1
|
Jamali Z, Razipour M, Zargar M, Ghasemnejad-Berenji H, Akrami SM. Ovarian cancer extracellular vesicle biomarkers. Clin Chim Acta 2025; 565:120011. [PMID: 39437983 DOI: 10.1016/j.cca.2024.120011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Ovarian cancer (OC) remains a significant women's health concern due to its high mortality rate and the challenges posed by late detection. Exploring novel biomarkers could lead to earlier, more specific diagnoses and improved survival rates for OC patients. This review focuses on biomarkers associated with extracellular vesicles (EVs) found in various proximal fluids, including urine, ascites, utero-tubal lavage fluid of OC patients. We highlight these proximal fluids as rich sources of potential biomarkers. The review explains the roles of EV biomarkers in ovarian cancer progression and discusses EV-related proteins and miRNAs as potential diagnostic or prognostic indicators and therapeutic targets. Finally, we highlighted the limitations of examining proximal fluids as sources of biomarkers and encourage researchers to proactively pursue innovative solutions to overcome these challenges.
Collapse
Affiliation(s)
- Zeinab Jamali
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Razipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Zargar
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Seyed Mohammad Akrami
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Chmiel J, Kurpas D, Stępień-Słodkowska M. The Potential of Transcranial Direct Current Stimulation (tDCS) in Improving Quality of Life in Patients with Multiple Sclerosis: A Review and Discussion of Mechanisms of Action. J Clin Med 2025; 14:373. [PMID: 39860377 PMCID: PMC11766291 DOI: 10.3390/jcm14020373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Multiple sclerosis (MS) is the most prevalent incurable nontraumatic neurological disability in young individuals. It causes numerous symptoms, including tingling, fatigue, muscle spasms, cognitive deficits, and neuropsychiatric disorders. This disease significantly worsens quality of life (QoL), and this dimension of general functioning provides valuable information about the effectiveness of treatment and well-being. There are psychological interventions that can improve QoL, but their number is limited. Therefore, searching for new methods that are as effective and safe as possible is ongoing. Methods: This review examines the potential effectiveness of transcranial direct current stimulation (tDCS) in improving the quality of life in patients with MS. Searches were conducted in the PubMed/Medline, Research Gate, and Cochrane databases. Results: The search yielded seven studies in which QoL was a primary or secondary outcome. Stimulation protocols displayed heterogeneity, especially concerning the choice of the stimulation site. Four studies demonstrated the effectiveness of tDCS in improving QoL, all of which (two) used anodal stimulation of the left DLPFC. Stimulation of the motor cortex has produced mixed results. The potential mechanisms of action of tDCS in improving QoL in MS are explained. These include improved synaptic plasticity, increased cerebral blood flow, salience network engagement through tDCS, and reduction of beta-amyloid deposition. The limitations are also detailed, and recommendations for future research are made. Conclusions: While the evidence is limited, tDCS has shown potential to improve QoL in MS patients in some studies. Prefrontal stimulation appears promising, and further research is recommended to explore this approach.
Collapse
Affiliation(s)
- James Chmiel
- Faculty of Physical Culture and Health, Institute of Physical Culture Sciences, University of Szczecin, Al. Piastów 40B Block 6, 71-065 Szczecin, Poland
| | - Donata Kurpas
- Department of Family and Pediatric Nursing, Faculty of Health Sciences, Wrocław Medical University, 51-618 Wrocław, Poland;
| | - Marta Stępień-Słodkowska
- Faculty of Physical Culture and Health, Institute of Physical Culture Sciences, University of Szczecin, Al. Piastów 40B Block 6, 71-065 Szczecin, Poland
| |
Collapse
|
3
|
Föhr J, Prümmer JK, Maiolini A, Marti E, Jelcic I, Vidondo B, Ziegler M, Bathen‐Nöthen A, Tipold A, Volk HA, Stein VM. Cerebrospinal fluid-specific oligoclonal bands in dogs with idiopathic epilepsy. J Vet Intern Med 2025; 39:e17265. [PMID: 39715535 PMCID: PMC11666169 DOI: 10.1111/jvim.17265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 11/14/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND In dogs with idiopathic epilepsy (IE), 33% develop resistance to conventional anti-seizure medication (ASM) despite adequate treatment. In human medicine, an immune-mediated etiology is suspected in a subset of ASM-resistant patients with epilepsy and cerebrospinal fluid (CSF)-specific immunoglobulin G (IgG)-type oligoclonal bands (OCBs) have been detected. In dogs, cases of autoimmune encephalitis recently were reported. Neuroinflammation may provide an additional explanation for the lack of response of certain dogs with IE to ASM. HYPOTHESIS Cerebrospinal fluid-specific OCBs are found in a subgroup of dogs with ASM-resistant IE. ANIMALS Eighty-four dogs with IE were recruited from 3 referral centers and classified based on their response to ASM treatment (responsive, n = 56; resistant, n = 28). METHODS Detection of OCBs was performed using isoelectric focusing (IEF) followed by immunoblotting. Associations of CSF-specific OCBs with seizure type, severity, and response to ASM were calculated using logistic regression models. RESULTS The overall frequency of CSF-specific OCBs in dogs with IE was 15.5% (95% confidence interval [CI], 8.5%-25%). In dogs with ASM-resistant IE, 21.4% (6/28) had CSF-specific OCBs compared with only 12.5% (7/56) in those responsive to ASM, but no evidence of an association was detected (odds ratio, 1.9; 95% CI, 0.57-6.35; P = .29). CONCLUSIONS AND CLINICAL IMPORTANCE Cerebrospinal fluid-specific OCBs were detected in a subgroup of dogs with IE. This finding could indicate that intrathecal IgG synthesis as a sign of neuroinflammation may play a role in disease pathogenesis.
Collapse
Affiliation(s)
- Junwei Föhr
- Division of Clinical Neurology, Vetsuisse FacultyUniversity of BernBernSwitzerland
| | - Julia K. Prümmer
- Division of Clinical Neurology, Vetsuisse FacultyUniversity of BernBernSwitzerland
| | - Arianna Maiolini
- Division of Clinical Neurology, Vetsuisse FacultyUniversity of BernBernSwitzerland
| | - Eliane Marti
- Division of Neurological Sciences, Vetsuisse FacultyUniversity of BernBernSwitzerland
| | - Ilijas Jelcic
- Department of NeurologyUniversity of ZurichZurichSwitzerland
| | - Beatriz Vidondo
- Department of Clinical Research and Public Health, Vetsuisse FacultyUniversity of BernBernSwitzerland
| | - Mario Ziegler
- Department of NeurologyUniversity of ZurichZurichSwitzerland
| | | | - Andrea Tipold
- Department of Small Animal Medicine and SurgeryUniversity of Veterinary Medicine HannoverHannoverGermany
| | - Holger A. Volk
- Department of Small Animal Medicine and SurgeryUniversity of Veterinary Medicine HannoverHannoverGermany
| | - Veronika M. Stein
- Division of Clinical Neurology, Vetsuisse FacultyUniversity of BernBernSwitzerland
| |
Collapse
|
4
|
Shen MH. Utility of Oligoclonal Band Testing in Differentiating Immune-Mediated From Infectious Central Nervous System Disorders. J Craniofac Surg 2024:00001665-990000000-02281. [PMID: 39693629 DOI: 10.1097/scs.0000000000011014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024] Open
Abstract
OBJECTIVE This study aimed to evaluate the clinical utility of oligoclonal bands (OCB) in differentiating between immune and infectious diseases of the central nervous system (CNS). METHODS The study enrolled patients hospitalized with suspected autoimmune or infectious CNS disorders between 2021 and 2023. Patients were categorized into diagnostic groups: multiple sclerosis (MS), neuromyelitis optica spectrum disorders (NMOSD), autoimmune encephalitis (AE), and viral encephalitis (VE). Relevant clinical and laboratory data were collected and subjected to comparative analysis. RESULTS Comparative analysis among the 4 groups revealed that the immunoglobulin G (IgG) index of patients in the MS group was significantly higher than that of patients in the NMOSD and VE groups (P < 0.05). The 24-hour intrathecal synthesis rate of IgG also differed significantly between the MS and NMOSD groups, the NMOSD and AE groups, as well as the AE and VE groups (P < 0.05). The positive rate of OCB was significantly higher in the MS group than in the other 3 groups (P < 0.05). Functional abilities, measured by scores of the Modified Rankin Scale (mRS) and the Expanded Disability Status Scale (EDSS), were higher in the immune group than in the infection group at 1-week, 1-month, 6-month, and 1-year post-treatment. Among patients with immune diseases, those who were OCB-positive showed significantly smaller ΔmRS and ΔEDSS at 1-month, 6-month, and 1-year post-treatment compared with patients who were OCB-negative (P < 0.05). CONCLUSION The IgG index and 24-hour intrathecal synthesis rate of IgG served as valuable early indicators for distinguishing between CNS immune and infectious diseases. Positive OCB findings were more common in patients with MS and often associated with poor prognosis and increased risk of disease recurrence.
Collapse
Affiliation(s)
- Min-Hui Shen
- Department of Neurology, Jiaxing Second Hospital, Jiaxing, China
| |
Collapse
|
5
|
Gruber RC, Wirak GS, Blazier AS, Lee L, Dufault MR, Hagan N, Chretien N, LaMorte M, Hammond TR, Cheong A, Ryan SK, Macklin A, Zhang M, Pande N, Havari E, Turner TJ, Chomyk A, Christie E, Trapp BD, Ofengeim D. BTK regulates microglial function and neuroinflammation in human stem cell models and mouse models of multiple sclerosis. Nat Commun 2024; 15:10116. [PMID: 39578444 PMCID: PMC11584639 DOI: 10.1038/s41467-024-54430-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 11/12/2024] [Indexed: 11/24/2024] Open
Abstract
Neuroinflammation in the central nervous system (CNS), driven largely by resident phagocytes, has been proposed as a significant contributor to disability accumulation in multiple sclerosis (MS) but has not been addressed therapeutically. Bruton's tyrosine kinase (BTK) is expressed in both B-lymphocytes and innate immune cells, including microglia, where its role is poorly understood. BTK inhibition may provide therapeutic benefit within the CNS by targeting adaptive and innate immunity-mediated disease progression in MS. Using a CNS-penetrant BTK inhibitor (BTKi), we demonstrate robust in vivo effects in mouse models of MS. We further identify a BTK-dependent transcriptional signature in vitro, using the BTKi tolebrutinib, in mouse microglia, human induced pluripotent stem cell (hiPSC)-derived microglia, and a complex hiPSC-derived tri-culture system composed of neurons, astrocytes, and microglia, revealing modulation of neuroinflammatory pathways relevant to MS. Finally, we demonstrate that in MS tissue BTK is expressed in B-cells and microglia, with increased levels in lesions. Our data provide rationale for targeting BTK in the CNS to diminish neuroinflammation and disability accumulation.
Collapse
Affiliation(s)
- Ross C Gruber
- Sanofi, Cambridge, MA, USA
- Takeda, Cambridge, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | - Nilesh Pande
- Sanofi, Cambridge, MA, USA
- Voyager Therapeutics Inc, Cambridge, MA, USA
| | | | | | - Anthony Chomyk
- Department of Neurosciences, Cleveland Clinic, Cambridge, OH, USA
| | - Emilie Christie
- Department of Neurosciences, Cleveland Clinic, Cambridge, OH, USA
| | - Bruce D Trapp
- Department of Neurosciences, Cleveland Clinic, Cambridge, OH, USA
| | | |
Collapse
|
6
|
Vlad B, Neidhart S, Hilty M, Asplund Högelin K, Reichen I, Ziegler M, Khademi M, Lutterotti A, Regeniter A, Martin R, Al Nimer F, Jelcic I. Intrathecal immune reactivity against Measles-, Rubella-, and Varicella Zoster viruses is associated with cerebrospinal fluid inflammation in multiple sclerosis. Mult Scler 2024; 30:1598-1608. [PMID: 39377663 PMCID: PMC11568678 DOI: 10.1177/13524585241279645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/04/2024] [Accepted: 08/14/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND/OBJECTIVES We aimed to determine in multiple sclerosis (MS) whether intrathecal immunoglobulin G (IgG) production against measles- (M), rubella- (R), and varicella zoster (Z) viruses, which is called MRZ reaction (MRZR) and considered the most specific soluble biomarker for MS, is associated with demographic and basic cerebrospinal fluid (CSF) parameters reflecting inflammation. METHODS We analyzed the presence of positive MRZR and associations with demographic and clinical routine CSF parameters in 513 patients with MS and 182 non-MS patients. RESULTS Comparing MS patients versus non-MS patients, positive MRZR (38.8% versus 2.2%; specificity 97.8%; positive likelihood ratio, PLR 17.7) had a better specificity and PLR for MS than CSF-specific OCB (89.5% versus 22.0%; specificity 78.0%; PLR 4.1). A positive MRZR in MS patients was associated with female sex (p = 0.0001), pleocytosis (p < 0.0001), higher frequency of presence of plasma cells in CSF (p = 0.0248), normal CSF/serum albumin ratio (p = 0.0005), and intrathecal production of total IgG or CSF-specific OCB (both p < 0.0001), but not with intrathecal production of total IgA or IgM. CONCLUSIONS This study confirms the MRZR as a highly specific marker of MS and shows that MRZR-positive MS patients more frequently are female and show inflammatory changes of basic CSF parameters than MRZR-negative MS patients.
Collapse
Affiliation(s)
- Benjamin Vlad
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology, University of Zurich and University Hospital, Zurich, Switzerland
| | - Stephan Neidhart
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology, University of Zurich and University Hospital, Zurich, Switzerland; Swiss Epilepsy Center (Klinik Lengg), Zurich, Switzerland
| | - Marc Hilty
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology, University of Zurich and University Hospital, Zurich, Switzerland
- Department of Neurology, Hirslanden Klinik Zurich, Zurich, Switzerland
| | - Klara Asplund Högelin
- Center for Molecular Medicine, Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ina Reichen
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology, University of Zurich and University Hospital, Zurich, Switzerland
- Neuroimmunology Outpatient Clinic, Center for Multiple Sclerosis, Neurocenter Bellevue, Zurich, Switzerland
| | - Mario Ziegler
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology, University of Zurich and University Hospital, Zurich, Switzerland
| | - Mohsen Khademi
- Center for Molecular Medicine, Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Lutterotti
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology, University of Zurich and University Hospital, Zurich, Switzerland
- Clinical Research Priority Program MS (CRPP), PrecisionMS of the University of Zurich, Zurich, Switzerland
- Neuroimmunology Outpatient Clinic, Center for Multiple Sclerosis, Neurocenter Bellevue, Zurich, Switzerland
| | - Axel Regeniter
- Infectious Disease Serology and Immunology, Medica Medizinische Laboratorien Dr. F. Kaeppeli AG, Zurich, Switzerland
| | - Roland Martin
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology, University of Zurich and University Hospital, Zurich, Switzerland
- Clinical Research Priority Program MS (CRPP), PrecisionMS of the University of Zurich, Zurich, Switzerland
- Center for Molecular Medicine, Therapeutic Immune Design Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Faiez Al Nimer
- Center for Molecular Medicine, Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ilijas Jelcic
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology, University of Zurich and University Hospital, Zurich, Switzerland
- Clinical Research Priority Program MS (CRPP), PrecisionMS of the University of Zurich, Zurich, Switzerland
- Neuroimmunology Outpatient Clinic, Center for Multiple Sclerosis, Neurocenter Bellevue, Zurich, Switzerland
| |
Collapse
|
7
|
Xin L, Madarasz A, Ivan DC, Weber F, Aleandri S, Luciani P, Locatelli G, Proulx ST. Impairment of spinal CSF flow precedes immune cell infiltration in an active EAE model. J Neuroinflammation 2024; 21:272. [PMID: 39444001 PMCID: PMC11520187 DOI: 10.1186/s12974-024-03247-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/28/2024] [Indexed: 10/25/2024] Open
Abstract
Accumulation of immune cells and proteins in the subarachnoid space (SAS) is found during multiple sclerosis and in the animal model experimental autoimmune encephalomyelitis (EAE). Whether the flow of cerebrospinal fluid (CSF) along the SAS of the spinal cord is impacted is yet unknown. Combining intravital near-infrared (NIR) imaging with histopathological analyses, we observed a significantly impaired bulk flow of CSF tracers within the SAS of the spinal cord prior to EAE onset, which persisted until peak stage and was only partially recovered during chronic disease. The impairment of spinal CSF flow coincided with the appearance of fibrin aggregates in the SAS, however, it preceded immune cell infiltration and breakdown of the glia limitans superficialis. Conversely, cranial CSF efflux to cervical lymph nodes was not altered during the disease course. Our study highlights an early and persistent impairment of spinal CSF flow and suggests it as a sensitive imaging biomarker for pathological changes within the leptomeninges.
Collapse
Affiliation(s)
- Li Xin
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland
| | - Adrian Madarasz
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland
| | - Daniela C Ivan
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland
| | - Florian Weber
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Simone Aleandri
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Paola Luciani
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Giuseppe Locatelli
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland
| | - Steven T Proulx
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland.
| |
Collapse
|
8
|
Monschein T, Ponleitner M, Bsteh G, Krajnc N, Zulehner G, Rommer P, Kornek B, Berger T, Leutmezer F, Zrzavy T. The presence of oligoclonal bands predicts conversion to multiple sclerosis in isolated myelitis. Sci Rep 2024; 14:24736. [PMID: 39433553 PMCID: PMC11493956 DOI: 10.1038/s41598-024-71315-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/27/2024] [Indexed: 10/23/2024] Open
Abstract
Acute transverse myelitis (ATM) is a disease characterized by inflammation of the spinal cord and may have various causes. In the context of this work, the distinction between isolated ATM and initial manifestation of autoimmune-mediated diseases of the central nervous system such as multiple sclerosis (MS) is crucial. Hence, the aim of this work was to identify predictive factors associated with the conversion to definite MS in a collective of individuals after their initial episode of isolated ATM (no initial identified cause). In this retrospective data analysis from the Vienna MS Database, all patients from Jan. 1, 1999, to Dec. 31, 2019, with a diagnosis of isolated ATM (according to the criteria of the Transverse Myelitis Consortium Working Group) who underwent lumbar puncture were extracted. Electronic medical records were reviewed on the availability of clinical data including therapy and follow-up, laboratory results including cerebrospinal fluid (CSF) analysis, evoked potentials (EP) as well as magnetic resonance imaging data. Among 42 patients with the diagnosis of isolated ATM, 12 (29%) were subsequently diagnosed with MS over a median follow-up period of 7.7 years. Univariately, MS converters were younger (32 years [25-39] vs. 42 years [31-50], p = 0.032), had a lower CSF/serum albumin ratio (29 [24-35] vs 37 [27-52], p = 0.037), lower CSF total protein (4.5 [2.8-4.8] vs. 5.5 [3.4-8.5], p = 0.023) and a higher proportion of CSF-specific oligoclonal bands (OCB; 83% vs. 30%, p = 0.002). In the multivariate regression analysis, the presence of CSF-specific OCB emerged as the sole predictive factor of subsequent MS diagnosis (OR: 14.42, 95% CI 1.39 to 149.48, p = 0.03). In a collective of 42 patients with isolated ATM and an MS conversion rate of nearly 30%, the only but highly predictive factor were CSF-specific OCB. This emphasizes the significance of conducting timely CSF analysis in such patients and underscores the need for tailored monitoring and follow-up strategies in this specific group.
Collapse
Affiliation(s)
- Tobias Monschein
- Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Markus Ponleitner
- Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Gabriel Bsteh
- Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Nik Krajnc
- Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Gudrun Zulehner
- Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Paulus Rommer
- Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Barbara Kornek
- Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Fritz Leutmezer
- Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria.
| | - Tobias Zrzavy
- Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Dekeyser C, Hautekeete M, Cambron M, Van Pesch V, Patti F, Kuhle J, Khoury S, Lechner Scott J, Gerlach O, Lugaresi A, Maimone D, Surcinelli A, Grammond P, Kalincik T, Habek M, Willekens B, Macdonell R, Lalive P, Csepany T, Butzkueven H, Boz C, Tomassini V, Foschi M, Sánchez-Menoyo JL, Altintas A, Mrabet S, Iuliano G, Sa MJ, Alroughani R, Karabudak R, Aguera-Morales E, Gray O, de Gans K, van der Walt A, McCombe PA, Deri N, Garber J, Al-Asmi A, Skibina O, Duquette P, Cartechini E, Spitaleri D, Gouider R, Soysal A, Van Hijfte L, Slee M, Amato MP, Buzzard K, Laureys G. Routine CSF parameters as predictors of disease course in multiple sclerosis: an MSBase cohort study. J Neurol Neurosurg Psychiatry 2024; 95:1021-1031. [PMID: 38569872 DOI: 10.1136/jnnp-2023-333307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND It remains unclear whether routine cerebrospinal fluid (CSF) parameters can serve as predictors of multiple sclerosis (MS) disease course. METHODS This large-scale cohort study included persons with MS with CSF data documented in the MSBase registry. CSF parameters to predict time to reach confirmed Expanded Disability Status Scale (EDSS) scores 4, 6 and 7 and annualised relapse rate in the first 2 years after diagnosis (ARR2) were assessed using (cox) regression analysis. RESULTS In total, 11 245 participants were included of which 93.7% (n=10 533) were persons with relapsing-remitting MS (RRMS). In RRMS, the presence of CSF oligoclonal bands (OCBs) was associated with shorter time to disability milestones EDSS 4 (adjusted HR=1.272 (95% CI, 1.089 to 1.485), p=0.002), EDSS 6 (HR=1.314 (95% CI, 1.062 to 1.626), p=0.012) and EDSS 7 (HR=1.686 (95% CI, 1.111 to 2.558), p=0.014). On the other hand, the presence of CSF pleocytosis (≥5 cells/µL) increased time to moderate disability (EDSS 4) in RRMS (HR=0.774 (95% CI, 0.632 to 0.948), p=0.013). None of the CSF variables were associated with time to disability milestones in persons with primary progressive MS (PPMS). The presence of CSF pleocytosis increased ARR2 in RRMS (adjusted R2=0.036, p=0.015). CONCLUSIONS In RRMS, the presence of CSF OCBs predicts shorter time to disability milestones, whereas CSF pleocytosis could be protective. This could however not be found in PPMS. CSF pleocytosis is associated with short-term inflammatory disease activity in RRMS. CSF analysis provides prognostic information which could aid in clinical and therapeutic decision-making.
Collapse
Affiliation(s)
| | | | - Melissa Cambron
- Neurology, Sint-Jan Bruges Hospital, Bruges, Belgium
- University of Ghent, Ghent, Belgium
| | - Vincent Van Pesch
- Neurology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Université Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium
| | - Francesco Patti
- Neuroscience, University of Catania Department of Surgical and Medical Sciences and Advanced Technologies 'G.F. Ingrassia', Catania, Italy
- Multiple Sclerosis Unit, AOU Policlinico G Rodolico-San Marco, Catania, Italy
| | - Jens Kuhle
- Neurology, University Hospital Basel, Basel, Switzerland
- Biomedicine and Clinical Research, Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Basel, Switzerland
| | - Samia Khoury
- Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Center, Beirut, Lebanon
| | - Jeanette Lechner Scott
- Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia
- Hunter New England Health, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
| | - Oliver Gerlach
- Neurology, Zuyderland Medical Centre, Sittard-Geleen, The Netherlands
- Neurology, Universiteit Maastricht School for Mental Health and Neuroscience, Maastricht, The Netherlands
| | - Alessandra Lugaresi
- UOSI Riabilitazione Sclerosi Multipla, IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Davide Maimone
- Centro Sclerosi Multipla, UOC Neurologia, Azienda Ospedaliera Cannizzaro, Catania, Italy
| | - Andrea Surcinelli
- Department of Neuroscience, MS Center, S Maria delle Croci Hospital, Ravenna, Italy
| | - Pierre Grammond
- CISSS Chaudière-Appalaches Research Center, Levis, Quebec, Canada
| | - Tomas Kalincik
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Mario Habek
- University Hospital Centre Zagreb Department of Neurology, Zagreb, Croatia
- University of Zagreb School of Medicine, Zagreb, Zagreb, Croatia
| | - Barbara Willekens
- Neurology, Universitair Ziekenhuis Antwerpen, Edegem, Belgium
- Laboratory of Experimental Hematology, Universiteit Antwerpen Faculteit geneeskunde en gezondheidswetenschappen, Wilrijk, Belgium
| | | | - Patrice Lalive
- Clinical Neurosciences, Division of Neurology, Unit of Neuroimmunology, Geneva University Hospitals Department of Medicine, Geneve, Switzerland
| | - Tunde Csepany
- Department of Neurology, University of Debrecen, Debrecen, Hungary
| | - Helmut Butzkueven
- Department of Neuroscience, Monash University Central Clinical School, Melbourne, Victoria, Australia
- Neurology, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Cavit Boz
- Neurology, Karadeniz Technical University, Medical Faculty, Trabzon, Turkey
| | - Valentina Tomassini
- Istituto di Tecnologie Avanzate Biomediche (ITAB), Dipartimento di Neuroscienze e Imaging e Scienze Cliniche; Centro Sclerosi Multipla, Clinica Neurologica, Ospedale SS Annunziata, Università degli Studi Gabriele d'Annunzio Chieti Pescara, Chieti, Italy
- University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Matteo Foschi
- Department of Neuroscience, MS Center, Neurology Unit, S. Maria delle Croci Hospital, Ravenna, Italy
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, L'Aquila, Italy
| | - José Luis Sánchez-Menoyo
- Neurology, Galdakao-Usansolo University Hospital, Osakidetza-Basque Health Service, Galdakao, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Ayse Altintas
- Neurology, Koc University School of Medicine and Koc University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Saloua Mrabet
- Neurology, Razi University Hospital, Clinical Investigation Centre Neurosciences and Mental Health, Tunis, Tunisia
- University of Tunis El Manar Faculty of Medicine of Tunis, Tunis, Tunisia
| | | | - Maria Jose Sa
- Neurology, Centro Hospitalar de São João, Porto, Portugal
- Fernando Pessoa University Faculty of Health Sciences, Porto, Portugal
| | | | - Rana Karabudak
- Neurological Sciences, Yeditepe Universitesi, Istanbul, Turkey
- Neuroimmunology, Koşuyolu Hospitals, Istanbul, Turkey
| | - Eduardo Aguera-Morales
- Neurology, Hospital Universitario Reina Sofia, Cordoba, Spain
- GC28 Neuroplasticity and Oxidative Stress, IMIBIC, Cordoba, Spain
| | - Orla Gray
- South Eastern HSC Trust, Belfast, UK
| | | | - Anneke van der Walt
- Monash University Central Clinical School, Melbourne, Victoria, Australia
- Alfred Hospital, Melbourne, Victoria, Australia
| | - Pamela A McCombe
- UQCCR, Royal Brisbane and Woman's Hospital Health Service District, Herston, Queensland, Australia
- The University of Queensland, Brisbane, Queensland, Australia
| | - Norma Deri
- Hospital Fernandez, Buenos Aires, Argentina
| | - Justin Garber
- Westmead Hospital, Sydney, New South Wales, Australia
| | - Abdullah Al-Asmi
- Sultan Qaboos University College of Medicine and Health Science, Muscat, Muscat Governorate, Oman
| | - Olga Skibina
- Neurosciences, The Alfred, Melbourne, Victoria, Australia
- Neurology, Box Hill Hospital, Box Hill, Victoria, Australia
| | | | | | - Daniele Spitaleri
- Neurology, Azienda Ospedaliera di Rilievo Nazionale e di Alta Specialità San Giuseppe Moscati Neurologia e Stroke Unit, Avellino, Italy
| | - Riadh Gouider
- University of Tunis El Manar Faculty of Medicine of Tunis, Tunis, Tunisia
- Department of Neurology, Razi Hospital, Faculty of Medicine of Tunis, University Tunis el Manar, Tunisia, Manouba, Tunisia
| | - Aysun Soysal
- Bakirkoy Education and Research Hospital for Psychiatric and Neurological Diseases, Istanbul, Turkey
| | | | - Mark Slee
- Neurology, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Maria Pia Amato
- Department NEUROFARBA, University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Katherine Buzzard
- Department of Neurology, Box Hill Hospital, Melbourne, Victoria, Australia
- Eastern Health Clinical School, Monash University, Box Hill, Victoria, Australia
| | | |
Collapse
|
10
|
Vanderschelden RK, Benjamin NL, Shurin MR, Shelton L, Wheeler SE. Clinical laboratory test utilization of CSF oligoclonal bands and IgG index in a tertiary pediatric hospital. Clin Biochem 2024; 131-132:110803. [PMID: 39053601 DOI: 10.1016/j.clinbiochem.2024.110803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/02/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Criteria developed for the diagnosis of multiple sclerosis (MS) in adults are also used in the pediatric setting. However, differential diagnosis in pediatric-onset MS (POMS) is distinct from that of adult-onset MS. There is little literature characterizing the utility of oligoclonal bands (OCB) and IgG index in differentiating POMS from other childhood diseases with overlapping clinical presentation which can require immediate treatment. METHODS A retrospective review of all MS panels resulted between March 2022 and May 2023 on patients age ≤ 18 years at one tertiary care pediatric hospital in the northeastern United States was performed with pediatric neurology collaboration to characterize clinical utility (n = 85 cases). RESULTS Demyelinating diseases accounted for 31 of 85 total cases (36.5%), 12 of these cases were POMS (14%). Other diagnoses consisted of psychiatric etiologies (17.6%), infectious meningitis/encephalitis (5.9%), and migraine (5.9%). Elevated IgG index was seen in 67% of those with demyelinating diseases, versus only 13% of those with other conditions. Unique OCBs were found in 41% of those with demyelinating diseases, versus only 9% of those with other conditions. Fourteen of 15 patients (93.3%) with psychiatric conditions had normal MS panels. CONCLUSIONS Patients with demyelinating diseases were more likely to have elevated IgG index and unique OCBs versus patients with other conditions. For pediatric hospitals without in-house OCB evaluation, implementation of an in-house IgG index may serve as a rapid screen for differentials that include demyelinating diseases while awaiting OCB results, in the appropriate clinical context. IMPACT STATEMENT IgG index and CSF oligoclonal bands are important tools in the diagnosis of patients with suspected Multiple Sclerosis (MS). In the pediatric population, these markers are used to differentiate pediatric-onset MS (POMS) from other neurologic, psychiatric, and inflammatory diseases that display clinical overlap. The use of these markers in differentiating these conditions has not been thoroughly investigated. We examined the associations between abnormal markers and final diagnoses in pediatric patients undergoing testing for POMS in order to identify trends that may enhance ordering and reporting practices.
Collapse
Affiliation(s)
| | | | - Michael R Shurin
- University of Pittsburgh Medical Center, Department of Pathology, Pittsburgh, PA, USA; University of Pittsburgh, School of Medicine, Department of Pathology, Pittsburgh, PA, USA
| | - Levi Shelton
- University of Pittsburgh, School of Medicine, Department of Pediatrics, Pittsburgh, PA, USA
| | - Sarah E Wheeler
- University of Pittsburgh Medical Center, Department of Pathology, Pittsburgh, PA, USA; University of Pittsburgh, School of Medicine, Department of Pathology, Pittsburgh, PA, USA.
| |
Collapse
|
11
|
Willis MD, Kreft KL, Dancey B. Oligoclonal bands. Pract Neurol 2024; 24:400-406. [PMID: 38937092 DOI: 10.1136/pn-2023-003814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/29/2024]
Abstract
Oligoclonal bands (OCBs) represent the presence of intrathecal immunoglobulin G (IgG) as detected by isoelectric focusing and immunofixation. Cerebrospinal fluid (CSF) analysed alongside a paired serum sample gives five different immunofixation patterns. These are: type 1-the normal physiological state with no intrathecal IgG synthesis; type 2-evidence for intrathecal IgG synthesis, with CSF-restricted OCBs; type 3-evidence for intrathecal IgG synthesis, with CSF-restricted OCBs, but with additional, identical bands in the CSF and serum; type 4-absence of intrathecal IgG synthesis, but with identical OCBs in CSF and serum; and type 5-absence of intrathecal IgG synthesis, with a monoclonal band in CSF and serum. Analysis of these patterns can help to diagnose a range of neurological conditions, including multiple sclerosis. However, it is important to interpret OCB results alongside other CSF tests and their clinical context.
Collapse
Affiliation(s)
- Mark D Willis
- Helen Durham Centre for Neuroinflammatory Disease, Department of Neurology, University Hospital of Wales, Cardiff, UK
| | - Karim L Kreft
- Helen Durham Centre for Neuroinflammatory Disease, Department of Neurology, University Hospital of Wales, Cardiff, UK
| | - Bethan Dancey
- Department of Clinical Immunology & Allergy, University Hospital of Wales, Cardiff, UK
| |
Collapse
|
12
|
Bao H, Chen Y, Meng Z, Chu Z. The causal relationship between CSF metabolites and GBM: a two-sample mendelian randomization analysis. BMC Cancer 2024; 24:1119. [PMID: 39251963 PMCID: PMC11382389 DOI: 10.1186/s12885-024-12901-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is a highly aggressive primary malignant brain tumor characterized by rapid progression, poor prognosis, and high mortality rates. Understanding the relationship between cerebrospinal fluid (CSF) metabolites and GBM is crucial for identifying potential biomarkers and pathways involved in the pathogenesis of this devastating disease. METHODS In this study, Mendelian randomization (MR) analysis was employed to investigate the causal relationship between 338 CSF metabolites and GBM. The data for metabolites were obtained from a genome-wide association study summary dataset based on 291 individuals, and the GBM data was derived from FinnGen included 91 cases and 174,006 controls of European descent. The Inverse Variance Weighted method was utilized to estimate the causal effects. Supplementary comprehensive assessments of causal effects between CSF metabolites and GBM were conducted using MR-Egger regression, Weighted Median, Simple Mode, and Weighted Mode methods. Additionally, tests for heterogeneity and pleiotropy were performed. RESULTS Through MR analysis, a total of 12 identified metabolites and 2 with unknown chemical properties were found to have a causal relationship with GBM. 1-palmitoyl-2-stearoyl-gpc (16:0/18:0), 7-alpha-hydroxy-3-oxo-4-cholestenoate, Alpha-tocopherol, Behenoyl sphingomyelin (d18:1/22:0), Cysteinylglycine, Maleate, Uracil, Valine, X-12,101, X-12,104 and Butyrate (4:0) are associated with an increased risk of GBM. N1-methylinosine, Stachydrine and Succinylcarnitine (c4-dc) are associated with decreased GBM risk. CONCLUSION In conclusion, this study sheds light on the intricate interplay between CSF metabolites and GBM, offering novel perspectives on disease mechanisms and potential treatment avenues. By elucidating the role of CSF metabolites in GBM pathogenesis, this research contributes to the advancement of diagnostic capabilities and targeted therapeutic interventions for this aggressive brain tumor. Further exploration of these findings may lead to improved management strategies and better outcomes for patients with GBM.
Collapse
Affiliation(s)
- Haijun Bao
- Department of Forensic Medicine, First College for Clinical Medicine, Xuzhou Medical University, 84 West Huaihai Rd, Xuzhou, Jiangsu, 221000, China
- Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou, Jiangsu, China
| | - Yiyang Chen
- Department of Forensic Medicine, First College for Clinical Medicine, Xuzhou Medical University, 84 West Huaihai Rd, Xuzhou, Jiangsu, 221000, China
| | - Zijun Meng
- Department of Forensic Medicine, First College for Clinical Medicine, Xuzhou Medical University, 84 West Huaihai Rd, Xuzhou, Jiangsu, 221000, China
| | - Zheng Chu
- Department of Forensic Medicine, First College for Clinical Medicine, Xuzhou Medical University, 84 West Huaihai Rd, Xuzhou, Jiangsu, 221000, China.
- Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou, Jiangsu, China.
| |
Collapse
|
13
|
Di Filippo M, Gaetani L, Centonze D, Hegen H, Kuhle J, Teunissen CE, Tintoré M, Villar LM, Willemse EA, Zetterberg H, Parnetti L. Fluid biomarkers in multiple sclerosis: from current to future applications. THE LANCET REGIONAL HEALTH. EUROPE 2024; 44:101009. [PMID: 39444698 PMCID: PMC11496979 DOI: 10.1016/j.lanepe.2024.101009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/21/2024] [Accepted: 07/09/2024] [Indexed: 10/25/2024]
Abstract
Multiple sclerosis (MS) is an immune-mediated inflammatory and degenerative disorder of the central nervous system (CNS) with heterogeneous clinical manifestations. In the last decade, the landscape of cerebrospinal fluid (CSF) and blood biomarkers as potential key tools for MS diagnosis, prognosis and treatment monitoring has evolved considerably, alongside magnetic resonance imaging (MRI). CSF analysis has the potential not only to provide information on the underlying immunopathology of the disease and exclude differential diagnoses, but also to predict the risk of future relapses and disability accrual, guide therapeutic decisions and thus improve patient outcomes. This Series article overviews the biological framework and current applicability of fluid biomarkers for MS, exploring their potential role in the molecular characterisation of the disease. We discuss recent advances in the field of neurochemistry that enabled the detection of brain-derived proteins in blood, opening the door to much more efficient longitudinal disease monitoring. Furthermore, we identify the current challenges in the application of fluid biomarkers for MS in a real-world setting, while offering recommendations for harnessing their full potential as key paraclinical tools to improve patient management and personalise treatment.
Collapse
Affiliation(s)
- Massimiliano Di Filippo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Lorenzo Gaetani
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Diego Centonze
- IRCCS Neuromed, Pozzilli, IS, Italy
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Harald Hegen
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jens Kuhle
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
| | - Charlotte E. Teunissen
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Mar Tintoré
- Multiple Sclerosis Centre of Catalonia (Cemcat), Department of Neurology, Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Barcelona, Spain
| | - Luisa M. Villar
- Departments of Immunology and Neurology, Multiple Sclerosis Unit, Hospital Ramon y Cajal, (IRYCIS), Madrid, Spain
| | - Eline A.J. Willemse
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute, University College London, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- UW Department of Medicine, School of Medicine and Public Health, Madison, WI, USA
| | - Lucilla Parnetti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
14
|
İsmayılov R, Talibov T, Gündüz T, Kürtüncü M. Parenchymal Neuro-Behçet's disease or Comorbid Behçet's disease with multiple sclerosis: A discriminative analysis of a complex clinical entity. Mult Scler Relat Disord 2024; 87:105684. [PMID: 38788360 DOI: 10.1016/j.msard.2024.105684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/11/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Patients with Behçet's disease (BD) may rarely manifest with cerebral white matter lesions resembling multiple sclerosis (MS). This may result in misdiagnosis due to diagnostic difficulties between parenchymal neuro-BD (pNBD) and MS. This study aims to elucidate the distinguishing features of patients with comorbid BD and MS (BD+MS) in comparison to those with pNBD and MS alone by focusing on clinical and laboratory features. We also aimed to identify the distinctive characteristics of BD+MS patients by comparing them to patients with pNBD and MS. METHODS The methodology of this study involved a retrospective analysis of patient records followed in the Department of Neurology at the Istanbul Faculty of Medicine, Istanbul University. The study population included patients diagnosed with pNBD, MS, and a comorbid condition of BD and MS (BD+MS). We assessed clinical, radiological, and laboratory data, including disease onset, annual relapse rates, Expanded Disability Status Scale (EDSS) progression, and cerebrospinal fluid examination. Several parameters were examined between the pNBD, MS, and BD+MS patient groups to find similarities and differences between subgroups. RESULTS Our study included 1,764 patients: 172 with pNBD, 1,574 with MS, and 18 with BD+MS. A predominance of females was noted in the BD+MS (72%, p < 0.001) and MS (69 %, p < 0.001) groups compared to pNBD (30 %). The median age at the onset of neurological symptoms was 35.5 (IQR: 16.8) years for BD+MS, 34.6 (13.6) years for pNBD, and 27.6 (13.3) years for MS (BD+MS vs. MS; p = 0.3, pNBD vs. MS, p = 0.7). Additionally, the number of attacks was notably different, with BD+MS patients experiencing a median of 3.5 (2.0) attacks compared to 3.0 (3.0) for MS patients and only 1.0 (1.0) for pNBD patients, suggesting a more active disease course in the MS and BD+MS groups compared to pNBD (p < 0.001). The median annualized relapse rate for BD+MS was 0.3 (0.2), which was lower than the rate of 0.4 (0.4) in MS (p = 0.048) and equivalent to the rate of 0.2 (0.3) in pNBD (p = 0.2). The time to the first relapse was similar to those with BD+MS and MS, but considerably shorter than in individuals with pNBD (p < 0.0001). The cerebrospinal fluid (CSF) analysis showed no significant differences in neutrophil and lymphocyte counts between BD+MS and MS patients but elevated levels in pNBD patients (p < 0.05). CSF protein levels were consistent across all groups (p = 0.1 and p = 0.7). Oligoclonal bands were detected in all patients with BD+MS, in the majority of MS patients (83.6 %), and a small percentage of pNBD patients (19.7 %), showing a notable distinction between the BD+MS and pNBD groups (p < 0.001). CONCLUSION Our study underscores the need for a skeptical approach in diagnosing and treating patients with BD who exhibit symptomatic MS-like MRI lesions. Our findings suggest that BD+MS is a distinct clinical entity, warranting specific diagnostic and treatment approaches. Our findings highlight that BD patients with MS-like lesions meeting MS diagnostic criteria should be managed as patients with comorbid MS and BD rather than pNBD.
Collapse
Affiliation(s)
- Rashad İsmayılov
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Turkey
| | - Tural Talibov
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Turkey
| | - Tuncay Gündüz
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Turkey
| | - Murat Kürtüncü
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Turkey.
| |
Collapse
|
15
|
Campana M, Yakimov V, Moussiopoulou J, Maurus I, Löhrs L, Raabe F, Jäger I, Mortazavi M, Benros ME, Jeppesen R, Meyer Zu Hörste G, Heming M, Giné-Servén E, Labad J, Boix E, Lennox B, Yeeles K, Steiner J, Meyer-Lotz G, Dobrowolny H, Malchow B, Hansen N, Falkai P, Siafis S, Leucht S, Halstead S, Warren N, Siskind D, Strube W, Hasan A, Wagner E. Association of symptom severity and cerebrospinal fluid alterations in recent onset psychosis in schizophrenia-spectrum disorders - An individual patient data meta-analysis. Brain Behav Immun 2024; 119:353-362. [PMID: 38608742 DOI: 10.1016/j.bbi.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024] Open
Abstract
Neuroinflammation and blood-cerebrospinal fluid barrier (BCB) disruption could be key elements in schizophrenia-spectrum disorderś(SSDs) etiology and symptom modulation. We present the largest two-stage individual patient data (IPD) meta-analysis, investigating the association of BCB disruption and cerebrospinal fluid (CSF) alterations with symptom severity in first-episode psychosis (FEP) and recent onset psychotic disorder (ROP) individuals, with a focus on sex-related differences. Data was collected from PubMed and EMBASE databases. FEP, ROP and high-risk syndromes for psychosis IPD were included if routine basic CSF-diagnostics were reported. Risk of bias of the included studies was evaluated. Random-effects meta-analyses and mixed-effects linear regression models were employed to assess the impact of BCB alterations on symptom severity. Published (6 studies) and unpublished IPD from n = 531 individuals was included in the analyses. CSF was altered in 38.8 % of individuals. No significant differences in symptom severity were found between individuals with and without CSF alterations (SMD = -0.17, 95 %CI -0.55-0.22, p = 0.341). However, males with elevated CSF/serum albumin ratios or any CSF alteration had significantly higher positive symptom scores than those without alterations (SMD = 0.34, 95 %CI 0.05-0.64, p = 0.037 and SMD = 0.29, 95 %CI 0.17-0.41p = 0.005, respectively). Mixed-effects and simple regression models showed no association (p > 0.1) between CSF parameters and symptomatic outcomes. No interaction between sex and CSF parameters was found (p > 0.1). BCB disruption appears highly prevalent in early psychosis and could be involved in positive symptomś severity in males, indicating potential difficult-to-treat states. This work highlights the need for considering BCB breakdownand sex-related differences in SSDs clinical trials and treatment strategies.
Collapse
Affiliation(s)
- Mattia Campana
- Department of Psychiatry and Psychotherapy, LMU University Hospital, Nussbaumstraße 7, D-80336 Munich, Germany.
| | - Vladislav Yakimov
- Department of Psychiatry and Psychotherapy, LMU University Hospital, Nussbaumstraße 7, D-80336 Munich, Germany
| | - Joanna Moussiopoulou
- Department of Psychiatry and Psychotherapy, LMU University Hospital, Nussbaumstraße 7, D-80336 Munich, Germany
| | - Isabel Maurus
- Department of Psychiatry and Psychotherapy, LMU University Hospital, Nussbaumstraße 7, D-80336 Munich, Germany
| | - Lisa Löhrs
- Department of Psychiatry and Psychotherapy, LMU University Hospital, Nussbaumstraße 7, D-80336 Munich, Germany
| | - Florian Raabe
- Department of Psychiatry and Psychotherapy, LMU University Hospital, Nussbaumstraße 7, D-80336 Munich, Germany; Max Planck Institute of Psychiatry, Munich, Germany
| | - Iris Jäger
- Department of Psychiatry and Psychotherapy, LMU University Hospital, Nussbaumstraße 7, D-80336 Munich, Germany
| | - Matin Mortazavi
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, University of Augsburg, BKH Augsburg, Augsburg, Germany
| | - Michael E Benros
- Copenhagen Research Centre for Biological and Precision Psychiatry. Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Rose Jeppesen
- Copenhagen Research Centre for Biological and Precision Psychiatry. Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Gerd Meyer Zu Hörste
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Michael Heming
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Eloi Giné-Servén
- Department of Psychiatry, Hospital Universitario de Navarra, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Javier Labad
- Department of Mental Health, Hospital de Mataró, Consorci Sanitari del Maresme, Mataró, Spain; Translational Neuroscience Research Unit I3PT-INc-UAB, Institut de Innovació i Investigació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Spain
| | - Ester Boix
- Department of Mental Health, Hospital de Mataró, Consorci Sanitari del Maresme, Mataró, Spain
| | - Belinda Lennox
- Department of Psychiatry, University of Oxford and Oxford Health NHS Foundation Trust, Oxford, UK
| | - Ksenija Yeeles
- Department of Psychiatry, University of Oxford and Oxford Health NHS Foundation Trust, Oxford, UK
| | - Johann Steiner
- Department of Psychiatry, Magdeburg University Hospital, Magdeburg, Germany
| | | | - Henrik Dobrowolny
- Department of Psychiatry, Magdeburg University Hospital, Magdeburg, Germany
| | - Berend Malchow
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Niels Hansen
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, LMU University Hospital, Nussbaumstraße 7, D-80336 Munich, Germany; Max Planck Institute of Psychiatry, Munich, Germany; DZPG (German Center for Mental Health), partner site München/Augsburg, Germany
| | - Spyridon Siafis
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University Munich, Munich, Germany
| | - Stefan Leucht
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University Munich, Munich, Germany
| | - Sean Halstead
- Department of Psychiatry, School of Medicine, University of Queensland, Brisbane, Australia
| | - Nicola Warren
- Department of Psychiatry, School of Medicine, University of Queensland, Brisbane, Australia
| | - Dan Siskind
- Department of Psychiatry, School of Medicine, University of Queensland, Brisbane, Australia
| | - Wolfgang Strube
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, University of Augsburg, BKH Augsburg, Augsburg, Germany
| | - Alkomiet Hasan
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, University of Augsburg, BKH Augsburg, Augsburg, Germany; DZPG (German Center for Mental Health), partner site München/Augsburg, Germany
| | - Elias Wagner
- Department of Psychiatry and Psychotherapy, LMU University Hospital, Nussbaumstraße 7, D-80336 Munich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, University of Augsburg, BKH Augsburg, Augsburg, Germany; Evidence-based Psychiatry and Psychotherapy, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| |
Collapse
|
16
|
Klíčová K, Mareš J, Sobek O, Rous Z, Rous M, Raška M, Hartung HP. Prognostic relevance of the C-X-C motif chemokine ligand 13 and interleukin-8 in predicting the transition from clinically isolated syndrome to multiple sclerosis. Eur J Neurosci 2024; 59:2955-2966. [PMID: 38453679 DOI: 10.1111/ejn.16300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/25/2024] [Accepted: 02/15/2024] [Indexed: 03/09/2024]
Abstract
The initial phase of multiple sclerosis (MS), often known as clinically isolated syndrome (CIS), is a critical period for identifying individuals at high risk of progressing to full-blown MS and initiating timely treatment. In this study, we aimed to evaluate the prognostic value of C-X-C motif chemokine ligand 13 (CXCL13) and interleukin-8 (IL-8) as potential markers for CIS patients' conversion to MS. Our study encompassed patients with CIS, those with relapsing-remitting MS (RRMS), and control subjects, with sample analysis conducted on both cerebrospinal fluid (CSF) and serum. Patients were categorized into four groups: CIS-CIS (no MS development within 2 years), CIS-RRMS (conversion to RRMS within 2 years), RRMS (already diagnosed), and a control group (CG) with noninflammatory central nervous system disorders. Results showed significantly elevated levels of CXCL13 in CSF across all patient groups compared with the CG (p < 0.0001, Kruskal-Wallis test). Although CXCL13 concentrations were slightly higher in the CIS-RRMS group, statistical significance was not reached. Similarly, significantly higher levels of IL-8 were detected in CSF samples from all patient groups compared with the CG (p < 0.0001, Kruskal-Wallis test). Receiver operating characteristic analysis in the CIS-RRMS group identified both CXCL13 (area under receiver operating characteristic curve = .959) and IL-8 (area under receiver operating characteristic curve = .939) in CSF as significant predictors of CIS to RRMS conversion. In conclusion, our study suggests a trend towards elevated CSF IL-8 and CSF CXCL13 levels in CIS patients progressing to RRMS. These findings emphasize the importance of identifying prognostic markers to guide appropriate treatment strategies for individuals in the early stages of MS.
Collapse
Affiliation(s)
- Kateřina Klíčová
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University and University Hospital, Olomouc, Czech Republic
| | - Jan Mareš
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University and University Hospital, Olomouc, Czech Republic
| | - Ondřej Sobek
- Laboratory for Cerebrospinal Fluid, Neuroimmunology, Pathology and Special Diagnostics, Topelex, Prague, Czech Republic
| | - Zuzana Rous
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University and University Hospital, Olomouc, Czech Republic
| | - Matouš Rous
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University and University Hospital, Olomouc, Czech Republic
| | - Milan Raška
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Hans-Peter Hartung
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University and University Hospital, Olomouc, Czech Republic
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Brain and Mind Center, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
17
|
Hatami-Fard G, Anastasova-Ivanova S. Advancements in Cerebrospinal Fluid Biosensors: Bridging the Gap from Early Diagnosis to the Detection of Rare Diseases. SENSORS (BASEL, SWITZERLAND) 2024; 24:3294. [PMID: 38894085 PMCID: PMC11174891 DOI: 10.3390/s24113294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024]
Abstract
Cerebrospinal fluid (CSF) is a body fluid that can be used for the diagnosis of various diseases. However, CSF collection requires an invasive and painful procedure called a lumbar puncture (LP). This procedure is applied to any patient with a known risk of central nervous system (CNS) damage or neurodegenerative disease, regardless of their age range. Hence, this can be a very painful procedure, especially in infants and elderly patients. On the other hand, the detection of disease biomarkers in CSF makes diagnoses as accurate as possible. This review aims to explore novel electrochemical biosensing platforms that have impacted biomedical science. Biosensors have emerged as techniques to accelerate the detection of known biomarkers in body fluids such as CSF. Biosensors can be designed and modified in various ways and shapes according to their ultimate applications to detect and quantify biomarkers of interest. This process can also significantly influence the detection and diagnosis of CSF. Hence, it is important to understand the role of this technology in the rapidly progressing field of biomedical science.
Collapse
Affiliation(s)
- Ghazal Hatami-Fard
- The Hamlyn Centre, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | | |
Collapse
|
18
|
Azzimonti M, Margoni M, Zanetta C, Genovese F, Martinelli V, Rocca MA, Baldoli C, Moiola L, Filippi M. Tumefactive demyelinating lesions: a challenging first manifestation of multiple sclerosis. J Neurol 2024; 271:1663-1667. [PMID: 38153549 DOI: 10.1007/s00415-023-12164-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Affiliation(s)
- Matteo Azzimonti
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Monica Margoni
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Zanetta
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Genovese
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Cristina Baldoli
- Neuroradiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lucia Moiola
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
19
|
Moon Y, Park KA, Han J, Hwang JM, Kim SJ, Han SH, Lee BJ, Kang MC, Goh YH, Lim BC, Yang HK, Jung JH. Risk of central nervous system demyelinating attack or optic neuritis recurrence after pediatric optic neuritis in Korea. Neurol Sci 2024; 45:1173-1183. [PMID: 37853292 DOI: 10.1007/s10072-023-07125-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023]
Abstract
PURPOSE To investigate the rate of development of symptomatic central nervous system (CNS) demyelinating attacks or recurrent optic neuritis (ON) after the first episode of ON and its risk factors for Korean pediatric patients. METHODS This multicenter retrospective cohort study included the patients under 18 years of age (n=132) diagnosed with ON without previous or simultaneous CNS demyelinating diseases. We obtained the clinical data including the results of neuro-ophthalmological examinations, magnetic resonance images (MRIs), antibody assays, and laboratory tests. We investigated the chronological course of demyelinating disease with respect to the occurrence of neurological symptoms and/or signs, and calculated the 5-year cumulative probability of CNS demyelinating disease or ON recurrence. RESULTS: During the follow-up period (63.1±46.7 months), 18 patients had experienced other CNS demyelinating attacks, and the 5-year cumulative probability was 14.0±3.6%. Involvement of the extraorbital optic nerve or optic chiasm and asymptomatic lesions on the brain or spinal MRI at initial presentation were significant predictors for CNS demyelinating attack after the first ON. The 5-year cumulative probability of CNS demyelinating attack was 44.4 ± 24.8% in the AQP4-IgG group, 26.2±11.4% in the MOG-IgG group, and 8.7±5.9% in the double-negative group (P=0.416). Thirty-two patients had experienced a recurrence of ON, and the 5-year cumulative probability was 24.6±4.0%. In the AQP4-IgG group, the 5-year cumulative probability was 83.3±15.2%, which was significantly higher than in the other groups (P<0.001). CONCLUSIONS A careful and multidisciplinary approach including brain/spinal imaging and antibody assay can help predict further demyelinating attacks in pediatric ON patients.
Collapse
Affiliation(s)
- Yeji Moon
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Kyung-Ah Park
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jinu Han
- Institute of Vision Research, Department of Ophthalmology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Jeong-Min Hwang
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro 173 Beon-gil Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, South Korea
| | - Seong-Joon Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Hospital, 101, Daehak-ro Jongno-gu, Seoul, 03080, South Korea
| | - Sueng-Han Han
- Institute of Vision Research, Department of Ophthalmology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Byung Joo Lee
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Min Chae Kang
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Yong Hyu Goh
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Byung Chan Lim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, South Korea
| | - Hee Kyung Yang
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro 173 Beon-gil Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, South Korea.
| | - Jae Ho Jung
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Hospital, 101, Daehak-ro Jongno-gu, Seoul, 03080, South Korea.
| |
Collapse
|
20
|
Faustino R, Lopes C, Jantarada A, Mendonça A, Raposo R, Ferrão C, Freitas J, Mateus C, Pinto A, Almeida E, Gomes N, Marques L, Palavra F. Neuroimaging characterization of multiple sclerosis lesions in pediatric patients: an exploratory radiomics approach. Front Neurosci 2024; 18:1294574. [PMID: 38370435 PMCID: PMC10869542 DOI: 10.3389/fnins.2024.1294574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024] Open
Abstract
Introduction Multiple sclerosis (MS), a chronic inflammatory immune-mediated disease of the central nervous system (CNS), is a common condition in young adults, but it can also affect children. The aim of this study was to construct radiomic models of lesions based on magnetic resonance imaging (MRI, T2-weighted-Fluid-Attenuated Inversion Recovery), to understand the correlation between extracted radiomic features, brain and lesion volumetry, demographic, clinical and laboratorial data. Methods The neuroimaging data extracted from eleven scans of pediatric MS patients were analyzed. A total of 60 radiomic features based on MR T2-FLAIR images were extracted and used to calculate gray level co-occurrence matrix (GLCM). The principal component analysis and ROC analysis were performed to select the radiomic features, respectively. The realized classification task by the logistic regression models was performed according to these radiomic features. Results Ten most relevant features were selected from data extracted. The logistic regression applied to T2-FLAIR radiomic features revealed significant predictor for multiple sclerosis (MS) lesion detection. Only the variable "contrast" was statistically significant, indicating that only this variable played a significant role in the model. This approach enhances the classification of lesions from normal tissue. Discussion and conclusion Our exploratory results suggest that the radiomic models based on MR imaging (T2-FLAIR) may have a potential contribution to characterization of brain tissues and classification of lesions in pediatric MS.
Collapse
Affiliation(s)
- Ricardo Faustino
- Neuroimaging and Biomedicine Research Group, Medical Imaging and Radiotherapy Research Unit, CrossI&D: Lisbon Research Center, Portuguese Red Cross Higher Health School (ESSCVP), Lisbon, Portugal
- Faculty of Science, Institute of Biophysics and Biomedical Engineering, University of Lisbon, Lisbon, Portugal
- Biomedical Research Group, Faculty of Engineering, Faculty of Veterinary Medicine NICiTeS, Lusófona University, Lisbon, Portugal
| | - Cristina Lopes
- Neuroimaging and Biomedicine Research Group, Medical Imaging and Radiotherapy Research Unit, CrossI&D: Lisbon Research Center, Portuguese Red Cross Higher Health School (ESSCVP), Lisbon, Portugal
| | - Afonso Jantarada
- Neuroimaging and Biomedicine Research Group, Medical Imaging and Radiotherapy Research Unit, CrossI&D: Lisbon Research Center, Portuguese Red Cross Higher Health School (ESSCVP), Lisbon, Portugal
| | - Ana Mendonça
- Neuroimaging and Biomedicine Research Group, Medical Imaging and Radiotherapy Research Unit, CrossI&D: Lisbon Research Center, Portuguese Red Cross Higher Health School (ESSCVP), Lisbon, Portugal
| | - Rafael Raposo
- Neuroimaging and Biomedicine Research Group, Medical Imaging and Radiotherapy Research Unit, CrossI&D: Lisbon Research Center, Portuguese Red Cross Higher Health School (ESSCVP), Lisbon, Portugal
| | - Cristina Ferrão
- Neuroimaging and Biomedicine Research Group, Medical Imaging and Radiotherapy Research Unit, CrossI&D: Lisbon Research Center, Portuguese Red Cross Higher Health School (ESSCVP), Lisbon, Portugal
| | - Joana Freitas
- Neuroimaging and Biomedicine Research Group, Medical Imaging and Radiotherapy Research Unit, CrossI&D: Lisbon Research Center, Portuguese Red Cross Higher Health School (ESSCVP), Lisbon, Portugal
| | - Constança Mateus
- Neuroimaging and Biomedicine Research Group, Medical Imaging and Radiotherapy Research Unit, CrossI&D: Lisbon Research Center, Portuguese Red Cross Higher Health School (ESSCVP), Lisbon, Portugal
| | - Ana Pinto
- Neuroimaging and Biomedicine Research Group, Medical Imaging and Radiotherapy Research Unit, CrossI&D: Lisbon Research Center, Portuguese Red Cross Higher Health School (ESSCVP), Lisbon, Portugal
| | - Ellen Almeida
- Neuroimaging and Biomedicine Research Group, Medical Imaging and Radiotherapy Research Unit, CrossI&D: Lisbon Research Center, Portuguese Red Cross Higher Health School (ESSCVP), Lisbon, Portugal
| | - Nuno Gomes
- Neuroimaging and Biomedicine Research Group, Medical Imaging and Radiotherapy Research Unit, CrossI&D: Lisbon Research Center, Portuguese Red Cross Higher Health School (ESSCVP), Lisbon, Portugal
| | - Liliana Marques
- Neuroimaging and Biomedicine Research Group, Medical Imaging and Radiotherapy Research Unit, CrossI&D: Lisbon Research Center, Portuguese Red Cross Higher Health School (ESSCVP), Lisbon, Portugal
| | - Filipe Palavra
- Centre for Child Development – Neuropediatrics Unit, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Laboratory of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research, University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra, Coimbra, Portugal
| |
Collapse
|
21
|
Ban M, Bredikhin D, Huang Y, Bonder MJ, Katarzyna K, Oliver AJ, Wilson NK, Coupland P, Hadfield J, Göttgens B, Madissoon E, Stegle O, Sawcer S. Expression profiling of cerebrospinal fluid identifies dysregulated antiviral mechanisms in multiple sclerosis. Brain 2024; 147:554-565. [PMID: 38038362 PMCID: PMC10834244 DOI: 10.1093/brain/awad404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/06/2023] [Accepted: 11/18/2023] [Indexed: 12/02/2023] Open
Abstract
Despite the overwhelming evidence that multiple sclerosis is an autoimmune disease, relatively little is known about the precise nature of the immune dysregulation underlying the development of the disease. Reasoning that the CSF from patients might be enriched for cells relevant in pathogenesis, we have completed a high-resolution single-cell analysis of 96 732 CSF cells collected from 33 patients with multiple sclerosis (n = 48 675) and 48 patients with other neurological diseases (n = 48 057). Completing comprehensive cell type annotation, we identified a rare population of CD8+ T cells, characterized by the upregulation of inhibitory receptors, increased in patients with multiple sclerosis. Applying a Multi-Omics Factor Analysis to these single-cell data further revealed that activity in pathways responsible for controlling inflammatory and type 1 interferon responses are altered in multiple sclerosis in both T cells and myeloid cells. We also undertook a systematic search for expression quantitative trait loci in the CSF cells. Of particular interest were two expression quantitative trait loci in CD8+ T cells that were fine mapped to multiple sclerosis susceptibility variants in the viral control genes ZC3HAV1 (rs10271373) and IFITM2 (rs1059091). Further analysis suggests that these associations likely reflect genetic effects on RNA splicing and cell-type specific gene expression respectively. Collectively, our study suggests that alterations in viral control mechanisms might be important in the development of multiple sclerosis.
Collapse
Affiliation(s)
- Maria Ban
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Danila Bredikhin
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Yuanhua Huang
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge CB10 1SD, UK
| | - Marc Jan Bonder
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Kania Katarzyna
- University of Cambridge, CRUK Cambridge Institute, Cambridge CB2 0RE, UK
| | - Amanda J Oliver
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Nicola K Wilson
- Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Paul Coupland
- University of Cambridge, CRUK Cambridge Institute, Cambridge CB2 0RE, UK
| | - James Hadfield
- University of Cambridge, CRUK Cambridge Institute, Cambridge CB2 0RE, UK
| | - Berthold Göttgens
- Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Elo Madissoon
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge CB10 1SD, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Oliver Stegle
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge CB10 1SD, UK
| | - Stephen Sawcer
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
22
|
Aspden JW, Murphy MA, Kashlan RD, Xiong Y, Poznansky MC, Sîrbulescu RF. Intruders or protectors - the multifaceted role of B cells in CNS disorders. Front Cell Neurosci 2024; 17:1329823. [PMID: 38269112 PMCID: PMC10806081 DOI: 10.3389/fncel.2023.1329823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
B lymphocytes are immune cells studied predominantly in the context of peripheral humoral immune responses against pathogens. Evidence has been accumulating in recent years on the diversity of immunomodulatory functions that B cells undertake, with particular relevance for pathologies of the central nervous system (CNS). This review summarizes current knowledge on B cell populations, localization, infiltration mechanisms, and function in the CNS and associated tissues. Acute and chronic neurodegenerative pathologies are examined in order to explore the complex, and sometimes conflicting, effects that B cells can have in each context, with implications for disease progression and treatment outcomes. Additional factors such as aging modulate the proportions and function of B cell subpopulations over time and are also discussed in the context of neuroinflammatory response and disease susceptibility. A better understanding of the multifactorial role of B cell populations in the CNS may ultimately lead to innovative therapeutic strategies for a variety of neurological conditions.
Collapse
Affiliation(s)
- James W. Aspden
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Matthew A. Murphy
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Rommi D. Kashlan
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Yueyue Xiong
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Mark C. Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Ruxandra F. Sîrbulescu
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
23
|
de Souza HMR, Pereira TTP, de Sá HC, Alves MA, Garrett R, Canuto GAB. Critical Factors in Sample Collection and Preparation for Clinical Metabolomics of Underexplored Biological Specimens. Metabolites 2024; 14:36. [PMID: 38248839 PMCID: PMC10819689 DOI: 10.3390/metabo14010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
This review article compiles critical pre-analytical factors for sample collection and extraction of eight uncommon or underexplored biological specimens (human breast milk, ocular fluids, sebum, seminal plasma, sweat, hair, saliva, and cerebrospinal fluid) under the perspective of clinical metabolomics. These samples are interesting for metabolomics studies as they reflect the status of living organisms and can be applied for diagnostic purposes and biomarker discovery. Pre-collection and collection procedures are critical, requiring protocols to be standardized to avoid contamination and bias. Such procedures must consider cleaning the collection area, sample stimulation, diet, and food and drug intake, among other factors that impact the lack of homogeneity of the sample group. Precipitation of proteins and removal of salts and cell debris are the most used sample preparation procedures. This review intends to provide a global view of the practical aspects that most impact results, serving as a starting point for the designing of metabolomic experiments.
Collapse
Affiliation(s)
- Hygor M. R. de Souza
- Instituto de Química, Universidade Federal do Rio de Janeiro, LabMeta—LADETEC, Rio de Janeiro 21941-598, Brazil;
| | - Tássia T. P. Pereira
- Departamento de Genética, Ecologia e Evolucao, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
- Departamento de Biodiversidade, Evolução e Meio Ambiente, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Brazil
| | - Hanna C. de Sá
- Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Salvador 40170-115, Brazil;
| | - Marina A. Alves
- Instituto de Pesquisa de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-599, Brazil;
| | - Rafael Garrett
- Instituto de Química, Universidade Federal do Rio de Janeiro, LabMeta—LADETEC, Rio de Janeiro 21941-598, Brazil;
- Department of Laboratory Medicine, Boston Children’s Hospital—Harvard Medical School, Boston, MA 02115, USA
| | - Gisele A. B. Canuto
- Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Salvador 40170-115, Brazil;
| |
Collapse
|
24
|
Dejbakht M, Akhzari M, Jalili S, Faraji F, Barazesh M. Multiple Sclerosis: New Insights into Molecular Pathogenesis and Novel Platforms for Disease Treatment. Curr Drug Res Rev 2024; 16:175-197. [PMID: 37724675 DOI: 10.2174/2589977516666230915103730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Multiple sclerosis (MS), a chronic inflammatory disorder, affects the central nervous system via myelin degradation. The cause of MS is not fully known, but during recent years, our knowledge has deepened significantly regarding the different aspects of MS, including etiology, molecular pathophysiology, diagnosis and therapeutic options. Myelin basic protein (MBP) is the main myelin protein that accounts for maintaining the stability of the myelin sheath. Recent evidence has revealed that MBP citrullination or deamination, which is catalyzed by Ca2+ dependent peptidyl arginine deiminase (PAD) enzyme leads to the reduction of positive charge, and subsequently proteolytic cleavage of MBP. The overexpression of PAD2 in the brains of MS patients plays an essential role in new epitope formation and progression of the autoimmune disorder. Some drugs have recently entered phase III clinical trials with promising efficacy and will probably obtain approval in the near future. As different therapeutic platforms develop, finding an optimal treatment for each individual patient will be more challenging. AIMS This review provides a comprehensive insight into MS with a focus on its pathogenesis and recent advances in diagnostic methods and its present and upcoming treatment modalities. CONCLUSION MS therapy alters quickly as research findings and therapeutic options surrounding MS expand. McDonald's guidelines have created different criteria for MS diagnosis. In recent years, ever-growing interest in the development of PAD inhibitors has led to the generation of many reversible and irreversible PAD inhibitors against the disease with satisfactory therapeutic outcomes.
Collapse
Affiliation(s)
- Majid Dejbakht
- Department of Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | - Morteza Akhzari
- School of Nursing, Larestan University of Medical Sciences, Larestan, Iran
| | - Sajad Jalili
- Department of Orthopedics, School of Medicine, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Fouziyeh Faraji
- Department of Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | - Mahdi Barazesh
- Department of Biotechnology, Cellular and Molecular Research Center, School of Paramedical, Gerash University of Medical Sciences, Gerash, Iran
| |
Collapse
|
25
|
Dufwenberg MA, Garfinkel AR, Greenhill M, Garewal A, Larson MC. Cerebrospinal fluid flushing as a means of neuroprotection. Front Neurosci 2023; 17:1288790. [PMID: 38192514 PMCID: PMC10773678 DOI: 10.3389/fnins.2023.1288790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/20/2023] [Indexed: 01/10/2024] Open
Abstract
Central nervous system (CNS) injury or disease states are often difficult to treat due to the closed system of the dura mater/blood-brain barrier and the bony skull and vertebrae. The closed system results in at least partial containment of any pro-inflammatory molecules, pathogens, or toxic byproducts in the case of brain or spinal cord lesions, which can result in a destructive feedback loop. Cervical-approach access techniques (lateral C1-C2, suboccipital and lateral atlanto-occipital space punctures) are less-common methods of cerebrospinal fluid (CSF) sampling due to the relative ease and safety of lumbar spinal taps. However, with improved image-guidance, these cervical-level CSF access points are still useful when there are certain contraindications and difficulties when attempting to sample the CSF via the typical lumbar spinal approach. With the advent of microcatheters and minimally invasive techniques, combined with body fluid filtration technology, the question arises: could dual microcatheters be introduced for inflow and outflow of purified or artificial CSF to break the destructive feedback loop and thus diminish CNS damage?. We hypothesize that intrathecal spinal catheters could be placed in 2 positions (e.g., via a cervical route and the typical lumbar spinal route) to allow for both an input and output to more effectively filter or "flush" the CSF. This could have broad implications in the treatment of strokes, traumatic brain or spinal cord injury, infections, autoimmune diseases, and even malignancies within the CNS-in short, any disease with abnormalities detectable in the CSF.
Collapse
Affiliation(s)
| | - Alec R. Garfinkel
- Department of Radiology, California Northstate University, Elk Grove, CA, United States
- HCA Florida Brandon Hospital, Brandon, FL, United States
| | - Mark Greenhill
- Department of Radiology, University of Arizona, Tucson, AZ, United States
| | - Armand Garewal
- Department of Radiology, University of California, Davis, Davis, CA, United States
| | - Michael Craig Larson
- Department of Radiology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
26
|
Jankowska A, Chwojnicki K, Szurowska E. The diagnosis of multiple sclerosis: what has changed in diagnostic criteria? Pol J Radiol 2023; 88:e574-e581. [PMID: 38362016 PMCID: PMC10867947 DOI: 10.5114/pjr.2023.133677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/14/2023] [Indexed: 02/17/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic, demyelinating disease affecting the central nervous system. Diagnosis of MS is based on the proof of disease dissemination in time (DIT) and dissemination in space (DIS) and excluding other disorders that can mimic multiple sclerosis in laboratory tests and clinical manifestation. Over the years the diagnostic criteria have evolved; the introduction of magnetic resonance in the McDonald's 2001 criteria was revolutionary. Since then, the criteria have been modified up to the currently used McDonald 2017. The aim of this review is to analyse the 2017 McDonald criteria, assess what has changed from the 2010 criteria, and present the impact of revised criteria on rapid and accurate diagnosis of MS. The main differences are as follows: inclusion of oligoclonal bands in cerebrospinal fluid as a DIT criterion, and symptomatic and cortical lesions in magnetic resonance imaging are counted in the determination of DIS and DIT. We present also the newest recommendations of the Polish Medical Society of Radiology and the Polish Society of Neurology and international group of North American Imaging in Multiple Sclerosis and Consortium of Multiple Sclerosis Centers, as well as future directions for further investigations. A proper diagnosis is crucial for the patient's quality of life, to give the possibility of early treatment, and to help avoid misdiagnosis and unnecessary therapy.
Collapse
Affiliation(s)
- Anna Jankowska
- 2 Department of Radiology, Medical University of Gdańsk, Poland
| | - Kamil Chwojnicki
- Department of Anaesthesiology and Intensive Care, Medical University of Gdańsk, Poland
| | - Edyta Szurowska
- 2 Department of Radiology, Medical University of Gdańsk, Poland
| |
Collapse
|
27
|
Zhang X, Hao H, Jin T, Qiu W, Yang H, Xue Q, Yin J, Shi Z, Yu H, Ji X, Sun X, Zeng Q, Liu X, Wang J, Li H, He X, Yang J, Li Y, Liu S, Lau AY, Gao F, Hu S, Chu S, Ding D, Zhou H, Li H, Chen X. Cerebrospinal fluid oligoclonal bands in Chinese patients with multiple sclerosis: the prevalence and its association with clinical features. Front Immunol 2023; 14:1280020. [PMID: 38035077 PMCID: PMC10687400 DOI: 10.3389/fimmu.2023.1280020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Background Cerebrospinal fluid oligoclonal band (CSF-OCB) is an established biomarker in diagnosing multiple sclerosis (MS), however, there are no nationwide data on CSF-OCB prevalence and its diagnostic performance in Chinese MS patients, especially in the virtue of common standard operation procedure (SOP). Methods With a consensus SOP and the same isoelectric focusing system, we conducted a nationwide multi-center study on OCB status in consecutively, and recruited 483 MS patients and 880 non-MS patients, including neuro-inflammatory diseases (NID, n = 595) and non-inflammatory neurological diseases (NIND, n=285). Using a standardized case report form (CRF) to collect the clinical, radiological, immunological, and CSF data, we explored the association of CSF-OCB positivity with patient characters and the diagnostic performance of CSF-OCB in Chinese MS patients. Prospective source data collection, and retrospective data acquisition and statistical data analysis were used. Findings 369 (76.4%) MS patients were OCB-positive, while 109 NID patients (18.3%) and 6 NIND patients (2.1%) were OCB-positive, respectively. Time from symptom onset to diagnosis was significantly shorter in OCB-positive than that in OCB-negative MS patients (13.2 vs 23.7 months, P=0.020). The prevalence of CSF-OCB in Chinese MS patients was significantly higher in high-latitude regions (41°-50°N)(P=0.016), and at high altitudes (>1000m)(P=0.025). The diagnostic performance of CSF-OCB differentiating MS from non-MS patients yielded a sensitivity of 76%, a specificity of 87%. Interpretation The nationwide prevalence of CSF-OCB was 76.4% in Chinese MS patients, and demonstrated a good diagnostic performance in differentiating MS from other CNS diseases. The CSF-OCB prevalence showed a correlation with high latitude and altitude in Chinese MS patients.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Neurology, Huashan Hospital, Fudan University and Institute of Neurology, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Hongjun Hao
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Tao Jin
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qun Xue
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian Yin
- Department of Neurology, Beijing Hospital, Beijing, China
| | - Ziyan Shi
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Hai Yu
- Department of Neurology, Huashan Hospital, Fudan University and Institute of Neurology, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Xiaopei Ji
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaobo Sun
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiuming Zeng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoni Liu
- Department of Neurology, Huashan Hospital, Fudan University and Institute of Neurology, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Jingguo Wang
- Department of Neurology, Huashan Hospital, Fudan University and Institute of Neurology, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Huining Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoyan He
- Department of Neurology, The Xinjiang Uygur Autonomous Region People’s Hospital, Urumqi, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yarong Li
- Department of Neurology, Huashan Hospital, Fudan University and Institute of Neurology, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Shuangshuang Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Alexander Y. Lau
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Feng Gao
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Shimin Hu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Clinical Epidemiology and Evidence-Based Medicine, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Shuguang Chu
- Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ding Ding
- Department of Neurology, Huashan Hospital, Fudan University and Institute of Neurology, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Hongyu Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Haifeng Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiangjun Chen
- Department of Neurology, Huashan Hospital, Fudan University and Institute of Neurology, Fudan University, National Center for Neurological Disorders, Shanghai, China
| |
Collapse
|
28
|
Židó M, Kačer D, Valeš K, Zimová D, Štětkářová I. Metabolomics of Cerebrospinal Fluid Amino and Fatty Acids in Early Stages of Multiple Sclerosis. Int J Mol Sci 2023; 24:16271. [PMID: 38003464 PMCID: PMC10671192 DOI: 10.3390/ijms242216271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Multiple sclerosis (MS) is a demyelinating and neurodegenerative autoimmune disease of the central nervous system (CNS) damaging myelin and axons. Diagnosis is based on the combination of clinical findings, magnetic resonance imaging (MRI) and analysis of cerebrospinal fluid (CSF). Metabolomics is a systematic study that allows us to track amounts of different metabolites in a chosen medium. The aim of this study was to establish metabolomic differences between the cerebrospinal fluid of patients in the early stages of multiple sclerosis and healthy controls, which could potentially serve as markers for predicting disease activity. We collected CSF from 40 patients after the first attack of clinical symptoms who fulfilled revised McDonald criteria of MS, and the CSF of 33 controls. Analyses of CSF samples were performed by using the high-performance liquid chromatography system coupled with a mass spectrometer with a high-resolution detector. Significant changes in concentrations of arginine, histidine, spermidine, glutamate, choline, tyrosine, serine, oleic acid, stearic acid and linoleic acid were observed. More prominently, Expanded Disability Status Scale values significantly correlated with lower concentrations of histidine. We conclude that these metabolites could potentially play a role as a biomarker of disease activity and predict presumable inflammatory changes.
Collapse
Affiliation(s)
- Michal Židó
- Department of Neurology, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic;
- Department of Neurology, Faculty Hospital Královské Vinohrady, 100 34 Prague, Czech Republic;
| | - David Kačer
- National Institute of Mental Health, 250 67 Klecany, Czech Republic; (D.K.); (K.V.)
| | - Karel Valeš
- National Institute of Mental Health, 250 67 Klecany, Czech Republic; (D.K.); (K.V.)
- Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic
| | - Denisa Zimová
- Department of Neurology, Faculty Hospital Královské Vinohrady, 100 34 Prague, Czech Republic;
| | - Ivana Štětkářová
- Department of Neurology, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic;
- Department of Neurology, Faculty Hospital Královské Vinohrady, 100 34 Prague, Czech Republic;
| |
Collapse
|
29
|
Ganelin-Cohen E, Shelly S, Schiller Y, Vaknin-Dembinsky A, Shachor M, Rechtman A, Osherov M, Duvdevan N, Rozenberg A. Dual positivity for anti-MOG and oligoclonal bands: Unveiling unique clinical profiles and implications. Mult Scler Relat Disord 2023; 79:105034. [PMID: 37801958 DOI: 10.1016/j.msard.2023.105034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/14/2023] [Accepted: 09/24/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND Distinguishing between MOG-associated disease (MOGAD) and multiple sclerosis (MS) presents a considerable challenge, as there are instances of overlapping clinical presentations. This complexity is further magnified in cases where patients concurrently exhibit both anti-myelin oligodendrocyte glycoprotein (anti-MOG) positivity and detectable oligoclonal bands (OCBs) This retrospective study investigates the clinical and imaging attributes of dual-positive patients, those with both anti-MOG positivity and OCBs, The study aims to show potential areas of overlap between multiple sclerosis (MS) and MOGAD. METHODS Utilizing data gathered from three medical centers, we evaluated a cohort of 45 patients, stratifying them into two groups: those exclusively positive for anti-MOG antibodies and those displaying dual positivity. Our analysis encompassed a wide range of clinical and imaging parameters. The statistical techniques employed comprised Fisher's Exact Test along with Benjamini-Hochberg correction to ensure robustness of the findings. RESULTS The study involved 45 patients with anti-MOG antibodies; 30 exhibited isolated anti-MOG positivity without OCBs, while 15 were dual-positive. The first group's average age was 10±7 years, compared to 28±17 years in the double-positive group (p = 0.001). CSF analysis showed no significant differences in pleocytosis, protein levels, or opening pressure between the groups. In the exclusive anti-MOG positivity cohort, 9 out of 15 patients received IVIG treatment; a larger subgroup with dual positivity chose anti-CD20 treatment. Notably, papilledema incidence was higher in the single-positive group (p = 0.014). Optic nerve enhancement (p = 0.0038) and nerve thickening (p = 0.0017) were markedly elevated in the single-positive population, with a trend towards pre-chiasmatic lesions (p = 0.06). Double-positive cases exhibited more polyfocal presentation (p = 0.013) and higher attacks per case (p = 0.002, HR=10.2, 95 % CI: 2.19 to 49.23). The double-positive group had more brain lesions (p = 0.0063) but no significant distinctions in other aspects. CONCLUSION The results emphasize the challenges inherent in differentiating between MS and a more MOGAD. While the data suggest two plausible scenarios-either falling within the spectrum of MS or representing an intensified MOGAD-we recognize the need for stronger evidence to definitively classify these instances. This study underscores the imperative for thorough investigations to ascertain whether these cases align with the MS spectrum or denote an inflammatory variant of MOGAD.
Collapse
Affiliation(s)
- Esther Ganelin-Cohen
- Neuroimmunological Clinic, Institute of Pediatric Neurology, Schneider Children's Medical Center of Israel, Petah Tikva 4920235, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shahar Shelly
- Department of Neurology, Rambam Health Care Campus, Haifa 3525408, Israel; Neuroimmunology Laboratory, Department of Neurology, Rambam Health Care Campus and Ruth and Bruce Rapaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3525408, Israel
| | - Yael Schiller
- Department of Neurology, Rambam Health Care Campus, Haifa 3525408, Israel
| | - Adi Vaknin-Dembinsky
- Unit for Neuro-Immunology, Multiple Sclerosis & Cell Therapy, Department of Neurology, Hadassah Medical Center, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Maayan Shachor
- Department of Pediatric, C. Schneider Children's Medical Center of Israel, Petah Tikva, 4920235, Israel
| | - Ariel Rechtman
- Unit for Neuro-Immunology, Multiple Sclerosis & Cell Therapy, Department of Neurology, Hadassah Medical Center, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Michael Osherov
- The Neuroimmunology and Multiple Sclerosis Unit, Neurology Institute, Barzilay Ashkelon Israel
| | - Nitsan Duvdevan
- The Neuro-ophthalmology unit Rambam Health Care Campus, Haifa, 3525408, Israel
| | - Ayal Rozenberg
- Department of Neurology, Rambam Health Care Campus, Haifa 3525408, Israel; Neuroimmunology Laboratory, Department of Neurology, Rambam Health Care Campus and Ruth and Bruce Rapaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3525408, Israel.
| |
Collapse
|
30
|
Forcadela M, Birch K, Rocchi C, Campagna G, Jackson E, Chadwick C, Hamid S, Jacob A, Huda S. Do we still need OCBs in MS diagnosis and how many? Mult Scler Relat Disord 2023; 79:105035. [PMID: 37864992 DOI: 10.1016/j.msard.2023.105035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/24/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND CSF-specific oligoclonal bands (CSF-OCBs) can be used for dissemination in time (DIT) in the 2017 multiple sclerosis (MS) diagnostic criteria. A cut-off of ≥2 CSF-OCBs was recommended but studies have suggested ≥3 CSF-OCBs may be superior. OBJECTIVES To assess utility of ≥2 and ≥3 CSF-OCBs as a cut-off for MS diagnosis. METHODS Paired serum and CSF-OCBs sent to the Walton Centre, UK between July 2018 and June 2020 were included. CSF-OCBs were assessed using isoelectric focussing and reviewed by two blinded raters. Case records were reviewed. RESULTS Of 1334 paired serum and CSF-OCB requests, 945 cases had sufficient clinical information. More than 1 CSF-OCB was detected in 268/945(28%) cases. Of these, 252 had ≥2 and 230 had ≥3 CSF-OCBs. The sensitivity and specificity for MS with ≥2 and ≥3 CSF-OCBs were 91.7%, 91.2%, 90.2% and 93.8% respectively. Only 3/22 patients with 2 CSF-OCBs had MS. In 25% of patients, CSF-OCBs reduced time to MS diagnosis (median 437.5 days (28-1332)). CONCLUSION Although cut-offs of ≥2 or ≥3 CSF-OCBs performed similarly well, 2 CSF-OCBs were frequently seen with non-inflammatory pathology. Use of ≥3 CSF-OCBs for MS diagnosis should be considered. CSF analysis reduced time to MS diagnosis by approximately 14 months.
Collapse
Affiliation(s)
| | - Katherine Birch
- The Neuroscience laboratories, The Walton Centre NHS Foundation Trust, Liverpool, UK
| | | | | | - Edward Jackson
- The Neuroscience laboratories, The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Carrie Chadwick
- The Neuroscience laboratories, The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Shahd Hamid
- The Walton Centre Foundation Trust, Liverpool, UK
| | - Anu Jacob
- The Walton Centre Foundation Trust, Liverpool, UK; Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Saif Huda
- The Walton Centre Foundation Trust, Liverpool, UK
| |
Collapse
|
31
|
Åkesson J, Hojjati S, Hellberg S, Raffetseder J, Khademi M, Rynkowski R, Kockum I, Altafini C, Lubovac-Pilav Z, Mellergård J, Jenmalm MC, Piehl F, Olsson T, Ernerudh J, Gustafsson M. Proteomics reveal biomarkers for diagnosis, disease activity and long-term disability outcomes in multiple sclerosis. Nat Commun 2023; 14:6903. [PMID: 37903821 PMCID: PMC10616092 DOI: 10.1038/s41467-023-42682-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 10/17/2023] [Indexed: 11/01/2023] Open
Abstract
Sensitive and reliable protein biomarkers are needed to predict disease trajectory and personalize treatment strategies for multiple sclerosis (MS). Here, we use the highly sensitive proximity-extension assay combined with next-generation sequencing (Olink Explore) to quantify 1463 proteins in cerebrospinal fluid (CSF) and plasma from 143 people with early-stage MS and 43 healthy controls. With longitudinally followed discovery and replication cohorts, we identify CSF proteins that consistently predicted both short- and long-term disease progression. Lower levels of neurofilament light chain (NfL) in CSF is superior in predicting the absence of disease activity two years after sampling (replication AUC = 0.77) compared to all other tested proteins. Importantly, we also identify a combination of 11 CSF proteins (CXCL13, LTA, FCN2, ICAM3, LY9, SLAMF7, TYMP, CHI3L1, FYB1, TNFRSF1B and NfL) that predict the severity of disability worsening according to the normalized age-related MS severity score (replication AUC = 0.90). The identification of these proteins may help elucidate pathogenetic processes and might aid decisions on treatment strategies for persons with MS.
Collapse
Affiliation(s)
- Julia Åkesson
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
- Systems Biology Research Centre, School of Bioscience, University of Skövde, 541 28, Skövde, Sweden
| | - Sara Hojjati
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | - Sandra Hellberg
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | - Johanna Raffetseder
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | - Mohsen Khademi
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institute, 171 76, Stockholm, Sweden
| | - Robert Rynkowski
- Department of Neurology, and Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | - Ingrid Kockum
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institute, 171 76, Stockholm, Sweden
| | - Claudio Altafini
- Division of Automatic Control, Department of Electrical Engineering, Linköping University, 581 83, Linköping, Sweden
| | - Zelmina Lubovac-Pilav
- Systems Biology Research Centre, School of Bioscience, University of Skövde, 541 28, Skövde, Sweden
| | - Johan Mellergård
- Department of Neurology, and Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | - Maria C Jenmalm
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | - Fredrik Piehl
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institute, 171 76, Stockholm, Sweden
| | - Tomas Olsson
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institute, 171 76, Stockholm, Sweden
| | - Jan Ernerudh
- Department of Clinical Immunology and Transfusion Medicine, and Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | - Mika Gustafsson
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden.
| |
Collapse
|
32
|
O’Connor LM, O’Connor BA, Zeng J, Lo CH. Data Mining of Microarray Datasets in Translational Neuroscience. Brain Sci 2023; 13:1318. [PMID: 37759919 PMCID: PMC10527016 DOI: 10.3390/brainsci13091318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/04/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
Data mining involves the computational analysis of a plethora of publicly available datasets to generate new hypotheses that can be further validated by experiments for the improved understanding of the pathogenesis of neurodegenerative diseases. Although the number of sequencing datasets is on the rise, microarray analysis conducted on diverse biological samples represent a large collection of datasets with multiple web-based programs that enable efficient and convenient data analysis. In this review, we first discuss the selection of biological samples associated with neurological disorders, and the possibility of a combination of datasets, from various types of samples, to conduct an integrated analysis in order to achieve a holistic understanding of the alterations in the examined biological system. We then summarize key approaches and studies that have made use of the data mining of microarray datasets to obtain insights into translational neuroscience applications, including biomarker discovery, therapeutic development, and the elucidation of the pathogenic mechanisms of neurodegenerative diseases. We further discuss the gap to be bridged between microarray and sequencing studies to improve the utilization and combination of different types of datasets, together with experimental validation, for more comprehensive analyses. We conclude by providing future perspectives on integrating multi-omics, to advance precision phenotyping and personalized medicine for neurodegenerative diseases.
Collapse
Affiliation(s)
- Lance M. O’Connor
- College of Biological Sciences, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Blake A. O’Connor
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA;
| | - Jialiu Zeng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore;
| | - Chih Hung Lo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore;
| |
Collapse
|
33
|
Zanghì A, Manuti V, Serviddio G, D’Amico E, Avolio C. MiRNA 106a-5p in cerebrospinal fluid as signature of early relapsing remitting multiple sclerosis: a cross sectional study. Front Immunol 2023; 14:1226130. [PMID: 37711630 PMCID: PMC10499168 DOI: 10.3389/fimmu.2023.1226130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 06/29/2023] [Indexed: 09/16/2023] Open
Abstract
Background Circulating microRNAs (MiRNAs) have been investigated for their role in fine-tuning the adaptive immune response to inflammatory factors and in Multiple Sclerosis (MS). They have been investigated as possible biomarkers for the diagnosis and prognosis of the disease. Methods A cross sectional study conducted at the MS centre of Foggia, Italy. We enrolled patients with (1) an age between 18 and 55 years, (2) a definitive diagnosis of relapsing remitting MS (RRMS) as per the revised McDonald criteria, and (3) naïve to any disease modifying therapy (DMTs), as well as (4) patients with other neurological disorders (OND). The aim of the study was to compare the levels of expression of miRNA 21-5p, miRNA 106a-5p, miRNA 146a-5p, and miRNA223-3p in cell-free cerebrospinal fluid (CSF) in RRMS patients and OND. Investigated MiRNAs were extracted, retrotranscribed, and then assessed by real-time polymerase chain reaction assay (q-PCR). A receiver-operator characteristic (ROC) curve was used to test MiRNAs as a biomarker for diagnosing MS. A linear regression analysis was done to find any association with disease characteristics at the time of diagnosis. Results A total cohort of 70 subjects (70% women) was analyzed. Out of them, 35 had a RRMS diagnosis. MiRNA 106a-5p (7.8 ± 3.8 vs 1.3 ± 0.9, p=0.03) had higher levels in RRMS patients when compared to OND. The ROC curve indicated that MiRNA 106a-5p could be considered as a disease biomarker with an area under the curve of 0.812 (p<.001; 95% CI 0.686-0.937). Linear regression analysis showed an association between the number of oligoclonal bands and MiRNA 106a-5p levels (B-coeff 2.6, p<.001; 95% CI 1.3-4.9). Conclusion We described miRNA 106a-5p as a possible signature in the CSF of RRMS patients in early phases of the disease. Further studies are needed to characterize its role in early MS as a disease biomarker.
Collapse
|
34
|
Katsarogiannis E, Landtblom AM, Kristoffersson A, Wikström J, Semnic R, Berntsson SG. Absence of Oligoclonal Bands in Multiple Sclerosis: A Call for Differential Diagnosis. J Clin Med 2023; 12:4656. [PMID: 37510771 PMCID: PMC10380970 DOI: 10.3390/jcm12144656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Immunoglobulin gamma (IgG) oligoclonal bands (OCB) in the cerebrospinal fluid (CSF) are absent in a small group of multiple sclerosis (MS) patients. According to previous research, OCB-negative MS patients differ genetically but not clinically from OCB-positive MS patients. However, whether OCB-negative MS is a unique immunological and clinical entity remains unclear. The absence of OCB poses a significant challenge in diagnosing MS. (1) Objective: The objective of this study was twofold: (1) to determine the prevalence of OCB-negative MS patients in the Uppsala region, and (2) to assess the frequency of misdiagnosis in this patient group. (2) Methods: We conducted a retrospective study using data from the Swedish MS registry (SMSreg) covering 83% of prevalent MS cases up to 20 June 2020 to identify all MS patients in the Uppsala region. Subsequently, we collected relevant information from the medical records of all OCB-negative MS cases, including age of onset, gender, presenting symptoms, MRI features, phenotype, Expanded Disability Status Scale (EDSS) scores, and disease-modifying therapies (DMTs). (3) Results: Out of 759 MS patients identified, 69 had an OCB-negative MS diagnosis. Upon re-evaluation, 46 patients had a typical history and MRI findings of MS, while 23 had unusual clinical and/or radiologic features. An alternative diagnosis was established for the latter group, confirming the incorrectness of the initial MS diagnosis. The average EDSS score was 2.0 points higher in the MS group than in the non-MS group (p = 0.001). The overall misdiagnosis rate in the cohort was 33%, with 22% of misdiagnosed patients having received DMTs. (4) Conclusions: Our results confirm that the absence of OCB in the CSF should raise suspicion of possible misdiagnosis in MS patients and prompt a diagnostic reassessment.
Collapse
Affiliation(s)
| | - Anne-Marie Landtblom
- Department of Medical Sciences, Neurology, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Anna Kristoffersson
- Department of Medical Sciences, Neurology, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Johan Wikström
- Department of Surgical Sciences, Neuroradiology, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Robert Semnic
- Department of Surgical Sciences, Neuroradiology, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Shala G Berntsson
- Department of Medical Sciences, Neurology, Uppsala University, SE-751 85 Uppsala, Sweden
| |
Collapse
|
35
|
Carlos AF, Josephs KA. The Role of Clinical Assessment in the Era of Biomarkers. Neurotherapeutics 2023; 20:1001-1018. [PMID: 37594658 PMCID: PMC10457273 DOI: 10.1007/s13311-023-01410-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2023] [Indexed: 08/19/2023] Open
Abstract
Hippocratic Medicine revolved around the three main principles of patient, disease, and physician and promoted the systematic observation of patients, rational reasoning, and interpretation of collected information. Although these remain the cardinal features of clinical assessment today, Medicine has evolved from a more physician-centered to a more patient-centered approach. Clinical assessment allows physicians to encounter, observe, evaluate, and connect with patients. This establishes the patient-physician relationship and facilitates a better understanding of the patient-disease relationship, as the ultimate goal is to diagnose, prognosticate, and treat. Biomarkers are at the core of the more disease-centered approach that is currently revolutionizing Medicine as they provide insight into the underlying disease pathomechanisms and biological changes. Genetic, biochemical, radiographic, and clinical biomarkers are currently used. Here, we define a seven-level theoretical construct for the utility of biomarkers in neurodegenerative diseases. Level 1-3 biomarkers are considered supportive of clinical assessment, capable of detecting susceptibility or risk factors, non-specific neurodegeneration or dysfunction, and/or changes at the individual level which help increase clinical diagnostic accuracy and confidence. Level 4-7 biomarkers have the potential to surpass the utility of clinical assessment through detection of early disease stages and prediction of underlying pathology. In neurodegenerative diseases, biomarkers can potentiate, but cannot substitute, clinical assessment. In this current era, aside from adding to the discovery, evaluation/validation, and implementation of more biomarkers, clinical assessment remains crucial to maintaining the personal, humanistic, and sociocultural aspects of patient care. We would argue that clinical assessment is a custom that should never go obsolete.
Collapse
Affiliation(s)
- Arenn F Carlos
- Department of Neurology, Mayo Clinic, 200 1st St. S.W., Rochester, MN, 55905, USA.
| | - Keith A Josephs
- Department of Neurology, Mayo Clinic, 200 1st St. S.W., Rochester, MN, 55905, USA
| |
Collapse
|
36
|
Khan Z, Gupta GD, Mehan S. Cellular and Molecular Evidence of Multiple Sclerosis Diagnosis and Treatment Challenges. J Clin Med 2023; 12:4274. [PMID: 37445309 DOI: 10.3390/jcm12134274] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease that impacts the central nervous system and can result in disability. Although the prevalence of MS has increased in India, diagnosis and treatment continue to be difficult due to several factors. The present study examines the difficulties in detecting and treating multiple sclerosis in India. A lack of MS knowledge among healthcare professionals and the general public, which delays diagnosis and treatment, is one of the significant issues. Inadequate numbers of neurologists and professionals with knowledge of MS management also exacerbate the situation. In addition, MS medications are expensive and not covered by insurance, making them inaccessible to most patients. Due to the absence of established treatment protocols and standards for MS care, India's treatment techniques vary. In addition, India's population diversity poses unique challenges regarding genetic variations, cellular and molecular abnormalities, and the potential for differing treatment responses. MS is more difficult to accurately diagnose and monitor due to a lack of specialized medical supplies and diagnostic instruments. Improved awareness and education among healthcare professionals and the general public, as well as the development of standardized treatment regimens and increased investment in MS research and infrastructure, are required to address these issues. By addressing these issues, it is anticipated that MS diagnosis and treatment in India will improve, leading to better outcomes for those affected by this chronic condition.
Collapse
Affiliation(s)
- Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, IK Gujral Punjab Technical University, Jalandhar 144603, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, IK Gujral Punjab Technical University, Jalandhar 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, IK Gujral Punjab Technical University, Jalandhar 144603, India
| |
Collapse
|
37
|
Fang X, Lu Y, Fu Y, Liu Z, Kermode AG, Qiu W, Ling L, Liu C. Cerebrospinal Fluid Chloride Is Associated with Disease Activity of Relapsing-Remitting Multiple Sclerosis: A Retrospective Cohort Study. Brain Sci 2023; 13:924. [PMID: 37371400 DOI: 10.3390/brainsci13060924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/27/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Blood-brain barrier dysfunction in active multiple sclerosis (MS) lesions leads to pathological changes in the cerebrospinal fluid (CSF). This study aimed to investigate the possible association between routine CSF findings, especially CSF chloride, at the time of the first lumbar puncture and the relapse risk and disability progression of relapsing-remitting MS (RRMS). METHODS This retrospective study included 77 patients with RRMS at the MS Center of our institution from January 2012 to December 2020. The Anderson and Gill (AG) model and Spearman correlation analysis were used to explore predictors of relapse and disability during follow-up. RESULTS In the multivariate AG model, patients with elevated CSF chloride level (hazard ratio [HR], 1.1; 95% confidence interval [CI]: 1.06-1.22; p = 0.001) had a high risk of MS relapse. Using median values of CSF chloride (123.2 mmol/L) as a cut-off, patients with CSF chloride level ≥ 123.2 mmol/L had a 120% increased relapse risk compared with those with CSF chloride level < 123.2 mmol/L (HR = 2.20; 95% CI: 1.19-4.05; p = 0.012). CONCLUSIONS Elevated CSF chloride levels might be a biologically unfavorable predictive factor for disease relapse in RRMS.
Collapse
Affiliation(s)
- Xingwei Fang
- Faculty of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yaxin Lu
- Clinical Data Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yongmei Fu
- Emergency Department, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Zifeng Liu
- Clinical Data Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Allan G Kermode
- Perron Institute, University of Western Australia, Nedlands, WA 6009, Australia
| | - Wei Qiu
- Neurology Department, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Li Ling
- Faculty of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Clinical Research Design Division, Clinical Research Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Chunxin Liu
- Emergency Department, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| |
Collapse
|
38
|
Iacono S, Piccoli T, Aridon P, Schirò G, Blandino V, Tarantino D, Agnello L, Ciaccio M, Ragonese P, Salemi G. Evaluation of serum and cerebrospinal fluid biomarkers after vaccination against SARS-CoV-2. Ann Clin Transl Neurol 2023; 10:1025-1034. [PMID: 37139906 PMCID: PMC10270270 DOI: 10.1002/acn3.51785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 05/05/2023] Open
Abstract
OBJECTIVE Vaccines are a major achievement of science, and new vaccines against SARS-CoV-2 are protecting the entire population from a life-threatening infection. Although several neurological complications or worsening of pre-existing neurological conditions after vaccination have been observed, whether a biological plausibility exist between new vaccines against-SARS-CoV-2 and neurological consequences is unclear. The aim of this study is to evaluate whether vaccines against SARS-CoV-2 induce systemic or cerebrospinal fluid alterations in patients with neurological disorders. METHODS Patients who underwent lumbar puncture (LP) between February 2021 and October 2022 were enrolled. Serum C-reactive protein (CRP), neutrophil to lymphocyte ratio (NLR), cerebrospinal fluid total protein content (CSF-TPc), glucose CSF/serum ratio, number of CSF cells per cubic millimeter, and CSF neurofilament light chain (CSF-NfL) were compared between unvaccinated and vaccinated patients. RESULTS A total of 110 patients were included and fitted into three groups according firstly to vaccination status (vaccinated and unvaccinated) and then to time from last dose of vaccine to LP (within or after 3 months). TPc, CSF/SGlu ratio, number of cells per cubic millimeter, CSF-NfL, CRP, and NLR were not different between groups (all p > 0.05), and also, they did not differ neither according to age nor diagnosis. No relevant differences between groups were also noticed when the at-risk time window was set to 6 weeks. INTERPRETATION No signs of neuroinflammation, axonal loss and systemic inflammation were found in patients with neurological disorders after anti-SARS-CoV-2 vaccination compared with unvaccinated ones.
Collapse
Affiliation(s)
- Salvatore Iacono
- Neurology Unit, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND)University of PalermoPalermoItaly
| | - Tommaso Piccoli
- Neurology Unit, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND)University of PalermoPalermoItaly
| | - Paolo Aridon
- Neurology Unit, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND)University of PalermoPalermoItaly
| | - Giuseppe Schirò
- Neurology Unit, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND)University of PalermoPalermoItaly
| | - Valeria Blandino
- Neurology Unit, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND)University of PalermoPalermoItaly
| | - Domenico Tarantino
- Neurology Unit, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND)University of PalermoPalermoItaly
| | - Luisa Agnello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Clinical Laboratory MedicineUniversity Hospital “P. Giaccone”PalermoItaly
| | - Marcello Ciaccio
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Clinical Laboratory MedicineUniversity Hospital “P. Giaccone”PalermoItaly
| | - Paolo Ragonese
- Neurology Unit, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND)University of PalermoPalermoItaly
| | - Giuseppe Salemi
- Neurology Unit, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND)University of PalermoPalermoItaly
| |
Collapse
|
39
|
Higgins V, Beriault D, Mostafa A, Estey M, Agbor T, Ismail O, Parker ML. Variation in Processes and Reporting of Cerebrospinal Fluid Oligoclonal Banding and Associated Tests and Calculated Indices across Canadian Clinical Laboratories. Clin Biochem 2023; 116:105-112. [PMID: 37100108 DOI: 10.1016/j.clinbiochem.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/28/2023]
Abstract
OBJECTIVES Multiple sclerosis is diagnosed based on clinical and laboratory findings, including cerebrospinal fluid (CSF) oligoclonal banding (OCB) analysis. The lack of updated CSF OCB laboratory guidelines in Canada has likely led to variation in processes and reporting across clinical laboratories. As a first step to developing harmonized laboratory recommendations, we examined current CSF OCB processes, reporting, and interpretation across all Canadian clinical laboratories currently performing this test. DESIGN AND METHODS A survey of 39 questions was sent to clinical chemists at all 13 Canadian clinical laboratories performing CSF OCB analysis. The survey included questions regarding quality control processes, reporting practices for CSF gel electrophoresis pattern interpretation, and associated tests and calculated indices. RESULTS The survey response rate was 100%. Most (10/13) laboratories use ≥2 CSF-specific bands (2017 McDonald Criteria) as their CSF OCB positivity cut-off and only 2/13 report the number of bands with every report. Most (8/13 and 9/13) laboratories report an inflammatory response pattern and monoclonal gammopathy pattern, respectively. However, the process for reporting and/or confirming a monoclonal gammopathy varies widely. Variation was observed for reference intervals, units, and the panel of reported associated tests and calculated indices. The maximum acceptable time interval between paired CSF and serum collections varied from 24 hours to no limit. CONCLUSIONS Profound variation exists in processes, reporting, and interpretation of CSF OCB and associated tests and indices across Canadian clinical laboratories. Harmonization of CSF OCB analysis is required to ensure continuity and quality of patient care. Our detailed assessment of current practice variation highlights the need for clinical stakeholder engagement and further data analysis to support optimal interpretation and reporting practices, which will aid in developing harmonized laboratory recommendations.
Collapse
Affiliation(s)
- V Higgins
- DynaLIFE Medical Labs, Edmonton, AB, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada.
| | - D Beriault
- Department of Laboratory Medicine, St. Michael's Hospital, Toronto, ON, Canada; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada; Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - A Mostafa
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - M Estey
- DynaLIFE Medical Labs, Edmonton, AB, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - T Agbor
- DynaLIFE Medical Labs, Edmonton, AB, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - O Ismail
- DynaLIFE Medical Labs, Edmonton, AB, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - M L Parker
- DynaLIFE Medical Labs, Edmonton, AB, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
40
|
Vesic K, Gavrilovic A, Mijailović NR, Borovcanin MM. Neuroimmune, clinical and treatment challenges in multiple sclerosis-related psychoses. World J Psychiatry 2023; 13:161-170. [PMID: 37123101 PMCID: PMC10130959 DOI: 10.5498/wjp.v13.i4.161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/16/2023] [Accepted: 03/23/2023] [Indexed: 04/18/2023] Open
Abstract
In recent years, epidemiological and genetic studies have shown an association between autoimmune diseases and psychosis. The question arises whether patients with schizophrenia are more likely to develop multiple sclerosis (MS) later in life. It is well known that the immune system plays an important role in the etiopathogenesis of both disorders. Immune disturbances may be similar or very different in terms of different types of immune responses, disturbed myelination, and/or immunogenetic predispositions. A psychotic symptom may be a consequence of the MS diagnosis itself or a separate entity. In this review article, we discussed the timing of onset of psychotic symptoms and MS and whether the use of corticosteroids as therapy for acute relapses in MS is unfairly neglected in patients with psychiatric comorbidities. In addition, we discussed that the anti-inflammatory potential of antipsychotics could be useful and should be considered, especially in the treatment of psychosis that coexists with MS. Autoimmune disorders could precipitate psychotic symptoms, and in this context, autoimmune psychosis must be considered as a persistent symptomatology that requires continuous and specific treatment.
Collapse
Affiliation(s)
- Katarina Vesic
- Department of Neurology, University of Kragujevac, Faculty of Medical Sciences, Kragujevac 34000, Sumadija, Serbia
| | - Aleksandar Gavrilovic
- Department of Neurology, University of Kragujevac, Faculty of Medical Sciences, Kragujevac 34000, Sumadija, Serbia
| | - Nataša R Mijailović
- Department of Pharmacy, University of Kragujevac, Faculty of Medical Sciences, Kragujevac 34000, Sumadija, Serbia
| | - Milica M Borovcanin
- Department of Psychiatry, University of Kragujevac, Faculty of Medical Sciences, Kragujevac 34000, Sumadija, Serbia
| |
Collapse
|
41
|
Bogers L, Engelenburg HJ, Janssen M, Unger PPA, Melief MJ, Wierenga-Wolf AF, Hsiao CC, Mason MRJ, Hamann J, van Langelaar J, Smolders J, van Luijn MM. Selective emergence of antibody-secreting cells in the multiple sclerosis brain. EBioMedicine 2023; 89:104465. [PMID: 36796230 PMCID: PMC9958261 DOI: 10.1016/j.ebiom.2023.104465] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Although distinct brain-homing B cells have been identified in multiple sclerosis (MS), it is unknown how these further evolve to contribute to local pathology. We explored B-cell maturation in the central nervous system (CNS) of MS patients and determined their association with immunoglobulin (Ig) production, T-cell presence, and lesion formation. METHODS Ex vivo flow cytometry was performed on post-mortem blood, cerebrospinal fluid (CSF), meninges and white matter from 28 MS and 10 control brain donors to characterize B cells and antibody-secreting cells (ASCs). MS brain tissue sections were analysed with immunostainings and microarrays. IgG index and CSF oligoclonal bands were measured with nephelometry, isoelectric focusing, and immunoblotting. Blood-derived B cells were cocultured under T follicular helper-like conditions to evaluate their ASC-differentiating capacity in vitro. FINDINGS ASC versus B-cell ratios were increased in post-mortem CNS compartments of MS but not control donors. Local presence of ASCs associated with a mature CD45low phenotype, focal MS lesional activity, lesional Ig gene expression, and CSF IgG levels as well as clonality. In vitro B-cell maturation into ASCs did not differ between MS and control donors. Notably, lesional CD4+ memory T cells positively correlated with ASC presence, reflected by local interplay with T cells. INTERPRETATION These findings provide evidence that local B cells at least in late-stage MS preferentially mature into ASCs, which are largely responsible for intrathecal and local Ig production. This is especially seen in active MS white matter lesions and likely depends on the interaction with CD4+ memory T cells. FUNDING Stichting MS Research (19-1057 MS; 20-490f MS), National MS Fonds (OZ2018-003).
Collapse
Affiliation(s)
- Laurens Bogers
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Hendrik J Engelenburg
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands
| | - Malou Janssen
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands; Department of Neurology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Peter-Paul A Unger
- Department of Viroscience, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Marie-José Melief
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Annet F Wierenga-Wolf
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Cheng-Chih Hsiao
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands
| | - Matthew R J Mason
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands
| | - Jörg Hamann
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands; Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, 1007 MB, Amsterdam, The Netherlands
| | - Jamie van Langelaar
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Joost Smolders
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands; Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands; Department of Neurology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Marvin M van Luijn
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands.
| |
Collapse
|
42
|
Figueiredo MVD, Alexiou G, Laube KAC, Manfroi G, Rehder R. Novel concepts in the pathogenesis of hydrocephalus. Childs Nerv Syst 2023; 39:1245-1252. [PMID: 36849601 DOI: 10.1007/s00381-023-05891-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/20/2023] [Indexed: 03/01/2023]
Abstract
PURPOSE Hydrocephalus is a multifactorial neurological disorder and one of the most common neurosurgical conditions characterized by excessive cerebrospinal fluid (CSF) accumulation within the brain's ventricles. It can result in dilatation of the ventricular system caused by the inadequate passage of CSF from its point of production within the ventricles to its point of absorption into the systemic circulation. Recent findings on the genetics and molecular studies of hydrocephalus have the potential to improve treatment and quality of life. METHODS Review of literature on the novel studies of the pathogenesis of hydrocephalus. CONCLUSION Molecular studies on the pathogenesis of hydrocephalus have provided a means to improve the treatment and follow-up of patients with hydrocephalus.
Collapse
Affiliation(s)
| | - George Alexiou
- Division of Neurosurgery, University Hospital of Ioannina, Ioannina, Greece
| | | | - Gregori Manfroi
- Division of Pediatric Neurosurgery, Hospital Santa Marcelina, São Paulo, Brazil
| | - Roberta Rehder
- Division of Neurosurgery, HCor - Hospital do Coração, São Paulo, Brazil.
- Division of Pediatric Neurosurgery, Hospital Santa Marcelina, São Paulo, Brazil.
- Division of Neurosurgery, Hospital do Coracao, 130 Des. Eliseu Guilherme St, 3rd floor, 05280-110, São Paulo, SP, Brazil.
| |
Collapse
|
43
|
Datyner E, Adeseye V, Porter K, Dryden I, Sarma A, Vu N, Patrick AE, Paueksakon P. Small vessel childhood primary angiitis of the central nervous system with positive anti-glial fibrillary acidic protein antibodies: a case report and review of literature. BMC Neurol 2023; 23:57. [PMID: 36737749 PMCID: PMC9895965 DOI: 10.1186/s12883-023-03093-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Small vessel childhood primary angiitis of the central nervous system (SV-cPACNS) is a rare disease characterized by inflammation within small vessels such as arterioles or capillaries. CASE PRESENTATION We report a case of SV-cPACNS in an 8-year-old boy confirmed by brain biopsy. This patient was also incidentally found to have anti-glial fibrillary acidic protein (GFAP) antibodies in the cerebrospinal fluid (CSF) but had no evidence of antibody-mediated disease on brain biopsy. A literature review highlighted the rarity of SV-cPACNS and found no prior reports of CSF GFAP-associated SV-cPACNS in the pediatric age group. CONCLUSION We present the first case of biopsy proven SV-cPACNS vasculitis associated with an incidental finding of CSF GFAP antibodies. The GFAP antibodies are likely a clinically insignificant bystander in this case and possibly in other diseases with CNS inflammation. Further research is needed to determine the clinical significance of newer CSF autoantibodies such as anti-GFAP before they are used for medical decision-making in pediatrics.
Collapse
Affiliation(s)
- E Datyner
- grid.412807.80000 0004 1936 9916Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN USA
| | - V Adeseye
- grid.412807.80000 0004 1936 9916Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN USA
| | - K Porter
- grid.152326.10000 0001 2264 7217Vanderbilt University, Nashville, TN USA
| | - I Dryden
- grid.412807.80000 0004 1936 9916Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, 1161 21St Avenue South, Nashville, TN MCN C2318B37232-2561 USA
| | - A Sarma
- grid.412807.80000 0004 1936 9916Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN USA
| | - N Vu
- grid.412807.80000 0004 1936 9916Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN USA
| | - AE Patrick
- grid.412807.80000 0004 1936 9916Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN USA
| | - P Paueksakon
- grid.412807.80000 0004 1936 9916Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, 1161 21St Avenue South, Nashville, TN MCN C2318B37232-2561 USA
| |
Collapse
|
44
|
Puranik N, Yadav D, Song M. Insight into Early Diagnosis of Multiple Sclerosis by Targeting Prognostic Biomarkers. Curr Pharm Des 2023; 29:2534-2544. [PMID: 37921136 DOI: 10.2174/0113816128247471231018053737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/04/2023] [Accepted: 09/06/2023] [Indexed: 11/04/2023]
Abstract
Multiple sclerosis (MS) is a central nervous system (CNS) immune-mediated disease that mainly strikes young adults and leaves them disabled. MS is an autoimmune illness that causes the immune system to attack the brain and spinal cord. The myelin sheaths, which insulate the nerve fibers, are harmed by our own immune cells, and this interferes with brain signal transmission. Numbness, tingling, mood swings, memory problems, exhaustion, agony, vision problems, and/or paralysis are just a few of the symptoms. Despite technological advancements and significant research efforts in recent years, diagnosing MS can still be difficult. Each patient's MS is distinct due to a heterogeneous and complex pathophysiology with diverse types of disease courses. There is a pressing need to identify markers that will allow for more rapid and accurate diagnosis and prognosis assessments to choose the best course of treatment for each MS patient. The cerebrospinal fluid (CSF) is an excellent source of particular indicators associated with MS pathology. CSF contains molecules that represent pathological processes such as inflammation, cellular damage, and loss of blood-brain barrier integrity. Oligoclonal bands, neurofilaments, MS-specific miRNA, lncRNA, IgG-index, and anti-aquaporin 4 antibodies are all clinically utilised indicators for CSF in MS diagnosis. In recent years, a slew of new possible biomarkers have been presented. In this review, we look at what we know about CSF molecular markers and how they can aid in the diagnosis and differentiation of different MS forms and treatment options, and monitoring and predicting disease progression, therapy response, and consequences during such opportunistic infections.
Collapse
Affiliation(s)
- Nidhi Puranik
- Biological Sciences Department, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Dhananjay Yadav
- Department of Life Science, Yeungnam University, Gyeongsan 38541, Korea
| | - Minseok Song
- Department of Life Science, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
45
|
Klose V, Jesse S, Lewerenz J, Kassubek J, Dorst J, Tumani H, Ludolph AC, Roselli F. CSF oligoclonal IgG bands are not associated with ALS progression and prognosis. Front Neurol 2023; 14:1170360. [PMID: 37213901 PMCID: PMC10196068 DOI: 10.3389/fneur.2023.1170360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/19/2023] [Indexed: 05/23/2023] Open
Abstract
Introduction Amyotrophic Lateral Sclerosis (ALS) is characterized by progressive motoneuron degeneration through cell autonomous and non-cell autonomous mechanisms; and the involvement of the innate and adaptive immune system has been hypothesized based on human and murine model data. We have explored if B-cell activation and IgG responses, as detected by IgG Oligoclonal bands (OCB) in serum and cerebrospinal fluid, were associated with ALS or with a subgroup of patients with distinct clinical features. Methods IgG OCB were determined in patients affected by ALS (n=457), Alzheimer Disease (n=516), Mild Cognitive Impairment (n=91), Tension-type Headache (n=152) and idiopathic Facial Palsy (n=94). For ALS patients, clinico-demographic and survival data were prospectively collected in the Register Schabia. Results The prevalence of IgG OCB is comparable in ALS and the four neurological cohorts. When the OCB pattern was considered (highlighting either intrathecal or systemic B-cells activation), no effect of OCB pattern on clinic-demographic parameters and overall. ALS patients with intrathecal IgG synthesis (type 2 and 3) were more likely to display infectious, inflammatory or systemic autoimmune conditions. Discussion These data suggest that OCB are not related to ALS pathophysiology but rather are a finding possibly indicative a coincidental infectious or inflammatory comorbidity that merits further investigation.
Collapse
Affiliation(s)
- Veronika Klose
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE)-Ulm, Ulm, Germany
| | - Sarah Jesse
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE)-Ulm, Ulm, Germany
| | - Jan Lewerenz
- Department of Neurology, Ulm University, Ulm, Germany
| | - Jan Kassubek
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE)-Ulm, Ulm, Germany
| | - Johannes Dorst
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE)-Ulm, Ulm, Germany
| | - Hayrettin Tumani
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE)-Ulm, Ulm, Germany
| | - Albert C. Ludolph
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE)-Ulm, Ulm, Germany
- Neurozentrum Ulm, Ulm, Germany
- *Correspondence: Albert C. Ludolph,
| | - Francesco Roselli
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE)-Ulm, Ulm, Germany
- Neurozentrum Ulm, Ulm, Germany
- Francesco Roselli,
| |
Collapse
|
46
|
Hernandez-Vega M, Orozco-Narvaez A, Reyes-Vaca JG, Rodriguez-Leyva I. Optic neuromyelitis after vaccination against SARS-CoV-2. BMJ Case Rep 2022; 15:15/12/e252309. [PMID: 36574993 PMCID: PMC9806042 DOI: 10.1136/bcr-2022-252309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Neuromyelitis optica is an autoimmune demyelinating astrocytopathy of the central nervous system that primarily affects the optic nerve and spinal cord. It is considered a multifactorial disease associated with antibodies against aquaporin 4, with complement cascade activation and lymphocytic infiltration leading to axonal loss and causing significant morbidity and disability. In addition, cases of inflammatory diseases of the central nervous system have been described after vaccination against SARS-CoV-2, mainly acute disseminated encephalomyelitis. Also, a few cases of neuromyelitis optica spectrum disorder, mostly aquaporin 4+, have been reported. We describe a patient who developed symptoms suggestive of acute disseminated encephalomyelitis the next day after vaccination against SARS-CoV-2. Three months later, a longitudinally extensive transverse myelitis compatible with aquaporin 4+ neuromyelitis optica was successfully treated with an interleukin 6 inhibitor. There is no proven association and research is needed to establish whether optic neuromyelitis is related to vaccination; this is a single case report from which no conclusion can be drawn.
Collapse
Affiliation(s)
- Melissa Hernandez-Vega
- Neurology, Hospital Central Dr Ignacio Morones Prieto, San Luis Potosi, Mexico,Neurology, Facultad de Medicina, Universidad Autonoma de San Luis Potosi - Facultad de Medicina, San Luis Potosi, Mexico
| | - Alejandro Orozco-Narvaez
- Neurology, Hospital Central Dr Ignacio Morones Prieto, San Luis Potosi, Mexico,Neurology, Facultad de Medicina, Universidad Autonoma de San Luis Potosi - Facultad de Medicina, San Luis Potosi, Mexico
| | - Jorge Guillermo Reyes-Vaca
- Neurology, Facultad de Medicina, Universidad Autonoma de San Luis Potosi - Facultad de Medicina, San Luis Potosi, Mexico,Radiology and Image, Hospital Central Dr Ignacio Morones Prieto, San Luis Potosi, Mexico
| | - Ildefonso Rodriguez-Leyva
- Neurology, Hospital Central Dr Ignacio Morones Prieto, San Luis Potosi, Mexico,Neurology, Facultad de Medicina, Universidad Autonoma de San Luis Potosi - Facultad de Medicina, San Luis Potosi, Mexico
| |
Collapse
|
47
|
Blood Metabolomics May Discriminate a Sub-Group of Patients with First Demyelinating Episode in the Context of RRMS with Increased Disability and MRI Characteristics Indicative of Poor Prognosis. Int J Mol Sci 2022; 23:ijms232314578. [PMID: 36498904 PMCID: PMC9735785 DOI: 10.3390/ijms232314578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Biomarker research across the health-to-disease continuum is being increasingly applied. We applied blood-based metabolomics in order to identify patient clusters with a first demyelinating episode, and explored the prognostic potential of the method by thoroughly characterizing each cluster in terms of clinical, laboratory and MRI markers of established prognostic potential for Multiple Sclerosis (MS). Recruitment consisted of 11 patients with Clinically Isolated Syndrome (CIS), 37 patients with a first demyelinating episode in the context of Relapsing-Remitting MS (RRMS) and 11 control participants. Blood-based metabolomics and hierarchical clustering analysis (HCL) were applied. Constructed OPLS-DA models illustrated a discrimination between patients with CIS and the controls (p = 0.0014), as well as between patients with RRMS and the controls (p = 1 × 10−5). Hierarchical clustering analysis (HCL) for patients with RRMS identified three clusters. RRMS-patients-cluster-3 exhibited higher mean cell numbers in the Cerebro-spinal Fluid (CSF) compared to patients with CIS (18.17 ± 6.3 vs. 1.09 ± 0.41, p = 0.004). Mean glucose CSF/serum ratio and infratentorial lesion burden significantly differed across CIS- and HCL-derived RRMS-patient clusters (F = 14.95, p < 0.001 and F = 6.087, p = 0.002, respectively), mainly due to increased mean values for patients with RRMS-cluster-3. HCL discriminated a cluster of patients with a first demyelinating episode in the context of RRMS with increased disability, laboratory findings linked with increased pathology burden and MRI markers of poor prognosis.
Collapse
|
48
|
Fadda G, Flanagan EP, Cacciaguerra L, Jitprapaikulsan J, Solla P, Zara P, Sechi E. Myelitis features and outcomes in CNS demyelinating disorders: Comparison between multiple sclerosis, MOGAD, and AQP4-IgG-positive NMOSD. Front Neurol 2022; 13:1011579. [PMID: 36419536 PMCID: PMC9676369 DOI: 10.3389/fneur.2022.1011579] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/11/2022] [Indexed: 07/25/2023] Open
Abstract
Inflammatory myelopathies can manifest with a combination of motor, sensory and autonomic dysfunction of variable severity. Depending on the underlying etiology, the episodes of myelitis can recur, often leading to irreversible spinal cord damage and major long-term disability. Three main demyelinating disorders of the central nervous system, namely multiple sclerosis (MS), aquaporin-4-IgG-positive neuromyelitis optica spectrum disorders (AQP4+NMOSD) and myelin oligodendrocyte glycoprotein-IgG associated disease (MOGAD), can induce spinal cord inflammation through different pathogenic mechanisms, resulting in a more or less profound disruption of spinal cord integrity. This ultimately translates into distinctive clinical-MRI features, as well as distinct patterns of disability accrual, with a step-wise worsening of neurological function in MOGAD and AQP4+NMOSD, and progressive disability accrual in MS. Early recognition of the specific etiologies of demyelinating myelitis and initiation of the appropriate treatment is crucial to improve outcome. In this review article we summarize and compare the clinical and imaging features of spinal cord involvement in these three demyelinating disorders, both during the acute phase and over time, and outline the current knowledge on the expected patterns of disability accrual and outcomes. We also discuss the potential implications of these observations for patient management and counseling.
Collapse
Affiliation(s)
- Giulia Fadda
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Eoin P. Flanagan
- Department of Neurology, Center for MS and Autoimmune Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Laura Cacciaguerra
- Department of Neurology, Center for MS and Autoimmune Neurology, Mayo Clinic, Rochester, MN, United States
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Paolo Solla
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Pietro Zara
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Elia Sechi
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
49
|
Dimaandal I, Imitola J. All anti-CD20 monoclonal antibodies have similar efficacy and risks: Commentary. Mult Scler 2022; 28:1847-1848. [PMID: 36124838 DOI: 10.1177/13524585221122219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Ian Dimaandal
- UConn Health Comprehensive MS Center, Department of Neurology, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Jaime Imitola
- UConn Health Comprehensive MS Center, Department of Neurology, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
50
|
Umemura Y, Khan B, Weill BJ, Buthorn JJ, Skakodub A, Ridder AJ, Nevel KS, Sun Y, Boire A. Discordance Between Perceptions and Experience of Lumbar Puncture: A Prospective Study. Neurol Clin Pract 2022; 12:344-351. [PMID: 36380890 PMCID: PMC9647808 DOI: 10.1212/cpj.0000000000200061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/26/2022] [Indexed: 01/13/2023]
Abstract
Background and Objectives Novel diagnostic techniques and neurologic biomarkers have greatly expanded clinical indications for CSF studies. CSF is most commonly obtained via lumbar puncture (LP). Although it is generally believed that LPs are well tolerated, there is a lack of supportive data for this claim, and patients anticipate LP to be painful. The objective of this study was to prospectively investigate discordance between patient perception and tolerability of LP. Methods Adult patients were surveyed before and after LP regarding their perceptions and experience of LP. Physician perceptions were gathered through a web-based survey. Relative risk and Spearman correlation were used to assess the relationship between responses. Paired binomial and paired ordinal responses were compared by McNemar and paired Wilcoxon rank-sum tests. Results A total of 178 patients completed the surveys. About half of the patients (58%) reported anxiety pre-LP, at median 3.0 of 10. Physicians overpredicted patients' pre-LP anxiety (median score 5.0, p < 0.001). Experienced pain was significantly less than predicted pain (median scores 0 and 3.0, respectively, p < 0.001). Patients who predicted pain were more likely to report pain from LP (relative risk [RR] 1.3). Predicting pain was also correlated with anxiety before LP (p < 0.001). Discussion LP was generally well tolerated. The majority of patients experienced minimal pain. Anticipation of pain was correlated with both feeling anxious and experiencing pain. The results of this study can be used to reassure patients and providers that LP is indeed not as painful as imagined, which may both reduce pre-LP anxiety and improve LP tolerability.
Collapse
Affiliation(s)
- Yoshie Umemura
- Departments of Neurology (YU, BK, AJR, YS), and Radiation Oncology and Biostatistics (YS), University of Michigan, Ann Arbor; and Human Oncology and Pathogenesis Program (BJW, JJB, AS, KSN), Brain Tumor Center and Department of Neurology (AB), Memorial Sloan Kettering Cancer Center, New York
| | - Baber Khan
- Departments of Neurology (YU, BK, AJR, YS), and Radiation Oncology and Biostatistics (YS), University of Michigan, Ann Arbor; and Human Oncology and Pathogenesis Program (BJW, JJB, AS, KSN), Brain Tumor Center and Department of Neurology (AB), Memorial Sloan Kettering Cancer Center, New York
| | - Benjamin J Weill
- Departments of Neurology (YU, BK, AJR, YS), and Radiation Oncology and Biostatistics (YS), University of Michigan, Ann Arbor; and Human Oncology and Pathogenesis Program (BJW, JJB, AS, KSN), Brain Tumor Center and Department of Neurology (AB), Memorial Sloan Kettering Cancer Center, New York
| | - Justin J Buthorn
- Departments of Neurology (YU, BK, AJR, YS), and Radiation Oncology and Biostatistics (YS), University of Michigan, Ann Arbor; and Human Oncology and Pathogenesis Program (BJW, JJB, AS, KSN), Brain Tumor Center and Department of Neurology (AB), Memorial Sloan Kettering Cancer Center, New York
| | - Anna Skakodub
- Departments of Neurology (YU, BK, AJR, YS), and Radiation Oncology and Biostatistics (YS), University of Michigan, Ann Arbor; and Human Oncology and Pathogenesis Program (BJW, JJB, AS, KSN), Brain Tumor Center and Department of Neurology (AB), Memorial Sloan Kettering Cancer Center, New York
| | - Andrew J Ridder
- Departments of Neurology (YU, BK, AJR, YS), and Radiation Oncology and Biostatistics (YS), University of Michigan, Ann Arbor; and Human Oncology and Pathogenesis Program (BJW, JJB, AS, KSN), Brain Tumor Center and Department of Neurology (AB), Memorial Sloan Kettering Cancer Center, New York
| | - Kathryn S Nevel
- Departments of Neurology (YU, BK, AJR, YS), and Radiation Oncology and Biostatistics (YS), University of Michigan, Ann Arbor; and Human Oncology and Pathogenesis Program (BJW, JJB, AS, KSN), Brain Tumor Center and Department of Neurology (AB), Memorial Sloan Kettering Cancer Center, New York
| | - Yilun Sun
- Departments of Neurology (YU, BK, AJR, YS), and Radiation Oncology and Biostatistics (YS), University of Michigan, Ann Arbor; and Human Oncology and Pathogenesis Program (BJW, JJB, AS, KSN), Brain Tumor Center and Department of Neurology (AB), Memorial Sloan Kettering Cancer Center, New York
| | - Adrienne Boire
- Departments of Neurology (YU, BK, AJR, YS), and Radiation Oncology and Biostatistics (YS), University of Michigan, Ann Arbor; and Human Oncology and Pathogenesis Program (BJW, JJB, AS, KSN), Brain Tumor Center and Department of Neurology (AB), Memorial Sloan Kettering Cancer Center, New York
| |
Collapse
|