1
|
Wang Z, Kang M, Ebrahimpour A, Chen C, Ge X. Fc engineering by monoclonal mammalian cell display for improved affinity and selectivity towards FcγRs. Antib Ther 2024; 7:209-220. [PMID: 39036072 PMCID: PMC11259757 DOI: 10.1093/abt/tbae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/29/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024] Open
Abstract
Fc optimization can significantly enhance therapeutic efficacy of monoclonal antibodies. However, existing Fc engineering approaches are sub-optimal with noted limitations, such as inappropriate glycosylation, polyclonal libraries, and utilizing fragment but not full-length IgG display. Applying cell cycle arrested recombinase-mediated cassette exchange, this study constructed high-quality monoclonal Fc libraries in CHO cells, displayed full-length IgG on cell surface, and preformed ratiometric fluorescence activated cell sorting (FACS) with the antigen and individual FcγRs. Identified Fc variants were quantitatively evaluated by flow cytometry, ELISA, kinetic and steady-state binding affinity measurements, and cytotoxicity assays. An error-prone Fc library focusing on the hinge-CH2 region was constructed in CHO cells with a functional diversity of 7.5 × 106. Panels of novel Fc variants with enhanced affinity and selectivity for FcγRs were isolated. Particularly, clone 2a-10 (G236E/K288R/K290W/K320M) showed increased binding strength towards FcγRIIa-131R and 131H allotypes with kinetic dissociation constants (KD-K) of 140 nM and 220 nM, respectively, while reduced binding strength towards FcγRIIb compared to WT Fc; clone 2b-1 (K222I/V302E/L328F/K334E) had KD-K of 180 nM towards FcγRIIb; clone 3a-2 (P247L/K248E/K334I) exhibited KD-K of 190 nM and 100 nM towards FcγRIIIa-176F and 176 V allotypes, respectively, and improved potency of 2.0 ng/ml in ADCC assays. Key mutation hotspots were identified, including P247 for FcγRIIIa, K290 for FcγRIIa, and K334 for FcγRIIb bindings. Discovery of Fc variants with enhanced affinity and selectivity towards individual FcγR and the identification of novel mutation hotspots provide valuable insights for further Fc optimization and serve as a foundation for advancing antibody therapeutics development.
Collapse
Affiliation(s)
- Zening Wang
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 1825 Pressler St, Houston, TX 77030, United States
- Department of Chemical and Environmental Engineering, University of California Riverside, 900 University Ave, Reverside, CA 92521, United States
| | - Minhyo Kang
- Department of Chemical and Environmental Engineering, University of California Riverside, 900 University Ave, Reverside, CA 92521, United States
| | - Afshin Ebrahimpour
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 1825 Pressler St, Houston, TX 77030, United States
| | - Chuan Chen
- Department of Chemical and Environmental Engineering, University of California Riverside, 900 University Ave, Reverside, CA 92521, United States
| | - Xin Ge
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 1825 Pressler St, Houston, TX 77030, United States
- Department of Chemical and Environmental Engineering, University of California Riverside, 900 University Ave, Reverside, CA 92521, United States
| |
Collapse
|
2
|
Nikkhoi SK, Li G, Eleya S, Yang G, Vandavasi VG, Hatefi A. Bispecific killer cell engager with high affinity and specificity toward CD16a on NK cells for cancer immunotherapy. Front Immunol 2023; 13:1039969. [PMID: 36685519 PMCID: PMC9852913 DOI: 10.3389/fimmu.2022.1039969] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/30/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction The Fc region of monoclonal antibodies (mAbs) interacts with the CD16a receptor on natural killer (NK) cells with "low affinity" and "low selectivity". This low affinity/selectivity interaction results in not only suboptimal anticancer activity but also induction of adverse effects. CD16a on NK cells binds to the antibody-coated cells, leading to antibody-dependent cell-mediated cytotoxicity (ADCC). Recent clinical data have shown that the increased binding affinity between mAb Fc region and CD16a receptor is responsible for significantly improved therapeutic outcomes. Therefore, the objective of this study was to develop a bispecific killer cell engager (BiKE) with high affinity and specificity/selectivity toward CD16a receptor for NK cell-based cancer immunotherapy. Methods To engineer BiKE, a llama was immunized, then high binding anti-CD16a and anti-HER2 VHH clones were isolated using phage display. ELISA, flow cytometry, and biolayer interferometry (BLI) data showed that the isolated anti-CD16a VHH has high affinity (sub-nanomolar) toward CD16a antigen without cross-reactivity with CD16b-NA1 on neutrophils or CD32b on B cells. Similarly, the data showed that the isolated anti-HER2 VHH has high affinity/specificity toward HER2 antigen. Using a semi-flexible linker, anti-HER2 VHH was recombinantly fused with anti-CD16a VHH to create BiKE:HER2/CD16a. Then, the ability of BiKE:HER2/CD16a to activate NK cells to release cytokines and kill HER2+ cancer cells was measured. As effector cells, both high-affinity haNK92 (CD16+, V176) and low-affinity laNK92 (CD16+, F176) cells were used. Results and discussion The data showed that the engineered BiKE:HER2/CD16a activates haNK92 and laNK92 cells to release cytokines much greater than best-in-class mAbs in the clinic. The cytotoxicity data also showed that the developed BiKE induces higher ADCC to both ovarian and breast cancer cells in comparison to Trazimera™ (trastuzumab). According to the BLI data, BiKE:HER2/CD16 recognizes a different epitope on CD16a antigen than IgG-based mAbs; thus, it provides the opportunity for not only monotherapy but also combination therapy with other antibody drugs such as checkpoint inhibitors and antibody-drug conjugates. Taken together, the data demonstrate the creation of a novel BiKE with high affinity and specificity toward CD16a on NK cells with the potential to elicit a superior therapeutic response in patients with HER2+ cancer than existing anti-HER2 mAbs.
Collapse
Affiliation(s)
| | - Geng Li
- Department of Pharmaceutics, Rutgers University, Piscataway, NJ, United States
| | - Suha Eleya
- Department of Pharmaceutics, Rutgers University, Piscataway, NJ, United States
| | - Ge Yang
- Department of Pharmaceutics, Rutgers University, Piscataway, NJ, United States
| | - Venu Gopal Vandavasi
- Department of Chemistry, Biophysics Core Facility, Princeton University, Princeton, NJ, United States
| | - Arash Hatefi
- Department of Pharmaceutics, Rutgers University, Piscataway, NJ, United States
- Cancer Pharmacology Program, Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, United States
| |
Collapse
|
3
|
Varudkar N, Shiffer EM, Oyer JL, Copik A, Parks GD. Delivery of a novel membrane-anchored Fc chimera enhances NK cell-mediated killing of tumor cells and persistently virus-infected cells. PLoS One 2023; 18:e0285532. [PMID: 37146009 PMCID: PMC10162523 DOI: 10.1371/journal.pone.0285532] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023] Open
Abstract
Antibody-dependent cellular cytotoxicity (ADCC) is one of the most powerful mechanisms for Natural Killer (NK) cells to kill cancer cells or virus-infected cells. A novel chimeric protein (NA-Fc) was created, which when expressed in cells, positions an IgG Fc domain on the plasma membrane, mimicking the orientation of IgG bound to the cell surface. This NA-Fc chimera was tested with PM21-NK cells, produced through a previously developed particle-based method which yields superior NK cells for immunotherapeutic applications. Real time viability assays revealed higher PM21-NK killing of both ovarian and lung cancer cells expressing NA-Fc, which correlated with increased release of TNF-α and IFN-γ cytokines from NK cells and was dependent on CD16-Fc interactions. Lentivirus delivery of NA-Fc to target cells increased the rate of PM21-NK cell killing of A549 and H1299 lung, SKOV3 ovarian and A375 melanoma cancer cells. This NA-Fc-directed killing was extended to virus infected cells, where delivery of NA-Fc to lung cells that were persistently infected with Parainfluenza virus resulted in increased killing by PM21-NK cells. In contrast to its effect on PM21-NK cells, the NA-Fc molecule did not enhance complement mediated lysis of lung cancer cells. Our study lays the foundation for application of the novel NA-Fc chimera that could be delivered specifically to tumors during oncolytic virotherapy to mark target cells for ADCC by co-treatment with adoptive NK cells. This strategy would potentially eliminate the need to search for unique cancer specific antigens for development of new antibody therapeutics.
Collapse
Affiliation(s)
- Namita Varudkar
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States of America
| | - Elisabeth M Shiffer
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States of America
| | - Jeremiah L Oyer
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States of America
| | - Alicja Copik
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States of America
| | - Griffith D Parks
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States of America
| |
Collapse
|
4
|
Gil Gonzalez L, Fernandez-Marrero Y, Norris PAA, Tawhidi Z, Shan Y, Cruz-Leal Y, Won KD, Frias-Boligan K, Branch DR, Lazarus AH. THP-1 cells transduced with CD16A utilize Fcγ receptor I and III in the phagocytosis of IgG-sensitized human erythrocytes and platelets. PLoS One 2022; 17:e0278365. [PMID: 36516219 PMCID: PMC9749970 DOI: 10.1371/journal.pone.0278365] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/15/2022] [Indexed: 12/15/2022] Open
Abstract
Fc gamma receptors (FcγRs) are critical effector receptors for immunoglobulin G (IgG) antibodies. On macrophages, FcγRs mediate multiple effector functions, including phagocytosis, but the individual contribution of specific FcγRs to phagocytosis has not been fully characterized. Primary human macrophage populations, such as splenic macrophages, can express FcγRI, FcγRIIA, and FcγRIIIA. However, there is currently no widely available monocyte or macrophage cell line expressing all these receptors. Common sources of monocytes for differentiation into macrophages, such as human peripheral blood monocytes and the monocytic leukemia cell line THP-1, generally lack the expression of FcγRIIIA (CD16A). Here, we utilized a lentiviral system to generate THP-1 cells stably expressing human FcγRIIIA (CD16F158). THP-1-CD16A cells treated with phorbol 12-myristate 13-acetate for 24 hours phagocytosed anti-D-opsonized human red blood cells primarily utilizing FcγRI with a lesser but significant contribution of IIIA while phagocytosis of antibody-opsonized human platelets equally utilized FcγRI and Fcγ IIIA. Despite the well-known ability of FcγRIIA to bind IgG in cell free systems, this receptor did not appear to be involved in either RBC or platelet phagocytosis. These transgenic cells may constitute a valuable tool for studying macrophage FcγR utilization and function.
Collapse
Affiliation(s)
- Lazaro Gil Gonzalez
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto ON, Canada
| | | | - Peter Alan Albert Norris
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto ON, Canada
- Innovation and Portfolio Management, Canadian Blood Services, Ottawa, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Zoya Tawhidi
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Yuexin Shan
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto ON, Canada
| | - Yoelys Cruz-Leal
- Innovation and Portfolio Management, Canadian Blood Services, Ottawa, ON, Canada
| | - Kevin Doyoon Won
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Kayluz Frias-Boligan
- Innovation and Portfolio Management, Canadian Blood Services, Ottawa, ON, Canada
| | - Donald R. Branch
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto ON, Canada
- Innovation and Portfolio Management, Canadian Blood Services, Ottawa, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Alan H. Lazarus
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto ON, Canada
- Innovation and Portfolio Management, Canadian Blood Services, Ottawa, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- * E-mail:
| |
Collapse
|
5
|
Robinson JI, Md Yusof MY, Davies V, Wild D, Morgan M, Taylor JC, El-Sherbiny Y, Morris DL, Liu L, Rawstron AC, Buch MH, Plant D, Cordell HJ, Isaacs JD, Bruce IN, Emery P, Barton A, Vyse TJ, Barrett JH, Vital EM, Morgan AW. Comprehensive genetic and functional analyses of Fc gamma receptors influence on response to rituximab therapy for autoimmunity. EBioMedicine 2022; 86:104343. [PMID: 36371989 PMCID: PMC9663864 DOI: 10.1016/j.ebiom.2022.104343] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/07/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Rituximab is widely used to treat autoimmunity but clinical response varies. Efficacy is determined by the efficiency of B-cell depletion, which may depend on various Fc gamma receptor (FcγR)-dependent mechanisms. Study of FcγR is challenging due to the complexity of the FCGR genetic locus. We sought to assess the effect of FCGR variants on clinical response, B-cell depletion and NK-cell-mediated killing in rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). METHODS A longitudinal cohort study was conducted in 835 patients [RA = 573; SLE = 262]. Clinical outcome measures were two-component disease activity score in 28-joints (2C-DAS28CRP) for RA and British Isles Lupus Assessment Group (BILAG)-2004 major clinical response (MCR) for SLE at 6 months. B-cells were evaluated by highly-sensitive flow cytometry. Single nucleotide polymorphism and copy number variation for genes encoding five FcγRs were measured using multiplex ligation-dependent probe amplification. Ex vivo studies assessed NK-cell antibody-dependent cellular cytotoxicity (ADCC) and FcγR expression. FINDINGS In RA, carriage of FCGR3A-158V and increased FCGR3A-158V copies were associated with greater 2C-DAS28CRP response (adjusted for baseline 2C-DAS28CRP). In SLE, MCR was associated with increased FCGR3A-158V, OR 1.64 (95% CI 1.12-2.41) and FCGR2C-ORF OR 1.93 (95% CI 1.09-3.40) copies. 236/413 (57%) patients with B-cell data achieved complete depletion. Homozygosity for FCGR3A-158V and increased FCGR3A-158V copies were associated with complete depletion in combined analyses. FCGR3A genotype was associated with rituximab-induced ADCC, and increased NK-cell FcγRIIIa expression was associated with improved clinical response and depletion in vivo. Furthermore, disease status and concomitant therapies impacted both NK-cell FcγRIIIa expression and ADCC. INTERPRETATION FcγRIIIa is the major low affinity FcγR associated with rituximab response. Increased copies of the FCGR3A-158V allele (higher affinity for IgG1), influences clinical and biological responses to rituximab in autoimmunity. Enhancing FcγR-effector functions could improve the next generation of CD20-depleting therapies and genotyping may stratify patients for optimal treatment protocols. FUNDING Medical Research Council, National Institute for Health and Care Research, Versus Arthritis.
Collapse
Affiliation(s)
- James I Robinson
- School of Medicine, University of Leeds and NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, UK
| | - Md Yuzaiful Md Yusof
- School of Medicine, University of Leeds and NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, UK
| | - Vinny Davies
- School of Medicine, University of Leeds and NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, UK; School of Mathematics and Statistics, University of Glasgow, UK
| | - Dawn Wild
- School of Medicine, University of Leeds and NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, UK
| | - Michael Morgan
- School of Medicine, University of Leeds and NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, UK; Cancer Research UK Cambridge Institute, University of Cambridge, UK
| | - John C Taylor
- School of Medicine, University of Leeds and NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, UK
| | - Yasser El-Sherbiny
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, UK; Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - David L Morris
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, UK
| | - Lu Liu
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, UK
| | - Andy C Rawstron
- Haematological Malignancy Diagnostic Service, Leeds Teaching Hospitals NHS Trust, UK
| | - Maya H Buch
- School of Medicine, University of Leeds and NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, UK; Versus Arthritis Centre for Genetics and Genomics, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, The University of Manchester and NIHR Manchester BRC, Manchester University NHS Foundation Trust, UK
| | - Darren Plant
- Versus Arthritis Centre for Genetics and Genomics, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, The University of Manchester and NIHR Manchester BRC, Manchester University NHS Foundation Trust, UK
| | | | - John D Isaacs
- Translational and Clinical Research Institute, Newcastle University and Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, UK
| | - Ian N Bruce
- Versus Arthritis Centre for Genetics and Genomics, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, The University of Manchester and NIHR Manchester BRC, Manchester University NHS Foundation Trust, UK
| | - Paul Emery
- School of Medicine, University of Leeds and NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, UK; NIHR Leeds Medtech and In vitro Diagnostics Co-operative, Leeds Teaching Hospitals NHS Trust, UK
| | - Anne Barton
- Versus Arthritis Centre for Genetics and Genomics, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, The University of Manchester and NIHR Manchester BRC, Manchester University NHS Foundation Trust, UK
| | - Timothy J Vyse
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, UK
| | - Jennifer H Barrett
- School of Medicine, University of Leeds and NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, UK
| | - Edward M Vital
- School of Medicine, University of Leeds and NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, UK
| | - Ann W Morgan
- School of Medicine, University of Leeds and NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, UK; NIHR Leeds Medtech and In vitro Diagnostics Co-operative, Leeds Teaching Hospitals NHS Trust, UK.
| |
Collapse
|
6
|
Targeting the CD47-SIRPα Axis: Present Therapies and the Future for Cutaneous T-cell Lymphoma. Cells 2022; 11:cells11223591. [PMID: 36429020 PMCID: PMC9688096 DOI: 10.3390/cells11223591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
The loss of CD47 on aging cells serves as a signal to macrophages to eliminate the target. Therefore, CD47 is a "do-not-eat-me" sign preventing macrophagal phagocytosis via interaction with its ligand SIRPα. Malignant lymphocytes of mycosis fungoides and Sézary syndrome express CD47 highly, thus, being ideal candidates for targeted anti-CD47 therapies. The classes of current anti-CD47-SIRPα therapeutic molecules present in a large variety and include monoclonal antibodies against CD47 and SIRPα, bioengineered SIRPα proteins, miRNAs, and bispecific antibodies. We provided a detailed analysis of all available investigational drugs in a contest of cutaneous T-cell lymphoma. A combination of blockade of the CD47-SIRPα axis and secondary targets in the tumor microenvironment (TME) may improve the clinical efficacy of current immunotherapeutic approaches. We evaluated the possible combination and outlined the most promising one.
Collapse
|
7
|
Xu S, Carpenter MC, Spreng RL, Neidich SD, Sarkar S, Tenney D, Goodman D, Sawant S, Jha S, Dunn B, Juliana McElrath M, Bekker V, Mudrak SV, Flinko R, Lewis GK, Ferrari G, Tomaras GD, Shen X, Ackerman ME. Impact of adjuvants on the biophysical and functional characteristics of HIV vaccine-elicited antibodies in humans. NPJ Vaccines 2022; 7:90. [PMID: 35927399 PMCID: PMC9352797 DOI: 10.1038/s41541-022-00514-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/01/2022] [Indexed: 01/14/2023] Open
Abstract
Adjuvants can alter the magnitude, characteristics, and persistence of the humoral response to protein vaccination. HIV vaccination might benefit from tailored adjuvant choice as raising a durable and protective response to vaccination has been exceptionally challenging. Analysis of trials of partially effective HIV vaccines have identified features of the immune response that correlate with decreased risk, including high titers of V1V2-binding IgG and IgG3 responses with low titers of V1V2-binding IgA responses and enhanced Fc effector functions, notably antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). However, there has been limited opportunity to compare the effect of different adjuvants on these activities in humans. Here, samples from the AVEG015 study, a phase 1 trial in which participants (n = 112) were immunized with gp120SF-2 and one of six different adjuvants or combinations thereof were assessed for antibody titer, biophysical features, and diverse effector functions. Three adjuvants, MF59 + MTP-PE, SAF/2, and SAF/2 + MDP, increased the peak magnitude and durability of antigen-specific IgG3, IgA, FcγR-binding responses and ADCP activity, as compared to alum. While multiple adjuvants increased the titer of IgG, IgG3, and IgA responses, none consistently altered the balance of IgG to IgA or IgG3 to IgA. Linear regression analysis identified biophysical features including gp120-specific IgG and FcγR-binding responses that could predict functional activity, and network analysis identified coordinated aspects of the humoral response. These analyses reveal the ability of adjuvants to drive the character and function of the humoral response despite limitations of small sample size and immune variability in this human clinical trial.
Collapse
Affiliation(s)
- Shiwei Xu
- Quantitative Biomedical Science Program, Dartmouth College, Hanover, NH, USA
| | | | - Rachel L Spreng
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Scott D Neidich
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Sharanya Sarkar
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - DeAnna Tenney
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Derrick Goodman
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Sheetal Sawant
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Shalini Jha
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Brooke Dunn
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Departments of Laboratory Medicine and Medicine, University of Washington, Seattle, WA, USA
| | - Valerie Bekker
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Sarah V Mudrak
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Robin Flinko
- Division of Vaccine Research, The Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - George K Lewis
- Division of Vaccine Research, The Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Guido Ferrari
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Georgia D Tomaras
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Xiaoying Shen
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA.
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA.
| | - Margaret E Ackerman
- Quantitative Biomedical Science Program, Dartmouth College, Hanover, NH, USA.
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
8
|
Delidakis G, Kim JE, George K, Georgiou G. Improving Antibody Therapeutics by Manipulating the Fc Domain: Immunological and Structural Considerations. Annu Rev Biomed Eng 2022; 24:249-274. [PMID: 35363537 PMCID: PMC9648538 DOI: 10.1146/annurev-bioeng-082721-024500] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interactions between the crystallizable fragment (Fc) domain of antibodies and a plethora of cellular Fc receptors (FcRs) or soluble proteins form a critical link between humoral and innate immunity. In particular, the immunoglobulin G Fc domain is critical for the clearance of target cells by processes that include (a) cytotoxicity, phagocytosis, or complement lysis; (b) modulation of inflammation; (c) antigen presentation; (d) antibody-mediated receptor clustering; and (e) cytokine release. More than 30 Fc-engineered antibodies aimed primarily at tailoring these effects for optimal therapeutic outcomes are in clinical evaluation or have already been approved. Nonetheless, our understanding of how FcR engagement impacts various immune cell phenotypes is still largely incomplete. Recent insights into FcR biology coupled with advances in Fc:FcR structural analysis, Fc engineering, and mouse models that recapitulate human biology are helping to fill in existing knowledge gaps. These advances will provide a blueprint on how to fine-tune the Fc domain to achieve optimal therapeutic efficacy. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 24 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- George Delidakis
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA;
| | - Jin Eyun Kim
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Katia George
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA; .,Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA.,Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
9
|
An antibody Fc engineered for conditional antibody-dependent cellular cytotoxicity at the low tumor microenvironment pH. J Biol Chem 2022; 298:101798. [PMID: 35248534 PMCID: PMC9006656 DOI: 10.1016/j.jbc.2022.101798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/20/2022] Open
Abstract
Despite the exquisite specificity and high affinity of antibody-based cancer therapies, treatment side effects can occur since the tumor-associated antigens targeted are also present on healthy cells. However, the low pH of the tumor microenvironment provides an opportunity to develop conditionally active antibodies with enhanced tumor specificity. Here, we engineered the human IgG1 Fc domain to enhance pH-selective binding to the receptor FcγRIIIa and subsequent antibody-dependent cellular cytotoxicity (ADCC). We displayed the Fc domain on the surface of mammalian cells and generated a site-directed library by altering Fc residues at the Fc-FcγRIIIa interface to support interactions with positively charged histidine residues. We then used a competitive staining and flow cytometric selection strategy to isolate Fc variants exhibiting reduced FcγRIIIa affinities at neutral pH, but physiological affinities at the tumor-typical pH 6.5. We demonstrate that antibodies composed of Fab arms binding the breast cell epithelial marker Her2 and the lead Fc variant, termed acid-Fc, exhibited an ∼2-fold pH-selectivity for FcγRIIIa binding based on the ratio of equilibrium dissociation constants Kd,7.4/Kd,6.5, due to a faster dissociation rate at pH 7.4. Finally, in vitro ADCC assays with human FcγRIIIa-positive natural killer and Her2-positive target cells demonstrated similar activities for anti-Her2 antibodies bearing the wild-type or acid-Fc at pH 6.5, but nearly 20-fold reduced ADCC for acid-Fc at pH 7.4, based on EC50 ratios. This work shows the promise of mammalian cell display for Fc engineering and the feasibility of pH-selective Fc activation to provide a second dimension of selective tumor cell targeting.
Collapse
|
10
|
Kang CK, Kim M, Hong J, Kim G, Lee S, Chang E, Choe PG, Kim NJ, Kim IS, Seo JY, Song D, Lee DS, Shin HM, Kim YW, Lee CH, Park WB, Kim HR, Oh MD. Distinct Immune Response at 1 Year Post-COVID-19 According to Disease Severity. Front Immunol 2022; 13:830433. [PMID: 35392102 PMCID: PMC8980227 DOI: 10.3389/fimmu.2022.830433] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/23/2022] [Indexed: 01/10/2023] Open
Abstract
Background Despite the fact of ongoing worldwide vaccination programs for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), understanding longevity, breadth, and type of immune response to coronavirus disease-19 (COVID-19) is still important to optimize the vaccination strategy and estimate the risk of reinfection. Therefore, we performed thorough immunological assessments 1 year post-COVID-19 with different severity. Methods We analyzed peripheral blood mononuclear cells and plasma samples at 1 year post-COVID-19 in patients who experienced asymptomatic, mild, and severe illness to assess titers of various isotypes of antibodies (Abs) against SARS-CoV-2 antigens, phagocytic capability, and memory B- and T-cell responses. Findings A total of 24 patients (7, 9, and 8 asymptomatic, mild, and severe patients, respectively) and eight healthy volunteers were included in this study. We firstly showed that disease severity is correlated with parameters of immune responses at 1 year post-COVID-19 that play an important role in protecting against reinfection with SARS-CoV-2, namely, the phagocytic capacity of Abs and memory B-cell responses. Interpretation Various immune responses at 1 year post-COVID-19, particularly the phagocytic capacity and memory B-cell responses, were dependent on the severity of the prior COVID-19. Our data could provide a clue for a tailored vaccination strategy after natural infection according to the severity of COVID-19.
Collapse
Affiliation(s)
- Chang Kyung Kang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Minji Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul, South Korea
- BrainKorea21 (BK21) FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
| | - Jisu Hong
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- BrainKorea21 (BK21) FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, South Korea
| | - Gwanghun Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul, South Korea
- BrainKorea21 (BK21) FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
| | - Soojin Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul, South Korea
- BrainKorea21 (BK21) FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
| | - Euijin Chang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Pyoeng Gyun Choe
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Nam Joong Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Ik Soo Kim
- Department of Microbiology, School of Medicine, Gachon University, Incheon, South Korea
| | - Jun-Young Seo
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
- BrainKorea21 (BK21) Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Daesub Song
- College of Pharmacy, Korea University, Sejong, South Korea
| | - Dong-Sup Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul, South Korea
- BrainKorea21 (BK21) FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
- Medical Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, South Korea
| | - Hyun Mu Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- BrainKorea21 (BK21) FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, South Korea
| | - Yong-Woo Kim
- Wide River Institute of Immunology, Seoul National University, Hongcheon, South Korea
| | - Chang-Han Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- BrainKorea21 (BK21) FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, South Korea
| | - Wan Beom Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Hang-Rae Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul, South Korea
- BrainKorea21 (BK21) FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
- Medical Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, South Korea
| | - Myoung-don Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
11
|
Rashid MH. Full-length recombinant antibodies from Escherichia coli: production, characterization, effector function (Fc) engineering, and clinical evaluation. MAbs 2022; 14:2111748. [PMID: 36018829 PMCID: PMC9423848 DOI: 10.1080/19420862.2022.2111748] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Although several antibody fragments and antibody fragment-fusion proteins produced in Escherichia coli (E. coli) are approved as therapeutics for various human diseases, a full-length monoclonal or a bispecific antibody produced in E. coli has not yet been approved. The past decade witnessed substantial progress in expression of full-length antibodies in the E. coli cytoplasm and periplasm, as well as in cell-free expression systems. The equivalency of E. coli-produced aglycosylated antibodies and their mammalian cell-produced counterparts, with respect to biochemical and biophysical properties, including antigen binding, in vitro and in vivo serum stability, pharmacokinetics, and in vivo serum half-life, has been demonstrated. Extensive engineering of the Fc domain of aglycosylated antibodies enables recruitment of various effector functions, despite the lack of N-linked glycans. This review summarizes recent research, preclinical advancements, and clinical development of E. coli-produced aglycosylated therapeutic antibodies as monoclonal, bispecific, and antibody-drug conjugates for use in autoimmune, oncology, and immuno-oncology areas.Abbreviations: ADA Anti-drug antibody; ADCC Antibody-dependent cellular cytotoxicity; ADCP Antibody-dependent cellular phagocytosis; ADC Antibody-drug conjugate; aFc Aglycosylated Fc; AMD Age-related macular degeneration aTTP Acquired thrombotic thrombocytopenic purpura; BCMA B-cell maturation antigen; BLA Biologics license application; BsAb Bispecific antibody; C1q Complement protein C1q; CDC Complement-dependent cytotoxicity; CDCC Complement-dependent cellular cytotoxicity; CDCP Complement-dependent cellular phagocytosis; CEX Cation exchange chromatography; CFPS Cell-free protein expression; CHO Chinese Hamster Ovary; CH1-3 Constant heavy chain 1-3; CL Constant light chain; DLBCL Diffuse large B-cell lymphoma; DAR Drug antibody ratio; DC Dendritic cell; dsFv Disulfide-stabilized Fv; EU European Union; EGFR Epidermal growth factor receptor; E. coli Escherichia coli; EpCAM Epithelial cell adhesion molecule; Fab Fragment antigen binding; FACS Fluorescence activated cell sorting; Fc Fragment crystallizable; FcRn Neonatal Fc receptor; FcɣRs Fc gamma receptors; FDA Food and Drug Administration; FL-IgG Full-length immunoglobulin; Fv Fragment variable; FolRαa Folate receptor alpha; gFc Glycosylated Fc; GM-CSF Granulocyte macrophage-colony stimulating factor; GPx7 Human peroxidase 7; HCL Hairy cell leukemia; HIV Human immunodeficiency virusl; HER2 Human epidermal growth factor receptor 2; HGF Hepatocyte growth factor; HIC Hydrophobic interaction chromatography; HLA Human leukocyte antigen; IBs Inclusion bodies; IgG1-4 Immunoglobulin 1-4; IP Intraperitoneal; ITC Isothermal titration calorimetry; ITP Immune thrombocytopenia; IV Intravenous; kDa Kilodalton; KiH Knob-into-Hole; mAb Monoclonal antibody; MAC Membrane-attack complex; mCRC Metastatic colorectal cancer; MM Multipl myeloma; MOA Mechanism of action; MS Mass spectrometry; MUC1 Mucin 1; MG Myasthenia gravis; NB Nanobody; NK Natural killer; nsAA Nonstandard amino acid; NSCLC Non-small cell lung cancer; P. aeruginosa Pseudomonas aeruginosa; PD-1 Programmed cell death 1; PD-L1 Programmed cell death-ligand 1; PDI Protein disulfide isomerase; PECS Periplasmic expression cytometric screening; PK Pharmacokinetics; P. pastoris Pichia pastoris; PTM Post-translational modification; Rg Radius of gyration; RA Rheumatoid arthritis; RT-PCR Reverse transcription polymerase chain reaction; SAXS Small angle X-ray scattering; scF Single chain Fv; SCLC Small cell lung cancer; SDS-PAGE Sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SEC Size exclusion chromatography; SEED Strand-exchange engineered domain; sRNA Small regulatory RNA; SRP Signal recognition particle; T1/2 Half-life; Tagg Aggregation temperature; TCR T cell receptor; TDB T cell-dependent bispecific; TF Tissue factor; TIR Translation initiation region; Tm Melting temperature; TNBC Triple-negative breast cancer; TNF Tumor necrosis factor; TPO Thrombopoietin; VEGF Vascular endothelial growth factor; vH Variable heavy chain; vL Variable light chain; vWF von Willebrand factor; WT Wild type.
Collapse
|
12
|
Kang SH, Lee CH. Development of Therapeutic Antibodies and Modulating the Characteristics of Therapeutic Antibodies to Maximize the Therapeutic Efficacy. BIOTECHNOL BIOPROC E 2021; 26:295-311. [PMID: 34220207 PMCID: PMC8236339 DOI: 10.1007/s12257-020-0181-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023]
Abstract
Monoclonal antibodies (mAb) have been used as therapeutic agents for various diseases, and immunoglobulin G (IgG) is mainly used among antibody isotypes due to its structural and functional properties. So far, regardless of the purpose of the therapeutic antibody, wildtype IgG has been mainly used, but recently, the engineered antibodies with various strategies according to the role of the therapeutic antibody have been used to maximize the therapeutic efficacy. In this review paper, first, the overall structural features and functional characteristics of antibody IgG, second, the old and new techniques for antibody discovery, and finally, several antibody engineering strategies for maximizing therapeutic efficacy according to the role of a therapeutic antibody will be introduced.
Collapse
Affiliation(s)
- Seung Hyun Kang
- grid.31501.360000 0004 0470 5905Department of Pharmacology, Seoul National University College of Medicine, Seoul, 03080 Korea
| | - Chang-Han Lee
- grid.31501.360000 0004 0470 5905Department of Pharmacology, Seoul National University College of Medicine, Seoul, 03080 Korea ,grid.31501.360000 0004 0470 5905Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080 Korea ,Hongcheon, 25159 Korea ,grid.31501.360000 0004 0470 5905SNU Dementia Research Center, Seoul National University College of Medicine, Seoul, 03080 Korea
| |
Collapse
|
13
|
Reprogramming the Constant Region of Immunoglobulin G Subclasses for Enhanced Therapeutic Potency against Cancer. Biomolecules 2020; 10:biom10030382. [PMID: 32121592 PMCID: PMC7175108 DOI: 10.3390/biom10030382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/18/2022] Open
Abstract
The constant region of immunoglobulin (Ig) G antibodies is responsible for their effector immune mechanism and prolongs serum half-life, while the fragment variable (Fv) region is responsible for cellular or tissue targeting. Therefore, antibody engineering for cancer therapeutics focuses on both functional efficacy of the constant region and tissue- or cell-specificity of the Fv region. In the functional aspect of therapeutic purposes, antibody engineers in both academia and industry have capitalized on the constant region of different IgG subclasses and engineered the constant region to enhance therapeutic efficacy against cancer, leading to a number of successes for cancer patients in clinical settings. In this article, we review IgG subclasses for cancer therapeutics, including (i) IgG1, (ii) IgG2, 3, and 4, (iii) recent findings on Fc receptor functions, and (iv) future directions of reprogramming the constant region of IgG to maximize the efficacy of antibody drug molecules in cancer patients.
Collapse
|
14
|
Kang TH, Jung ST. Boosting therapeutic potency of antibodies by taming Fc domain functions. Exp Mol Med 2019; 51:1-9. [PMID: 31735912 PMCID: PMC6859160 DOI: 10.1038/s12276-019-0345-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 01/12/2023] Open
Abstract
Monoclonal antibodies (mAbs) are one of the most widely used drug platforms for infectious diseases or cancer therapeutics because they selectively target pathogens, infectious cells, cancerous cells, and even immune cells. In this way, they mediate the elimination of target molecules and cells with fewer side effects than other therapeutic modalities. In particular, cancer therapeutic mAbs can recognize cell-surface proteins on target cells and then kill the targeted cells by multiple mechanisms that are dependent upon a fragment crystallizable (Fc) domain interacting with effector Fc gamma receptors, including antibody-dependent cell-mediated cytotoxicity and antibody-dependent cell-mediated phagocytosis. Extensive engineering efforts have been made toward tuning Fc functions by either reinforcing (e.g. for targeted therapy) or disabling (e.g. for immune checkpoint blockade therapy) effector functions and prolonging the serum half-lives of antibodies, as necessary. In this report, we review Fc engineering efforts to improve therapeutic potency, and propose future antibody engineering directions that can fulfill unmet medical needs. Fine-tuning the function of monoclonal antibodies (mAbs) holds promise for developing new therapeutic agents. Antibodies bind to pathogens or cancer cells, flagging them with Fc (fragment crystallizable) domain for destruction by the immune system. mAbs attached only to specific target cells enable lower side effect than other conventional drugs. Sang Taek Jung at Korea University and Tae Hyun Kang at Kookmin University, both in Seoul, reviewed recent developments in engineering therapeutic potency of mAbs. They report that mAbs can be engineered to activate effective immune cell types to treat a particular disease. Engineering can also increase mAbs’ persistence in the blood, enabling less frequent administration. Antibodies engineered to bind to two different antigens at once can also improve therapeutic efficacy. Applying these techniques could help developing new treatments against cancer, and infectious and autoimmune diseases.
Collapse
Affiliation(s)
- Tae Hyun Kang
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seongbuk-gu, Seoul, 02707, Republic of Korea
| | - Sang Taek Jung
- Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
15
|
Lee CH, Kang TH, Godon O, Watanabe M, Delidakis G, Gillis CM, Sterlin D, Hardy D, Cogné M, Macdonald LE, Murphy AJ, Tu N, Lee J, McDaniel JR, Makowski E, Tessier PM, Meyer AS, Bruhns P, Georgiou G. An engineered human Fc domain that behaves like a pH-toggle switch for ultra-long circulation persistence. Nat Commun 2019; 10:5031. [PMID: 31695028 PMCID: PMC6834678 DOI: 10.1038/s41467-019-13108-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/16/2019] [Indexed: 12/20/2022] Open
Abstract
The pharmacokinetic properties of antibodies are largely dictated by the pH-dependent binding of the IgG fragment crystallizable (Fc) domain to the human neonatal Fc receptor (hFcRn). Engineered Fc domains that confer a longer circulation half-life by virtue of more favorable pH-dependent binding to hFcRn are of great therapeutic interest. Here we developed a pH Toggle switch Fc variant containing the L309D/Q311H/N434S (DHS) substitutions, which exhibits markedly improved pharmacokinetics relative to both native IgG1 and widely used half-life extension variants, both in conventional hFcRn transgenic mice and in new knock-in mouse strains. engineered specifically to recapitulate all the key processes relevant to human antibody persistence in circulation, namely: (i) physiological expression of hFcRn, (ii) the impact of hFcγRs on antibody clearance and (iii) the role of competing endogenous IgG. DHS-IgG retains intact effector functions, which are important for the clearance of target pathogenic cells and also has favorable developability.
Collapse
Affiliation(s)
- Chang-Han Lee
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Tae Hyun Kang
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
- Department of Applied Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Ophélie Godon
- Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR1222 INSERMF-75015, Paris, France
| | - Makiko Watanabe
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - George Delidakis
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Caitlin M Gillis
- Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR1222 INSERMF-75015, Paris, France
| | - Delphine Sterlin
- Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR1222 INSERMF-75015, Paris, France
| | - David Hardy
- Experimental Neuropathology Unit, Infection and Epidemiology Department, Institut Pasteur, 25, rue du Docteur Roux, 75015, Paris, France
| | | | | | | | - Naxin Tu
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Jiwon Lee
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Jonathan R McDaniel
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Emily Makowski
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Peter M Tessier
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Aaron S Meyer
- Department of Bioengineering, University of California at Los Angeles, Los Angeles, CA, USA
| | - Pierre Bruhns
- Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR1222 INSERMF-75015, Paris, France.
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA.
- Department of Molecular Bioscience, University of Texas at Austin, Austin, TX, USA.
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
16
|
Saunders KO. Conceptual Approaches to Modulating Antibody Effector Functions and Circulation Half-Life. Front Immunol 2019; 10:1296. [PMID: 31231397 PMCID: PMC6568213 DOI: 10.3389/fimmu.2019.01296] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 05/21/2019] [Indexed: 12/31/2022] Open
Abstract
Antibodies and Fc-fusion antibody-like proteins have become successful biologics developed for cancer treatment, passive immunity against infection, addiction, and autoimmune diseases. In general these biopharmaceuticals can be used for blocking protein:protein interactions, crosslinking host receptors to induce signaling, recruiting effector cells to targets, and fixing complement. With the vast capability of antibodies to affect infectious and genetic diseases much effort has been placed on improving and tailoring antibodies for specific functions. While antibody:antigen engagement is critical for an efficacious antibody biologic, equally as important are the hinge and constant domains of the heavy chain. It is the hinge and constant domains of the antibody that engage host receptors or complement protein to mediate a myriad of effector functions and regulate antibody circulation. Molecular and structural studies have provided insight into how the hinge and constant domains from antibodies across different species, isotypes, subclasses, and alleles are recognized by host cell receptors and complement protein C1q. The molecular details of these interactions have led to manipulation of the sequences and glycosylation of hinge and constant domains to enhance or reduce antibody effector functions and circulating half-life. This review will describe the concepts being applied to optimize the hinge and crystallizable fragment of antibodies, and it will detail how these interactions can be tuned up or down to mediate a biological function that confers a desired disease outcome.
Collapse
Affiliation(s)
- Kevin O. Saunders
- Laboratory of Protein Expression, Departments of Surgery, Molecular Genetics and Microbiology, and Immunology, Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States
| |
Collapse
|