1
|
Hegewisch-Solloa E, Nalin AP, Freud AG, Mace EM. Deciphering the localization and trajectory of human natural killer cell development. J Leukoc Biol 2023; 114:487-506. [PMID: 36869821 DOI: 10.1093/jleuko/qiad027] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/07/2023] [Accepted: 02/12/2023] [Indexed: 03/05/2023] Open
Abstract
Innate immune cells represent the first line of cellular immunity, comprised of both circulating and tissue-resident natural killer cells and innate lymphoid cells. These innate lymphocytes arise from a common CD34+ progenitor that differentiates into mature natural killer cells and innate lymphoid cells. The successive stages in natural killer cell maturation are characterized by increased lineage restriction and changes to phenotype and function. Mechanisms of human natural killer cell development have not been fully elucidated, especially the role of signals that drive the spatial localization and maturation of natural killer cells. Cytokines, extracellular matrix components, and chemokines provide maturation signals and influence the trafficking of natural killer cell progenitors to peripheral sites of differentiation. Here we present the latest advances in our understanding of natural killer and innate lymphoid cell development in peripheral sites, including secondary lymphoid tissues (i.e. tonsil). Recent work in the field has provided a model for the spatial distribution of natural killer cell and innate lymphoid cell developmental intermediates in tissue and generated further insights into the developmental niche. In support of this model, future studies using multifaceted approaches seek to fully map the developmental trajectory of human natural killer cells and innate lymphoid cells in secondary lymphoid tissues.
Collapse
Affiliation(s)
- Everardo Hegewisch-Solloa
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 630 W 168th St. New York, NY 10032, USA
| | - Ansel P Nalin
- Biomedical Sciences Graduate Program, Medical Scientist Training Program, Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, The Ohio State University, 460 W 10th Ave. Columbus, OH 43210, USA
| | - Aharon G Freud
- Department of Pathology, Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, The Ohio State University, 460 W 12th Ave. Columbus, OH 43210, USA
| | - Emily M Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 630 W 168th St. New York, NY 10032, USA
| |
Collapse
|
2
|
De Barra C, O'Shea D, Hogan AE. NK cells vs. obesity: A tale of dysfunction & redemption. Clin Immunol 2023; 255:109744. [PMID: 37604354 DOI: 10.1016/j.clim.2023.109744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
Natural killer (NK) cells are critical in protecting the body against infection and cancer. NK cells can rapidly respond to these threats by directly targeting the infected or transformed cell using their cytotoxic machinery or by initiating and amplifying the immune response via their production of cytokines. Additionally, NK cells are resident across many tissues including adipose, were their role extends from host protection to tissue homeostasis. Adipose resident NK cells can control macrophage polarization via cytokine production, whilst also regulating stressed adipocyte fate using their cytotoxic machinery. Obesity is strongly associated with increased rates of cancer and a heightened susceptibility to severe infections. This is in part due to significant obesity-related immune dysregulation, including defects in both peripheral and adipose tissue NK cells. In this review, we detail the literature to date on NK cells in the setting of obesity - outlining the consequences, mechanisms and therapeutic interventions.
Collapse
Affiliation(s)
- Conor De Barra
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland
| | - Donal O'Shea
- Obesity Immunology Group, Education and Research Centre, St Vincent's University Hospital, University College, Dublin 4, Ireland
| | - Andrew E Hogan
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland; National Children's Research Centre, Dublin 12, Ireland.
| |
Collapse
|
3
|
Hermans L, Denaeghel S, Jansens RJJ, De Pelsmaeker S, Van Nieuwerburgh F, Deforce D, Hegewisch-Solloa E, Mace EM, Cox E, Devriendt B, Favoreel HW. Comparative transcriptomics of porcine liver-resident CD8α dim, liver CD8α high and circulating blood CD8α high NK cells reveals an intermediate phenotype of liver CD8α high NK cells. Front Immunol 2023; 14:1219078. [PMID: 37662951 PMCID: PMC10471975 DOI: 10.3389/fimmu.2023.1219078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
Liver-resident NK (lrNK) cells have been studied in humans as well as in mice. Unfortunately, important differences have been observed between murine and human lrNK cells, complicating the extrapolation of data obtained in mice to man. We previously described two NK cell subsets in the porcine liver: A CD8αhigh subset, with a phenotype much like conventional CD8αhigh NK cells found in the peripheral blood, and a specific liver-resident CD8αdim subset which phenotypically strongly resembles human lrNK cells. These data suggest that the pig might be an attractive model for studying lrNK cell biology. In the current study, we used RNA-seq to compare the transcriptome of three porcine NK cell populations: Conventional CD8αhigh NK cells from peripheral blood (cNK cells), CD8αhigh NK cells isolated from the liver, and the liver-specific CD8αdim NK cells. We found that highly expressed transcripts in the CD8αdim lrNK cell population mainly include genes associated with the (adaptive) immune response, whereas transcripts associated with cell migration and extravasation are much less expressed in this subset compared to cNK cells. Overall, our data indicate that CD8αdim lrNK cells show an immature and anti-inflammatory phenotype. Interestingly, we also observed that the CD8αhigh NK cell population that is present in the liver appears to represent a population with an intermediate phenotype. Indeed, while the transcriptome of these cells largely overlaps with that of cNK cells, they also express transcripts associated with liver residency, in particular CXCR6. The current, in-depth characterization of the transcriptome of porcine liver NK cell populations provides a basis to use the pig model for research into liver-resident NK cells.
Collapse
Affiliation(s)
- Leen Hermans
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Sofie Denaeghel
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Robert J. J. Jansens
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY, United States
| | - Steffi De Pelsmaeker
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | - Dieter Deforce
- Faculty of Pharmaceutical Sciences, NXTGNT, Ghent University, Ghent, Belgium
| | - Everardo Hegewisch-Solloa
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, United States
| | - Emily M. Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, United States
| | - Eric Cox
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bert Devriendt
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Herman W. Favoreel
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
4
|
Zheng P, Dou Y, Wang Q. Immune response and treatment targets of chronic hepatitis B virus infection: innate and adaptive immunity. Front Cell Infect Microbiol 2023; 13:1206720. [PMID: 37424786 PMCID: PMC10324618 DOI: 10.3389/fcimb.2023.1206720] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection is a major global public health risk that threatens human life and health, although the number of vaccinated people has increased. The clinical outcome of HBV infection depends on the complex interplay between viral replication and the host immune response. Innate immunity plays an important role in the early stages of the disease but retains no long-term immune memory. However, HBV evades detection by the host innate immune system through stealth. Therefore, adaptive immunity involving T and B cells is crucial for controlling and clearing HBV infections that lead to liver inflammation and damage. The persistence of HBV leads to immune tolerance owing to immune cell dysfunction, T cell exhaustion, and an increase in suppressor cells and cytokines. Although significant progress has been made in HBV treatment in recent years, the balance between immune tolerance, immune activation, inflammation, and fibrosis in chronic hepatitis B remains unknown, making a functional cure difficult to achieve. Therefore, this review focuses on the important cells involved in the innate and adaptive immunity of chronic hepatitis B that target the host immune system and identifies treatment strategies.
Collapse
Affiliation(s)
- Peiyu Zheng
- Department of Infectious Diseases, The First Hospital of Shanxi Medical University, Taiyuan, China
- Graduate School of Shanxi Medical University, Taiyuan, China
| | - Yongqing Dou
- Department of Infectious Diseases, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Qinying Wang
- Department of Infectious Diseases, The First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
5
|
Piccinelli S, Romee R, Shapiro RM. The natural killer cell immunotherapy platform: an overview of the landscape of clinical trials in liquid and solid tumors. Semin Hematol 2023; 60:42-51. [PMID: 37080710 DOI: 10.1053/j.seminhematol.2023.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/23/2023] [Indexed: 03/07/2023]
Abstract
The translation of natural killer (NK) cells to the treatment of malignant disease has made significant progress in the last few decades. With a variety of available sources and improvements in both in vitro and in vivo NK cell expansion, the NK cell immunotherapy platform has come into its own. The enormous effort continues to further optimize this platform, including ways to enhance NK cell persistence, trafficking to the tumor microenvironment, and cytotoxicity. As this effort bears fruit, it is translated into a plethora of clinical trials in patients with advanced malignancies. The adoptive transfer of NK cells, either as a standalone therapy or in combination with other immunotherapies, has been applied for the treatment of both liquid and solid tumors, with numerous early-phase trials showing promising results. This review aims to summarize the key advantages of NK cell immunotherapy, highlight several of the current approaches being taken for its optimization, and give an overview of the landscape of clinical trials translating this platform into clinic.
Collapse
|
6
|
Ziegler AE, Fittje P, Müller LM, Ahrenstorf AE, Hagemann K, Hagen SH, Hess LU, Niehrs A, Poch T, Ravichandran G, Löbl SM, Padoan B, Brias S, Hennesen J, Richard M, Richert L, Peine S, Oldhafer KJ, Fischer L, Schramm C, Martrus G, Bunders MJ, Altfeld M, Lunemann S. The co-inhibitory receptor TIGIT regulates NK cell function and is upregulated in human intrahepatic CD56 bright NK cells. Front Immunol 2023; 14:1117320. [PMID: 36845105 PMCID: PMC9948018 DOI: 10.3389/fimmu.2023.1117320] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/17/2023] [Indexed: 02/11/2023] Open
Abstract
The crosstalk between NK cells and their surrounding environment is enabled through activating and inhibitory receptors, which tightly control NK cell activity. The co-inhibitory receptor TIGIT decreases NK cell cytotoxicity and is involved in NK cell exhaustion, but has also been associated with liver regeneration, highlighting that the contribution of human intrahepatic CD56bright NK cells in regulating tissue homeostasis remains incompletely understood. A targeted single-cell mRNA analysis revealed distinct transcriptional differences between matched human peripheral blood and intrahepatic CD56bright NK cells. Multiparameter flow cytometry identified a cluster of intrahepatic NK cells with overlapping high expression of CD56, CD69, CXCR6, TIGIT and CD96. Intrahepatic CD56bright NK cells also expressed significantly higher protein surface levels of TIGIT, and significantly lower levels of DNAM-1 compared to matched peripheral blood CD56bright NK cells. TIGIT+ CD56bright NK cells showed diminished degranulation and TNF-α production following stimulation. Co-incubation of peripheral blood CD56bright NK cells with human hepatoma cells or primary human hepatocyte organoids resulted in migration of NK cells into hepatocyte organoids and upregulation of TIGIT and downregulation of DNAM-1 expression, in line with the phenotype of intrahepatic CD56bright NK cells. Intrahepatic CD56bright NK cells represent a transcriptionally, phenotypically, and functionally distinct population of NK cells that expresses higher levels of TIGIT and lower levels of DNAM-1 than matched peripheral blood CD56bright NK cells. Increased expression of inhibitory receptors by NK cells within the liver environment can contribute to tissue homeostasis and reduction of liver inflammation.
Collapse
Affiliation(s)
- Annerose E. Ziegler
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Pia Fittje
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Luisa M. Müller
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Annika E. Ahrenstorf
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Kerri Hagemann
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Sven H. Hagen
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Leonard U. Hess
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Annika Niehrs
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Tobias Poch
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gevitha Ravichandran
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sebastian M. Löbl
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Benedetta Padoan
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Sébastien Brias
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jana Hennesen
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Myrtille Richard
- University of Bordeaux, Institut National de la Santé et de la Recherche Médicale, Bordeaux Population Health Research Center, UMR1219 and Inria, Team Statistics in systems biology and translationnal medicine (SISTM), Bordeaux, France
| | - Laura Richert
- University of Bordeaux, Institut National de la Santé et de la Recherche Médicale, Bordeaux Population Health Research Center, UMR1219 and Inria, Team Statistics in systems biology and translationnal medicine (SISTM), Bordeaux, France
| | - Sven Peine
- Institute for Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karl J. Oldhafer
- Department of General and Abdominal Surgery, Asklepios Hospital Barmbek, Semmelweis University of Medicine, Hamburg, Germany
| | - Lutz Fischer
- Department of Visceral Transplant Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Schramm
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Martin Zeitz Centre for Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Glòria Martrus
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Madeleine J. Bunders
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marcus Altfeld
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Sebastian Lunemann
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| |
Collapse
|
7
|
Krämer B, Nalin AP, Ma F, Eickhoff S, Lutz P, Leonardelli S, Goeser F, Finnemann C, Hack G, Raabe J, ToVinh M, Ahmad S, Hoffmeister C, Kaiser KM, Manekeller S, Branchi V, Bald T, Hölzel M, Hüneburg R, Nischalke HD, Semaan A, Langhans B, Kaczmarek DJ, Benner B, Lordo MR, Kowalski J, Gerhardt A, Timm J, Toma M, Mohr R, Türler A, Charpentier A, van Bremen T, Feldmann G, Sattler A, Kotsch K, Abdallah AT, Strassburg CP, Spengler U, Carson WE, Mundy-Bosse BL, Pellegrini M, O'Sullivan TE, Freud AG, Nattermann J. Single-cell RNA sequencing identifies a population of human liver-type ILC1s. Cell Rep 2023; 42:111937. [PMID: 36640314 PMCID: PMC9950534 DOI: 10.1016/j.celrep.2022.111937] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/30/2022] [Accepted: 12/15/2022] [Indexed: 01/02/2023] Open
Abstract
Group 1 innate lymphoid cells (ILCs) comprise a heterogeneous family of cytotoxic natural killer (NK) cells and ILC1s. We identify a population of "liver-type" ILC1s with transcriptional, phenotypic, and functional features distinct from those of conventional and liver-resident NK cells as well as from other previously described human ILC1 subsets. LT-ILC1s are CD49a+CD94+CD200R1+, express the transcription factor T-BET, and do not express the activating receptor NKp80 or the transcription factor EOMES. Similar to NK cells, liver-type ILC1s produce IFN-γ, TNF-α, and GM-CSF; however, liver-type ILC1s also produce IL-2 and lack perforin and granzyme-B. Liver-type ILC1s are expanded in cirrhotic liver tissues, and they can be produced from blood-derived ILC precursors in vitro in the presence of TGF-β1 and liver sinusoidal endothelial cells. Cells with similar signature and function can also be found in tonsil and intestinal tissues. Collectively, our study identifies and classifies a population of human cross-tissue ILC1s.
Collapse
Affiliation(s)
- Benjamin Krämer
- Department of Internal Medicine I, University of Bonn, 53127 Bonn, Germany; German Center for Infection Research (DZIF), 53127 Bonn, Germany.
| | - Ansel P Nalin
- Medical Scientist Training Program, The Ohio State University, Columbus, OH 43210, USA; Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Feiyang Ma
- Molecular Cell and Developmental Biology, College of Life Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sarah Eickhoff
- Institute of Experimental Oncology (IEO), Medical Faculty, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Philipp Lutz
- Department of Internal Medicine I, University of Bonn, 53127 Bonn, Germany; German Center for Infection Research (DZIF), 53127 Bonn, Germany
| | - Sonia Leonardelli
- Institute of Experimental Oncology (IEO), Medical Faculty, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Felix Goeser
- Department of Internal Medicine I, University of Bonn, 53127 Bonn, Germany; German Center for Infection Research (DZIF), 53127 Bonn, Germany
| | - Claudia Finnemann
- Department of Internal Medicine I, University of Bonn, 53127 Bonn, Germany; German Center for Infection Research (DZIF), 53127 Bonn, Germany
| | - Gudrun Hack
- Department of Internal Medicine I, University of Bonn, 53127 Bonn, Germany; German Center for Infection Research (DZIF), 53127 Bonn, Germany
| | - Jan Raabe
- Department of Internal Medicine I, University of Bonn, 53127 Bonn, Germany; German Center for Infection Research (DZIF), 53127 Bonn, Germany
| | - Michael ToVinh
- Department of Internal Medicine I, University of Bonn, 53127 Bonn, Germany; German Center for Infection Research (DZIF), 53127 Bonn, Germany
| | - Sarah Ahmad
- Department of Internal Medicine I, University of Bonn, 53127 Bonn, Germany; German Center for Infection Research (DZIF), 53127 Bonn, Germany
| | - Christoph Hoffmeister
- Department of Internal Medicine I, University of Bonn, 53127 Bonn, Germany; German Center for Infection Research (DZIF), 53127 Bonn, Germany
| | - Kim M Kaiser
- Department of Internal Medicine I, University of Bonn, 53127 Bonn, Germany; German Center for Infection Research (DZIF), 53127 Bonn, Germany
| | | | | | - Tobias Bald
- Institute of Experimental Oncology (IEO), Medical Faculty, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Michael Hölzel
- Institute of Experimental Oncology (IEO), Medical Faculty, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Robert Hüneburg
- Department of Internal Medicine I, University of Bonn, 53127 Bonn, Germany
| | | | | | - Bettina Langhans
- Department of Internal Medicine I, University of Bonn, 53127 Bonn, Germany; German Center for Infection Research (DZIF), 53127 Bonn, Germany
| | | | - Brooke Benner
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Matthew R Lordo
- Medical Scientist Training Program, The Ohio State University, Columbus, OH 43210, USA; Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | | | - Adam Gerhardt
- College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jörg Timm
- Institute of Virology, University of Duesseldorf, 40225 Düsseldorf, Germany
| | - Marieta Toma
- Department of Pathology, University of Bonn, 53127 Bonn, Germany
| | - Raphael Mohr
- Department of Internal Medicine I, University of Bonn, 53127 Bonn, Germany
| | - Andreas Türler
- General and Visceral Surgery, Johanniter Hospital, 53113 Bonn, Germany
| | - Arthur Charpentier
- Department of Otorhinolaryngology/Head and Neck Surgery, University of Bonn, 53127 Bonn, Germany; Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Tobias van Bremen
- Department of Otorhinolaryngology/Head and Neck Surgery, University of Bonn, 53127 Bonn, Germany
| | - Georg Feldmann
- Department of Internal Medicine III, University of Bonn, 53127 Bonn, Germany
| | - Arne Sattler
- Clinic for Surgery, Transplant Immunology Lab, Charité University Hospital Berlin, 10117 Berlin, Germany
| | - Katja Kotsch
- Clinic for Surgery, Transplant Immunology Lab, Charité University Hospital Berlin, 10117 Berlin, Germany
| | - Ali T Abdallah
- Interdisciplinary Center for Clinical Research, RWTH Aachen University, 52074 Aachen, Germany
| | | | - Ulrich Spengler
- Department of Internal Medicine I, University of Bonn, 53127 Bonn, Germany; German Center for Infection Research (DZIF), 53127 Bonn, Germany
| | - William E Carson
- Division of Surgical Oncology, Department of Surgery, Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, Columbus, OH 43210, USA
| | - Bethany L Mundy-Bosse
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Matteo Pellegrini
- Molecular Cell and Developmental Biology, College of Life Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Timothy E O'Sullivan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 900953, USA
| | - Aharon G Freud
- Department of Pathology, Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA.
| | - Jacob Nattermann
- Department of Internal Medicine I, University of Bonn, 53127 Bonn, Germany; German Center for Infection Research (DZIF), 53127 Bonn, Germany
| |
Collapse
|
8
|
NK Cells and Other Cytotoxic Innate Lymphocytes in Colorectal Cancer Progression and Metastasis. Int J Mol Sci 2022; 23:ijms23147859. [PMID: 35887206 PMCID: PMC9322916 DOI: 10.3390/ijms23147859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies and leading causes of cancer-related deaths worldwide. Despite its complex pathogenesis and progression, CRC represents a well-fitting example of how the immune contexture can dictate the disease outcome. The presence of cytotoxic lymphocytes, both CD8+ T cells and natural killer (NK) cells, represents a relevant prognostic factor in CRC and is associated with a better overall survival. Together with NK cells, other innate lymphocytes, namely, innate lymphoid cells (ILCs), have been found both in biopsies of CRC patients and in murine models of intestinal cancer, playing both pro- and anti-tumor activities. In particular, several type 1 innate lymphoid cells (ILC1) with cytotoxic functions have been recently described, and evidence in mice shows a role for both NK cells and ILC1 in controlling CRC metastasis. In this review, we provide an overview of the features of NK cells and the expanding spectrum of innate lymphocytes with cytotoxic functions. We also comment on both the described and the potential roles these innate lymphocytes can play during the progression of intestinal cancer leading to metastasis. Finally, we discuss recent advances in the molecular mechanisms underlying the functional regulation of cytotoxic innate lymphocytes in CRC.
Collapse
|
9
|
Corvino D, Kumar A, Bald T. Plasticity of NK cells in Cancer. Front Immunol 2022; 13:888313. [PMID: 35619715 PMCID: PMC9127295 DOI: 10.3389/fimmu.2022.888313] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/12/2022] [Indexed: 12/19/2022] Open
Abstract
Natural killer (NK) cells are crucial to various facets of human immunity and function through direct cytotoxicity or via orchestration of the broader immune response. NK cells exist across a wide range of functional and phenotypic identities. Murine and human studies have revealed that NK cells possess substantial plasticity and can alter their function and phenotype in response to external signals. NK cells also play a critical role in tumor immunity and form the basis for many emerging immunotherapeutic approaches. NK cells can directly target and lyse malignant cells with their inherent cytotoxic capabilities. In addition to direct targeting of malignant cells, certain subsets of NK cells can mediate antibody-dependent cellular cytotoxicity (ADCC) which is integral to some forms of immune checkpoint-blockade immunotherapy. Another important feature of various NK cell subsets is to co-ordinate anti-tumor immune responses by recruiting adaptive and innate leukocytes. However, given the diverse range of NK cell identities it is unsurprising that both pro-tumoral and anti-tumoral NK cell subsets have been described. Here, NK cell subsets have been shown to promote angiogenesis, drive inflammation and immune evasion in the tumor microenvironment. To date, the signals that drive tumor-infiltrating NK cells towards the acquisition of a pro- or anti-tumoral function are poorly understood. The notion of tumor microenvironment-driven NK cell plasticity has substantial implications for the development of NK-based immunotherapeutics. This review will highlight the current knowledge of NK cell plasticity pertaining to the tumor microenvironment. Additionally, this review will pose critical and relevant questions that need to be addressed by the field in coming years.
Collapse
Affiliation(s)
- Dillon Corvino
- Tumor-Immunobiology, Institute for Experimental Oncology, University Hospital Bonn, Bonn, Germany
| | - Ananthi Kumar
- Tumor-Immunobiology, Institute for Experimental Oncology, University Hospital Bonn, Bonn, Germany
| | - Tobias Bald
- Tumor-Immunobiology, Institute for Experimental Oncology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
10
|
Bourayou E, Golub R. Signaling Pathways Tuning Innate Lymphoid Cell Response to Hepatocellular Carcinoma. Front Immunol 2022; 13:846923. [PMID: 35281021 PMCID: PMC8904901 DOI: 10.3389/fimmu.2022.846923] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers worldwide and its incidence continues to rise globally. Various causes can lead to its development such as chronic viral infections causing hepatitis, cirrhosis or nonalcoholic steatohepatitis (NASH). The contribution of immune cells to HCC development and progression has been extensively studied when it comes to adaptive lymphocytes or myeloid populations. However, the role of the innate lymphoid cells (ILCs) is still not well defined. ILCs are a family of lymphocytes comprising five subsets including circulating Natural Killer (NK) cells, ILC1s, ILC2s, ILC3s and lymphocytes tissue-inducer cells (LTi). Mostly located at epithelial surfaces, tissue-resident ILCs and NK cells can rapidly react to environmental changes to mount appropriate immune responses. Here, we provide an overview of their roles and actions in HCC with an emphasis on the importance of diverse signaling pathways (Notch, TGF-β, Wnt/β-catenin…) in the tuning of their response to HCC.
Collapse
Affiliation(s)
- Elsa Bourayou
- Institut Pasteur, Université de Paris, INSERM U1223, Lymphocyte and Immunity Unit, Paris, France
| | - Rachel Golub
- Institut Pasteur, Université de Paris, INSERM U1223, Lymphocyte and Immunity Unit, Paris, France
| |
Collapse
|
11
|
Wang Y, Guan Y, Hu Y, Li Y, Lu N, Zhang C. Murine CXCR3+CXCR6+γδT Cells Reside in the Liver and Provide Protection Against HBV Infection. Front Immunol 2022; 12:757379. [PMID: 35126348 PMCID: PMC8814360 DOI: 10.3389/fimmu.2021.757379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
Gamma delta (γδ) T cells play a key role in the innate immune response and serve as the first line of defense against infection and tumors. These cells are defined as tissue-resident lymphocytes in skin, lung, and intestinal mucosa. They are also relatively abundant in the liver; however, little is known about the residency of hepatic γδT cells. By comparing the phenotype of murine γδT cells in liver, spleen, thymus, and small intestine, a CXCR3+CXCR6+ γδT-cell subset with tissue-resident characteristics was found in liver tissue from embryos through adults. Liver sinusoidal endothelial cells mediated retention of CXCR3+CXCR6+ γδT cells through the interactions between CXCR3 and CXCR6 and their chemokines. During acute HBV infection, CXCR3+CXCR6+ γδT cells produced high levels of IFN-γ and adoptive transfer of CXCR3+CXCR6+ γδT cells into acute HBV-infected TCRδ−/− mice leading to lower HBsAg and HBeAg expression. It is suggested that liver resident CXCR3+CXCR6+ γδT cells play a protective role during acute HBV infection. Strategies aimed at expanding and activating liver resident CXCR3+CXCR6+ γδT cells both in vivo or in vitro have great prospects for use in immunotherapy that specifically targets acute HBV infection.
Collapse
MESH Headings
- Adoptive Transfer/methods
- Animals
- Chemokines/metabolism
- Hepatitis B/metabolism
- Hepatitis B virus/pathogenicity
- Hepatocytes/metabolism
- Hepatocytes/virology
- Intestine, Small/metabolism
- Intestine, Small/virology
- Liver/metabolism
- Liver/virology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Nude
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, CXCR3/metabolism
- Receptors, CXCR6/metabolism
- Spleen/metabolism
- Spleen/virology
- T-Lymphocytes/metabolism
- T-Lymphocytes/virology
- Thymus Gland/metabolism
- Thymus Gland/virology
Collapse
Affiliation(s)
- Yanan Wang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yun Guan
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jining No. 1 People’s Hospital, Jining, China
| | - Yuan Hu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yan Li
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Nan Lu
- Institute of Diagnostics, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Cai Zhang, ; Nan Lu,
| | - Cai Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Cai Zhang, ; Nan Lu,
| |
Collapse
|
12
|
Natural Killer Cells and Type 1 Innate Lymphoid Cells in Hepatocellular Carcinoma: Current Knowledge and Future Perspectives. Int J Mol Sci 2021; 22:ijms22169044. [PMID: 34445750 PMCID: PMC8396475 DOI: 10.3390/ijms22169044] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
Natural killer (NK) cells and type 1 innate lymphoid cells (ILC1) are specific innate lymphoid cell subsets that are key for the detection and elimination of pathogens and cancer cells. In liver, while they share a number of characteristics, they differ in many features. These include their developmental pathways, tissue distribution, phenotype and functions. NK cells and ILC1 contribute to organ homeostasis through the production of key cytokines and chemokines and the elimination of potential harmful bacteria and viruses. In addition, they are equipped with a wide range of receptors, allowing them to detect “stressed cells’ such as cancer cells. Our understanding of the role of innate lymphoid cells in hepatocellular carcinoma (HCC) is growing owing to the development of mouse models, the progress in immunotherapeutic treatment and the recent use of scRNA sequencing analyses. In this review, we summarize the current understanding of NK cells and ILC1 in hepatocellular carcinoma and discuss future strategies to take advantage of these innate immune cells in anti-tumor immunity. Immunotherapies hold great promise in HCC, and a better understanding of the role and function of NK cells and ILC1 in liver cancer could pave the way for new NK cell and/or ILC1-targeted treatment.
Collapse
|
13
|
Liu M, Liang S, Zhang C. NK Cells in Autoimmune Diseases: Protective or Pathogenic? Front Immunol 2021; 12:624687. [PMID: 33777006 PMCID: PMC7994264 DOI: 10.3389/fimmu.2021.624687] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Autoimmune diseases generally result from the loss of self-tolerance (i.e., failure of the immune system to distinguish self from non-self), and are characterized by autoantibody production and hyperactivation of T cells, which leads to damage of specific or multiple organs. Thus, autoimmune diseases can be classified as organ-specific or systemic. Genetic and environmental factors contribute to the development of autoimmunity. Recent studies have demonstrated the contribution of innate immunity to the onset of autoimmune diseases. Natural killer (NK) cells, which are key components of the innate immune system, have been implicated in the development of multiple autoimmune diseases such as systemic lupus erythematosus, type I diabetes mellitus, and autoimmune liver disease. However, NK cells have both protective and pathogenic roles in autoimmunity depending on the NK cell subset, microenvironment, and disease type or stage. In this work, we review the current knowledge of the varied roles of NK cell subsets in systemic and organic-specific autoimmune diseases and their clinical potential as therapeutic targets.
Collapse
Affiliation(s)
- Meifang Liu
- Key Lab for Immunology in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Shujuan Liang
- Key Lab for Immunology in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Cai Zhang
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Institute of Immunopharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
14
|
Role of Natural Killer Cells in Uveal Melanoma. Cancers (Basel) 2020; 12:cancers12123694. [PMID: 33317028 PMCID: PMC7764114 DOI: 10.3390/cancers12123694] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Metastatic Uveal Melanoma (MUM) is a lethal malignancy with no durable treatment available to date. A vast majority of patients with MUM present with liver metastasis. The liver harbors metastatic disease with an apparent lack of a cytotoxic T cell response. It is becoming evident that MUM is not an immunologically silent malignancy and the investigation of non-T cell anti-tumor immunity is warranted. In this review, we highlight the relevance of Natural Killer (NK) cells in the biology and treatment of MUM. Potent anti-NK cell immunosuppression employed by uveal melanoma alludes to its vulnerability to NK cell cytotoxicity. On the contrary, micro-metastasis in the liver survive for several years within close vicinity of a plethora of circulating and liver-resident NK cells. This review provides unique perspectives into the potential role of NK cells in control or progression of uveal melanoma. Abstract Uveal melanoma has a high mortality rate following metastasis to the liver. Despite advances in systemic immune therapy, treatment of metastatic uveal melanoma (MUM) has failed to achieve long term durable responses. Barriers to success with immune therapy include the immune regulatory nature of uveal melanoma as well as the immune tolerant environment of the liver. To adequately harness the anti-tumor potential of the immune system, non-T cell-based approaches need to be explored. Natural Killer (NK) cells possess potent ability to target tumor cells via innate and adaptive responses. In this review, we discuss evidence that highlights the role of NK cell surveillance and targeting of uveal melanoma. We also discuss the repertoire of intra-hepatic NK cells. The human liver has a vast and diverse lymphoid population and NK cells comprise 50% of the hepatic lymphocytes. Hepatic NK cells share a common niche with uveal melanoma micro-metastasis within the liver sinusoids. It is, therefore, crucial to understand and investigate the role of intra-hepatic NK cells in the control or progression of MUM.
Collapse
|
15
|
Pinato DJ, Guerra N, Fessas P, Murphy R, Mineo T, Mauri FA, Mukherjee SK, Thursz M, Wong CN, Sharma R, Rimassa L. Immune-based therapies for hepatocellular carcinoma. Oncogene 2020; 39:3620-3637. [PMID: 32157213 PMCID: PMC7190571 DOI: 10.1038/s41388-020-1249-9] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is the third most frequent cause of cancer-related death. The immune-rich contexture of the HCC microenvironment makes this tumour an appealing target for immune-based therapies. Here, we discuss how the functional characteristics of the liver microenvironment can potentially be harnessed for the treatment of HCC. We will review the evidence supporting a therapeutic role for vaccines, cell-based therapies and immune-checkpoint inhibitors and discuss the potential for patient stratification in an attempt to overcome the series of failures that has characterised drug development in this disease area.
Collapse
Affiliation(s)
- David J Pinato
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W120HS, UK.
| | - Nadia Guerra
- Department of Life Sciences, Imperial College London, South Kensington Campus, Exhibition Road, London, SW7 2AZ, UK
| | - Petros Fessas
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W120HS, UK
| | - Ravindhi Murphy
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W120HS, UK
| | | | - Francesco A Mauri
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W120HS, UK
| | - Sujit K Mukherjee
- Department of Metabolism, Digestion & Reproduction, Imperial College London, St. Mary's Hospital, Praed Street, London, UK
| | - Mark Thursz
- Department of Metabolism, Digestion & Reproduction, Imperial College London, St. Mary's Hospital, Praed Street, London, UK
| | - Ching Ngar Wong
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W120HS, UK
| | - Rohini Sharma
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W120HS, UK
| | - Lorenza Rimassa
- Medical Oncology and Haematology Unit, Humanitas Cancer Center, Humanitas Clinical and Research Center-IRCCS, Via Manzoni 56, 20089, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, 20090, Pieve Emanuele, Milan, Italy
| |
Collapse
|
16
|
Regis S, Dondero A, Caliendo F, Bottino C, Castriconi R. NK Cell Function Regulation by TGF-β-Induced Epigenetic Mechanisms. Front Immunol 2020; 11:311. [PMID: 32161594 PMCID: PMC7052483 DOI: 10.3389/fimmu.2020.00311] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/07/2020] [Indexed: 12/13/2022] Open
Abstract
TGF-β is a potent immunosuppressive cytokine that severely affects the function of NK cells. Tumor cells can take advantage of this ability, enriching their surrounding microenvironment with TGF-β. TGF-β can alter the expression of effector molecules and of activating and chemokine receptors, influence metabolism, induce the NK cell conversion toward the less cytolytic ILC1s. These and other changes possibly occur by the induction of complex gene expression programs, involving epigenetic mechanisms. While most of these programs are at present unexplored, the role of certain transcription factors, microRNAs and chromatin changes determined by TGF-β in NK cells start to be elucidated in human and/or mouse NK cells. The deep understanding of these mechanisms will be useful to design therapies contributing to restore the full NK function.
Collapse
Affiliation(s)
- Stefano Regis
- Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Fabio Caliendo
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Cristina Bottino
- Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Roberta Castriconi
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Centre of Excellence for Biomedical Research, CEBR, University of Genoa, Genoa, Italy
| |
Collapse
|
17
|
Hess LU, Martrus G, Ziegler AE, Langeneckert AE, Salzberger W, Goebels H, Sagebiel AF, Hagen SH, Poch T, Ravichandran G, Koch M, Schramm C, Oldhafer KJ, Fischer L, Tiegs G, Richert L, Bunders MJ, Lunemann S, Altfeld M. The Transcription Factor Promyelocytic Leukemia Zinc Finger Protein Is Associated With Expression of Liver-Homing Receptors on Human Blood CD56 bright Natural Killer Cells. Hepatol Commun 2020; 4:409-424. [PMID: 32140657 PMCID: PMC7049682 DOI: 10.1002/hep4.1463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022] Open
Abstract
The transcription factor promyelocytic leukemia zinc finger protein (PLZF) is involved in the development of natural killer (NK) cells and innate lymphoid cells, including liver-resident NK cells in mice. In human NK cells, the role of PLZF in liver residency is still unknown. Expression of PLZF in matched human peripheral blood- and liver-derived NK cells and the association of PLZF expression with surface molecules and transcription factors relevant for tissue residency were investigated using multiparameter flow cytometry and assessing single-cell messenger RNA (mRNA) levels. Intrahepatic cluster of differentiation (CD)56bright NK cells expressed significantly higher levels of PLZF than peripheral blood CD56bright NK cells, which were predominantly PLZFlo. Expression of PLZF was highest within C-X-C motif chemokine receptor 6 (CXCR6)+CD69+ liver-resident NK cells among intrahepatic CD56bright NK cell populations. Association of PLZF with liver-residency markers was also reflected at mRNA levels. A small PLZFhiCD56bright NK cell population was identified in peripheral blood that also expressed the liver-residency markers CXCR6 and CD69 and shared functional characteristics with liver-resident NK cells. Conclusion: PLZF is implicated as part of a transcriptional network that promotes liver residency of human NK cells. Expression of liver-homing markers on peripheral blood PLZFhiCD56bright NK cells identifies an intermediate population potentially contributing to the maintenance of liver-resident NK cells.
Collapse
Affiliation(s)
- Leonard U Hess
- Research Department Virus Immunology Heinrich Pette Institute Leibniz Institute for Experimental Virology Hamburg Germany
| | - Glòria Martrus
- Research Department Virus Immunology Heinrich Pette Institute Leibniz Institute for Experimental Virology Hamburg Germany
| | - Annerose E Ziegler
- Research Department Virus Immunology Heinrich Pette Institute Leibniz Institute for Experimental Virology Hamburg Germany
| | - Annika E Langeneckert
- Research Department Virus Immunology Heinrich Pette Institute Leibniz Institute for Experimental Virology Hamburg Germany
| | - Wilhelm Salzberger
- Research Department Virus Immunology Heinrich Pette Institute Leibniz Institute for Experimental Virology Hamburg Germany
| | - Hanna Goebels
- Research Department Virus Immunology Heinrich Pette Institute Leibniz Institute for Experimental Virology Hamburg Germany
| | - Adrian F Sagebiel
- Research Department Virus Immunology Heinrich Pette Institute Leibniz Institute for Experimental Virology Hamburg Germany
| | - Sven H Hagen
- Research Department Virus Immunology Heinrich Pette Institute Leibniz Institute for Experimental Virology Hamburg Germany
| | - Tobias Poch
- First Medical Clinic and Polyclinic Center for Internal Medicine University Medical Center Hamburg-Eppendorf Hamburg Germany
| | - Gevitha Ravichandran
- Institute of Experimental Immunology and Hepatology University Medical Center Hamburg-Eppendorf Hamburg Germany
| | - Martina Koch
- Division of Transplantation Surgery University Medical Center of the Johannes Gutenberg University Mainz Germany
| | - Christoph Schramm
- First Medical Clinic and Polyclinic Center for Internal Medicine University Medical Center Hamburg-Eppendorf Hamburg Germany.,Martin Zeitz Center for Rare Diseases University Medical Center Hamburg-Eppendorf Hamburg Germany
| | - Karl J Oldhafer
- Department of General and Abdominal Surgery Asklepios Hospital Barmbek Semmelweis University of Medicine Asklepios Campus Hamburg Germany
| | - Lutz Fischer
- Department of Hepatobiliary Surgery and Transplant Surgery University Medical Center Hamburg-Eppendorf Hamburg Germany
| | - Gisa Tiegs
- Institute of Experimental Immunology and Hepatology University Medical Center Hamburg-Eppendorf Hamburg Germany
| | - Laura Richert
- Research Department Virus Immunology Heinrich Pette Institute Leibniz Institute for Experimental Virology Hamburg Germany.,University of Bordeaux Institut National de la Santé et de la Recherche Médicale Bordeaux Population Health Research Center UMR1219 and Inria, Team SISTM Bordeaux France
| | - Madeleine J Bunders
- Research Department Virus Immunology Heinrich Pette Institute Leibniz Institute for Experimental Virology Hamburg Germany
| | - Sebastian Lunemann
- Research Department Virus Immunology Heinrich Pette Institute Leibniz Institute for Experimental Virology Hamburg Germany
| | - Marcus Altfeld
- Research Department Virus Immunology Heinrich Pette Institute Leibniz Institute for Experimental Virology Hamburg Germany
| |
Collapse
|
18
|
Filipovic I, Sönnerborg I, Strunz B, Friberg D, Cornillet M, Hertwig L, Ivarsson MA, Björkström NK. 29-Color Flow Cytometry: Unraveling Human Liver NK Cell Repertoire Diversity. Front Immunol 2019; 10:2692. [PMID: 31798596 PMCID: PMC6878906 DOI: 10.3389/fimmu.2019.02692] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/01/2019] [Indexed: 12/12/2022] Open
Abstract
Recent studies have demonstrated extraordinary diversity in peripheral blood human natural killer (NK) cells and have suggested environmental control of receptor expression patterns on distinct subsets of NK cells. However, tissue localization may influence NK cell differentiation to an even higher extent and less is known about the receptor repertoire of human tissue-resident NK cells. Advances in single-cell technologies have allowed higher resolution studies of these cells. Here, the power of high-dimensional flow cytometry was harnessed to unravel the complexity of NK cell repertoire diversity in liver since recent studies had indicated high heterogeneity within liver NK cells. A 29-color flow cytometry panel allowing simultaneous measurement of surface tissue-residency markers, activating and inhibitory receptors, differentiation markers, chemokine receptors, and transcription factors was established. This panel was applied to lymphocytes across three tissues (liver, peripheral blood, and tonsil) with different distribution of distinct NK cell subsets. Dimensionality reduction of this data ordered events according to their lineage, rather than tissue of origin. Notably, narrowing the scope of the analysis to the NK cell lineage in liver and peripheral blood separated subsets according to tissue, enabling phenotypic characterization of NK cell subpopulations in individual tissues. Such dimensionality reduction, coupled with a clustering algorithm, identified CD49e as the preferred marker for future studies of liver-resident NK cell subsets. We present a robust approach for diversity profiling of tissue-resident NK cells that can be applied in various homeostatic and pathological conditions such as reproduction, infection, and cancer.
Collapse
Affiliation(s)
- Iva Filipovic
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Isabella Sönnerborg
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden.,Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - Benedikt Strunz
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Danielle Friberg
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Martin Cornillet
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Laura Hertwig
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Martin A Ivarsson
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Niklas K Björkström
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|