1
|
Engeroff P, Belbezier A, Vaineau R, Fourcade G, Lujan HD, Bellier B, Graff-Dubois S, Klatzmann D. IL-1R2 Expression in Tfr Cells Controls Allergic Anaphylaxis by Regulating IgG Versus IgE Responses. Allergy 2024. [PMID: 39692165 DOI: 10.1111/all.16437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/15/2024] [Accepted: 12/05/2024] [Indexed: 12/19/2024]
Affiliation(s)
- Paul Engeroff
- Sorbonne Université, INSERM, UMRS 959, Immunology-Immunopathology-Immunotherapy, i3, Paris, France
- Department of Rheumatology and Immunology, University Hospital of Bern, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Aude Belbezier
- Sorbonne Université, INSERM, UMRS 959, Immunology-Immunopathology-Immunotherapy, i3, Paris, France
| | - Romain Vaineau
- Sorbonne Université, INSERM, UMRS 959, Immunology-Immunopathology-Immunotherapy, i3, Paris, France
| | - Gwladys Fourcade
- Sorbonne Université, INSERM, UMRS 959, Immunology-Immunopathology-Immunotherapy, i3, Paris, France
| | - Hugo D Lujan
- Centro de Investigación y Desarrollo en Immunología y Enfermedades Infecciosas (CIDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Universidad Católica de Córdoba (UCC), Córdoba, Argentina
| | - Bertrand Bellier
- Sorbonne Université, INSERM, UMRS 959, Immunology-Immunopathology-Immunotherapy, i3, Paris, France
| | - Stephanie Graff-Dubois
- Sorbonne Université, INSERM, UMRS 959, Immunology-Immunopathology-Immunotherapy, i3, Paris, France
| | - David Klatzmann
- Sorbonne Université, INSERM, UMRS 959, Immunology-Immunopathology-Immunotherapy, i3, Paris, France
- AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (i2B), Paris, France
| |
Collapse
|
2
|
Fernandes-Braga W, Curotto de Lafaille MA. B cell memory of Immunoglobulin E (IgE) antibody responses in allergy. Curr Opin Immunol 2024; 91:102488. [PMID: 39340881 DOI: 10.1016/j.coi.2024.102488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024]
Abstract
Immunoglobulin E (IgE)-mediated allergic diseases are driven by high-affinity allergen-specific IgE antibodies. IgE antibodies bind to Fc epsilon receptors on mast cells, prompting their degranulation and initiating inflammatory reactions upon allergen crosslinking. While most IgE-producing plasma cells have short lifespans, and IgE memory B cells are exceedingly rare, studies have indicated that non-IgE-expressing type 2-polarized IgG memory B cells serve as a reservoir of IgE memory in allergies. This review explores the B cell populations underlying IgE-mediated allergies, including the cellular and molecular processes that drive IgE class switching from non-IgE memory B cells. It highlights emerging evidence from human studies identifying type 2 IgG memory B cells as the source of pathogenic IgE in allergic responses.
Collapse
Affiliation(s)
- Weslley Fernandes-Braga
- Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, and Lipschultz Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria A Curotto de Lafaille
- Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, and Lipschultz Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
3
|
Czarnowicki T, David E, Yamamura K, Han J, He H, Pavel AB, Glickman J, Erickson T, Estrada Y, Krueger JG, Rangel SM, Paller AS, Guttman-Yassky E. Evolution of pathologic B-cell subsets and serum environment-specific sIgEs in patients with atopic dermatitis and controls, from infancy to adulthood. Allergy 2024; 79:2732-2747. [PMID: 39003573 PMCID: PMC11449672 DOI: 10.1111/all.16225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 04/19/2024] [Accepted: 05/08/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND While B-cells have historically been implicated in allergy development, a growing body of evidence supports their role in atopic dermatitis (AD). B-cell differentiation across ages in AD, and its relation to disease severity scores, has not been well defined. OBJECTIVE To compare the frequency of B-cell subsets in blood of 0-5, 6-11, 12-17, and ≥18 years old patients with AD versus age-matched controls. METHODS Flow cytometry was used to measure B-cell subset frequencies in the blood of 27 infants, 17 children, 11 adolescents, and 31 adults with moderate-to-severe AD and age-matched controls. IgD/CD27 and CD24/CD38 core gating systems and an 11-color flow cytometry panel were used to determine frequencies of circulating B-cell subsets. Serum total and allergen-specific IgE (sIgEs) levels were measured using ImmunoCAP®. RESULTS Adolescents with AD had lower frequencies of major B-cells subsets (p < .03). CD23 expression increased with age and was higher in AD compared to controls across all age groups (p < .04). In AD patients, multiple positive correlations were observed between IL-17-producing T-cells and B-cell subsets, most significantly non-switched memory (NSM) B-cells (r = .41, p = .0005). AD severity positively correlated with a list of B-cell subsets (p < .05). IL-9 levels gradually increased during childhood, reaching a peak in adolescence, paralleling allergen sensitization, particularly in severe AD. Principal component analysis of the aggregated environmental sIgE data showed that while controls across all ages tightly clustered together, adolescents with AD demonstrated distinct clustering patterns relative to controls. CONCLUSIONS Multiple correlations between B-cells and T-cells, as well as disease severity measures, suggest a complex interplay of immune pathways in AD. Unique B-cell signature during adolescence, with concurrent allergen sensitization and IL-9 surge, point to a potentially wider window of opportunity to implement interventions that may prevent the progression of the atopic march.
Collapse
Affiliation(s)
- Tali Czarnowicki
- Department of Dermatology and the Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Shaare Zedek Medical Center, the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eden David
- Department of Dermatology and the Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kazuhiko Yamamura
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, USA
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Joseph Han
- Department of Dermatology and the Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Helen He
- Department of Dermatology and the Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ana B Pavel
- Department of Dermatology and the Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jacob Glickman
- Department of Dermatology and the Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Taylor Erickson
- Departments of Dermatology and Pediatrics, Northwestern University Feinberg School of Medicine, IL, USA
| | - Yeriel Estrada
- Department of Dermatology and the Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James G Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, USA
| | - Stephanie M. Rangel
- Departments of Dermatology and Pediatrics, Northwestern University Feinberg School of Medicine, IL, USA
| | - Amy S Paller
- Departments of Dermatology and Pediatrics, Northwestern University Feinberg School of Medicine, IL, USA
| | - Emma Guttman-Yassky
- Department of Dermatology and the Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
4
|
Rahman RS, Wesemann DR. Whence and wherefore IgE? Immunol Rev 2024; 326:48-65. [PMID: 39041740 PMCID: PMC11436312 DOI: 10.1111/imr.13373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Despite the near ubiquitous presence of Ig-based antibodies in vertebrates, IgE is unique to mammals. How and why it emerged remains mysterious. IgE expression is greatly constrained compared to other IgH isotypes. While other IgH isotypes are relatively abundant, soluble IgE has a truncated half-life, and IgE plasma cells are mostly short-lived. Despite its rarity, IgE is consequential and can trigger life-threatening anaphylaxis. IgE production reflects a dynamic steady state with IgG memory B cells feeding short-lived IgE production. Emerging evidence suggests that IgE may also potentially be produced in longer-lived plasma cells as well, perhaps as an aberrancy stemming from its evolutionary roots from an antibody isotype that likely functioned more like IgG. As a late derivative of an ancient systemic antibody system, the benefits of IgE in mammals likely stems from the antibody system's adaptive recognition and response capability. However, the tendency for massive, systemic, and long-lived production, common to IgH isotypes like IgG, were likely not a good fit for IgE. The evolutionary derivation of IgE from an antibody system that for millions of years was good at antigen de-sensitization to now functioning as a highly specialized antigen-sensitization function required heavy restrictions on antibody production-insufficiency of which may contribute to allergic disease.
Collapse
Affiliation(s)
- Rifat S Rahman
- Department of Internal Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Duane R Wesemann
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Baloh CH, Lim N, Huffaker M, Patel P, Tversky J, Du Toit G, Lack G, Laidlaw TM, MacGlashan DW. Peanut-specific IgG subclasses as biomarkers of peanut allergy in LEAP study participants. World Allergy Organ J 2024; 17:100940. [PMID: 39247520 PMCID: PMC11380385 DOI: 10.1016/j.waojou.2024.100940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/06/2024] [Accepted: 07/11/2024] [Indexed: 09/10/2024] Open
Abstract
Antigen-specific IgG2 and IgG3 are rarely measured in food allergy clinical trials despite known function in preventing mast cell and basophil activation. Our objective was to determine whether measuring peanut-specific IgG2 and IgG3 levels would correlate with peanut allergy status. Peanut-specific IgG subclasses were measured via ELISA assays in Learning Early About Peanut allergy (LEAP) trial participants at 5 years of age and were correlated with peanut allergy vs peanut sensitization vs non-peanut allergic and peanut consumption vs peanut avoidance. Peanut-specific IgG1, IgG2, IgG3, and IgG4 levels were significantly different between participants with peanut allergy vs peanut sensitization vs non-peanut allergic, and a multivariate logistic regression model and stepwise selection found that IgG1 most closely associated with peanut allergy status. Similarly, all subclasses differentiated those consuming vs those avoiding peanut, but subsequent modeling found that IgG4 most closely associated with consumption status. Amongst the peanut-specific IgG subclasses, IgG1 was the best biomarker for peanut allergy, while IgG4 was the best biomarker for peanut antigen exposure in this highly atopic cohort. Our study did not find added value from evaluating peanut-specific IgG 2 and 3 as biomarkers of peanut allergy, although they did correlate with peanut allergy. Subsequent studies should assess the value of adding IgG subclasses to multivariate models predicting peanut allergy status.
Collapse
Affiliation(s)
- Carolyn H Baloh
- Immune Tolerance Network, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Noha Lim
- Immune Tolerance Network, Bethesda, MD, USA
| | - Michelle Huffaker
- Immune Tolerance Network, University of California San Francisco, San Francisco, CA, USA
| | - Pooja Patel
- Johns Hopkins University Department of Medicine, Johns Hopkins Asthma and Allergy Center, Baltimore, MD, USA
| | - Jody Tversky
- Johns Hopkins University Department of Medicine, Johns Hopkins Asthma and Allergy Center, Baltimore, MD, USA
| | - George Du Toit
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, London, United Kingdom
- Children's Allergy Service, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
- Pediatric Allergy Group, Department of Women and Children's Health, School of Life Course Sciences, King's College London, London, United Kingdom
| | - Gideon Lack
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, London, United Kingdom
- Children's Allergy Service, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
- Pediatric Allergy Group, Department of Women and Children's Health, School of Life Course Sciences, King's College London, London, United Kingdom
| | - Tanya M Laidlaw
- Immune Tolerance Network, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Donald W MacGlashan
- Johns Hopkins University Department of Medicine, Johns Hopkins Asthma and Allergy Center, Baltimore, MD, USA
| |
Collapse
|
6
|
Vogel M, Engeroff P. A Comparison of Natural and Therapeutic Anti-IgE Antibodies. Antibodies (Basel) 2024; 13:58. [PMID: 39051334 PMCID: PMC11270207 DOI: 10.3390/antib13030058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/17/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
Immunoglobulin E (IgE) plays a critical role for the immune system, fighting against parasites, toxins, and cancer. However, when it reacts to allergens without proper regulation, it can cause allergic reactions, including anaphylaxis, through a process initiated by effector cells such as basophils and mast cells. These cells display IgE on their surface, bound to the high-affinity IgE receptor FcεRI. A cross-linking antigen then triggers degranulation and the release of inflammatory mediators from the cells. Therapeutic monoclonal anti-IgE antibodies such as omalizumab, disrupt this process and are used to manage IgE-related conditions such as severe allergic asthma and chronic spontaneous urticaria. Interestingly, naturally occurring anti-IgE autoantibodies circulate at surprisingly high levels in healthy humans and mice and may thus be instrumental in regulating IgE activity. Although many open questions remain, recent studies have shed new light on their role as IgE regulators and their mechanism of action. Here, we summarize the latest insights on natural anti-IgE autoantibodies, and we compare their functional features to therapeutic monoclonal anti-IgE autoantibodies.
Collapse
Affiliation(s)
- Monique Vogel
- Department of Rheumatology and Immunology, University Hosptial of Bern, 3010 Bern, Switzerland;
- Department for BioMedical Research, University of Bern, 3012 Bern, Switzerland
| | - Paul Engeroff
- Department of Rheumatology and Immunology, University Hosptial of Bern, 3010 Bern, Switzerland;
- Department for BioMedical Research, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
7
|
Phayangkhe C, Ek-Eudomsuk P, Soontrapa K. The bioflavonoid hispidulin effectively attenuates T helper type 2-driven allergic lung inflammation in the ovalbumin-induced allergic asthma mouse model. Respir Investig 2024; 62:558-565. [PMID: 38657289 DOI: 10.1016/j.resinv.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Allergic asthma affects nearly 300 million people worldwide and causes ahigh burden of disability and death. Effective treatments rely heavily on corticosteroids, which are associated with various complications. So, the alternative treatment is of significance. Hispidulin is a bioflavonoid found in herbs that were used in traditional medicine to treat inflammatory diseases, including asthma. This study aims to investigate the efficacy of hispidulin compound in the treatment of allergic lung inflammation using the mouse model of allergic asthma. METHODS BALB/c mice were sensitized and challenged with chicken egg ovalbumin. Cells and cytokines from bronchoalveolar lavage (BAL) fluid were examined. Lung tissues were collected for histologic study. Mouse splenic CD4+ cells were cultured to observe the effect of hispidulin on T-helper 2 (Th2) cell differentiation in vitro. RESULTS Hispidulin treatment could alleviate allergic airway inflammation as evidenced by a significant reduction in the inflammatory cell count and Th2 cytokines interleukin (IL)-4, IL-5, IL-13 in BAL fluid. Histologic examination of lung tissues revealed lower inflammatory cell infiltration to the bronchi and less airway goblet cell hyperplasia in the treatment group compared to the control group. At the cellular level, hispidulin (25, 50, and 100 μM) was found to directly suppress the differentiation and proliferation of Th2 cells and to suppress the production of Th2 cytokines, such as IL-4, IL-5, and IL-13, in vitro. CONCLUSIONS Hispidulin treatment was shown to effectively decrease type 2 lung inflammation in an ovalbumin-induced allergic asthma mouse model by directly suppressing Th2 cell differentiation and functions.
Collapse
Affiliation(s)
- Chaiphichit Phayangkhe
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
| | - Pornpimon Ek-Eudomsuk
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
| | - Kitipong Soontrapa
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
| |
Collapse
|
8
|
Chen S, Zhu B, Huang S, Hickey JW, Lin KZ, Snyder M, Greenleaf WJ, Nolan GP, Zhang NR, Ma Z. Integration of spatial and single-cell data across modalities with weakly linked features. Nat Biotechnol 2024; 42:1096-1106. [PMID: 37679544 PMCID: PMC11638971 DOI: 10.1038/s41587-023-01935-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/02/2023] [Indexed: 09/09/2023]
Abstract
Although single-cell and spatial sequencing methods enable simultaneous measurement of more than one biological modality, no technology can capture all modalities within the same cell. For current data integration methods, the feasibility of cross-modal integration relies on the existence of highly correlated, a priori 'linked' features. We describe matching X-modality via fuzzy smoothed embedding (MaxFuse), a cross-modal data integration method that, through iterative coembedding, data smoothing and cell matching, uses all information in each modality to obtain high-quality integration even when features are weakly linked. MaxFuse is modality-agnostic and demonstrates high robustness and accuracy in the weak linkage scenario, achieving 20~70% relative improvement over existing methods under key evaluation metrics on benchmarking datasets. A prototypical example of weak linkage is the integration of spatial proteomic data with single-cell sequencing data. On two example analyses of this type, MaxFuse enabled the spatial consolidation of proteomic, transcriptomic and epigenomic information at single-cell resolution on the same tissue section.
Collapse
Affiliation(s)
- Shuxiao Chen
- Department of Statistics and Data Science, The Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - Bokai Zhu
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Sijia Huang
- Department of Statistics and Data Science, The Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - John W Hickey
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Kevin Z Lin
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Michael Snyder
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Garry P Nolan
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University, Stanford, CA, USA.
| | - Nancy R Zhang
- Department of Statistics and Data Science, The Wharton School, University of Pennsylvania, Philadelphia, PA, USA.
| | - Zongming Ma
- Department of Statistics and Data Science, Yale University, New Haven, CT, USA.
| |
Collapse
|
9
|
Li Y, Li H, Huang W, Yu Q, Wang K, Xiong Y, Wang Q, Qin Y, Kuang X, Tang J. Single-cell RNA sequencing reveals the landscape of biomarker in allergic rhinitis patient undergoing intracervical lymphatic immunotherapy and related pan-cancer analysis. ENVIRONMENTAL TOXICOLOGY 2024; 39:2817-2829. [PMID: 38291708 DOI: 10.1002/tox.24151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 02/01/2024]
Abstract
INTRODUCTION Allergic rhinitis (AR) is one of the leading allergic diseases worldwide. Allergen immunotherapy (AIT) induces persistent specific allergen tolerance to achieve remission of the symptoms in AR patients. We creatively conducted the intra-cervical lymphatic immunotherapy (ICLIT) for AR patients. However, the underlying molecular mechanism of immune cell response of AIT in AR remains elusive. METHOD To investigate the transcriptome profile in AR patients who underwent ICLIT, we comprehensively investigated the transcriptional changes in B cells from peripheral blood mononuclear cells of AR patient by single-cell RNA sequencing. Immunoglobulins and relative key gene, which influences the B cell differentiation, was demonstrated. The biomarkers' association with different types of tumors was investigated. RESULTS Naive B cells, germinal center B cells, activated memory B cells, and memory B cells constituted the B cells subsets. The expression of IGHE, IGHGs, IGHA, IGHD, and IGHM from memory B cells was validated. Pseudotime analysis further indicated the dynamic change from the expression of the immunoglobulins in the memory B cells, suggesting that ITGB1 may contribute to the differentiation procedure of memory B cells. The cell-cell communication among these immune cells demonstrated the significantly enhanced CD23, BTLA signaling after ICLIT in AR patient. ITGB1 was upregulated in 13 tumors and downregulated in six others. High ITGB1 expression was linked to poor prognosis in eight types of tumors. ITGB1 expression showed correlations with tumor mutation burden, tissue purity, and microsatellite instability in different types of tumors. DISCUSSION ITGB1 was demonstrated as a potential biomarker for AR patients after ICLIT and is significant in identifying immune infiltration in tumor tissue and predicting tumor prognosis.
Collapse
Affiliation(s)
- Yin Li
- Department of Otolaryngology, The First People's Hospital of Foshan, Foshan, China
| | - Hao Li
- Department of Infectious Diseases, The First People's Hospital of Changde City, Xiangya School of Medicine, Central South University, Changde, China
| | - Weijun Huang
- Department of Ultrasound, The First People's Hospital of Foshan, Foshan, China
| | - Qingqing Yu
- Department of Otolaryngology, The First People's Hospital of Foshan, Foshan, China
| | - Kai Wang
- Department of Otolaryngology, The First People's Hospital of Foshan, Foshan, China
| | - Yu Xiong
- Department of Otolaryngology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qixing Wang
- Department of Otolaryngology, The First People's Hospital of Foshan, Foshan, China
| | - Yang Qin
- Department of Otolaryngology, The First People's Hospital of Foshan, Foshan, China
| | - Xiong Kuang
- Department of Otolaryngology, The First People's Hospital of Foshan, Foshan, China
| | - Jun Tang
- Department of Otolaryngology, The First People's Hospital of Foshan, Foshan, China
| |
Collapse
|
10
|
Ota M, Hoehn KB, Fernandes-Braga W, Ota T, Aranda CJ, Friedman S, Miranda-Waldetario MG, Redes J, Suprun M, Grishina G, Sampson HA, Malbari A, Kleinstein SH, Sicherer SH, de Lafaille MAC. CD23 +IgG1 + memory B cells are poised to switch to pathogenic IgE production in food allergy. Sci Transl Med 2024; 16:eadi0673. [PMID: 38324641 PMCID: PMC11008013 DOI: 10.1126/scitranslmed.adi0673] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 11/15/2023] [Indexed: 02/09/2024]
Abstract
Food allergy is caused by allergen-specific immunoglobulin E (IgE) antibodies, but little is known about the B cell memory of persistent IgE responses. Here, we describe, in human pediatric peanut allergy, a population of CD23+IgG1+ memory B cells arising in type 2 immune responses that contain high-affinity peanut-specific clones and generate IgE-producing cells upon activation. The frequency of CD23+IgG1+ memory B cells correlated with circulating concentrations of IgE in children with peanut allergy. A corresponding population of "type 2-marked" IgG1+ memory B cells was identified in single-cell RNA sequencing experiments. These cells differentially expressed interleukin-4 (IL-4)- and IL-13-regulated genes, such as FCER2/CD23+, IL4R, and germline IGHE, and carried highly mutated B cell receptors (BCRs). In children with high concentrations of serum peanut-specific IgE, high-affinity B cells that bind the main peanut allergen Ara h 2 mapped to the population of "type 2-marked" IgG1+ memory B cells and included clones with convergent BCRs across different individuals. Our findings indicate that CD23+IgG1+ memory B cells transcribing germline IGHE are a unique memory population containing precursors of high-affinity pathogenic IgE-producing cells that are likely to be involved in the long-term persistence of peanut allergy.
Collapse
Affiliation(s)
- Miyo Ota
- Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai (ISMMS); New York, NY 10029, USA
- Precision Immunology Institute (PrIISM), and Department of Immunology and Immunotherapy, ISMMS; New York, NY. 10029, USA
| | - Kenneth B. Hoehn
- Department of Pathology, Yale School of Medicine; New Haven, CT 06520, USA
| | - Weslley Fernandes-Braga
- Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai (ISMMS); New York, NY 10029, USA
- Precision Immunology Institute (PrIISM), and Department of Immunology and Immunotherapy, ISMMS; New York, NY. 10029, USA
| | - Takayuki Ota
- Department of Dermatology, Janssen Research & Development LLC; San Diego, CA 92121, USA
| | - Carlos J. Aranda
- Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai (ISMMS); New York, NY 10029, USA
- Precision Immunology Institute (PrIISM), and Department of Immunology and Immunotherapy, ISMMS; New York, NY. 10029, USA
| | - Sara Friedman
- Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai (ISMMS); New York, NY 10029, USA
- Precision Immunology Institute (PrIISM), and Department of Immunology and Immunotherapy, ISMMS; New York, NY. 10029, USA
| | - Mariana G.C. Miranda-Waldetario
- Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai (ISMMS); New York, NY 10029, USA
- Precision Immunology Institute (PrIISM), and Department of Immunology and Immunotherapy, ISMMS; New York, NY. 10029, USA
| | - Jamie Redes
- Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai (ISMMS); New York, NY 10029, USA
- Precision Immunology Institute (PrIISM), and Department of Immunology and Immunotherapy, ISMMS; New York, NY. 10029, USA
- Graduate School of Biomedical Sciences, ISMMS; New York, NY 10029, USA
| | - Maria Suprun
- Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai (ISMMS); New York, NY 10029, USA
| | - Galina Grishina
- Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai (ISMMS); New York, NY 10029, USA
| | - Hugh A. Sampson
- Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai (ISMMS); New York, NY 10029, USA
| | - Alefiyah Malbari
- Kravis Children’s Hospital, Department of Pediatrics, ISMMS; New York, NY 10029, USA
| | - Steven H. Kleinstein
- Department of Pathology, Yale School of Medicine; New Haven, CT 06520, USA
- Department of Immunobiology, Yale School of Medicine; New Haven, CT 06520, USA
- Program in Computational Biology & Bioinformatics, Yale University; New Haven, CT 06511, USA
| | - Scott H. Sicherer
- Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai (ISMMS); New York, NY 10029, USA
| | - Maria A. Curotto de Lafaille
- Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai (ISMMS); New York, NY 10029, USA
- Precision Immunology Institute (PrIISM), and Department of Immunology and Immunotherapy, ISMMS; New York, NY. 10029, USA
| |
Collapse
|
11
|
Storni F, Vogel M, Bachmann MF, Engeroff P. IgG in the control of FcεRI activation: a battle on multiple fronts. Front Immunol 2024; 14:1339171. [PMID: 38274816 PMCID: PMC10808611 DOI: 10.3389/fimmu.2023.1339171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
The rising global incidence of IgE-mediated allergic reactions poses a significant challenge to the quality of life of affected individuals and to healthcare systems, with current treatments being limited in effectiveness, safety, and disease-modifying capabilities. IgE acts by sensitizing the high-affinity IgE receptor FcεRI expressed by mast cells and basophils, tuning these cells for inflammatory degranulation in response to future allergen encounters. In recent years, IgG has emerged as an essential negative regulator of IgE-dependent allergic inflammation. Mechanistically, studies have proposed different pathways by which IgG can interfere with the activation of IgE-mediated inflammation. Here, we briefly summarize the major proposed mechanisms of action by which IgG controls the IgE-FcεRI inflammatory axis and how those mechanisms are currently applied as therapeutic interventions for IgE-mediated inflammation.
Collapse
Affiliation(s)
- Federico Storni
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Monique Vogel
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Rheumatology and Immunology, University Hospital Bern, Bern, Switzerland
| | - Martin F. Bachmann
- Department of BioMedical Research, University of Bern, Bern, Switzerland
- Department of Rheumatology and Immunology, University Hospital Bern, Bern, Switzerland
| | - Paul Engeroff
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Rheumatology and Immunology, University Hospital Bern, Bern, Switzerland
| |
Collapse
|
12
|
Lehmann PV, Liu Z, Becza N, Valente AV, Wang J, Kirchenbaum GA. Monitoring Memory B Cells by Next-Generation ImmunoSpot ® Provides Insights into Humoral Immunity that Measurements of Circulating Antibodies Do Not Reveal. Methods Mol Biol 2024; 2768:167-200. [PMID: 38502394 DOI: 10.1007/978-1-0716-3690-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Memory B cells (Bmem) provide the second wall of adaptive humoral host defense upon specific antigen rechallenge when the first wall, consisting of preformed antibodies originating from a preceding antibody response, fails. This is the case, as recently experienced with SARS-CoV-2 infections and previously with seasonal influenza, when levels of neutralizing antibodies decline or when variant viruses arise that evade such. While in these instances, reinfection can occur, in both scenarios, the rapid engagement of preexisting Bmem into the recall response can still confer immune protection. Bmem are known to play a critical role in host defense, yet their assessment has not become part of the standard immune monitoring repertoire. Here we describe a new generation of B cell ELISPOT/FluoroSpot (collectively ImmunoSpot®) approaches suited to dissect, at single-cell resolution, the Bmem repertoire ex vivo, revealing its immunoglobulin class/subclass utilization, and its affinity distribution for the original, and for variant viruses/antigens. Because such comprehensive B cell ImmunoSpot® tests can be performed with minimal cell material, are scalable, and robust, they promise to be well-suited for routine immune monitoring.
Collapse
Affiliation(s)
- Paul V Lehmann
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH, USA
| | - Zhigang Liu
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH, USA
| | - Noémi Becza
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH, USA
| | - Alexis V Valente
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH, USA
| | - Junbo Wang
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH, USA
| | - Greg A Kirchenbaum
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH, USA.
| |
Collapse
|
13
|
Loste A, Clément M, Delbosc S, Guedj K, Sénémaud J, Gaston AT, Morvan M, Even G, Gautier G, Eggel A, Arock M, Procopio E, Deschildre C, Louedec L, Michel JB, Deschamps L, Castier Y, Coscas R, Alsac JM, Launay P, Caligiuri G, Nicoletti A, Le Borgne M. Involvement of an IgE/Mast cell/B cell amplification loop in abdominal aortic aneurysm progression. PLoS One 2023; 18:e0295408. [PMID: 38055674 DOI: 10.1371/journal.pone.0295408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023] Open
Abstract
AIMS IgE type immunoglobulins and their specific effector cells, mast cells (MCs), are associated with abdominal aortic aneurysm (AAA) progression. In parallel, immunoglobulin-producing B cells, organised in tertiary lymphoid organs (TLOs) within the aortic wall, have also been linked to aneurysmal progression. We aimed at investigating the potential role and mechanism linking local MCs, TLO B cells, and IgE production in aneurysmal progression. METHODS AND RESULTS Through histological assays conducted on human surgical samples from AAA patients, we uncovered that activated MCs were enriched at sites of unhealed haematomas, due to subclinical aortic wall fissuring, in close proximity to adventitial IgE+ TLO B cells. Remarkably, in vitro the IgEs deriving from these samples enhanced MC production of IL-4, a cytokine which favors IgE class-switching and production by B cells. Finally, the role of MCs in aneurysmal progression was further analysed in vivo in ApoE-/- mice subjected to angiotensin II infusion aneurysm model, through MC-specific depletion after the establishment of dissecting aneurysms. MC-specific depletion improved intramural haematoma healing and reduced aneurysmal progression. CONCLUSIONS Our data suggest that MC located close to aortic wall fissures are activated by adventitial TLO B cell-produced IgEs and participate to their own activation by providing support for further IgE synthesis through IL-4 production. By preventing prompt repair of aortic subclinical fissures, such a runaway MC activation loop could precipitate aneurysmal progression, suggesting that MC-targeting treatments may represent an interesting adjunctive therapy for reducing AAA progression.
Collapse
Affiliation(s)
- Alexia Loste
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
| | - Marc Clément
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
| | - Sandrine Delbosc
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
| | - Kevin Guedj
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
| | - Jean Sénémaud
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
- Department of Vascular and Thoracic Surgery, AP-HP, Bichat Hospital, Université Paris Cité, Paris, France
| | - Anh-Thu Gaston
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
| | - Marion Morvan
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
| | - Guillaume Even
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
| | - Grégory Gautier
- DHU FIRE, Paris, France
- INSERM UMRS 1149, Centre de Recherche sur l'Inflammation (CRI), Université Paris Cité, Paris, France
| | - Alexander Eggel
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Michel Arock
- Department of Biology and CNRS UMR8113, Ecole Normale Supérieure de Paris-Saclay, Saclay, France
| | - Emanuele Procopio
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
| | - Catherine Deschildre
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
| | - Liliane Louedec
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
| | - Jean-Baptiste Michel
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
| | - Lydia Deschamps
- Department of Pathology, AP-HP, Bichat Hospital, Université Paris Cité, Paris, France
| | - Yves Castier
- INSERM UMRS 1149, Centre de Recherche sur l'Inflammation (CRI), Université Paris Cité, Paris, France
| | - Raphaël Coscas
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- Department of Vascular Surgery, AP-HP, Ambroise Paré University Hospital, Université Paris Cité, Boulogne-Billancourt, France
| | - Jean-Marc Alsac
- Department of Vascular Surgery, AP-HP, Hôpital Européen Georges Pompidou, Université Paris Cité, Paris, France
| | - Pierre Launay
- DHU FIRE, Paris, France
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Giuseppina Caligiuri
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
- Department of Cardiology, AP-HP, Bichat Hospital, Université Paris Cité, Paris, France
| | - Antonino Nicoletti
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
| | - Marie Le Borgne
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
| |
Collapse
|
14
|
Ding Z, Mulder J, Robinson MJ. The origins and longevity of IgE responses as indicated by serological and cellular studies in mice and humans. Allergy 2023; 78:3103-3117. [PMID: 37417548 PMCID: PMC10952832 DOI: 10.1111/all.15799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/02/2023] [Accepted: 06/16/2023] [Indexed: 07/08/2023]
Abstract
The existence of long-lived IgE antibody-secreting cells (ASC) is contentious, with the maintenance of sensitization by the continuous differentiation of short-lived IgE+ ASC a possibility. Here, we review the epidemiological profile of IgE production, and give an overview of recent discoveries made on the mechanisms regulating IgE production from mouse models. Together, these data suggest that for most individuals, in most IgE-associated diseases, IgE+ ASC are largely short-lived cells. A subpopulation of IgE+ ASC in humans is likely to survive for tens of months, although due to autonomous IgE B cell receptor (BCR) signaling and antigen-driven IgE+ ASC apoptosis, in general IgE+ ASC probably do not persist for the decades that other ASC are inferred to do. We also report on recently identified memory B cell transcriptional subtypes that are the likely source of IgE in ongoing responses, highlighting the probable importance of IL-4Rα in their regulation. We suggest the field should look at dupilumab and other drugs that prohibit IgE+ ASC production as being effective treatments for IgE-mediated aspects of disease in most individuals.
Collapse
Affiliation(s)
- Zhoujie Ding
- Department of ImmunologyMonash UniversityMelbourneVictoriaAustralia
| | - Jesse Mulder
- Department of ImmunologyMonash UniversityMelbourneVictoriaAustralia
| | | |
Collapse
|
15
|
Satitsuksanoa P, Iwasaki S, Boersma J, Bel Imam M, Schneider SR, Chang I, van de Veen W, Akdis M. B cells: The many facets of B cells in allergic diseases. J Allergy Clin Immunol 2023; 152:567-581. [PMID: 37247640 DOI: 10.1016/j.jaci.2023.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 03/30/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023]
Abstract
B cells play a key role in our immune system through their ability to produce antibodies, suppress a proinflammatory state, and contribute to central immune tolerance. We aim to provide an in-depth knowledge of the molecular biology of B cells, including their origin, developmental process, types and subsets, and functions. In allergic diseases, B cells are well known to induce and maintain immune tolerance through the production of suppressor cytokines such as IL-10. Similarly, B cells protect against viral infections such as severe acute respiratory syndrome coronavirus 2 that caused the recent coronavirus disease 2019 pandemic. Considering the unique and multifaceted functions of B cells, we hereby provide a comprehensive overview of the current knowledge of B-cell biology and its clinical applications in allergic diseases, organ transplantation, and cancer.
Collapse
Affiliation(s)
- Pattraporn Satitsuksanoa
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland.
| | - Sayuri Iwasaki
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Wageningen University & Research, Wageningen, The Netherlands
| | - Jolien Boersma
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Wageningen University & Research, Wageningen, The Netherlands
| | - Manal Bel Imam
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Stephan R Schneider
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Iris Chang
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Sean N. Parker Centre for Allergy and Asthma Research, Department of Medicine, Stanford University, Palo Alto, Calif
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland.
| |
Collapse
|
16
|
Pfützner W, Polakova A, Möbs C. We are memory: B-cell responses in allergy and tolerance. Eur J Immunol 2023; 53:e2048916. [PMID: 37098972 DOI: 10.1002/eji.202048916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/24/2023] [Accepted: 04/24/2023] [Indexed: 04/27/2023]
Abstract
The significance of B-cell memory in sustaining IgE-mediated allergies but also ensuring the development of long-term allergen tolerance has remained enigmatic. However, well-thought murine and human studies have begun to shed more light on this highly disputed subject. The present mini review highlights important aspects, like the involvement of IgG1 memory B cells, the meaning of low- or high-affinity IgE antibody production, the impact of allergen immunotherapy, or the relevance of local memory established by ectopic lymphoid structures. Based on recent findings, future investigations should lead to deeper knowledge and the development of improved therapies treating allergic individuals.
Collapse
Affiliation(s)
- Wolfgang Pfützner
- Clinical & Experimental Allergy, Department of Dermatology and Allergology, Philipps-Universität Marburg, University Hospital Marburg, Marburg, Germany
| | - Alexandra Polakova
- Clinical & Experimental Allergy, Department of Dermatology and Allergology, Philipps-Universität Marburg, University Hospital Marburg, Marburg, Germany
| | - Christian Möbs
- Clinical & Experimental Allergy, Department of Dermatology and Allergology, Philipps-Universität Marburg, University Hospital Marburg, Marburg, Germany
| |
Collapse
|
17
|
Braun C, Azzano P, Gingras-Lessard F, Roy É, Samaan K, Graham F, Paradis L, Des Roches A, Bégin P. Abatacept to induce remission of peanut allergy during oral immunotherapy (ATARI): protocol for a phase 2a randomized controlled trial. Front Med (Lausanne) 2023; 10:1198173. [PMID: 37448803 PMCID: PMC10336224 DOI: 10.3389/fmed.2023.1198173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/06/2023] [Indexed: 07/15/2023] Open
Abstract
Context While oral immunotherapy (OIT) has been shown to promote the remission of mild peanut allergy in young children, there is still an unmet need for a disease-modifying intervention for older patients and those with severe diseases. In mice models, abatacept, a cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) immunoglobulin fusion protein, has been shown to promote immune tolerance to food when used as an adjuvant to allergen immunotherapy. The goal of this study is to explore the potential efficacy of abatacept in promoting immune tolerance to food allergens during OIT in humans. Methods In this phase 2a proof-of-concept study (NCT04872218), 14 peanut-allergic participants aged from 14 to 55 years will be randomized at a 1:1 ratio to abatacept vs. placebo for the first 24 weeks of a peanut OIT treatment (target maintenance dose of 300 mg peanut protein). The primary outcome will be the suppression of the OIT-induced surge in peanut-specific IgE/total IgE at 24 weeks, relative to the baseline. Sustained unresponsiveness will be assessed as a secondary outcome starting at 36 weeks by observing incremental periods of peanut avoidance followed by oral food challenges. Discussion This is the first study assessing the use of abatacept as an adjuvant to allergen immunotherapy in humans. As observed in preclinical studies, the ability of abatacept to modulate the peanut-specific immune response during OIT will serve as a proxy outcome for the development of clinical tolerance, given the small sample size. The study will also test a new patient-oriented approach to sustained tolerance testing in randomized controlled trials.
Collapse
Affiliation(s)
- Camille Braun
- Department of Pediatrics, Section of Allergy and Clinical Immunology, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada
- Department of Pediatrics, Pneumology, Allergy, Cystic Fibrosis, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
- Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR 5308, Université Lyon 1, ENS de Lyon, Lyon, France
| | - Pauline Azzano
- Department of Pediatric Hepatogastroenterology and Nutrition, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| | - Florence Gingras-Lessard
- Department of Pediatrics, Section of Allergy and Clinical Immunology, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada
| | - Émilie Roy
- Department of Pediatrics, Section of Allergy and Clinical Immunology, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada
| | - Kathryn Samaan
- Department of Pediatrics, Section of Allergy and Clinical Immunology, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada
| | - François Graham
- Department of Pediatrics, Section of Allergy and Clinical Immunology, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada
- Department of Medicine, Section of Allergy and Clinical Immunology, Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Louis Paradis
- Department of Pediatrics, Section of Allergy and Clinical Immunology, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada
- Department of Medicine, Section of Allergy and Clinical Immunology, Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Anne Des Roches
- Department of Pediatrics, Section of Allergy and Clinical Immunology, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada
| | - Philippe Bégin
- Department of Pediatrics, Section of Allergy and Clinical Immunology, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada
- Department of Medicine, Section of Allergy and Clinical Immunology, Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
18
|
Monzó C, Gkioni L, Beyer A, Valenzano DR, Grönke S, Partridge L. Dietary restriction mitigates the age-associated decline in mouse B cell receptor repertoire diversity. Cell Rep 2023; 42:112722. [PMID: 37384530 PMCID: PMC10391628 DOI: 10.1016/j.celrep.2023.112722] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/07/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
Aging impairs the capacity to respond to novel antigens, reducing immune protection against pathogens and vaccine efficacy. Dietary restriction (DR) extends life- and health span in diverse animals. However, little is known about the capacity of DR to combat the decline in immune function. Here, we study the changes in B cell receptor (BCR) repertoire during aging in DR and control mice. By sequencing the variable region of the BCR heavy chain in the spleen, we show that DR preserves diversity and attenuates the increase in clonal expansions throughout aging. Remarkably, mice starting DR in mid-life have repertoire diversity and clonal expansion rates indistinguishable from chronic DR mice. In contrast, in the intestine, these traits are unaffected by either age or DR. Reduced within-individual B cell repertoire diversity and increased clonal expansions are correlated with higher morbidity, suggesting a potential contribution of B cell repertoire dynamics to health during aging.
Collapse
Affiliation(s)
- Carolina Monzó
- Department Biological Mechanisms of Ageing, Max Planck Institute for Biology of Ageing, 50931 Cologne, North Rhine Westphalia, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Age-Associated Diseases (CECAD), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50931 Cologne, Germany
| | - Lisonia Gkioni
- Department Biological Mechanisms of Ageing, Max Planck Institute for Biology of Ageing, 50931 Cologne, North Rhine Westphalia, Germany
| | - Andreas Beyer
- Cologne Excellence Cluster on Cellular Stress Responses in Age-Associated Diseases (CECAD), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50931 Cologne, Germany
| | - Dario Riccardo Valenzano
- Microbiome-Host Interactions in Ageing Group, Max Planck Institute for Biology of Ageing, 50931 Cologne, North Rhine Westphalia, Germany; Evolutionary Biology/Microbiome-Host Interactions in Aging Group: Fritz Lipmann Institute - Leibniz Institute on Aging, 07745 Jena, Thuringia, Germany.
| | - Sebastian Grönke
- Department Biological Mechanisms of Ageing, Max Planck Institute for Biology of Ageing, 50931 Cologne, North Rhine Westphalia, Germany.
| | - Linda Partridge
- Department Biological Mechanisms of Ageing, Max Planck Institute for Biology of Ageing, 50931 Cologne, North Rhine Westphalia, Germany; Genetics, Evolution & Environment Group, Institute of Healthy Ageing, University College London, London WC1E 6BT, UK.
| |
Collapse
|
19
|
Ling XJ, Wei JF, Zhu Y. Aiming to IgE: Drug development in allergic diseases. Int Immunopharmacol 2023; 121:110495. [PMID: 37348229 DOI: 10.1016/j.intimp.2023.110495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
The incidence of allergic disease significantly increases in recent decades, causing it become a major public health problem all over the world. The common allergic diseases such as allergic dermatitis, allergy rhinitis, allergic asthma and food allergy are mediated, at least in part, by immunoglobulin E (IgE), and so IgE acts as a central role in allergic diseases. IgE can interact with its high-affinity receptor (FcεRⅠ) which is primarily expressed on tissue-resident mast cells and circulating basophils, initiating intracellular signal transduction and then causing the activation and degranulation of mast cells and basophils. On the other hand, IgE interaction with its low-affinity receptor (CD23), can regulate various IgE-mediated immune responses including IgE-allergen complex presentation, IgE synthesis, the growth and differentiation of both B and T cells, and the secretion of pro-inflammatory mediators. With the deeper mechanism research for allergic diseases, new therapeutic strategies for interfering IgE are developed and receive a great attention. In this review, we summarize a current profile of therapeutic strategies for interfering IgE in allergic diseases. Besides, we suggest that targeting memory B cells (including long-lived plasma cells and (or) IgE+ memory B cells) may help to completely control allergic diseases, and highlight that the development of drugs synergistically aiming to multiple targets can be a better choice for improving treatment efficacy which results from allergic diseases as the systemic disorders caused by an impaired immune system.
Collapse
Affiliation(s)
- Xiao-Jing Ling
- Department of Pharmacy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Ji-Fu Wei
- Department of Pharmacy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.
| | - Ying Zhu
- Department of Blood Transfusion, Ganzhou Key Laboratory of Anesthesiology, Anesthesia and Surgery Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.
| |
Collapse
|
20
|
Gokhale S, Victor E, Tsai J, Spirollari E, Matracz B, Takatsuka S, Jung J, Kitamura D, Xie P. Upregulated Expression of the IL-9 Receptor on TRAF3-Deficient B Lymphocytes Confers Ig Isotype Switching Responsiveness to IL-9 in the Presence of Antigen Receptor Engagement and IL-4. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1059-1073. [PMID: 36883978 PMCID: PMC10073299 DOI: 10.4049/jimmunol.2200563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/06/2023] [Indexed: 03/09/2023]
Abstract
The pleiotropic cytokine IL-9 signals to target cells by binding to a heterodimeric receptor consisting of the unique subunit IL-9R and the common subunit γ-chain shared by multiple cytokines of the γ-chain family. In the current study, we found that the expression of IL-9R was strikingly upregulated in mouse naive follicular B cells genetically deficient in TNFR-associated factor 3 (TRAF3), a critical regulator of B cell survival and function. The highly upregulated IL-9R on Traf3-/- follicular B cells conferred responsiveness to IL-9, including IgM production and STAT3 phosphorylation. Interestingly, IL-9 significantly enhanced class switch recombination to IgG1 induced by BCR crosslinking plus IL-4 in Traf3-/- B cells, which was not observed in littermate control B cells. We further demonstrated that blocking the JAK-STAT3 signaling pathway abrogated the enhancing effect of IL-9 on class switch recombination to IgG1 induced by BCR crosslinking plus IL-4 in Traf3-/- B cells. Our study thus revealed, to our knowledge, a novel pathway that TRAF3 suppresses B cell activation and Ig isotype switching by inhibiting IL-9R-JAK-STAT3 signaling. Taken together, our findings provide (to our knowledge) new insights into the TRAF3-IL-9R axis in B cell function and have significant implications for the understanding and treatment of a variety of human diseases involving aberrant B cell activation such as autoimmune disorders.
Collapse
Affiliation(s)
- Samantha Gokhale
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, New Jersey 08854
| | - Eton Victor
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
| | - Jemmie Tsai
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
| | - Eris Spirollari
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
| | - Brygida Matracz
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
| | - Shogo Takatsuka
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Jaeyong Jung
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, New Jersey 08854
| | - Daisuke Kitamura
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Rutgers Cancer Institute of New Jersey
| |
Collapse
|
21
|
Aranda CJ, Gonzalez-Kozlova E, Saunders SP, Fernandes-Braga W, Ota M, Narayanan S, He JS, Del Duca E, Swaroop B, Gnjatic S, Shattner G, Reibman J, Soter NA, Guttman-Yassky E, Curotto de Lafaille MA. IgG memory B cells expressing IL4R and FCER2 are associated with atopic diseases. Allergy 2023; 78:752-766. [PMID: 36445014 PMCID: PMC9991991 DOI: 10.1111/all.15601] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/25/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Atopic diseases are characterized by IgE antibody responses that are dependent on cognate CD4 T cell help and T cell-produced IL-4 and IL-13. Current models of IgE cell differentiation point to the role of IgG memory B cells as precursors of pathogenic IgE plasma cells. The goal of this work was to identify intrinsic features of memory B cells that are associated with IgE production in atopic diseases. METHODS Peripheral blood B lymphocytes were collected from individuals with physician diagnosed asthma or atopic dermatitis (AD) and from non-atopic individuals. These samples were analyzed by spectral flow cytometry, single cell RNA sequencing (scRNAseq), and in vitro activation assays. RESULTS We identified a novel population of IgG memory B cells characterized by the expression of IL-4/IL-13 regulated genes FCER2/CD23, IL4R, IL13RA1, and IGHE, denoting a history of differentiation during type 2 immune responses. CD23+ IL4R+ IgG+ memory B cells had increased occurrence in individuals with atopic disease. Importantly, the frequency of CD23+ IL4R+ IgG+ memory B cells correlated with levels of circulating IgE. Consistently, in vitro stimulated B cells from atopic individuals generated more IgE+ cells than B cells from non-atopic subjects. CONCLUSIONS These findings suggest that CD23+ IL4R+ IgG+ memory B cells transcribing IGHE are potential precursors of IgE plasma cells and are linked to pathogenic IgE production.
Collapse
Affiliation(s)
- Carlos J Aranda
- Division of Allergy and Immunology, Department of Pediatrics, Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, New York, USA
- Precision Immunology Institute (PrIISM), ISMMS, New York, New York, USA
| | | | - Sean P Saunders
- Division of Pulmonary, Critical Care, and Sleep Medicine, New York University School of Medicine (NYUSM), New York, New York, USA
| | - Weslley Fernandes-Braga
- Division of Allergy and Immunology, Department of Pediatrics, Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, New York, USA
- Precision Immunology Institute (PrIISM), ISMMS, New York, New York, USA
| | - Miyo Ota
- Division of Allergy and Immunology, Department of Pediatrics, Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, New York, USA
- Precision Immunology Institute (PrIISM), ISMMS, New York, New York, USA
| | - Sriram Narayanan
- Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Jin-Shu He
- Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Ester Del Duca
- Department of Dermatology, ISMMS, New York, New York, USA
| | - Bose Swaroop
- Department of Dermatology, ISMMS, New York, New York, USA
| | - Sacha Gnjatic
- Precision Immunology Institute (PrIISM), ISMMS, New York, New York, USA
- Tisch Cancer Institute, ISMMS, New York, New York, USA
| | - Gail Shattner
- Division of Pulmonary, Critical Care, and Sleep Medicine, New York University School of Medicine (NYUSM), New York, New York, USA
| | - Joan Reibman
- Division of Pulmonary, Critical Care, and Sleep Medicine, New York University School of Medicine (NYUSM), New York, New York, USA
| | | | | | - Maria A Curotto de Lafaille
- Division of Allergy and Immunology, Department of Pediatrics, Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, New York, USA
- Precision Immunology Institute (PrIISM), ISMMS, New York, New York, USA
| |
Collapse
|
22
|
Ota M, Hoehn KB, Ota T, Aranda CJ, Friedman S, Braga WF, Malbari A, Kleinstein SH, Sicherer SH, Curotto de Lafaille MA. The memory of pathogenic IgE is contained within CD23 + IgG1 + memory B cells poised to switch to IgE in food allergy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525506. [PMID: 36747707 PMCID: PMC9900782 DOI: 10.1101/2023.01.25.525506] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Food allergy is caused by allergen-specific IgE antibodies but little is known about the B cell memory of persistent IgE responses. Here we describe in human pediatric peanut allergy CD23 + IgG1 + memory B cells arising in type 2 responses that contain peanut specific clones and generate IgE cells on activation. These 'type2-marked' IgG1 + memory B cells differentially express IL-4/IL-13 regulated genes FCER2 / CD23, IL4R , and germline IGHE and carry highly mutated B cell receptors (BCRs). Further, high affinity memory B cells specific for the main peanut allergen Ara h 2 mapped to the population of 'type2-marked' IgG1 + memory B cells and included convergent BCRs across different individuals. Our findings indicate that CD23 + IgG1 + memory B cells transcribing germline IGHE are a unique memory population containing precursors of pathogenic IgE. One-Sentence Summary We describe a unique population of IgG + memory B cells poised to switch to IgE that contains high affinity allergen-specific clones in peanut allergy.
Collapse
|
23
|
Chen S, Zhu B, Huang S, Hickey JW, Lin KZ, Snyder M, Greenleaf WJ, Nolan GP, Zhang NR, Ma Z. Integration of spatial and single-cell data across modalities with weak linkage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523851. [PMID: 36711792 PMCID: PMC9882150 DOI: 10.1101/2023.01.12.523851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
single-cell sequencing methods have enabled the profiling of multiple types of molecular readouts at cellular resolution, and recent developments in spatial barcoding, in situ hybridization, and in situ sequencing allow such molecular readouts to retain their spatial context. Since no technology can provide complete characterization across all layers of biological modalities within the same cell, there is pervasive need for computational cross-modal integration (also called diagonal integration) of single-cell and spatial omics data. For current methods, the feasibility of cross-modal integration relies on the existence of highly correlated, a priori "linked" features. When such linked features are few or uninformative, a scenario that we call "weak linkage", existing methods fail. We developed MaxFuse, a cross-modal data integration method that, through iterative co-embedding, data smoothing, and cell matching, leverages all information in each modality to obtain high-quality integration. MaxFuse is modality-agnostic and, through comprehensive benchmarks on single-cell and spatial ground-truth multiome datasets, demonstrates high robustness and accuracy in the weak linkage scenario. A prototypical example of weak linkage is the integration of spatial proteomic data with single-cell sequencing data. On two example analyses of this type, we demonstrate how MaxFuse enables the spatial consolidation of proteomic, transcriptomic and epigenomic information at single-cell resolution on the same tissue section.
Collapse
|
24
|
Allergenic food protein consumption is associated with systemic IgG antibody responses in non-allergic individuals. Immunity 2022; 55:2454-2469.e6. [PMID: 36473469 DOI: 10.1016/j.immuni.2022.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/01/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022]
Abstract
Although food-directed immunoglobulin E (IgE) has been studied in the context of allergies, the prevalence and magnitude of IgG responses against dietary antigens are incompletely characterized in the general population. Here, we measured IgG binding against food and environmental antigens obtained from allergen databases and the immune epitope database (IEDB), represented in a phage displayed library of 58,233 peptides. By profiling blood samples of a large cohort representing the average adult Israeli population (n = 1,003), we showed that many food antigens elicited systemic IgG in up to 50% of individuals. Dietary intake of specific food protein correlated with antibody binding, suggesting that diet can shape the IgG epitope repertoire. Our work documents abundant systemic IgG responses against food antigens and provides a reference map of the exact immunogenic epitopes on a population scale, laying the foundation to unravel the role of food- and environmental antigen-directed antibody binding in disease contexts.
Collapse
|
25
|
Pinto LM, Chiricozzi A, Calabrese L, Mannino M, Peris K. Novel Therapeutic Strategies in the Topical Treatment of Atopic Dermatitis. Pharmaceutics 2022; 14:2767. [PMID: 36559261 PMCID: PMC9788207 DOI: 10.3390/pharmaceutics14122767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Topical agents that are currently available for the treatment of atopic dermatitis may represent a valid approach in the management of mild or mild-moderate cases, whereas they are often supplemented with systemic therapies for handling more complex or unresponsive cases. The most used compounds include topical corticosteroids and calcineurin inhibitors, although their use might be burdened by side effects, poor response, and low patient compliance. Consequently, new innovative drugs with higher efficacy and safety both in the short and long term need to be integrated into clinical practice. A deeper understanding of the complex pathogenesis of the disease has led to identifying new therapeutic targets and to the development of innovative therapeutics. This narrative review aims to collect data on selected promising topical drugs that are in an advanced stage of development.
Collapse
Affiliation(s)
- Lorenzo Maria Pinto
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli—IRCCS, 00168 Rome, Italy
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Andrea Chiricozzi
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli—IRCCS, 00168 Rome, Italy
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Laura Calabrese
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli—IRCCS, 00168 Rome, Italy
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Mannino
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli—IRCCS, 00168 Rome, Italy
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ketty Peris
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli—IRCCS, 00168 Rome, Italy
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
26
|
Targeting CD22 on memory B cells to induce tolerance to peanut allergens. J Allergy Clin Immunol 2022; 150:1476-1485.e4. [PMID: 35839842 PMCID: PMC9813968 DOI: 10.1016/j.jaci.2022.06.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 06/13/2022] [Accepted: 06/30/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Circulating IgE and subsequent severe allergic reactions to peanut are sustained and propagated by recall of peanut allergen-specific memory B cells. OBJECTIVES This study aimed to determine whether targeting mouse and human CD22 on peanut-specific memory B cells induces tolerance to peanut allergens. METHODS Siglec-engaging tolerance-inducing antigenic liposomes (STALs) codisplaying peanut allergens (Ara h 1, Ara h 2, or Ara h 3) and high-affinity CD22 ligand (CD22L-STALs) were employed in various mouse models (BALB/cJ, C57BL/6, human CD22 transgenic, and NSG) of peanut allergy. To investigate memory B cells, a conferred memory model was used in which splenocytes from peanut-sensitized mice were transferred into naive animals. Reconstituted mice received either CD22L-STALs or an immunogenic liposome control, followed by a peanut allergen boost and later a challenge with individual peanut allergens. To assess the effects of CD22L-STALs on human B cells, PBMCs were injected into NSG mice, followed by administration of human CD22L-STALs (hCD22L-STALs) and later a whole peanut extract boost. Blood was collected to quantify WPE- and Ara h 1-, 2-, and 3-specific immunoglobulins. RESULTS Mouse CD22L-STALs (mCD22L-STALs) significantly suppressed systemic memory to Ara h 1, Ara h 2, and Ara h 3 in BALB/cJ and C57BL/6 mice, as demonstrated by reduced allergen-specific IgE, IgG1, and anaphylaxis on challenge. Importantly, 2 doses of mCD22L-STALs led to prolonged tolerance for at least 3 months. hCD22L-STALs displayed similar suppression in mice expressing human CD22 on B cells. Finally, human B cells were tolerized in vivo in NSG mice by hCD22L-STALs. CONCLUSIONS Antigen-specific exploitation of CD22 on memory B cells can induce systemic immune tolerance.
Collapse
|
27
|
Chen Q, Xie M, Liu H, Dent AL. Development of allergen-specific IgE in a food-allergy model requires precisely timed B cell stimulation and is inhibited by Fgl2. Cell Rep 2022; 39:110990. [PMID: 35767958 PMCID: PMC9271337 DOI: 10.1016/j.celrep.2022.110990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/12/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022] Open
Abstract
Immunoglobulin E (IgE) responses are a central feature of allergic disease. Using a well-established food-allergy model in mice, we show that two sensitizations with cognate B cell antigen (Ag) and adjuvant 7 days apart promotes optimal development of IgE+ germinal center (GC) B cells and high-affinity IgE production. Intervals of 3 or 14 days between Ag sensitizations lead to loss of IgE+ GC B cells and an undetectable IgE response. The immunosuppressive factors Fgl2 and CD39 are down-regulated in T follicular helper (TFH) cells under optimal IgE-sensitization conditions. Deletion of Fgl2 in TFH and T follicular regulatory (TFR) cells, but not from TFR cells alone, increase Ag-specific IgE levels and IgE-mediated anaphylactic responses. Overall, we find that Ag-specific IgE responses require precisely timed stimulation of IgE+ GC B cells by Ag. Furthermore, we show that Fgl2 is expressed by TFH cells and represses IgE. This work has implications for the development and treatment of food allergies. Using a mouse food-allergy model, Chen et al. find that allergen-specific IgE responses require precisely timed stimulation of IgE+ germinal center B cells. The authors further show that Fgl2 expressed by T follicular helper cells represses IgE. This work has implications for the development and treatment of food allergy.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Markus Xie
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hong Liu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alexander L Dent
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
28
|
Hsiao KC, Ponsonby AL, Ashley S, Lee CYY, Jindal L, Tang MLK. Longitudinal antibody responses to peanut following probiotic and peanut oral immunotherapy (PPOIT) in children with peanut allergy. Clin Exp Allergy 2022; 52:735-746. [PMID: 35403286 DOI: 10.1111/cea.14146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 04/02/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Probiotic and Peanut Oral Immunotherapy (PPOIT) is effective at inducing sustained unresponsiveness (SU) at end-of-treatment and this effect persists up to four years post-treatment, referred to as persistent SU. We sought to evaluate (i) how PPOIT altered peanut-specific humoral immune indices, and (ii) how such longitudinal indices relate to persistent SU. METHODS Longitudinal serum/plasma levels of whole peanut- and peanut component- (Ara-h1, -h2, -h3, -h8, -h9) specific-IgE (sIgE) and specific-IgG4 (sIgG4) antibodies were measured by ImmunoCAP and salivary peanut-specific-IgA (sIgA) by ELISA in children (n=62) enrolled in the PPOIT-001 randomised trial from baseline (T0) to 4-years post-treatment (T5). Multivariate regression analyses of log-transformed values were used for point-in-time between group comparisons. Generalised estimating equations (GEE) were used for longitudinal comparisons between groups. RESULTS PPOIT was associated with changes in sIgE and sIgG4 over time. sIgE levels were significantly reduced post-treatment [T5, PPOIT v.s. Placebo ratio of geometric mean (GM): Ara-h1 0.07, p=0.008; Ara-h2 0.08, p=0.007; Ara-h3 0.15, p=0.021]. sIgG4 levels were significantly increased by end-of-treatment (T1, PPOIT v.s. Placebo ratio of GM: Ara-h1 3.77, p=0.011; Ara-h2 17.97, p<0.001; Ara-h3 10.42, p<0.001) but levels in PPOIT group decreased once treatment was stopped and returned to levels comparable with Placebo group by T5. Similarly, salivary peanut sIgA increased during treatment, as early as 4 months of treatment (PPOIT v.s. Placebo, ratio of GM: 2.04, p=0.014), then reduced post-treatment. CONCLUSION PPOIT was associated with broad reduction in peanut specific humoral responses which may mediate the clinical effects of SU that persists to 4-years post-treatment.
Collapse
Affiliation(s)
- Kuang-Chih Hsiao
- Department of Immunology, Starship Children's Hospital, Auckland, New Zealand
- Department of Paediatrics, University of Auckland, Auckland, New Zealand
- Allergy Immunology Research, Murdoch Childrens Research Institute, Melbourne, Australia
| | - Anne-Louise Ponsonby
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
- Murdoch Children's Research Institute, Melbourne, Australia
| | - Sarah Ashley
- Allergy Immunology Research, Murdoch Childrens Research Institute, Melbourne, Australia
| | | | | | - Mimi L K Tang
- Allergy Immunology Research, Murdoch Childrens Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Royal Children's Hospital, Melbourne, Australia
| |
Collapse
|
29
|
Lee SE, Rudd BD, Smith NL. Fate-mapping mice: new tools and technology for immune discovery. Trends Immunol 2022; 43:195-209. [PMID: 35094945 PMCID: PMC8882138 DOI: 10.1016/j.it.2022.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/20/2022]
Abstract
The fate-mapping mouse has become an essential tool in the immunologist's toolbox. Although traditionally used by developmental biologists to trace the origins of cells, immunologists are turning to fate-mapping to better understand the development and function of immune cells. Thus, an expansion in the variety of fate-mapping mouse models has occurred to answer fundamental questions about the immune system. These models are also being combined with new genetic tools to study cancer, infection, and autoimmunity. In this review, we summarize different types of fate-mapping mice and describe emerging technologies that might allow immunologists to leverage this valuable tool and expand our functional knowledge of the immune system.
Collapse
Affiliation(s)
- Scarlett E Lee
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14850, USA
| | - Brian D Rudd
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14850, USA
| | - Norah L Smith
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
30
|
Hellkvist L, Hjalmarsson E, Weinfeld D, Dahl Å, Karlsson A, Westman M, Lundkvist K, Winqvist O, Georén SK, Westin U, Cardell LO. High-dose pollen intralymphatic immunotherapy: Two RDBPC trials question the benefit of dose increase. Allergy 2022; 77:883-896. [PMID: 34379802 DOI: 10.1111/all.15042] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/19/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND The same dosing schedule, 1000 SQ-U times three, with one-month intervals, have been evaluated in most trials of intralymphatic immunotherapy (ILIT) for the treatment of allergic rhinitis (AR). The present studies evaluated if a dose escalation in ILIT can enhance the clinical and immunological effects, without compromising safety. METHODS Two randomized double-blind placebo-controlled trials of ILIT for grass pollen-induced AR were performed. The first included 29 patients that had recently ended 3 years of SCIT and the second contained 39 not previously vaccinated patients. An up-dosage of 1000-3000-10,000 (5000 + 5000 with 30 minutes apart) SQ-U with 1 month in between was evaluated. RESULTS Doses up to 10,000 SQ-U were safe after recent SCIT. The combined symptom-medication scores (CSMS) were reduced by 31% and the grass-specific IgG4 levels in blood were doubled. In ILIT de novo, the two first patients that received active treatment developed serious adverse reactions at 5000 SQ-U. A modified up-dosing schedule; 1000-3000-3000 SQ-U appeared to be safe but failed to improve the CSMS. Flow cytometry analyses showed increased activation of lymph node-derived dendritic but not T cells. Quality of life and nasal provocation response did not improve in any study. CONCLUSION Intralymphatic immunotherapy in high doses after SCIT appears to further reduce grass pollen-induced seasonal symptoms and may be considered as an add-on treatment for patients that do not reach full symptom control after SCIT. Up-dosing schedules de novo with three monthly injections that exceeds 3000 SQ-U should be avoided.
Collapse
Affiliation(s)
- Laila Hellkvist
- Division of ENT Diseases Department of Clinical Sciences, Intervention and Technology Karolinska Institutet Stockholm Sweden
- Department of ENT Diseases Karolinska University Hospital Stockholm Sweden
| | - Eric Hjalmarsson
- Division of ENT Diseases Department of Clinical Sciences, Intervention and Technology Karolinska Institutet Stockholm Sweden
| | - Dan Weinfeld
- Asthma and Allergy Clinic Outpatient Unit (adults) Department of Internal Medicine South Alvsborgs Central Hospital Boras Sweden
| | - Åslög Dahl
- Departments of Biological and Environmental Sciences Gothenburg University Gothenburg Sweden
| | - Agneta Karlsson
- Division of ENT Diseases Department of Clinical Sciences, Intervention and Technology Karolinska Institutet Stockholm Sweden
- Department of ENT Diseases Karolinska University Hospital Stockholm Sweden
| | - Marit Westman
- Immunology and Allergy Unit Department of Medicine Solna Karolinska Institutet Stockholm Sweden
| | - Karin Lundkvist
- Division of ENT Diseases Department of Clinical Sciences, Intervention and Technology Karolinska Institutet Stockholm Sweden
| | | | - Susanna Kumlien Georén
- Division of ENT Diseases Department of Clinical Sciences, Intervention and Technology Karolinska Institutet Stockholm Sweden
| | - Ulla Westin
- Laboratory of Clinical and Experimental Allergy Research Department of Otorhinolaryngology Malmö Lund University Skåne University Hospital Malmö Sweden
| | - Lars Olaf Cardell
- Division of ENT Diseases Department of Clinical Sciences, Intervention and Technology Karolinska Institutet Stockholm Sweden
- Department of ENT Diseases Karolinska University Hospital Stockholm Sweden
| |
Collapse
|
31
|
Yang MT, Hwa SY, Liu FC, Lin TC. Novel mechanism of B cell-mediated anaphylaxis after spinal anesthesia with bupivacaine. Kaohsiung J Med Sci 2022; 38:496-497. [PMID: 35199945 DOI: 10.1002/kjm2.12521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/24/2022] [Accepted: 02/09/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Meng-Ta Yang
- Department of Anesthesiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Division of Anesthesiology, Hualien Armed Forces General Hospital, Hualien, Taiwan
| | - Su-Yang Hwa
- Department of Orthopedic, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Feng-Cheng Liu
- Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tso-Chou Lin
- Department of Anesthesiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
32
|
Wisgrill L, Fyhrquist N, Ndika J, Paalanen L, Berger A, Laatikainen T, Karisola P, Haahtela T, Alenius H. Bet v 1 triggers antiviral-type immune signaling in birch pollen allergic individuals. Clin Exp Allergy 2022; 52:929-941. [PMID: 35147263 PMCID: PMC9540660 DOI: 10.1111/cea.14108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/22/2022] [Accepted: 02/06/2022] [Indexed: 11/28/2022]
Abstract
Background In allergic patients, clinical symptoms caused by pollen remind of symptoms triggered by viral respiratory infections, which are also the main cause of asthmatic exacerbations. In patients sensitized to birch pollen, Bet v 1 is the major symptom‐causing allergen. Immune mechanisms driving Bet v 1‐related responses of human blood cells have not been fully characterized. Objective To characterize the immune response to Bet v 1 in peripheral blood in patients allergic to birch pollen. Methods The peripheral blood mononuclear cells of birch‐allergic (n = 24) and non‐allergic (n = 47) adolescents were stimulated ex‐vivo followed by transcriptomic profiling. Systems‐biology approaches were employed to decipher disease‐relevant gene networks and deconvolution of associated cell populations. Results Solely in birch‐allergic patients, co‐expression analysis revealed activation of networks of innate immunity and antiviral signalling as the immediate response to Bet v 1 stimulation. Toll‐like receptors and signal transducer transcription were the main drivers of gene expression patterns. Macrophages and dendritic cells were the main cell subsets responding to Bet v 1. Conclusions and clinical relevance In birch‐pollen‐allergic patients, the activated innate immune networks seem to be, in part, the same as those activated during viral infections. This tendency of the immune system to read pollens as viruses may provide new insight to allergy prevention and treatment.
Collapse
Affiliation(s)
- Lukas Wisgrill
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria.,Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nanna Fyhrquist
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Human microbiome research program (HUMI), Medicum, University of Helsinki, Helsinki, Finland
| | - Joseph Ndika
- Human microbiome research program (HUMI), Medicum, University of Helsinki, Helsinki, Finland
| | - Laura Paalanen
- National Institute for Health and Welfare, Helsinki, Finland; Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Angelika Berger
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Tiina Laatikainen
- National Institute for Health and Welfare, Helsinki, Finland; Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Piia Karisola
- Human microbiome research program (HUMI), Medicum, University of Helsinki, Helsinki, Finland
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Harri Alenius
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Human microbiome research program (HUMI), Medicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|
33
|
Mullins E, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, George Firbank L, Guerche P, Hejatko J, Naegeli H, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Fernandez Dumont A, Moreno FJ. Scientific Opinion on development needs for the allergenicity and protein safety assessment of food and feed products derived from biotechnology. EFSA J 2022; 20:e07044. [PMID: 35106091 PMCID: PMC8787593 DOI: 10.2903/j.efsa.2022.7044] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This Scientific Opinion addresses the formulation of specific development needs, including research requirements for allergenicity assessment and protein safety, in general, which is urgently needed in a world that demands more sustainable food systems. Current allergenicity risk assessment strategies are based on the principles and guidelines of the Codex Alimentarius for the safety assessment of foods derived from 'modern' biotechnology initially published in 2003. The core approach for the safety assessment is based on a 'weight-of-evidence' approach because no single piece of information or experimental method provides sufficient evidence to predict allergenicity. Although the Codex Alimentarius and EFSA guidance documents successfully addressed allergenicity assessments of single/stacked event GM applications, experience gained and new developments in the field call for a modernisation of some key elements of the risk assessment. These should include the consideration of clinical relevance, route of exposure and potential threshold values of food allergens, the update of in silico tools used with more targeted databases and better integration and standardisation of test materials and in vitro/in vivo protocols. Furthermore, more complex future products will likely challenge the overall practical implementation of current guidelines, which were mainly targeted to assess a few newly expressed proteins. Therefore, it is timely to review and clarify the main purpose of the allergenicity risk assessment and the vital role it plays in protecting consumers' health. A roadmap to (re)define the allergenicity safety objectives and risk assessment needs will be required to inform a series of key questions for risk assessors and risk managers such as 'what is the purpose of the allergenicity risk assessment?' or 'what level of confidence is necessary for the predictions?'.
Collapse
|
34
|
Pointner LN, Ferreira F, Aglas L. B Cell Functions in the Development of Type I Allergy and Induction of Immune Tolerance. Handb Exp Pharmacol 2022; 268:249-264. [PMID: 34196808 DOI: 10.1007/164_2021_479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
B cells are key players in the mechanisms underlying allergic sensitization, allergic reactions, and tolerance to allergens. Allergen-specific immune responses are initiated when peptide:MHCII complexes on dendritic cells are recognized by antigen-specific receptors on T cells followed by interactions between costimulatory molecules on the surfaces of B and T cells. In the presence of IL-4, such T-B cell interactions result in clonal expansion and isotype class-switching to IgE in B cells, which will further differentiate into either memory B cells or PCs. Allergic reactions are then triggered upon cross-linking of IgE-FcɛRI complexes on basophils and mast cells, leading to cell degranulation and the release of pro-inflammatory mediators.Mechanisms underlying effective allergen-specific immunotherapy (AIT) involve the induction of Tregs and the secretion of blocking IgG4 antibodies, which together mediate the onset and maintenance of immune tolerance towards non-hazardous environmental antigens. However, the importance of regulatory B cells (Breg) for tolerance induction during AIT has gained more attention lately. Studies in grass pollen- and house dust mite-allergic patients undergoing SCIT reported increased frequencies of IL-10+ Breg cells and a positive correlation between their number and the improvement of clinical symptoms. Thus, Breg are emerging as biomarkers for monitoring tolerance to allergens under natural exposure conditions and during AIT. Further research on the role of other anti-inflammatory cytokines secreted by Breg will help to understand their role in disease development and tolerance induction.
Collapse
Affiliation(s)
| | - Fatima Ferreira
- Biosciences Department, University of Salzburg, Salzburg, Austria.
| | - Lorenz Aglas
- Biosciences Department, University of Salzburg, Salzburg, Austria
| |
Collapse
|
35
|
Restimulia L, Ilyas S, Munir D, Putra A, Madiadipoera T, Farhat F, Sembiring RJ, Ichwan M, Amalina ND, Alif I. The CD4+CD25+FoxP3+ Regulatory T Cells Regulated by MSCs Suppress Plasma Cells in a Mouse Model of Allergic Rhinitis. Med Arch 2021; 75:256-261. [PMID: 34759444 PMCID: PMC8563054 DOI: 10.5455/medarh.2021.75.256-261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/30/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Allergic Rhinitis (AR) is the most common immunological disease that has been associated with inflammatory responses and is characterized by sneezing. Previous studies found that AR's allergen exposure significantly induces plasma cells and reduces regulatory T (Treg) cells, a population that contributes to control AR. Therefore, upregulating Treg expression can regulate plasma cells leading to inhibit sneezing in AR. Mesenchymal stem cells (MSCs) are multipotent stem cells that have the immunoregulatory and antiinflammation ability by secreting various cytokines including IL-10 and TGF-β which potent as a promising therapeutic modality for allergic airway diseases, including AR. Objective: To investigate the role of MSCs in generating CD4+, CD25+, and Foxp3+ Regulatory T cells associated with suppressing plasma cell in AR model. Methods: In this study, fifteen male Wistar rats (6 to 8 weeks old) were randomly divided into three groups (control group, sham group, and MSCs treatment group). OVA nasal challenge was conducted daily from day 15 to 21, and MSCs (1x106) were administrated intraperitoneally to OVA-sensitized rats on day 21. Sneezing was observed from day 22 to 28. The rats were sacrificed on day 22 and day 28. The expression of CD4+ CD25+ Foxp3+ in Treg and plasma cells was analyzed by flow cytometry assay. Results: This study showed that the percentage of plasma cell and sneezing times significantly decreased in MSCs treatment. This finding was aligned with the significant increase of CD4+CD25+Foxp3+ Treg level. Conclusion: MSCs administration suppress plasma cells population and sneezing times by up regulating Treg to control AR.
Collapse
Affiliation(s)
- Lia Restimulia
- Departement of Doctoral Degree Program, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia.,Departement of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Syafruddin Ilyas
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
| | - Delfitri Munir
- Departement of Doctoral Degree Program, faculty of medicine, universitas sumatera utara, Medan, Indonesia.,Departement of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Medan, Indonesia.,Pusat Unggulan Inovasi (PUI) Stem Cell, Universitas Sumatera Utara (USU), Medan, Indonesia
| | - Agung Putra
- Stem Cell and Cancer Research (SCCR), Medical Faculty, Sultan Agung Islamic University (UNISSULA), Semarang, Indonesia.,Department of Pathology, Medical Faculty, Sultan Agung Islamic University (UNISSULA), Semarang, Indonesia.,Department of Postgraduate Biomedical Science, Medical Faculty, Sultan Agung Islamic University (UNISSULA), Semarang, Indonesia
| | - Teti Madiadipoera
- Departement of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Universitas Padjadjaran/Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Farhat Farhat
- Departement of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Rosita Juwita Sembiring
- Departement of Doctoral Degree Program, faculty of medicine, universitas sumatera utara, Medan, Indonesia
| | - Muhammad Ichwan
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Nur Dina Amalina
- Stem Cell and Cancer Research (SCCR), Medical Faculty, Sultan Agung Islamic University (UNISSULA), Semarang, Indonesia.,Pharmacy Study Program, Faculty of Mathematics and Natural Sciences, Universitas Negeri Semarang, Semarang, Indonesia
| | - Iffan Alif
- Stem Cell and Cancer Research (SCCR), Medical Faculty, Sultan Agung Islamic University (UNISSULA), Semarang, Indonesia
| |
Collapse
|
36
|
van Zelm MC, McKenzie CI, Varese N, Rolland JM, O’Hehir RE. Advances in allergen-specific immune cell measurements for improved detection of allergic sensitization and immunotherapy responses. Allergy 2021; 76:3374-3382. [PMID: 34355403 DOI: 10.1111/all.15036] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/02/2021] [Indexed: 01/10/2023]
Abstract
Over the past two decades, precision medicine has advanced diagnostics and treatment of allergic diseases. Component-resolved analysis of allergen sensitization facilitates stratification of patients. Furthermore, new formulations of allergen immunotherapy (AIT) products can more effectively deliver the relevant components. Molecular insights from the identification of allergen component sensitization and clinical outcomes of treatment with new AIT formulations can now be utilized for a deeper understanding of the nature of the pathogenic immune response in allergy and how this can be corrected by AIT. Fundamental in these processes are the allergen-specific B and T cells. Within the large B- and T-cell compartments, only those that specifically recognize the allergen with their immunoglobulin (Ig) or T-cell receptor (TCR), respectively, are of clinical relevance. With peripheral blood allergen-specific B- and T-cell frequencies below 1%, bulk cell analysis is typically insufficiently sensitive. We here review the latest technologies to detect allergen-specific B and T cells, as well as new developments in utilizing these tools for diagnostics and therapy monitoring to advance precision medicine for allergic diseases.
Collapse
Affiliation(s)
- Menno C. van Zelm
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia
- Department of Allergy, Immunology and Respiratory Medicine Central Clinical School Monash University, and Alfred Hospital Melbourne VIC Australia
| | - Craig I. McKenzie
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia
| | - Nirupama Varese
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia
- Department of Allergy, Immunology and Respiratory Medicine Central Clinical School Monash University, and Alfred Hospital Melbourne VIC Australia
| | - Jennifer M. Rolland
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia
- Department of Allergy, Immunology and Respiratory Medicine Central Clinical School Monash University, and Alfred Hospital Melbourne VIC Australia
| | - Robyn E. O’Hehir
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia
- Department of Allergy, Immunology and Respiratory Medicine Central Clinical School Monash University, and Alfred Hospital Melbourne VIC Australia
| |
Collapse
|
37
|
Chen G, Shrock EL, Li MZ, Spergel JM, Nadeau KC, Pongracic JA, Umetsu DT, Rachid R, MacGinnitie AJ, Phipatanakul W, Schneider L, Oettgen HC, Elledge SJ. High-resolution epitope mapping by AllerScan reveals relationships between IgE and IgG repertoires during peanut oral immunotherapy. CELL REPORTS MEDICINE 2021; 2:100410. [PMID: 34755130 PMCID: PMC8563412 DOI: 10.1016/j.xcrm.2021.100410] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/18/2021] [Accepted: 09/21/2021] [Indexed: 10/24/2022]
Abstract
Peanut allergy can result in life-threatening reactions and is a major public health concern. Oral immunotherapy (OIT) induces desensitization to food allergens through administration of increasing amounts of allergen. To dissect peanut-specific immunoglobulin E (IgE) and IgG responses in subjects undergoing OIT, we have developed AllerScan, a method that leverages phage-display and next-generation sequencing to identify the epitope targets of peanut-specific antibodies. We observe a striking diversification and boosting of the peanut-specific IgG repertoire after OIT and a reduction in pre-existing IgE levels against individual epitopes. High-resolution epitope mapping reveals shared recognition of public epitopes in Ara h 1, 2, 3, and 7. In individual subjects, OIT-induced IgG specificities overlap extensively with IgE and exhibit strikingly similar antibody footprints, suggesting related clonal lineages or convergent evolution of peanut-specific IgE and IgG B cells. Individual differences in epitope recognition identified via AllerScan could inform safer and more effective personalized immunotherapy.
Collapse
Affiliation(s)
- Genghao Chen
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA.,Program in Biological and Biomedical Sciences, Harvard University, Cambridge, MA 02115, USA
| | - Ellen L Shrock
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA.,Program in Biological and Biomedical Sciences, Harvard University, Cambridge, MA 02115, USA
| | - Mamie Z Li
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jonathan M Spergel
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine of University of Pennsylvania, Philadelphia, PA, USA
| | - Kari C Nadeau
- Department of Medicine, Sean N Parker Center for Allergy and Asthma Research, Stanford University, Palo Alto, CA, USA
| | - Jacqueline A Pongracic
- Division of Pediatric Allergy and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Dale T Umetsu
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Rima Rachid
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew J MacGinnitie
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Wanda Phipatanakul
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Lynda Schneider
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Hans C Oettgen
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Stephen J Elledge
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA
| |
Collapse
|
38
|
Komlósi ZI, van de Veen W, Kovács N, Szűcs G, Sokolowska M, O'Mahony L, Akdis M, Akdis CA. Cellular and molecular mechanisms of allergic asthma. Mol Aspects Med 2021; 85:100995. [PMID: 34364680 DOI: 10.1016/j.mam.2021.100995] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/21/2022]
Abstract
Asthma is a chronic disease of the airways, which affects more than 350 million people worldwide. It is the most common chronic disease in children, affecting at least 30 million children and young adults in Europe. Asthma is a complex, partially heritable disease with a marked heterogeneity. Its development is influenced both by genetic and environmental factors. The most common, as well as the most well characterized subtype of asthma is allergic eosinophilic asthma, which is characterized by a type 2 airway inflammation. The prevalence of asthma has substantially increased in industrialized countries during the last 60 years. The mechanisms underpinning this phenomenon are incompletely understood, however increased exposure to various environmental pollutants probably plays a role. Disease inception is thought to be enabled by a disadvantageous shift in the balance between protective and harmful lifestyle and environmental factors, including exposure to protective commensal microbes versus infection with pathogens, collectively leading to airway epithelial cell damage and disrupted barrier integrity. Epithelial cell-derived cytokines are one of the main drivers of the type 2 immune response against innocuous allergens, ultimately leading to infiltration of lung tissue with type 2 T helper (TH2) cells, type 2 innate lymphoid cells (ILC2s), M2 macrophages and eosinophils. This review outlines the mechanisms responsible for the orchestration of type 2 inflammation and summarizes the novel findings, including but not limited to dysregulated epithelial barrier integrity, alarmin release and innate lymphoid cell stimulation.
Collapse
Affiliation(s)
- Zsolt I Komlósi
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, 1089, Budapest, Hungary.
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Nóra Kovács
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, 1089, Budapest, Hungary; Lung Health Hospital, Munkácsy Mihály Str. 70, 2045, Törökbálint, Hungary
| | - Gergő Szűcs
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, 1089, Budapest, Hungary; Department of Pulmonology, Semmelweis University, Tömő Str. 25-29, 1083, Budapest, Hungary
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Liam O'Mahony
- Department of Medicine and School of Microbiology, APC Microbiome Ireland, University College Cork, Ireland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| |
Collapse
|
39
|
Michailidou D, Schwartz DM, Mustelin T, Hughes GC. Allergic Aspects of IgG4-Related Disease: Implications for Pathogenesis and Therapy. Front Immunol 2021; 12:693192. [PMID: 34305927 PMCID: PMC8292787 DOI: 10.3389/fimmu.2021.693192] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/03/2021] [Indexed: 01/05/2023] Open
Abstract
IgG4-related disease (IgG4-RD) is a rare systemic fibroinflammatory disease frequently associated with allergy. The pathogenesis of IgG4-RD is poorly understood, and effective therapies are limited. However, IgG4-RD appears to involve some of the same pathogenic mechanisms observed in allergic disease, such as T helper 2 (Th2) and regulatory T cell (Treg) activation, IgG4 and IgE hypersecretion, and blood/tissue eosinophilia. In addition, IgG4-RD tissue fibrosis appears to involve activation of basophils and mast cells and their release of alarmins and cytokines. In this article, we review allergy-like features of IgG4-RD and highlight targeted therapies for allergy that have potential in treating patients with IgG4-RD.
Collapse
Affiliation(s)
- Despina Michailidou
- Division of Rheumatology, University of Washington, Seattle, WA, United States
| | - Daniella Muallem Schwartz
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Tomas Mustelin
- Division of Rheumatology, University of Washington, Seattle, WA, United States
| | - Grant C. Hughes
- Division of Rheumatology, University of Washington, Seattle, WA, United States
| |
Collapse
|
40
|
Kader HA, Azeem M, Jwayed SA, Al-Shehhi A, Tabassum A, Ayoub MA, Hetta HF, Waheed Y, Iratni R, Al-Dhaheri A, Muhammad K. Current Insights into Immunology and Novel Therapeutics of Atopic Dermatitis. Cells 2021; 10:cells10061392. [PMID: 34200009 PMCID: PMC8226506 DOI: 10.3390/cells10061392] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
Atopic dermatitis (AD) is one of the most prevalent inflammatory disease among non-fatal skin diseases, affecting up to one fifth of the population in developed countries. AD is characterized by recurrent pruritic and localized eczema with seasonal fluctuations. AD initializes the phenomenon of atopic march, during which infant AD patients are predisposed to progressive secondary allergies such as allergic rhinitis, asthma, and food allergies. The pathophysiology of AD is complex; onset of the disease is caused by several factors, including strong genetic predisposition, disrupted epidermal barrier, and immune dysregulation. AD was initially characterized by defects in the innate immune system and a vigorous skewed adaptive Th2 response to environmental agents; there are compelling evidences that the disorder involves multiple immune pathways. Symptomatic palliative treatment is the only strategy to manage the disease and restore skin integrity. Researchers are trying to more precisely define the contribution of different AD genotypes and elucidate the role of various immune axes. In this review, we have summarized the current knowledge about the roles of innate and adaptive immune responsive cells in AD. In addition, current and novel treatment strategies for the management of AD are comprehensively described, including some ongoing clinical trials and promising therapeutic agents. This information will provide an asset towards identifying personalized targets for better therapeutic outcomes.
Collapse
Affiliation(s)
- Hidaya A. Kader
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates; (H.A.K.); (S.A.J.); (A.A.-S.); (M.A.A.); (R.I.)
| | - Muhammad Azeem
- Department of Pathology, University of Würzburg, 97080 Würzburg, Germany;
| | - Suhib A. Jwayed
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates; (H.A.K.); (S.A.J.); (A.A.-S.); (M.A.A.); (R.I.)
| | - Aaesha Al-Shehhi
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates; (H.A.K.); (S.A.J.); (A.A.-S.); (M.A.A.); (R.I.)
| | - Attia Tabassum
- Department of Dermatology, Mayo Hospital, Lahore 54000, Pakistan;
| | - Mohammed Akli Ayoub
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates; (H.A.K.); (S.A.J.); (A.A.-S.); (M.A.A.); (R.I.)
| | - Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Yasir Waheed
- Foundation University Medical College, Foundation University Islamabad, Islamabad 44000, Pakistan;
| | - Rabah Iratni
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates; (H.A.K.); (S.A.J.); (A.A.-S.); (M.A.A.); (R.I.)
| | - Ahmed Al-Dhaheri
- Department of Dermatology, Tawam Hospital, Al Ain 15551, United Arab Emirates;
| | - Khalid Muhammad
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates; (H.A.K.); (S.A.J.); (A.A.-S.); (M.A.A.); (R.I.)
- Correspondence:
| |
Collapse
|
41
|
Satitsuksanoa P, Daanje M, Akdis M, Boyd SD, Veen W. Biology and dynamics of B cells in the context of IgE-mediated food allergy. Allergy 2021; 76:1707-1717. [PMID: 33274454 DOI: 10.1111/all.14684] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/09/2020] [Accepted: 11/28/2020] [Indexed: 12/16/2022]
Abstract
An increasing number of people suffer from IgE-mediated food allergies. The immunological mechanisms that cause IgE-mediated food allergy have been extensively studied. B cells play a key role in the development of IgE-mediated food allergies through the production of allergen-specific antibodies. While this particular function of B cells has been known for many years, we still do not fully understand the mechanisms that regulate the induction and maintenance of allergen-specific IgE production. It is still not fully understood where in the body IgE class switch recombination of food allergen-specific B cells occurs, and what processes are involved in the immunological memory of allergen-specific IgE responses. B cells can also contribute to the regulation of allergen-specific immune responses through other mechanisms such as antigen presentation and cytokine production. Recent technological advances have enabled highly detailed analysis of small subsets of B cells down to the single-cell level. In this review, we provide an overview of the current knowledge on the biology of B cells in relation to IgE-mediated food allergies.
Collapse
Affiliation(s)
| | - Monique Daanje
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Scott D. Boyd
- Sean N. Parker Center for Allergy and Asthma Research Stanford University School of Medicine Stanford CA USA
- Department of Pathology Stanford University School of Medicine Stanford CA USA
| | - Willem Veen
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| |
Collapse
|
42
|
Haniuda K, Kitamura D. Multi-faceted regulation of IgE production and humoral memory formation. Allergol Int 2021; 70:163-168. [PMID: 33288436 DOI: 10.1016/j.alit.2020.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 11/12/2020] [Indexed: 12/14/2022] Open
Abstract
IgE antibodies play a protective role against parasites and environmental toxins by its strong effector functions. However, aberrant IgE production can contribute to the development of allergic disorders, and thus is tightly regulated. Beside its very short half-life, IgE is normally produced only transiently and its affinity maturation is limited under physiological immune responses. Although such distinct characteristics of IgE among Ig classes are well-known, the underlying molecular mechanisms have not been understood until recently. Somatic or genetic defects of such mechanisms can lead to pathogenesis of allergic diseases. In this review, we summarize recent advances in our understanding of the mechanisms that control the production of IgE and formation of IgE-type humoral memory, focusing on the B cell immune responses.
Collapse
Affiliation(s)
- Kei Haniuda
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Chiba, Japan.
| | - Daisuke Kitamura
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Chiba, Japan
| |
Collapse
|
43
|
Lee YS, Zhang H, Jiang Y, Kadalayil L, Karmaus W, Ewart SL, H Arshad S, Holloway JW. Epigenome-scale comparison of DNA methylation between blood leukocytes and bronchial epithelial cells. Epigenomics 2021; 13:485-498. [PMID: 33736458 DOI: 10.2217/epi-2020-0384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: Agreement in DNA methylation (DNAm) at the genome scale between blood leukocytes (BL) and bronchial epithelial cells (BEC) is unknown. We examine as to what extent DNAm in BL is comparable with that in BEC and serves as a surrogate for BEC. Materials & methods: Overall agreement (paired t-tests with false discovery rate adjusted p > 0.05) and consistency (Pearson's correlation coefficients >0.5) between two tissues, at each of the 767,412 CpGs, were evaluated. Results: We identified 247,721 CpGs showing overall agreement and 47,371 CpGs showing consistency in DNAm. Identified CpGs are involved in certain immune pathways, indicating the potential of using blood as a biomarker for BEC at those CpGs in lower airway-related diseases. Conclusion: CpGs showing overall agreement and those without overall agreement are distributed differently on the genome.
Collapse
Affiliation(s)
- Yu-Sheng Lee
- Division of Epidemiology, Biostatistics, & Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, & Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA
| | - Yu Jiang
- Division of Epidemiology, Biostatistics, & Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA
| | - Latha Kadalayil
- Human Development & Health, Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics, & Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA
| | - Susan L Ewart
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Syed H Arshad
- David Hide Asthma & Allergy Research Centre, St Mary's Hospital, Newport, Isle of Wight, UK.,Clinical & Experimental Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - John W Holloway
- Human Development & Health, Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
44
|
Neeland MR, Andorf S, Dang TD, McWilliam VL, Perrett KP, Koplin JJ, Saffery R. Altered immune cell profiles and impaired CD4 T-cell activation in single and multi-food allergic adolescents. Clin Exp Allergy 2021; 51:674-684. [PMID: 33626189 DOI: 10.1111/cea.13857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Approximately 5% of adolescents have a food allergy, with peanut and tree nut allergies the most common. Having two or more food allergies in adolescence also doubles the risk of any adverse food reaction, and is associated with increased dietary and social burden. Investigations of immune function in persistently food allergic children are rare. OBJECTIVE In the present study, we aimed to investigate the immune mechanisms that underlie food allergy in adolescence. METHODS We used high-dimensional flow cytometry, unsupervised computational analysis and functional studies to comprehensively phenotype a range of non-antigen-specific immune parameters in a group of well-characterized adolescents with clinically defined single peanut allergy, multi-food allergy and aged-matched non-food allergic controls. RESULTS We show that food allergic adolescents have higher circulating proportions of dendritic cells (p = .0084, FDR-adjusted p = .087, median in no FA: 0.63% live cells, in FA: 0.93%), and higher frequency of activated, memory-like Tregs relative to non-food allergic adolescents (p = .011, FDR-adjusted p = .087, median in no FA: 0.49% live cells, in FA: 0.65%). Cytokine profiling revealed that CD3/CD28 stimulated naïve CD4 T cells from food allergic adolescents produced less IL-6 (p = .0020, FDR-adjusted p = .018, median log2 fold change [stimulated/unstimulated] in no FA: 3.03, in FA: 1.92) and TNFα (p = .0044, FDR-adjusted p = .020, median in no FA: 9.16, in FA: 8.64) and may secrete less IFNγ (p = .035, FDR-adjusted p = .11, median in no FA: 6.29, in FA: 5.67) than naïve CD4 T cells from non-food allergic controls. No differences between clinical groups were observed for LPS-stimulated monocyte secretion of cytokines. CONCLUSIONS These results have important implications for understanding the evolution of the immune response in food allergy throughout childhood, revealing that dendritic cell and T-cell signatures previously identified in early life may persist through to adolescence.
Collapse
Affiliation(s)
- Melanie R Neeland
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Vic, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Vic, Australia
| | - Sandra Andorf
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Divisions of Biomedical Informatics and Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Thanh D Dang
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Vic, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Vic, Australia
| | - Vicki L McWilliam
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Vic, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Vic, Australia
| | - Kirsten P Perrett
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Vic, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Vic, Australia.,Department of Allergy and Immunology, Royal Children's Hospital, Melbourne, Vic, Australia
| | - Jennifer J Koplin
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Vic, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Vic, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Vic, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Vic, Australia
| |
Collapse
|
45
|
Bugya Z, Prechl J, Szénási T, Nemes É, Bácsi A, Koncz G. Multiple Levels of Immunological Memory and Their Association with Vaccination. Vaccines (Basel) 2021; 9:174. [PMID: 33669597 PMCID: PMC7922266 DOI: 10.3390/vaccines9020174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/25/2022] Open
Abstract
Immunological memory is divided into many levels to counteract the provocations of diverse and ever-changing infections. Fast functions of effector memory and the superposition of both quantitatively and qualitatively plastic anticipatory memory responses together form the walls of protection against pathogens. Here we provide an overview of the role of different B and T cell subsets and their interplay, the parallel and independent functions of the B1, marginal zone B cells, T-independent- and T-dependent B cell responses, as well as functions of central and effector memory T cells, tissue-resident and follicular helper T cells in the memory responses. Age-related limitations in the immunological memory of these cell types in neonates and the elderly are also discussed. We review how certain aspects of immunological memory and the interactions of components can affect the efficacy of vaccines, in order to link our knowledge of immunological memory with the practical application of vaccination.
Collapse
Affiliation(s)
- Zsófia Bugya
- Department of Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (Z.B.); (T.S.); (A.B.)
| | - József Prechl
- R&D Laboratory, Diagnosticum Zrt, H-1047 Budapest, Hungary;
| | - Tibor Szénási
- Department of Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (Z.B.); (T.S.); (A.B.)
| | - Éva Nemes
- Clinical Center, Department of Pediatrics, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Attila Bácsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (Z.B.); (T.S.); (A.B.)
| | - Gábor Koncz
- Department of Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (Z.B.); (T.S.); (A.B.)
| |
Collapse
|
46
|
Czolk R, Klueber J, Sørensen M, Wilmes P, Codreanu-Morel F, Skov PS, Hilger C, Bindslev-Jensen C, Ollert M, Kuehn A. IgE-Mediated Peanut Allergy: Current and Novel Predictive Biomarkers for Clinical Phenotypes Using Multi-Omics Approaches. Front Immunol 2021; 11:594350. [PMID: 33584660 PMCID: PMC7876438 DOI: 10.3389/fimmu.2020.594350] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/11/2020] [Indexed: 01/22/2023] Open
Abstract
Food allergy is a collective term for several immune-mediated responses to food. IgE-mediated food allergy is the best-known subtype. The patients present with a marked diversity of clinical profiles including symptomatic manifestations, threshold reactivity and reaction kinetics. In-vitro predictors of these clinical phenotypes are evasive and considered as knowledge gaps in food allergy diagnosis and risk management. Peanut allergy is a relevant disease model where pioneer discoveries were made in diagnosis, immunotherapy and prevention. This review provides an overview on the immune basis for phenotype variations in peanut-allergic individuals, in the light of future patient stratification along emerging omic-areas. Beyond specific IgE-signatures and basophil reactivity profiles with established correlation to clinical outcome, allergenomics, mass spectrometric resolution of peripheral allergen tracing, might be a fundamental approach to understand disease pathophysiology underlying biomarker discovery. Deep immune phenotyping is thought to reveal differential cell responses but also, gene expression and gene methylation profiles (eg, peanut severity genes) are promising areas for biomarker research. Finally, the study of microbiome-host interactions with a focus on the immune system modulation might hold the key to understand tissue-specific responses and symptoms. The immune mechanism underlying acute food-allergic events remains elusive until today. Deciphering this immunological response shall enable to identify novel biomarker for stratification of patients into reaction endotypes. The availability of powerful multi-omics technologies, together with integrated data analysis, network-based approaches and unbiased machine learning holds out the prospect of providing clinically useful biomarkers or biomarker signatures being predictive for reaction phenotypes.
Collapse
Affiliation(s)
- Rebecca Czolk
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Julia Klueber
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Martin Sørensen
- Department of Pediatric and Adolescent Medicine, University Hospital of North Norway, Tromsø, Norway
- Pediatric Research Group, Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Françoise Codreanu-Morel
- Department of Allergology and Immunology, Centre Hospitalier de Luxembourg-Kanner Klinik, Luxembourg, Luxembourg
| | - Per Stahl Skov
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
- RefLab ApS, Copenhagen, Denmark
- Institute of Immunology, National University of Copenhagen, Copenhagen, Denmark
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Carsten Bindslev-Jensen
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
47
|
SoRelle ED, Dai J, Bonglack EN, Heckenberg EM, Zhou JY, Giamberardino SN, Bailey JA, Gregory SG, Chan C, Luftig MA. Single-cell RNA-seq reveals transcriptomic heterogeneity mediated by host-pathogen dynamics in lymphoblastoid cell lines. eLife 2021; 10:62586. [PMID: 33501914 PMCID: PMC7867410 DOI: 10.7554/elife.62586] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
Lymphoblastoid cell lines (LCLs) are generated by transforming primary B cells with Epstein–Barr virus (EBV) and are used extensively as model systems in viral oncology, immunology, and human genetics research. In this study, we characterized single-cell transcriptomic profiles of five LCLs and present a simple discrete-time simulation to explore the influence of stochasticity on LCL clonal evolution. Single-cell RNA sequencing (scRNA-seq) revealed substantial phenotypic heterogeneity within and across LCLs with respect to immunoglobulin isotype; virus-modulated host pathways involved in survival, activation, and differentiation; viral replication state; and oxidative stress. This heterogeneity is likely attributable to intrinsic variance in primary B cells and host–pathogen dynamics. Stochastic simulations demonstrate that initial primary cell heterogeneity, random sampling, time in culture, and even mild differences in phenotype-specific fitness can contribute substantially to dynamic diversity in populations of nominally clonal cells.
Collapse
Affiliation(s)
- Elliott D SoRelle
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University School of Medicine, Durham, United States.,Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, United States
| | - Joanne Dai
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University School of Medicine, Durham, United States
| | - Emmanuela N Bonglack
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University School of Medicine, Durham, United States.,Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, United States
| | - Emma M Heckenberg
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University School of Medicine, Durham, United States
| | - Jeffrey Y Zhou
- Department of Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Stephanie N Giamberardino
- Duke Molecular Physiology Institute and Department of Neurology, Duke University School of Medicine, Durham, United States
| | - Jeffrey A Bailey
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, United States
| | - Simon G Gregory
- Duke Molecular Physiology Institute and Department of Neurology, Duke University School of Medicine, Durham, United States
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, United States
| | - Micah A Luftig
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University School of Medicine, Durham, United States
| |
Collapse
|
48
|
Nguyen-Contant P, Embong AK, Topham DJ, Sangster MY. Analysis of Antigen-Specific Human Memory B Cell Populations Based on In Vitro Polyclonal Stimulation. CURRENT PROTOCOLS IN IMMUNOLOGY 2020; 131:e109. [PMID: 33017091 PMCID: PMC7647051 DOI: 10.1002/cpim.109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Antigen-specific memory B cell (MBC) populations mediate the rapid, strong, and high-affinity secondary antibody responses that play a key role in combating infection and generating protective responses to vaccination. Recently, cell staining with fluorochrome-labeled antigens together with sequencing methods such as Drop-seq and CITE-seq have provided information on the specificity, phenotype, and transcriptome of single MBCs. However, characterization of MBCs at the level of antigen-reactive populations remains an important tool for assessing an individual's B cell immunity and responses to antigen exposure. This is readily performed using a long-established method based on in vitro polyclonal stimulation of MBCs to induce division and differentiation into antibody-secreting cells (ASCs). Post-stimulation antigen-specific measurement of the MBC-derived ASCs (or the secreted antibodies) indicates the size of precursor MBC populations. Additional information about the character of antigen-reactive MBC populations is provided by analysis of MBC-derived antibodies of particular specificities for binding avidity and functionality. This article outlines a simple and reliable strategy for efficient in vitro MBC stimulation and use of the ELISpot assay as a post-stimulation readout to determine the size of antigen-specific MBC populations. Other applications of the in vitro stimulation technique for MBC analysis are discussed. The following protocols are included. © 2020 Wiley Periodicals LLC Basic Protocol 1: Polyclonal stimulation of memory B cells using unfractionated PBMCs Alternate Protocol: Stimulation of small PBMC numbers using 96-well plates with U-bottom wells Basic Protocol 2: ELISpot assay for enumeration of memory B cell-derived antibody-secreting cells.
Collapse
Affiliation(s)
- Phuong Nguyen-Contant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - A. Karim Embong
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - David J. Topham
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Mark Y. Sangster
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
49
|
Guntern P, Eggel A. Past, present, and future of anti-IgE biologics. Allergy 2020; 75:2491-2502. [PMID: 32249957 DOI: 10.1111/all.14308] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/09/2020] [Accepted: 03/28/2020] [Indexed: 12/31/2022]
Abstract
About 20 years after the identification of immunoglobulin E (IgE) and its key role in allergic hypersensitivity reactions against normally harmless substances, scientists have started inventing strategies to block its pathophysiological activity in 1986. The initial concept of specific IgE targeting through the use of anti-IgE antibodies has gained a lot of momentum and within a few years independent research groups have reported successful generation of first murine monoclonal anti-IgE antibodies. Subsequent generation of optimized chimeric and humanized versions of these antibodies has paved the way for the development of therapeutic anti-IgE biologicals as we know them today. With omalizumab, there is currently still only one therapeutic anti-IgE antibody approved for the treatment of allergic conditions. Since its application is limited to the treatment of moderate-to-severe persistent asthma and chronic spontaneous urticaria, major efforts have been undertaken to develop alternative anti-IgE biologicals that could potentially be used in a broader spectrum of allergic diseases. Several new drug candidates have been generated and are currently assessed in pre-clinical studies or clinical trials. In this review, we highlight the molecular properties of past and present anti-IgE biologicals and suggest concepts that might improve treatment efficacy of future drug candidates.
Collapse
Affiliation(s)
- Pascal Guntern
- Graduate School of Cellular and Biomedical Sciences University of Bern Bern Switzerland
- Department of BioMedical Research University of Bern Bern Switzerland
- Department of Rheumatology, Immunology and Allergology University Hospital Bern Bern Switzerland
| | - Alexander Eggel
- Department of BioMedical Research University of Bern Bern Switzerland
- Department of Rheumatology, Immunology and Allergology University Hospital Bern Bern Switzerland
| |
Collapse
|
50
|
Janssen E, Tohme M, Butts J, Giguere S, Sage PT, Velázquez FE, Kam C, Milin E, Das M, Sobh A, Al-Tamemi S, Luscinskas FW, Batista F, Geha RS. DOCK8 is essential for LFA-1-dependent positioning of T follicular helper cells in germinal centers. JCI Insight 2020; 5:134508. [PMID: 32573493 DOI: 10.1172/jci.insight.134508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 06/18/2020] [Indexed: 01/07/2023] Open
Abstract
T follicular helper (Tfh) cell migration into germinal centers (GCs) is essential for the generation of GC B cells and antibody responses to T cell-dependent (TD) antigens. This process requires interactions between lymphocyte function-associated antigen 1 (LFA-1) on Tfh cells and ICAMs on B cells. The mechanisms underlying defective antibody responses to TD antigens in DOCK8 deficiency are incompletely understood. We show that mice selectively lacking DOCK8 in T cells had impaired IgG antibody responses to TD antigens, decreased GC size, and reduced numbers of GC B cells. However, they developed normal numbers of Tfh cells with intact capacity for driving B cell differentiation into a GC phenotype in vitro. Notably, migration of DOCK8-deficient T cells into GCs was defective. Following T cell receptor (TCR)/CD3 ligation, DOCK8-deficient T cells had impaired LFA-1 activation and reduced binding to ICAM-1. Our results therefore indicate that DOCK8 is important for LFA-1-dependent positioning of Tfh cells in GCs, and thereby the generation of GC B cells and IgG antibody responses to TD antigen.
Collapse
Affiliation(s)
- Erin Janssen
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Mira Tohme
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jordan Butts
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Sophie Giguere
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard Medical School, Cambridge, Massachusetts, USA
| | - Peter T Sage
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Francisco E Velázquez
- Center for Excellence in Vascular Biology, Brigham and Women's Hospital, Departments of Pathology and Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Christy Kam
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Elena Milin
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Mrinmoy Das
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ali Sobh
- Department of Pediatrics, Mansoura University Children's Hospital, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | | - Francis W Luscinskas
- Center for Excellence in Vascular Biology, Brigham and Women's Hospital, Departments of Pathology and Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Facundo Batista
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard Medical School, Cambridge, Massachusetts, USA
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|