1
|
Zhou Y, Zhang Y, Jin S, Lv J, Li M, Feng N. The gut microbiota derived metabolite trimethylamine N-oxide: Its important role in cancer and other diseases. Biomed Pharmacother 2024; 177:117031. [PMID: 38925016 DOI: 10.1016/j.biopha.2024.117031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
An expanding body of research indicates a correlation between the gut microbiota and various diseases. Metabolites produced by the gut microbiota act as mediators between the gut microbiota and the host, interacting with multiple systems in the human body to regulate physiological or pathological functions. However, further investigation is still required to elucidate the underlying mechanisms. One such metabolite involved in choline metabolism by gut microbes is trimethylamine (TMA), which can traverse the intestinal epithelial barrier and enter the bloodstream, ultimately reaching the liver where it undergoes oxidation catalyzed by flavin-containing monooxygenase 3 (FMO3) to form trimethylamine N-oxide (TMAO). While some TMAO is eliminated through renal excretion, remaining amounts circulate in the bloodstream, leading to systemic inflammation, endoplasmic reticulum (ER) stress, mitochondrial stress, and disruption of normal physiological functions in humans. As a representative microbial metabolite originating from the gut, TMAO has significant potential both as a biomarker for monitoring disease occurrence and progression and for tailoring personalized treatment strategies for patients. This review provides an extensive overview of TMAO sources and its metabolism in human blood, as well as its impact on several major human diseases. Additionally, we explore the latest research areas related to TMAO along with future directions.
Collapse
Affiliation(s)
- Yuhua Zhou
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yuwei Zhang
- Nantong University Medical School, Nantong, China
| | - Shengkai Jin
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jing Lv
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Menglu Li
- Department of Urology, Jiangnan University Medical Center, Wuxi, China.
| | - Ninghan Feng
- Wuxi School of Medicine, Jiangnan University, Wuxi, China; Nantong University Medical School, Nantong, China; Department of Urology, Jiangnan University Medical Center, Wuxi, China.
| |
Collapse
|
2
|
Zhao W, Wu F, Hu R, Lou J, Chen G, Cai Z, Chen S. The Antioxidant Ergothioneine Alleviates Cisplatin-Induced Hearing Loss through the Nrf2 Pathway. Antioxid Redox Signal 2024. [PMID: 38770822 DOI: 10.1089/ars.2024.0648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Aims: Cisplatin (CDDP) is a commonly used chemotherapeutic agent for treating head and neck tumors. However, there is high incidence of ototoxicity in patients treated with CDDP, which may be caused by the excessive reactive oxygen species (ROS) generation in the inner ear. Many studies have demonstrated the strong antioxidant effects of ergothioneine (EGT). Therefore, we assumed that EGT could also attenuate cisplatin-induced hearing loss (CIHL) as well. However, the protective effect and mechanism of EGT on CIHL have not been elucidated as so far. In this study, we investigated whether EGT could treat CIHL and the mechanism. Results: In our study, we confirmed the protective effect of EGT on preventing CDDP-induced toxicity both in vitro and in vivo. The auditory brainstem response threshold shift in the EGT + CDDP treatment mice was 30 dB less than that in the CDDP treatment mice. EGT suppressed production of ROS and proapoptotic proteins both in tissue and cells. By silencing nuclear factor erythroid 2-related factor 2 (Nrf2), we confirmed that EGT protected against CIHL via the Nrf2 pathway. We also found that SLC22A4 (OCTN1), an important molecule involved in transporting EGT, was expressed in the cochlea. Innovation: Our results revealed the role of EGT in the prevention of CIHL by activating Nrf2/HO-1/NQO-1 pathway, and broadened a new perspective therapeutic target of EGT. Conclusion: EGT decreased ROS production and promoted the expression of antioxidative enzymes to maintain redox homeostasis in sensory hair cells. Overall, our results indicated that EGT may serve as a novel treatment drug to attenuate CIHL.
Collapse
Affiliation(s)
- Wenji Zhao
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
| | - Fan Wu
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
| | - Rui Hu
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Shenshan Medical Center, Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
| | - Jintao Lou
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
| | - Guisheng Chen
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
| | - Ziyi Cai
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
| | - Suijun Chen
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
3
|
Wang Z, Ma J, Miao Z, Sun Y, Dong M, Lin Y, Wu Y, Sun Z. Ergothioneine inhibits the progression of osteoarthritis via the Sirt6/NF-κB axis both in vitro and in vivo. Int Immunopharmacol 2023; 119:110211. [PMID: 37156032 DOI: 10.1016/j.intimp.2023.110211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 05/10/2023]
Abstract
Osteoarthritis (OA), which is a major cause of serious arthralgia and disability among the elderly, has long plagued numerous populations. However, the specific molecular mechanisms involved in the etiology of OA are unclear. SIRT6 plays a critical function in the development of several inflammatory and aging-associated diseases. A study by D'Onofrio demonstrates that ergothioneine (EGT) is an effective activator of SIRT6. As revealed by previous reports, EGT exerts beneficial effects on the mouse body, including resistance to oxidation, tumor, and inflammation. Therefore, this work attempted to identify the inflammatory resistance of EGT and explore its effects on the incidence and development of OA. Mouse chondrocyte stimulation using varying levels of EGT and 10 ng/mL IL-1β. According to in vitro experiments, EGT significantly reduced the decomposition of collagen II and aggrecan in OA chondrocytes, as well as inhibited the overexpression of PGE2, NO, IL-6, TNF-α, iNOs, COX-2, MMP-13, and ADAMTS5. In the present work, EGT hindered the NF-κB activity by activating the SIRT6 pathway in OA chondrocytes, which in turn, significantly attenuated the inflammatory response resulting from IL to 1β. The inhibitory effect of EGT on the progression of OA was demonstrated by the mouse DMM model experiment. Thus, this study revealed that EGT was effective in anti-OA treatment.
Collapse
Affiliation(s)
- Ze Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiawei Ma
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhimin Miao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yun Sun
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Mingwei Dong
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yan Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yaosen Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zeming Sun
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
4
|
Repáraz D, Ruiz M, Silva L, Aparicio B, Egea J, Guruceaga E, Ajona D, Senent Y, Conde E, Navarro F, Barace S, Alignani D, Hervás-Stubbs S, Lasarte JJ, Llopiz D, Sarobe P. Gemcitabine-mediated depletion of immunosuppressive dendritic cells enhances the efficacy of therapeutic vaccination. Front Immunol 2022; 13:991311. [PMID: 36300124 PMCID: PMC9589451 DOI: 10.3389/fimmu.2022.991311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Vaccination using optimized strategies may increase response rates to immune checkpoint inhibitors (ICI) in some tumors. To enhance vaccine potency and improve thus responses to ICI, we analyzed the gene expression profile of an immunosuppressive dendritic cell (DC) population induced during vaccination, with the goal of identifying druggable inhibitory mechanisms. RNAseq studies revealed targetable genes, but their inhibition did not result in improved vaccines. However, we proved that immunosuppressive DC had a monocytic origin. Thus, monocyte depletion by gemcitabine administration reduced the generation of these DC and increased vaccine-induced immunity, which rejected about 20% of LLC-OVA and B16-OVA tumors, which are non-responders to anti-PD-1. This improved efficacy was associated with higher tumor T-cell infiltration and overexpression of PD-1/PD-L1. Therefore, the combination of vaccine + gemcitabine with anti-PD-1 was superior to anti-PD-1 monotherapy in both models. B16-OVA tumors benefited from a synergistic effect, reaching 75% of tumor rejection, but higher levels of exhausted T-cells in LLC-OVA tumors co-expressing PD-1, LAG3 and TIM3 precluded similar levels of efficacy. Our results indicate that gemcitabine is a suitable combination therapy with vaccines aimed at enhancing PD-1 therapies by targeting vaccine-induced immunosuppressive DC.
Collapse
Affiliation(s)
- David Repáraz
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
| | - Marta Ruiz
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
| | - Leyre Silva
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
| | - Belén Aparicio
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
| | - Josune Egea
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
| | - Elizabeth Guruceaga
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Daniel Ajona
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Yaiza Senent
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Enrique Conde
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Flor Navarro
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
| | - Sergio Barace
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
| | - Diego Alignani
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Sandra Hervás-Stubbs
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
| | - Juan José Lasarte
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Diana Llopiz
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
| | - Pablo Sarobe
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
- *Correspondence: Pablo Sarobe,
| |
Collapse
|
5
|
Ergothioneine Production by Submerged Fermentation of a Medicinal Mushroom Panus conchatus. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ergothioneine is a natural and safe antioxidant that plays an important role in anti-aging and the prevention of various diseases. This study aimed to report on a kind of medicinal mushroom of Panus conchatus with great potential for the bioproduction of ergothioneine. The effect of different nutritional and environmental conditions on the growth of Panus conchatus and ergothioneine production were investigated. Molasses and soy peptone were found to promote cell growth of Panus conchatus and enhance ergothioneine accumulation. Adding precursors of histidine, methionine and cysteine could increase ergothioneine production and the highest ergothioneine concentration of 148.79 mg/L was obtained. Finally, the extraction and purification processes were also established to obtain the crude ergothioneine extract for further antioxidant property evaluation. The ergothioneine from Panus conchatus showed high antioxidant activity with good stability in a lower pH environment. This study provided a new strain and process for the bioproduction of ergothioneine.
Collapse
|
6
|
Kirdeeva Y, Fedorova O, Daks A, Barlev N, Shuvalov O. How Should the Worldwide Knowledge of Traditional Cancer Healing Be Integrated with Herbs and Mushrooms into Modern Molecular Pharmacology? Pharmaceuticals (Basel) 2022; 15:868. [PMID: 35890166 PMCID: PMC9320176 DOI: 10.3390/ph15070868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 12/04/2022] Open
Abstract
Traditional herbal medicine (THM) is a "core" from which modern medicine has evolved over time. Besides this, one third of people worldwide have no access to modern medicine and rely only on traditional medicine. To date, drugs of plant origin, or their derivates (paclitaxel, vinblastine, vincristine, vinorelbine, etoposide, camptothecin, topotecan, irinotecan, and omacetaxine), are very important in the therapy of malignancies and they are included in most chemotherapeutic regimes. To date, 391,000 plant and 14,000 mushroom species exist. Their medical and biochemical capabilities have not been studied in detail. In this review, we systematized the information about plants and mushrooms, as well as their active compounds with antitumor properties. Plants and mushrooms are divided based on the regions where they are used in ethnomedicine to treat malignancies. The majority of their active compounds with antineoplastic properties and mechanisms of action are described. Furthermore, on the basis of the available information, we divided them into two priority groups for research and for their potential of use in antitumor therapy. As there are many prerequisites and some examples how THM helps and strengthens modern medicine, finally, we discuss the positive points of THM and the management required to transform and integrate THM into the modern medicine practice.
Collapse
Affiliation(s)
- Yulia Kirdeeva
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
| | - Olga Fedorova
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
| | - Alexandra Daks
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
| | - Nikolai Barlev
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
- Orekhovich Institute of Biomedical Chemistry, 119435 Moscow, Russia
| | - Oleg Shuvalov
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
- Orekhovich Institute of Biomedical Chemistry, 119435 Moscow, Russia
| |
Collapse
|
7
|
Gao Y, Zhou B, Zhang H, Chen L, Wang X, Chen H, Zhou L. l-Ergothioneine Exhibits Protective Effects against Dextran Sulfate Sodium-Induced Colitis in Mice. ACS OMEGA 2022; 7:21554-21565. [PMID: 35785312 PMCID: PMC9245115 DOI: 10.1021/acsomega.2c01350] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Background: Ulcerative colitis (UC) is a chronic disease of the intestinal tract in which excessive activation of inflammatory response is correlated. l-Ergothioneine (EGT) widely existing in mushrooms has various physiological activities. In this study, the protective effects of EGT on dextran sulfate sodium (DSS)-induced colitis mice were investigated. Results: It was observed that EGT administration, especially at the high dose level, prevented the body weight loss, the colon shortening, and the increase in disease activity index and spleen index caused by DSS. Moreover, EGT supplementation attenuated DSS-induced gut barrier damage by enhancing the expression of tight-junction protein and recovering the loss of gut mucus layer. Furthermore, EGT considerably decreased the colonic myeloperoxidase (MPO) activity induced by DSS, but no significant differences were observed in the concentrations of IL-6 and TNF-α in colon tissues. Additionally, EGT downregulated the populations of CD4+ T cells and macrophages, indicating that EGT stabilized the immune response caused by DSS. Conclusion: Together these results suggest that EGT can alleviate DSS-induced colitis and provide important insights concerning the potential anticolitis activity of such food products.
Collapse
Affiliation(s)
- Yanju Gao
- Department
of Nutrition and Food Hygiene, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Bo Zhou
- Department
of Nutrition and Food Hygiene, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Han Zhang
- Department
of Nutrition and Food Hygiene, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Lin Chen
- Department
of Nutrition and Food Hygiene, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Xiaohong Wang
- Department
of Nutrition and Food Hygiene, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Hongbing Chen
- State
Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German
Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Lin Zhou
- Department
of Nutrition and Food Hygiene, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| |
Collapse
|
8
|
Ko HJ, Kim J, Ahn M, Kim JH, Lee GS, Shin T. Ergothioneine alleviates senescence of fibroblasts induced by UVB damage of keratinocytes via activation of the Nrf2/HO-1 pathway and HSP70 in keratinocytes. Exp Cell Res 2021; 400:112516. [PMID: 33577831 DOI: 10.1016/j.yexcr.2021.112516] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 01/24/2021] [Accepted: 02/03/2021] [Indexed: 01/15/2023]
Abstract
Ultraviolet B (UVB) irradiation induces skin damage and photoaging through several deleterious effects, including generation of reactive oxygen species (ROS), apoptosis of epidermal cells, inflammation, and collagen degradation in fibroblasts. Ergothioneine (EGT) is a naturally occurring amino acid with potential biological properties. We evaluated whether EGT protects against UVB-induced photoaging using a keratinocyte/fibroblast co-culture system. Keratinocytes were pretreated with EGT, irradiated with UVB, and co-cultured with fibroblasts. In keratinocytes, ROS production and apoptosis were assessed. We also analyzed the Nrf2/HO-1 pathway, HSP70, proapoptotic proteins, and paracrine cytokines by Western blotting and real-time PCR. Collagen degradation-related genes and senescence were also assessed in fibroblasts. EGT pretreatment of keratinocytes significantly inhibited downregulation of the Nrf2/HO-1 pathway and HSP70, and protected keratinocytes by suppressing production of ROS and cleavage of proapoptotic proteins, including caspase-8 and PARP. Furthermore, EGT significantly reduced the paracrine cytokines, including IL-1β, IL-6, and TNF-α. In co-cultures of fibroblasts with EGT-treated keratinocytes, the expression levels of collagen degradation-related genes and fibroblast senescence were significantly decreased; however, synthesis of procollagen type I was significantly increased. Our results confirm that EGT suppresses the modification of collagen homeostasis in fibroblasts by preventing downregulation of the Nrf2/HO-1 pathway and HSP70 in keratinocytes following UVB irradiation.
Collapse
Affiliation(s)
- Hyun Ju Ko
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, 63243, Republic of Korea; Skin science research team, Creation & Innovation research institute, It's hanbul Co., LTD., Gangnam-gu, Seoul, 06101, Republic of Korea
| | - Jeongtae Kim
- Department of Anatomy, Kosin University College of Medicine, Busan, 49267, Republic of Korea
| | - Meejung Ahn
- Department of Animal Science, College of Life Science, Sangji University, Wonju, 26339, Republic of Korea
| | - Jin Hwa Kim
- Skin science research team, Creation & Innovation research institute, It's hanbul Co., LTD., Gangnam-gu, Seoul, 06101, Republic of Korea
| | - Geun Soo Lee
- Skin science research team, Creation & Innovation research institute, It's hanbul Co., LTD., Gangnam-gu, Seoul, 06101, Republic of Korea
| | - Taekyun Shin
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
9
|
Han Y, Tang X, Zhang Y, Hu X, Ren LJ. The current status of biotechnological production and the application of a novel antioxidant ergothioneine. Crit Rev Biotechnol 2021; 41:580-593. [PMID: 33550854 DOI: 10.1080/07388551.2020.1869692] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ergothioneine is a sulfur-containing histidine derivative, that possessesexcellent antioxidant activity and has been used in the food and cosmetics industries. It plays a significant role in anti-aging and the prevention of various diseases. This review will briefly introduce the functions and applications of ergothioneine, elaborate the biosynthetic pathways of ergothioneine and describe several strategies to increase the production of ergothioneine. Then the efficient extraction and detection methods of ergothioneine will be presented. Finally, several proposals are put forward to increase the yield of ergothioneine, and the development prospects of ergothioneine will be discussed.
Collapse
Affiliation(s)
- Yiwen Han
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Xiuyang Tang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Yuting Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Xuechao Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China.,Jiangsu TianKai Biotechnology Co., Ltd., Nanjing, People's Republic of China
| | - Lu-Jing Ren
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| |
Collapse
|
10
|
Cheah IK, Halliwell B. Ergothioneine, recent developments. Redox Biol 2021; 42:101868. [PMID: 33558182 PMCID: PMC8113028 DOI: 10.1016/j.redox.2021.101868] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 02/06/2023] Open
Abstract
There has been a recent surge of interest in the unique low molecular weight dietary thiol/thione, ergothioneine. This compound can accumulate at high levels in the body from diet and may play important physiological roles in human health and development, and possibly in prevention and treatment of disease. Blood levels of ergothioneine decline with age and onset of various diseases. Here we highlight recent advances in our knowledge of ergothioneine.
Collapse
Affiliation(s)
- Irwin K Cheah
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117596, Singapore; Life Science Institute, Neurobiology Programme, Centre for Life Sciences, National University of Singapore, 117456, Singapore
| | - Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117596, Singapore; Life Science Institute, Neurobiology Programme, Centre for Life Sciences, National University of Singapore, 117456, Singapore.
| |
Collapse
|
11
|
Borodina I, Kenny LC, McCarthy CM, Paramasivan K, Pretorius E, Roberts TJ, van der Hoek SA, Kell DB. The biology of ergothioneine, an antioxidant nutraceutical. Nutr Res Rev 2020; 33:190-217. [PMID: 32051057 PMCID: PMC7653990 DOI: 10.1017/s0954422419000301] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023]
Abstract
Ergothioneine (ERG) is an unusual thio-histidine betaine amino acid that has potent antioxidant activities. It is synthesised by a variety of microbes, especially fungi (including in mushroom fruiting bodies) and actinobacteria, but is not synthesised by plants and animals who acquire it via the soil and their diet, respectively. Animals have evolved a highly selective transporter for it, known as solute carrier family 22, member 4 (SLC22A4) in humans, signifying its importance, and ERG may even have the status of a vitamin. ERG accumulates differentially in various tissues, according to their expression of SLC22A4, favouring those such as erythrocytes that may be subject to oxidative stress. Mushroom or ERG consumption seems to provide significant prevention against oxidative stress in a large variety of systems. ERG seems to have strong cytoprotective status, and its concentration is lowered in a number of chronic inflammatory diseases. It has been passed as safe by regulatory agencies, and may have value as a nutraceutical and antioxidant more generally.
Collapse
Affiliation(s)
- Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800Kongens Lyngby, Denmark
| | - Louise C. Kenny
- Department of Women’s and Children’s Health, Institute of Translational Medicine, University of Liverpool, Crown Street, LiverpoolL8 7SS, UK
| | - Cathal M. McCarthy
- Irish Centre for Fetal and Neonatal Translational Research (INFANT), Cork University Maternity Hospital, Cork, Republic of Ireland
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Republic of Ireland
| | - Kalaivani Paramasivan
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800Kongens Lyngby, Denmark
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
| | - Timothy J. Roberts
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
- Department of Biochemistry, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, LiverpoolL69 7ZB, UK
| | - Steven A. van der Hoek
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800Kongens Lyngby, Denmark
| | - Douglas B. Kell
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800Kongens Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
- Department of Biochemistry, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, LiverpoolL69 7ZB, UK
| |
Collapse
|
12
|
Cheah IK, Halliwell B. Could Ergothioneine Aid in the Treatment of Coronavirus Patients? Antioxidants (Basel) 2020; 9:E595. [PMID: 32646061 PMCID: PMC7402156 DOI: 10.3390/antiox9070595] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/25/2020] [Accepted: 07/02/2020] [Indexed: 01/08/2023] Open
Abstract
Infection with SARS-CoV-2 causes the coronavirus infectious disease 2019 (COVID-19), a pandemic that has, at present, infected more than 11 million people globally. Some COVID-19 patients develop a severe and critical illness, spurred on by excessive inflammation that can lead to respiratory or multiorgan failure. Numerous studies have established the unique array of cytoprotective properties of the dietary amino acid ergothioneine. Based on studies in a range of in vitro and in vivo models, ergothioneine has exhibited the ability to modulate inflammation, scavenge free radicals, protect against acute respiratory distress syndrome, prevent endothelial dysfunction, protect against ischemia and reperfusion injury, protect against neuronal damage, counteract iron dysregulation, hinder lung and liver fibrosis, and mitigate damage to the lungs, kidneys, liver, gastrointestinal tract, and testis, amongst many others. When compiled, this evidence suggests that ergothioneine has a potential application in the treatment of the underlying pathology of COVID-19. We propose that ergothioneine could be used as a therapeutic to reduce the severity and mortality of COVID-19, especially in the elderly and those with underlying health conditions. This review presents evidence to support that proposal.
Collapse
Affiliation(s)
- Irwin K. Cheah
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore;
- Life Science Institute, Neurobiology Programme, Centre for Life Sciences, National University of Singapore, Singapore 117456, Singapore
| | - Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore;
- Life Science Institute, Neurobiology Programme, Centre for Life Sciences, National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|
13
|
Blumfield M, Abbott K, Duve E, Cassettari T, Marshall S, Fayet-Moore F. Examining the health effects and bioactive components in Agaricus bisporus mushrooms: a scoping review. J Nutr Biochem 2020; 84:108453. [PMID: 32653808 DOI: 10.1016/j.jnutbio.2020.108453] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/19/2020] [Accepted: 06/08/2020] [Indexed: 12/25/2022]
Abstract
There is evidence from both in vitro and animal models that the consumption of edible mushrooms has beneficial effects on health. It is unclear whether similar effects exist in humans and which bioactive compounds are present. This review synthesises the evidence on the world's most commonly consumed mushroom, Agaricus bisporus to (i) examine its effect on human health outcomes; and (ii) determine the nutrient density of its bioactive compounds, which may explain their health effects. A systematic literature search was conducted on the consumption of A. bisporus, without date and study design limits. Bioactive compounds included ergosterol, ergothioneine, flavonoids, glucans and chitin. Two authors independently identified studies for inclusion and assessed methodological quality. Beneficial effects of A. bisporus on metabolic syndrome, immune function, gastrointestinal health and cancer, with the strongest evidence for the improvement in Vitamin D status in humans, were found. Ultraviolet B (UVB) exposed mushrooms may increase and maintain serum 25(OH)D levels to a similar degree as vitamin D supplements. A. bisporus contain beta-glucans, ergosterol, ergothioneine, vitamin D and an antioxidant compound usually reported as flavonoids; with varying concentrations depending on the type of mushroom, cooking method and duration, and UVB exposure. Further research is required to fully elucidate the bioactive compounds in mushrooms using vigorous analytical methods and expand the immunological markers being tested. To enable findings to be adopted into clinical practice and public health initiatives, replication of existing studies in different population groups is required to confirm the impact of A. bisporus on human health.
Collapse
Affiliation(s)
- Michelle Blumfield
- BNutrDiet (Hons), PhD, Nutrition Research Australia, Sydney, New South Wales, Australia
| | - Kylie Abbott
- BNutrDiet (Hons), PhD, Nutrition Research Australia, Sydney, New South Wales, Australia; Nutraceuticals Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia
| | - Emily Duve
- BPESS, MPH, Nutrition Research Australia, Sydney, New South Wales, Australia
| | - Tim Cassettari
- BSc(Hons), BAppSc, Nutrition Research Australia, Sydney, New South Wales, Australia
| | - Skye Marshall
- BNutrDiet (Hons), PhD, Nutrition Research Australia, Sydney, New South Wales, Australia; Bond University, Nutrition and Dietetics Research Group, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Flavia Fayet-Moore
- BSc(Hons), MNutrDiet, PhD, Nutrition Research Australia, Sydney, New South Wales, Australia.
| |
Collapse
|