorylation and suppressing protein kinase B (AKT) phosphorylation, EDIL3 attenuates intracellular glycolysis in MoDCs stimulated by glucose, thereby impeding their maturation and differentiation. Moreover, it diminishes the differentiation of Th17 cells and decelerates the progression of PsA. In conclusion, our findings elucidate the role and mechanism of EDIL3 in the development of PsA, providing a new target for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Jiadong Yu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoyan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yifan Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jing Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Linna Gu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hong Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chengcheng Yue
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Pei Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ya Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qixiang Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Chen Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yawen Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fanlian Zeng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fulei Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guolin Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuting Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mingxiang He
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shishi Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenling Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nongyu Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kaijun Cui
- Department of Cardiology, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu, 610041, Sichuan, China
| | - Jiong Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Mildner A, Kim KW, Yona S. Unravelling monocyte functions: from the guardians of health to the regulators of disease. DISCOVERY IMMUNOLOGY 2024; 3:kyae014. [PMID: 39430099 PMCID: PMC11486918 DOI: 10.1093/discim/kyae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/06/2024] [Accepted: 08/29/2024] [Indexed: 10/22/2024]
Abstract
Monocytes are a key component of the innate immune system. They undergo intricate developmental processes within the bone marrow, leading to diverse monocyte subsets in the circulation. In a state of healthy homeostasis, monocytes are continuously released into the bloodstream, destined to repopulate specific tissue-resident macrophage pools where they fulfil tissue-specific functions. However, under pathological conditions monocytes adopt various phenotypes to resolve inflammation and return to a healthy physiological state. This review explores the nuanced developmental pathways and functional roles that monocytes perform, shedding light on their significance in both physiological and pathological contexts.
Collapse
Affiliation(s)
- Alexander Mildner
- MediCity Research Laboratory, University of Turku, Turku, Finland
- InFLAMES Research Flagship, University of Turku, 20014 Turku, Finland
| | - Ki-Wook Kim
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Simon Yona
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| |
Collapse
|
3
|
AlJabban A, Evans MG, Fell GG, Guccione JP, Edwards RA, Pinkus GS, Padera RF, Pozdnyakova O, Kim AS. Autopsy findings from patients diagnosed with COVID-19 demonstrate unique morphological patterns in bone marrow and lymph node. J Clin Pathol 2024; 77:622-627. [PMID: 37290912 DOI: 10.1136/jcp-2023-208875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/30/2023] [Indexed: 06/10/2023]
Abstract
AIMS The identification of haemophagocytosis in bone marrow (BM) is recurrently identified in patients with severe COVID-19. These initial COVID-19 autopsy studies have afforded valuable insight into the pathophysiology of this disease; however, only a limited number of case series have focused on lymphoid or haematopoietic tissues. METHODS BM and lymph node (LN) specimens were obtained from adult autopsies performed between 1 April 2020 and 1 June 2020, for which the decedent had tested positive for SARS-CoV-2. Tissue sections (H&E, CD3, CD20, CD21, CD138, CD163, MUM1, kappa/lambda light chains in situ hybridisation) were examined by two haematopathologists, who recorded morphological features in a blinded fashion. Haemophagocytic lymphohistiocytosis (HLH) was assessed based on HLH 2004 criteria. RESULTS The BM demonstrated a haemophagocytic pattern in 9 out of 25 patients (36%). The HLH pattern was associated with longer hospitalisation, BM plasmacytosis, LN follicular hyperplasia and lower aspartate aminotransferase (AST), as well as ferritin at demise. LN examination showed increased plasmacytoid cells in 20 of 25 patients (80%). This pattern was associated with a low absolute monocyte count at diagnosis, lower white cell count and lower absolute neutrophil count at demise, and lower ferritin and AST at demise. CONCLUSIONS Autopsy results demonstrate distinct morphological patterns in BM, with or without haemophagocytic macrophages, and in LN, with or without increased plasmacytoid cells. Since only a minority of patients met diagnostic criteria for HLH, the observed BM haemophagocytic macrophages may be more indicative of an overall inflammatory state.
Collapse
Affiliation(s)
- Ali AlJabban
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Clinical Investigation, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark G Evans
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Geoffrey G Fell
- Department of Biostatistics, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jack P Guccione
- Los Angeles County Department of Medical Examiner-Coroner, Los Angeles, California, USA
| | - Robert A Edwards
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, California, USA
| | - Geraldine S Pinkus
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Robert F Padera
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Olga Pozdnyakova
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Annette S Kim
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Guallar-Garrido S, Soldati T. Exploring host-pathogen interactions in the Dictyostelium discoideum-Mycobacterium marinum infection model of tuberculosis. Dis Model Mech 2024; 17:dmm050698. [PMID: 39037280 PMCID: PMC11552500 DOI: 10.1242/dmm.050698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Mycobacterium tuberculosis is a pathogenic mycobacterium that causes tuberculosis. Tuberculosis is a significant global health concern that poses numerous clinical challenges, particularly in terms of finding effective treatments for patients. Throughout evolution, host immune cells have developed cell-autonomous defence strategies to restrain and eliminate mycobacteria. Concurrently, mycobacteria have evolved an array of virulence factors to counteract these host defences, resulting in a dynamic interaction between host and pathogen. Here, we review recent findings, including those arising from the use of the amoeba Dictyostelium discoideum as a model to investigate key mycobacterial infection pathways. D. discoideum serves as a scalable and genetically tractable model for human phagocytes, providing valuable insights into the intricate mechanisms of host-pathogen interactions. We also highlight certain similarities between M. tuberculosis and Mycobacterium marinum, and the use of M. marinum to more safely investigate mycobacteria in D. discoideum.
Collapse
Affiliation(s)
- Sandra Guallar-Garrido
- Department of Biochemistry, Faculty of Science, University of Geneva, 30 quai Ernest-Ansermet, Science II, 1211 Geneva-4, Switzerland
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Science, University of Geneva, 30 quai Ernest-Ansermet, Science II, 1211 Geneva-4, Switzerland
| |
Collapse
|
5
|
Mylvaganam S, Freeman SA. The resolution of phagosomes. Immunol Rev 2023; 319:45-64. [PMID: 37551912 DOI: 10.1111/imr.13260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/18/2023] [Indexed: 08/09/2023]
Abstract
Phagocytosis is a fundamental immunobiological process responsible for the removal of harmful particulates. While the number of phagocytic events achieved by a single phagocyte can be remarkable, exceeding hundreds per day, the same phagocytic cells are relatively long-lived. It should therefore be obvious that phagocytic meals must be resolved in order to maintain the responsiveness of the phagocyte and to avoid storage defects. In this article, we discuss the mechanisms involved in the resolution process, including solute transport pathways and membrane traffic. We describe how products liberated in phagolysosomes support phagocyte metabolism and the immune response. We also speculate on mechanisms involved in the redistribution of phagosomal metabolites back to circulation. Finally, we highlight the pathologies owed to impaired phagosome resolution, which range from storage disorders to neurodegenerative diseases.
Collapse
Affiliation(s)
- Sivakami Mylvaganam
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Spencer A Freeman
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Zhang B, Zeng M, Zhang Q, Wang R, Jia J, Cao B, Liu M, Guo P, Zhang Y, Zheng X, Feng W. Ephedrae Herba polysaccharides inhibit the inflammation of ovalbumin induced asthma by regulating Th1/Th2 and Th17/Treg cell immune imbalance. Mol Immunol 2022; 152:14-26. [DOI: 10.1016/j.molimm.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022]
|
7
|
Zhou M, Graves DT. Impact of the host response and osteoblast lineage cells on periodontal disease. Front Immunol 2022; 13:998244. [PMID: 36304447 PMCID: PMC9592920 DOI: 10.3389/fimmu.2022.998244] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/12/2022] [Indexed: 12/05/2022] Open
Abstract
Periodontitis involves the loss of connective tissue attachment and alveolar bone. Single cell RNA-seq experiments have provided new insight into how resident cells and infiltrating immune cells function in response to bacterial challenge in periodontal tissues. Periodontal disease is induced by a combined innate and adaptive immune response to bacterial dysbiosis that is initiated by resident cells including epithelial cells and fibroblasts, which recruit immune cells. Chemokines and cytokines stimulate recruitment of osteoclast precursors and osteoclastogenesis in response to TNF, IL-1β, IL-6, IL-17, RANKL and other factors. Inflammation also suppresses coupled bone formation to limit repair of osteolytic lesions. Bone lining cells, osteocytes and periodontal ligament cells play a key role in both processes. The periodontal ligament contains cells that exhibit similarities to tendon cells, osteoblast-lineage cells and mesenchymal stem cells. Bone lining cells consisting of mesenchymal stem cells, osteoprogenitors and osteoblasts are influenced by osteocytes and stimulate formation of osteoclast precursors through MCSF and RANKL, which directly induce osteoclastogenesis. Following bone resorption, factors are released from resorbed bone matrix and by osteoclasts and osteal macrophages that recruit osteoblast precursors to the resorbed bone surface. Osteoblast differentiation and coupled bone formation are regulated by multiple signaling pathways including Wnt, Notch, FGF, IGF-1, BMP, and Hedgehog pathways. Diabetes, cigarette smoking and aging enhance the pathologic processes to increase bone resorption and inhibit coupled bone formation to accelerate bone loss. Other bone pathologies such as rheumatoid arthritis, post-menopausal osteoporosis and bone unloading/disuse also affect osteoblast lineage cells and participate in formation of osteolytic lesions by promoting bone resorption and inhibiting coupled bone formation. Thus, periodontitis involves the activation of an inflammatory response that involves a large number of cells to stimulate bone resorption and limit osseous repair processes.
Collapse
Affiliation(s)
- Mi Zhou
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Dana T. Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Dana T. Graves,
| |
Collapse
|
8
|
Eckshtain-Levi M, Batty CJ, Lifshits LM, McCammitt B, Moore KM, Amouzougan EA, Stiepel RT, Duggan E, Ross TM, Bachelder EM, Ainslie KM. Metal-Organic Coordination Polymer for Delivery of a Subunit Broadly Acting Influenza Vaccine. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28548-28558. [PMID: 35704854 PMCID: PMC9495290 DOI: 10.1021/acsami.2c04671] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A zinc-carnosine (ZnCar) metal-organic coordination polymer was fabricated in biologically relevant N-(2-hydroxyethyl)piperazine-N'-ethanesulfonic acid (HEPES) buffer for use as a vaccine platform. In vitro, ZnCar exhibited significantly less cytotoxicity than a well-established zeolitic imidazolate framework (ZIF-8). Adsorption of CpG on the ZnCar surface resulted in enhanced innate immune activation compared to soluble CpG. The model antigen ovalbumin (OVA) was encapsulated in ZnCar and exhibited acid-sensitive release in vitro. When injected intramuscularly on days 0 and 21 in C57BL/6 mice, OVA-specific serum total IgG and IgG1 were significantly greater in all groups with ZnCar and antigen compared to soluble controls. Th1-skewed IgG2c antibodies were significantly greater in OVA and CpG groups delivered with ZnCar for all time points, regardless of whether the antigen and adjuvant were co-formulated in one material or co-delivered in separate materials. When broadly acting Computationally Optimized Broadly Reactive Antigen (COBRA) P1 influenza hemagglutinin (HA) was ligated to ZnCar via its His-tag, significantly greater antibody levels were observed at all time points compared to soluble antigen and CpG. ZnCar-formulated antigen elicited increased peptide presentation to B3Z T cells in vitro and production of IL-2 after ex vivo antigen recall of splenocytes isolated from vaccinated mice. Overall, this work displays the formation of a zinc-carnosine metal-organic coordination polymer that can be applied as a platform for recombinant protein-based vaccines.
Collapse
Affiliation(s)
- Meital Eckshtain-Levi
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cole J. Batty
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Liubov M. Lifshits
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brandon McCammitt
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kathryn M. Moore
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Eva A. Amouzougan
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rebeca T. Stiepel
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Eliza Duggan
- North Carolina School of Science and Mathematics, Durham, NC, USA
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Eric M. Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kristy M. Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA
| |
Collapse
|
9
|
Arnhold J, Malle E. Halogenation Activity of Mammalian Heme Peroxidases. Antioxidants (Basel) 2022; 11:antiox11050890. [PMID: 35624754 PMCID: PMC9138014 DOI: 10.3390/antiox11050890] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/10/2022] Open
Abstract
Mammalian heme peroxidases are fascinating due to their unique peculiarity of oxidizing (pseudo)halides under physiologically relevant conditions. These proteins are able either to incorporate oxidized halides into substrates adjacent to the active site or to generate different oxidized (pseudo)halogenated species, which can take part in multiple (pseudo)halogenation and oxidation reactions with cell and tissue constituents. The present article reviews basic biochemical and redox mechanisms of (pseudo)halogenation activity as well as the physiological role of heme peroxidases. Thyroid peroxidase and peroxidasin are key enzymes for thyroid hormone synthesis and the formation of functional cross-links in collagen IV during basement membrane formation. Special attention is directed to the properties, enzymatic mechanisms, and resulting (pseudo)halogenated products of the immunologically relevant proteins such as myeloperoxidase, eosinophil peroxidase, and lactoperoxidase. The potential role of the (pseudo)halogenated products (hypochlorous acid, hypobromous acid, hypothiocyanite, and cyanate) of these three heme peroxidases is further discussed.
Collapse
Affiliation(s)
- Jürgen Arnhold
- Medical Faculty, Institute of Medical Physics and Biophysics, Leipzig University, 04107 Leipzig, Germany
- Correspondence: (J.A.); or (E.M.)
| | - Ernst Malle
- Gottfried Schatz Research Center, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
- Correspondence: (J.A.); or (E.M.)
| |
Collapse
|
10
|
Thomas JR, Appios A, Zhao X, Dutkiewicz R, Donde M, Lee CYC, Naidu P, Lee C, Cerveira J, Liu B, Ginhoux F, Burton G, Hamilton RS, Moffett A, Sharkey A, McGovern N. Phenotypic and functional characterization of first-trimester human placental macrophages, Hofbauer cells. J Exp Med 2021; 218:211477. [PMID: 33075123 PMCID: PMC7579740 DOI: 10.1084/jem.20200891] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/30/2020] [Accepted: 09/11/2020] [Indexed: 12/31/2022] Open
Abstract
Hofbauer cells (HBCs) are a population of macrophages found in high abundance within the stroma of the first-trimester human placenta. HBCs are the only fetal immune cell population within the stroma of healthy placenta. However, the functional properties of these cells are poorly described. Aligning with their predicted origin via primitive hematopoiesis, we find that HBCs are transcriptionally similar to yolk sac macrophages. Phenotypically, HBCs can be identified as HLA-DR-FOLR2+ macrophages. We identify a number of factors that HBCs secrete (including OPN and MMP-9) that could affect placental angiogenesis and remodeling. We determine that HBCs have the capacity to play a defensive role, where they are responsive to Toll-like receptor stimulation and are microbicidal. Finally, we also identify a population of placenta-associated maternal macrophages (PAMM1a) that adhere to the placental surface and express factors, such as fibronectin, that may aid in repair.
Collapse
Affiliation(s)
- Jake R Thomas
- Department of Pathology, University of Cambridge, Cambridge, UK.,Centre for Trophoblast Research, Departments of Physiology and Neuroscience, University of Cambridge, Cambridge, UK
| | - Anna Appios
- Department of Pathology, University of Cambridge, Cambridge, UK.,Centre for Trophoblast Research, Departments of Physiology and Neuroscience, University of Cambridge, Cambridge, UK
| | - Xiaohui Zhao
- Centre for Trophoblast Research, Departments of Physiology and Neuroscience, University of Cambridge, Cambridge, UK
| | | | - Maria Donde
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Colin Y C Lee
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Praveena Naidu
- Department of Pathology, University of Cambridge, Cambridge, UK.,Centre for Trophoblast Research, Departments of Physiology and Neuroscience, University of Cambridge, Cambridge, UK
| | - Christopher Lee
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Joana Cerveira
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Bing Liu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China.,State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China.,State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Graham Burton
- Centre for Trophoblast Research, Departments of Physiology and Neuroscience, University of Cambridge, Cambridge, UK
| | - Russell S Hamilton
- Centre for Trophoblast Research, Departments of Physiology and Neuroscience, University of Cambridge, Cambridge, UK.,Department of Genetics, University of Cambridge, Cambridge, UK
| | - Ashley Moffett
- Department of Pathology, University of Cambridge, Cambridge, UK.,Centre for Trophoblast Research, Departments of Physiology and Neuroscience, University of Cambridge, Cambridge, UK
| | - Andrew Sharkey
- Department of Pathology, University of Cambridge, Cambridge, UK.,Centre for Trophoblast Research, Departments of Physiology and Neuroscience, University of Cambridge, Cambridge, UK
| | - Naomi McGovern
- Department of Pathology, University of Cambridge, Cambridge, UK.,Centre for Trophoblast Research, Departments of Physiology and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
11
|
Amunugama K, Kolar GR, Ford DA. Neutrophil Myeloperoxidase Derived Chlorolipid Production During Bacteria Exposure. Front Immunol 2021; 12:701227. [PMID: 34489949 PMCID: PMC8416994 DOI: 10.3389/fimmu.2021.701227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Neutrophils are the most abundant white blood cells recruited to the sites of infection and inflammation. During neutrophil activation, myeloperoxidase (MPO) is released and converts hydrogen peroxide to hypochlorous acid (HOCl). HOCl reacts with plasmalogen phospholipids to liberate 2-chlorofatty aldehyde (2-ClFALD), which is metabolized to 2-chlorofatty acid (2-ClFA). 2-ClFA and 2-ClFALD are linked with inflammatory diseases and induce endothelial dysfunction, neutrophil extracellular trap formation (NETosis) and neutrophil chemotaxis. Here we examine the neutrophil-derived chlorolipid production in the presence of pathogenic E. coli strain CFT073 and non-pathogenic E. coli strain JM109. Neutrophils cocultured with CFT073 E. coli strain and JM109 E. coli strain resulted in 2-ClFALD production. 2-ClFA was elevated only in CFT073 coculture. NETosis is more prevalent in CFT073 cocultures with neutrophils compared to JM109 cocultures. 2-ClFA and 2-ClFALD were both shown to have significant bactericidal activity, which is more severe in JM109 E. coli. 2-ClFALD metabolic capacity was 1000-fold greater in neutrophils compared to either strain of E. coli. MPO inhibition reduced chlorolipid production as well as bacterial killing capacity. These findings indicate the chlorolipid profile is different in response to these two different strains of E. coli bacteria.
Collapse
Affiliation(s)
- Kaushalya Amunugama
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, United States
- Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Grant R. Kolar
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO, United States
- Research Microscopy and Histology Core, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - David A. Ford
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, United States
- Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
12
|
Fattal E, Fay F. Nanomedicine-based delivery strategies for nucleic acid gene inhibitors in inflammatory diseases. Adv Drug Deliv Rev 2021; 175:113809. [PMID: 34033819 DOI: 10.1016/j.addr.2021.05.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 02/07/2023]
Abstract
Thanks to their abilities to modulate the expression of virtually any genes, RNA therapeutics have attracted considerable research efforts. Among the strategies focusing on nucleic acid gene inhibitors, antisense oligonucleotides and small interfering RNAs have reached advanced clinical trial phases with several of them having recently been marketed. These successes were obtained by overcoming stability and cellular delivery issues using either chemically modified nucleic acids or nanoparticles. As nucleic acid gene inhibitors are promising strategies to treat inflammatory diseases, this review focuses on the barriers, from manufacturing issues to cellular/subcellular delivery, that still need to be overcome to deliver the nucleic acids to sites of inflammation other than the liver. Furthermore, key examples of applications in rheumatoid arthritis, inflammatory bowel, and lung diseases are presented as case studies of systemic, oral, and lung nucleic acid delivery.
Collapse
|
13
|
Cheng CF, Hsieh AR, Liang WM, Chen CC, Chen CH, Wu JY, Lin TH, Liao CC, Huang SM, Huang YC, Ban B, Lin YJ, Tsai FJ. Genome-Wide and Candidate Gene Association Analyses Identify a 14-SNP Combination for Hypertension in Patients With Type 2 Diabetes. Am J Hypertens 2021; 34:651-661. [PMID: 33276381 DOI: 10.1093/ajh/hpaa203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/19/2020] [Accepted: 12/02/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND High blood pressure is common and comorbid with type 2 diabetes (T2D). Almost 50% of patients with T2D have high blood pressure. Patients with both conditions of hypertension (HTN) and T2D are at risk for cardiovascular diseases and mortality. The study aim was to investigate genetic risk factors for HTN in T2D patients. METHODS This study included 999 T2D (cohort 1) patients for the first genome scan stage and 922 T2D (cohort 2) patients for the replication stage. Here, we investigated the genetic susceptibility and cumulative weighted genetic risk score for HTN in T2D patients of Han Chinese descent in Taiwan. RESULTS Thirty novel genetic single nucleotide polymorphisms (SNPs) were associated with HTN in T2D after adjusting for age and body mass index (P value <1 × 10-4). Eight blood pressure-related and/or HTN-related genetic SNPs were associated with HTN in T2D after adjusting for age and body mass index (P value <0.05). Linkage disequilibrium and cumulative weighted genetic risk score analyses showed that 14 of the 38 SNPs were associated with risk of HTN in a dose-dependent manner in T2D (Cochran-Armitage trend test: P value <0.0001). The 14-SNP cumulative weighted genetic risk score was also associated with increased regression tendency of systolic blood pressure in T2D (SBP = 122.05 + 0.8 × weighted genetic risk score; P value = 0.0001). CONCLUSIONS A cumulative weighted genetic risk score composed of 14 SNPs is important for HTN, increased tendency of systolic blood pressure, and may contribute to HTN risk in T2D in Taiwan.
Collapse
Affiliation(s)
- Chi-Fung Cheng
- Graduate Institute of Biostatistics, School of Public Health, China Medical University, Taichung, Taiwan
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Ai-Ru Hsieh
- Department of Statistics, Tamkang University, New Taipei City, Taiwan
| | - Wen-Miin Liang
- Graduate Institute of Biostatistics, School of Public Health, China Medical University, Taichung, Taiwan
| | - Ching-Chu Chen
- Division of Endocrinology and Metabolism, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chien-Hsiun Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Jer-Yuarn Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ting-Hsu Lin
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chiu-Chu Liao
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Shao-Mei Huang
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Chuen Huang
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Bo Ban
- Chinese Research Center for Behavior Medicine in Growth and Development, Jining, Shandong, China
| | - Ying-Ju Lin
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
| |
Collapse
|
14
|
Leishmania donovani Metacyclic Promastigotes Impair Phagosome Properties in Inflammatory Monocytes. Infect Immun 2021; 89:e0000921. [PMID: 33875473 DOI: 10.1128/iai.00009-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Leishmaniasis, a debilitating disease with clinical manifestations ranging from self-healing ulcers to life-threatening visceral pathologies, is caused by protozoan parasites of the Leishmania genus. These professional vacuolar pathogens are transmitted by infected sand flies to mammalian hosts as metacyclic promastigotes and are rapidly internalized by various phagocyte populations. Classical monocytes are among the first myeloid cells to migrate to infection sites. Recent evidence shows that recruitment of these cells contributes to parasite burden and the establishment of chronic disease. However, the nature of Leishmania-inflammatory monocyte interactions during the early stages of host infection has not been well investigated. Here, we aimed to assess the impact of Leishmania donovani metacyclic promastigotes on antimicrobial responses within these cells. Our data showed that inflammatory monocytes are readily colonized by L. donovani metacyclic promastigotes, while infection with Escherichia coli is efficiently cleared. Upon internalization, metacyclic promastigotes inhibited superoxide production at the parasitophorous vacuole (PV) through a mechanism involving exclusion of NADPH oxidase subunits gp91phox and p47phox from the PV membrane. Moreover, we observed that unlike phagosomes enclosing zymosan particles, vacuoles containing parasites acidify poorly. Interestingly, whereas the parasite surface coat virulence glycolipid lipophosphoglycan (LPG) was responsible for the inhibition of PV acidification, impairment of the NADPH oxidase assembly was independent of LPG and GP63. Collectively, these observations indicate that permissiveness of inflammatory monocytes to L. donovani may thus be related to the ability of this parasite to impair the microbicidal properties of phagosomes.
Collapse
|
15
|
Abstract
When attempting to propagate infections, bacterial pathogens encounter phagocytes that encase them in vacuoles called phagosomes. Within phagosomes, bacteria are bombarded with a plethora of stresses that often lead to their demise. However, pathogens have evolved numerous strategies to counter those host defenses and facilitate survival. Given the importance of phagosome-bacteria interactions to infection outcomes, they represent a collection of targets that are of interest for next-generation antibacterials. To facilitate such therapies, different approaches can be employed to increase understanding of phagosome-bacteria interactions, and these can be classified broadly as top down (starting from intact systems and breaking down the importance of different parts) or bottom up (developing a knowledge base on simplified systems and progressively increasing complexity). Here we review knowledge of phagosomal compositions and bacterial survival tactics useful for bottom-up approaches, which are particularly relevant for the application of reaction engineering to quantify and predict the time evolution of biochemical species in these death-dealing vacuoles. Further, we highlight how understanding in this area can be built up through the combination of immunology, microbiology, and engineering.
Collapse
Affiliation(s)
- Darshan M Sivaloganathan
- Program in Quantitative and Computational Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA;
| |
Collapse
|
16
|
Boero E, Brinkman I, Juliet T, van Yperen E, van Strijp JAG, Rooijakkers SHM, van Kessel KPM. Use of Flow Cytometry to Evaluate Phagocytosis of Staphylococcus aureus by Human Neutrophils. Front Immunol 2021; 12:635825. [PMID: 33679791 PMCID: PMC7934835 DOI: 10.3389/fimmu.2021.635825] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
Neutrophils play a key role in the human immune response to Staphylococcus aureus infections. These professional phagocytes rapidly migrate to the site of infection to engulf bacteria and destroy them via specialized intracellular killing mechanisms. Here we describe a robust and relatively high-throughput flow cytometry assay to quantify phagocytosis of S. aureus by human neutrophils. We show that effective phagocytic uptake of S. aureus is greatly enhanced by opsonization, i.e. the tagging of microbial surfaces with plasma-derived host proteins like antibodies and complement. Our rapid assay to monitor phagocytosis can be used to study neutrophil deficiencies and bacterial evasion, but also provides a powerful tool to assess the opsonic capacity of antibodies, either in the context of natural immune responses or immune therapies.
Collapse
Affiliation(s)
- Elena Boero
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- GlaxoSmithKline Vaccines S.r.l., Siena, Italy
| | - Iris Brinkman
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Thessely Juliet
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Eline van Yperen
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jos A. G. van Strijp
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Suzan H. M. Rooijakkers
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Kok P. M. van Kessel
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
17
|
Tahir S, Steffens S. Nonclassical monocytes in cardiovascular physiology and disease. Am J Physiol Cell Physiol 2021; 320:C761-C770. [PMID: 33596150 DOI: 10.1152/ajpcell.00326.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Monocytes are a heterogeneous cell population of innate immune cells with distinct cell surface markers that help them in carrying out different functions. In humans, there are three well-characterized subsets, namely, classical (CD14++CD16-), intermediate (CD14++CD16+), and nonclassical (CD14+ CD16++) monocytes. There is an emerging focus on the not yet well explored nonclassical monocytes that maintain vascular integrity by slowly patrolling on the endothelium, reacting to inflammatory signals, and clearing cell debris. In this manner, they are not only crucial for vascular homeostasis but also play a vital role in wound healing and resolution of inflammation by linking innate to adaptive immune response. Although they have been shown to be protective, yet they are also associated with inflammatory disease progression. This short review will give an insight about the emerging role of nonclassical monocytes in vascular homeostasis, inflammation, and protection in the context of cardiovascular disease.
Collapse
Affiliation(s)
- Sibgha Tahir
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sabine Steffens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
18
|
Pozdnyakova O, Connell NT, Battinelli EM, Connors JM, Fell G, Kim AS. Clinical Significance of CBC and WBC Morphology in the Diagnosis and Clinical Course of COVID-19 Infection. Am J Clin Pathol 2021; 155:364-375. [PMID: 33269374 PMCID: PMC7799218 DOI: 10.1093/ajcp/aqaa231] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Objectives To investigate the clinical significance of numeric and morphologic peripheral blood (PB) changes in coronavirus disease 2019 (COVID-19)–positive patients in predicting the outcome, as well as to compare these changes between critically ill COVID-19–positive and COVID-19–negative patients. Methods The study included 90 COVID-19–positive (51 intensive care unit [ICU] and 39 non-ICU) patients and 30 COVID-19–negative ICU patients. We collected CBC parameters (both standard and research) and PB morphologic findings, which were independently scored by two hematopathologists. Results All patients with COVID-19 demonstrated striking numeric and morphologic WBC changes, which were different between mild and severe disease states. More severe disease was associated with significant neutrophilia and lymphopenia, which was intensified in critically ill patients. Abnormal WBC morphology, most pronounced in monocytes and lymphocytes, was associated with more mild disease; the changes were lost with disease progression. Between COVID-19–positive and COVID-19–negative ICU patients, significant differences in morphology-associated research parameters were indicative of changes due to the severe acute respiratory syndrome coronavirus 2 virus, including higher RNA content in monocytes, lower RNA content in lymphocytes, and smaller hypogranular neutrophils. Conclusions Hospitalized patients with COVID-19 should undergo a comprehensive daily CBC with manual WBC differential to monitor for numerical and morphologic changes predictive of poor outcome and signs of disease progression.
Collapse
Affiliation(s)
- Olga Pozdnyakova
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Nathan T Connell
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Elisabeth M Battinelli
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Jean M Connors
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Geoffrey Fell
- Department of Statistics, Dana Farber Cancer Institute, Boston, MA
| | - Annette S Kim
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| |
Collapse
|
19
|
Riazanski V, Sui Z, Nelson DJ. Kinetic Separation of Oxidative and Non-oxidative Metabolism in Single Phagosomes from Alveolar Macrophages: Impact on Bacterial Killing. iScience 2020; 23:101759. [PMID: 33251491 PMCID: PMC7677711 DOI: 10.1016/j.isci.2020.101759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/07/2020] [Accepted: 10/29/2020] [Indexed: 01/10/2023] Open
Abstract
The relative contribution of the two phagosomal catabolic processes, oxidative and metabolic, was assessed in the killing of Pseudomonas aeruginosa in phagosomes of alveolar macrophages (AMs) from wild-type (p47-phox+/+) or NOX-defective (p47-phox−/−) mice. Free radical release and degradative acidification within AM phagosomes is sequential and separable. The initial NOX activity, identifiable as a transient alkalinization, leads to fast bacterial wall permeabilization by ROS. This is followed by V-ATPase-induced acidification and enzymatic bacterial degradation contributed through phagosomal-lysosomal fusion. The alkalinization/acidification ratio was variable among phagosomes within single cells of a given genotype and not as a function of macrophage M1 or M2 classification, possibly owing to uneven distribution of phagosomal transporter proteins. Irregular, excessive NOX activity prevents phago-lysosomal fusion, and the lack of V-ATPase-induced acidification leads to bacterial stasis in the phagosome. Thus, efficient phagosomal bacterial killing is a result of tightly balanced activity between two processes. Phagosomal NOX and V-ATPase activation is sequential and separable in macrophages Superoxide (O2-) inhibits lysosomal fusion thereby inhibiting phagosomal acidification Phagosomes in single cells are heterogeneous in NOX activity and thereby acidification NOX activity is the dominant factor in bactericidal efficacy in macrophage phagosomes
Collapse
Affiliation(s)
- Vladimir Riazanski
- The University of Chicago, Department of Pharmacological and Physiological Sciences, 947 E. 58th Street, MC 0926, Chicago, IL 60637, USA
- Corresponding author
| | - Zihao Sui
- The University of Chicago, Department of Pharmacological and Physiological Sciences, 947 E. 58th Street, MC 0926, Chicago, IL 60637, USA
| | - Deborah J. Nelson
- The University of Chicago, Department of Pharmacological and Physiological Sciences, 947 E. 58th Street, MC 0926, Chicago, IL 60637, USA
- Corresponding author
| |
Collapse
|
20
|
Arnhold J. The Dual Role of Myeloperoxidase in Immune Response. Int J Mol Sci 2020; 21:E8057. [PMID: 33137905 PMCID: PMC7663354 DOI: 10.3390/ijms21218057] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022] Open
Abstract
The heme protein myeloperoxidase (MPO) is a major constituent of neutrophils. As a key mediator of the innate immune system, neutrophils are rapidly recruited to inflammatory sites, where they recognize, phagocytose, and inactivate foreign microorganisms. In the newly formed phagosomes, MPO is involved in the creation and maintenance of an alkaline milieu, which is optimal in combatting microbes. Myeloperoxidase is also a key component in neutrophil extracellular traps. These helpful properties are contrasted by the release of MPO and other neutrophil constituents from necrotic cells or as a result of frustrated phagocytosis. Although MPO is inactivated by the plasma protein ceruloplasmin, it can interact with negatively charged components of serum and the extracellular matrix. In cardiovascular diseases and many other disease scenarios, active MPO and MPO-modified targets are present in atherosclerotic lesions and other disease-specific locations. This implies an involvement of neutrophils, MPO, and other neutrophil products in pathogenesis mechanisms. This review critically reflects on the beneficial and harmful functions of MPO against the background of immune response.
Collapse
Affiliation(s)
- Jürgen Arnhold
- Institute of Medical Physics and Biophysics, Medical Faculty, Leipzig University, 04 107 Leipzig, Germany
| |
Collapse
|
21
|
Marzaioli V, Canavan M, Floudas A, Wade SC, Low C, Veale DJ, Fearon U. Monocyte-Derived Dendritic Cell Differentiation in Inflammatory Arthritis Is Regulated by the JAK/STAT Axis via NADPH Oxidase Regulation. Front Immunol 2020; 11:1406. [PMID: 32733468 PMCID: PMC7358435 DOI: 10.3389/fimmu.2020.01406] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/01/2020] [Indexed: 01/15/2023] Open
Abstract
Monocyte-derived Dendritic cells (Mo-DC) are a distinct DC subset, involved in inflammation and infection, they originate from monocytes upon stimulation in the circulation and their activation and function may vary in autoimmune diseases. In this study we investigate the differences in Mo-DC differentiation and function in patients with Rheumatoid (RA) compared to Psoriatic arthritis (PsA). A significant increase in the Mo-DC differentiation marker CD209, paralleled by a corresponding decrease in the monocytic marker CD14, was demonstrated in RA compared to PsA, as early as 1 day post Mo-DC differentiation. RA monocytes ex-vivo were phenotypically different to PsA, displaying a more mature phenotype associated with altered cellular-morphology, early dendrite formation, and a significant increase in the CD40 marker. In addition, SPICE algorithm flow cytometric analysis showed distinct differences in chemokine receptors distribution in HC compared to PsA and RA CD14+ cells in the blood, with increased expression of the chemokine receptors CCR7 and CXCR4 observed in PsA and RA. In addition CD14+ cells at the site of inflammation showed a different chemokine receptor pattern between PsA and RA patients, with higher expression of CXCR3 and CXCR5 in RA when compared to PsA. The early priming observed in RA resulted in monocyte-endocytosis and antigen-uptake mechanisms to be impaired, effects that were not observed in PsA where phagocytosis capacity remained highly functional. Tofacitinib inhibited early Mo-DC differentiation, decreasing both CD209 and CD40 activation markers in RA. Inhibition of Mo-DC differentiation in response to Tofacitinib was mediated via an imbalance in the activation of NADPH-oxidases NOX5 and NOX2. This effect was reversed by NOX5 inhibition, but not NOX2, resulting in suppression of NOX5-dependent ROS production. In conclusion, RA monocytes are already primed ex vivo to become DC, evident by increased expression of activation markers, morphological appearance and impaired endocytosis capacity. Furthermore, we demonstrated for the first time that NOX5 mediates Mo-DC differentiation and function in response to Tofacitinib, which may alter DC functions.
Collapse
Affiliation(s)
- Viviana Marzaioli
- Molecular Rheumatology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Mary Canavan
- Molecular Rheumatology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Achilleas Floudas
- Molecular Rheumatology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Siobhan C. Wade
- Molecular Rheumatology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Candice Low
- Rheumatology EULAR Centre of Excellence, Centre for Arthritis & Rheumatic Diseases, St Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Douglas J. Veale
- Rheumatology EULAR Centre of Excellence, Centre for Arthritis & Rheumatic Diseases, St Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Ursula Fearon
- Molecular Rheumatology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
22
|
Law SM, Stanfield SJ, Hardisty GR, Dransfield I, Campbell CJ, Gray RD. Human cystic fibrosis monocyte derived macrophages display no defect in acidification of phagolysosomes when measured by optical nanosensors. J Cyst Fibros 2020; 19:203-210. [PMID: 31501051 DOI: 10.1016/j.jcf.2019.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Defective macrophage phagolysosomal acidification is implicated in numerous lung diseases including Cystic Fibrosis (CF) and may contribute to defective pathogen killing. Conflicting reports relating to phagolysosomal pH in CF macrophages have been published, in part related to the use of pH-sensitive fluorescent probes where potential inadequacies in experimental design can be a contributing factor (e.g. employing probes with incorrect pKa for the cellular compartment of interest). We developed a reliable method to quantify macrophage phagolysosomal pH using surface-enhanced Raman spectroscopy-based nanosensors. METHODS Monocyte-derived macrophages from CF and healthy control participants were incubated with nanosensors. Live cell imaging identified phagocytosed nanosensors, and surface-enhanced Raman spectroscopy was performed using para-mercaptobenzoic acid functionalised gold nanoparticles which produce Raman spectra that change predictably with their environmental pH. Conventional fluorescence spectroscopy was carried out in comparison. Nanosensor localisation to phagolysosomes was confirmed by transmission electron microscopy. RESULTS Nanosensors were actively phagocytosed by macrophages into phagolysosomes and acidification occurred rapidly and remained stable for at least 60 min. There was no difference in phagolysosomal pH between healthy control and CF macrophages (5.41 ± 0.11 vs. 5.41 ± 0.20, p > .9999), further confirmed by inhibiting Cystic Fibrosis Transmembrane Conductance Regulator in healthy control monocyte-derived macrophages. CONCLUSIONS Optical nanosensors accurately measure macrophage phagolysosomal pH and demonstrate no phagolysosomal acidification defect in human CF monocyte-derived macrophages. Further studies using alveolar macrophages could extend the impact of our findings. Nanosensors represent a novel and precise means to measure organelle functions with widespread potential for the study and monitoring of several lung diseases.
Collapse
Affiliation(s)
- Sheonagh M Law
- Centre for Inflammation Research, The Queen's Medical Research Institute, 47 Little France Crescent, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Samuel J Stanfield
- Joseph Black Building, The University of Edinburgh, David Brewster Rd, Edinburgh EH9 3FJ, UK
| | - Gareth R Hardisty
- Centre for Inflammation Research, The Queen's Medical Research Institute, 47 Little France Crescent, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Ian Dransfield
- Centre for Inflammation Research, The Queen's Medical Research Institute, 47 Little France Crescent, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Colin J Campbell
- Joseph Black Building, The University of Edinburgh, David Brewster Rd, Edinburgh EH9 3FJ, UK
| | - Robert D Gray
- Centre for Inflammation Research, The Queen's Medical Research Institute, 47 Little France Crescent, The University of Edinburgh, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
23
|
Baien SH, Seele J, Henneck T, Freibrodt C, Szura G, Moubasher H, Nau R, Brogden G, Mörgelin M, Singh M, Kietzmann M, von Köckritz-Blickwede M, de Buhr N. Antimicrobial and Immunomodulatory Effect of Gum Arabic on Human and Bovine Granulocytes Against Staphylococcus aureus and Escherichia coli. Front Immunol 2020; 10:3119. [PMID: 32082302 PMCID: PMC7005937 DOI: 10.3389/fimmu.2019.03119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 12/20/2019] [Indexed: 02/03/2023] Open
Abstract
Gum arabic (GA) is a traditional herbal medicine from Acacia Senegal (L.) Willdenow trees, which consist of a complex mixture of polysaccharides and glycoproteins. It is used in daily applications for several diseases and is considered to protect against bacterial infections. The detailed mechanisms behind these observations are still unclear. In this study, we investigated the direct antibacterial activity of GA water and ethanol extracts against Staphylococcus (S.) aureus or Escherichia (E.) coli and the immunomodulating properties of those extracts on granulocytes as a first line of defense against bacteria. Firstly, the direct antimicrobial effect of GA was tested on three different S. aureus strains and two E. coli strains. The growth of bacteria was analyzed in the presence of different GA concentrations over time. GA water as well as ethanol extracts showed a significant growth inhibition in a concentration-dependent manner in the case of S. aureus Newman, S. aureus Rd5, and E. coli 25922, but not in the case of S. aureus USA300 and E. coli K1. Transmission electron microscopic analysis confirmed an antibacterial effect of GA on the bacteria. Secondly, the immunomodulatory effect of GA on the antimicrobial activity of bovine or human blood-derived granulocytes was evaluated. Interestingly, water and ethanol extracts enhanced antimicrobial activity of granulocytes by the induction of intracellular ROS production. In line with these data, GA increased the phagocytosis rate of E. coli. No effect was seen on neutrophil extracellular trap (NET) formation that mediates killing of extracellular bacteria such as S. aureus. In conclusion, we show that GA exhibits a direct antibacterial effect against some S. aureus and E. coli strains. Furthermore, GA boosts the antimicrobial activities of granulocytes and increases intracellular ROS production, which may lead to more phagocytosis and intracellular killing. These data might explain the described putative antimicrobial activity of GA used in traditional medicine.
Collapse
Affiliation(s)
- Shima Hassan Baien
- Department of Physiological Chemistry, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hanover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hanover, Germany
| | - Jana Seele
- Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, Göttingen, Germany
- Department of Neuropathology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| | - Timo Henneck
- Department of Physiological Chemistry, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hanover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hanover, Germany
| | - Christin Freibrodt
- Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, Göttingen, Germany
- Department of Neuropathology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| | - György Szura
- Clinic for Cattle, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Hani Moubasher
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Cairo, Egypt
| | - Roland Nau
- Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, Göttingen, Germany
- Department of Neuropathology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| | - Graham Brogden
- Department of Physiological Chemistry, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hanover, Germany
| | | | - Mahavir Singh
- LIONEX Diagnostics and Therapeutics, GmbH, Brunswick, Germany
| | - Manfred Kietzmann
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Maren von Köckritz-Blickwede
- Department of Physiological Chemistry, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hanover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hanover, Germany
| | - Nicole de Buhr
- Department of Physiological Chemistry, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hanover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hanover, Germany
| |
Collapse
|
24
|
Molecular Mechanisms of Calcium Signaling During Phagocytosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1246:103-128. [PMID: 32399828 DOI: 10.1007/978-3-030-40406-2_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Calcium (Ca2+) is a ubiquitous second messenger involved in the regulation of numerous cellular functions including vesicular trafficking, cytoskeletal rearrangements and gene transcription. Both global as well as localized Ca2+ signals occur during phagocytosis, although their functional impact on the phagocytic process has been debated. After nearly 40 years of research, a consensus may now be reached that although not strictly required, Ca2+ signals render phagocytic ingestion and phagosome maturation more efficient, and their manipulation make an attractive avenue for therapeutic interventions. In the last decade many efforts have been made to identify the channels and regulators involved in generating and shaping phagocytic Ca2+ signals. While molecules involved in store-operated calcium entry (SOCE) of the STIM and ORAI family have taken center stage, members of the canonical, melastatin, mucolipin and vanilloid transient receptor potential (TRP), as well as purinergic P2X receptor families are now recognized to play significant roles. In this chapter, we review the recent literature on research that has linked specific Ca2+-permeable channels and regulators to phagocytic function. We highlight the fact that lipid mediators are emerging as important regulators of channel gating and that phagosomal ionic homeostasis and Ca2+ release also play essential parts. We predict that improved methodologies for measuring these factors will be critical for future advances in dissecting the intricate biology of this fascinating immune process.
Collapse
|