1
|
Wang X, Wu L, Liu J, Ma C, Liu J, Zhang Q. The neuroimmune mechanism of pain induced depression in psoriatic arthritis and future directions. Biomed Pharmacother 2025; 182:117802. [PMID: 39742638 DOI: 10.1016/j.biopha.2024.117802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/16/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025] Open
Abstract
Patients suffering from psoriatic arthritis (PsA) often experience depression due to chronic joint pain, which significantly hinders their recovery process. However, the relationship between these two conditions is not well understood. Through a review of existing studies, we revealed that certain neuroendocrine hormones and neurotransmitters are involved in the neuroimmune interactions related to both PsA and depression. These include adrenocorticotropin-releasing hormone (CRH), adrenocorticotropin (ACTH), cortisol, monoamine neurotransmitters, and brain-derived neurotrophic factor (BDNF). Notably, the signalling pathway involving CRH, MCs, and Th17 cells plays a crucial role in linking PsA with depression; thus, this pathway may help clarify their connection. In this review, we outline the inflammatory immune changes associated with PsA and depression. Additionally, we explore how neuroendocrine hormones and neurotransmitters influence inflammatory responses in these two conditions. Finally, our focus will be on potential treatment strategies for patients with PsA and depression through the targeting of the CRH-MC-Th17 pathway. This review aims to provide a theoretical framework as well as new therapeutic targets for managing PsA alongside depression.
Collapse
Affiliation(s)
- Xiaoxu Wang
- Rheumatology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China.
| | - Lingjun Wu
- Shunyi Hospital of Beijing Traditional Chinese Medicine Hospital, Beijing 101300, China
| | - Jing Liu
- Department of Oncology and Hematology, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing 100010, China
| | - Cong Ma
- Rheumatology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Juan Liu
- Rheumatology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Qin Zhang
- Rheumatology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China.
| |
Collapse
|
2
|
Murayama MA. Complement C3 deficient mice show more severe imiquimod-induced psoriasiform dermatitis than wild-type mice regardless of the commensal microbiota. Exp Anim 2024; 73:458-467. [PMID: 38945882 PMCID: PMC11534491 DOI: 10.1538/expanim.24-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024] Open
Abstract
The complement active product, C3a, and the receptor C3aR comprise an axis that exerts various biological functions, such as protection against infection. C3a is highly expressed in the inflamed skin and blood from patients with psoriasiform dermatitis. However, the role of the C3a/C3aR axis in psoriasiform dermatitis remains unclear because conflicting results using C3-/- mice have been published. In this study, to elucidate the contribution of commensal microbiota in C3-/- and wild-type (WT) mice were subjected to imiquimod-induced psoriasiform dermatitis under different housing conditions. C3-/- mice showed increased epidermal thickness and keratinocyte proliferation markers in the inflamed ear compared to WT mice upon treatment with IMQ. These inflamed phenotypes were observed in both cohoused and separately housed conditions, and antibiotic treatment did not abolish the aggravation of IMQ-induced psoriasiform dermatitis in C3-/- mice. These results suggested that the difference of commensal microbiota is not important for the C3-involved psoriasiform dermatitis. Keratinocyte hyperproliferation is a major feature of the inflamed skin in patients with psoriasiform dermatitis. In vitro experiments showed that C3a and C3aR agonists inhibited keratinocyte proliferation, which was abolished by introduction of a C3aR antagonist. Collectively, these results suggest that the C3a/C3aR axis plays a critical role in psoriasiform dermatitis development by inhibiting keratinocyte proliferation, regardless of the regulation of the commensal microbiota.
Collapse
Affiliation(s)
- Masanori A Murayama
- Department of Animal Models for Human Diseases, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan
| |
Collapse
|
3
|
Kromann B, Niu L, Møller LBP, Sølberg J, Sulek K, Gyldenløve M, Dyring-Andersen B, Skov L, Løvendorf MB. Unbiased Proteomic Exploration Suggests Overexpression of Complement Cascade Proteins in Plasma from Patients with Psoriasis Compared with Healthy Individuals. Int J Mol Sci 2024; 25:8791. [PMID: 39201477 PMCID: PMC11354566 DOI: 10.3390/ijms25168791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Knowledge about the molecular mechanisms underlying the systemic inflammation observed in psoriasis remains incomplete. In this study, we applied mass spectrometry-based proteomics to compare the plasma protein levels between patients with psoriasis and healthy individuals, aiming to unveil potential systemically dysregulated proteins and pathways associated with the disease. Plasma samples from adult patients with moderate-to-severe psoriasis vulgaris (N = 59) and healthy age- and sex-matched individuals (N = 21) were analyzed using liquid chromatography-tandem mass spectrometry. Patients did not receive systemic anti-psoriatic treatment for four weeks before inclusion. A total of 776 protein groups were quantified. Of these, 691 were present in at least 60% of the samples, providing the basis for the downstream analysis. We identified 20 upregulated and 22 downregulated proteins in patients with psoriasis compared to controls (p < 0.05). Multiple proteins from the complement system were upregulated, including C2, C4b, C5, and C9, and pathway analysis revealed enrichment of proteins involved in complement activation and formation of the terminal complement complex. On the other end of the spectrum, periostin was the most downregulated protein in sera from patients with psoriasis. This comprehensive proteomic investigation revealed significantly elevated levels of complement cascade proteins in psoriatic plasma, which might contribute to increased systemic inflammation in patients with psoriasis.
Collapse
Affiliation(s)
- Bjørn Kromann
- Department of Dermatology and Allergy, Copenhagen University Hospital-Herlev and Gentofte, 2900 Hellerup, Denmark
- Department of Dermatology, Zealand University Hospital, 4000 Roskilde, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Lili Niu
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Line B. P. Møller
- Department of Dermatology and Allergy, Copenhagen University Hospital-Herlev and Gentofte, 2900 Hellerup, Denmark
- Department of Dermatology, Zealand University Hospital, 4000 Roskilde, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Julie Sølberg
- Department of Dermatology and Allergy, Copenhagen University Hospital-Herlev and Gentofte, 2900 Hellerup, Denmark
| | - Karolina Sulek
- System Medicine, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| | - Mette Gyldenløve
- Department of Dermatology and Allergy, Copenhagen University Hospital-Herlev and Gentofte, 2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Beatrice Dyring-Andersen
- Department of Dermatology and Allergy, Copenhagen University Hospital-Herlev and Gentofte, 2900 Hellerup, Denmark
- Department of Dermatology, Zealand University Hospital, 4000 Roskilde, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Leo Foundation Skin Immunology Research Center, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Lone Skov
- Department of Dermatology and Allergy, Copenhagen University Hospital-Herlev and Gentofte, 2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Marianne B. Løvendorf
- Department of Dermatology and Allergy, Copenhagen University Hospital-Herlev and Gentofte, 2900 Hellerup, Denmark
- Leo Foundation Skin Immunology Research Center, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
4
|
Duarte F, Teçza M, Gedi V, McGourty K, Hudson SP. C5a peptidase (ScpA) activity towards human type II and type III interferons. Cytokine 2024; 180:156652. [PMID: 38759527 DOI: 10.1016/j.cyto.2024.156652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
C5a peptidase, also known as ScpA, is a surface associated serine protease derived from Streptococcus pyogenes and has been described as an important factor in streptococcus virulence, capable of cleaving complement components C5a, C3 and C3a. Although the interactions of ScpA with complement components is well studied, extensive screening of ScpA activity against other pro-inflammatory cytokines is lacking. Here, ScpA's ability to cleave human pro-inflammatory cytokines was tested, revealing its ability to cleave human IFNγ, IFNλ1, IFNλ2, C5, IL-37 but with significantly reduced activities. The functional consequence of ScpA's cleavage of IFNγ in its signalling through the Jak-Stat pathway has also been evaluated in an in vitro RPE1 cell model. These newly identified targets for ScpA highlight the complexity of streptococcus infections and indeed, the potential for ScpA to have a therapeutic role in the progression of inflammatory diseases involving these cytokines.
Collapse
Affiliation(s)
- Francisco Duarte
- Department of Chemical Sciences, SSPC, the Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Ireland
| | - Malgorzata Teçza
- Department of Chemical Sciences, SSPC, the Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Ireland
| | - Vinayakumar Gedi
- Department of Chemical Sciences, SSPC, the Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Ireland
| | - Kieran McGourty
- Department of Chemical Sciences, SSPC, the Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Ireland
| | - Sarah P Hudson
- Department of Chemical Sciences, SSPC, the Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Ireland.
| |
Collapse
|
5
|
Kapoor DU, Garg R, Maheshwari R, Gaur M, Sharma D, Prajapati BG. Advancing psoriasis drug delivery through topical liposomes. Z NATURFORSCH C 2024; 0:znc-2024-0118. [PMID: 39037729 DOI: 10.1515/znc-2024-0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
Psoriasis, recognized as a chronic inflammatory skin disorder, disrupts immune system functionality. Global estimates by the World Psoriasis Day consortium indicate its impact on approximately 130 million people, constituting 4 to 5 percent of the worldwide population. Conventional drug delivery systems, mainly designed to alleviate psoriasis symptoms, fall short in achieving targeted action and optimal bioavailability due to inherent challenges such as the drug's brief half-life, instability, and a deficiency in ensuring both safety and efficacy. Liposomes, employed in drug delivery systems, emerge as highly promising carriers for augmenting the therapeutic efficacy of topically applied drugs. These small unilamellar vesicles demonstrate enhanced penetration capabilities, facilitating drug delivery through the stratum corneum layer of skin. This comprehensive review article illuminates diverse facets of liposomes as a promising drug delivery system to treat psoriasis. Addressing various aspects such as formulation strategies, encapsulation techniques, and targeted delivery, the review underscores the potential of liposomes in enhancing the efficacy and specificity of psoriasis treatments.
Collapse
Affiliation(s)
- Devesh U Kapoor
- Dr. Dayaram Patel Pharmacy College, Bardoli 394601, Gujarat, India
| | - Rahul Garg
- Asian College of Pharmacy, Rajasthan University of Health Sciences, Udaipur, Rajasthan 313001, India
| | - Rahul Maheshwari
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Green Industrial Park, TSIIC, 509301, Jadcherla, Hyderabad, India
| | - Mansi Gaur
- Rajasthan Pharmacy College, Rajasthan University of Health Sciences, Jaipur 302026, India
| | - Deepak Sharma
- Institute of Pharmacy, Assam Don Bosco University, Tapesia, Assam 782402, India
| | - Bhupendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva 384012, India
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
6
|
Sun X, Liu L, Wang J, Luo X, Wang M, Wang C, Chen J, Zhou Y, Yin H, Song Y, Xiong Y, Li H, Zhang M, Zhu B, Li X. Targeting STING in dendritic cells alleviates psoriatic inflammation by suppressing IL-17A production. Cell Mol Immunol 2024; 21:738-751. [PMID: 38806624 PMCID: PMC11214627 DOI: 10.1038/s41423-024-01160-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/31/2024] [Indexed: 05/30/2024] Open
Abstract
Psoriasis is a common chronic inflammatory skin disease driven by the aberrant activation of dendritic cells (DCs) and T cells, ultimately leading to increased production of cytokines such as interleukin (IL)-23 and IL-17A. It is established that the cGAS-STING pathway is essential for psoriatic inflammation, however, the specific role of cGAS-STING signaling in DCs within this context remains unclear. In this study, we demonstrated the upregulation of cGAS-STING signaling in psoriatic lesions by analyzing samples from both clinical patients and imiquimod (IMQ)-treated mice. Using a conditional Sting-knockout transgenic mouse model, we elucidated the impact of cGAS-STING signaling in DCs on the activation of IL-17- and IFN-γ-producing T cells in psoriatic inflammation. Ablation of the Sting hampers DC activation leads to decreased numbers of IL-17-producing T cells and Th1 cells, and thus subsequently attenuates psoriatic inflammation in the IMQ-induced mouse model. Furthermore, we explored the therapeutic potential of the STING inhibitor C-176, which reduces psoriatic inflammation and enhances the anti-IL-17A therapeutic response. Our results underscore the critical role of cGAS-STING signaling in DCs in driving psoriatic inflammation and highlight a promising psoriasis treatment.
Collapse
Affiliation(s)
- Xiaoying Sun
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Liu Liu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jiao Wang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaorong Luo
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510275, China
| | - Meng Wang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chunxiao Wang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jiale Chen
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yaqiong Zhou
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hang Yin
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Yuanbin Song
- Department of Hematologic Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yuanyan Xiong
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Hongjin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Meiling Zhang
- Medical Research Institute, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, 510080, China.
| | - Bo Zhu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Xin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
7
|
Schanzenbacher J, Hendrika Kähler K, Mesler E, Kleingarn M, Marcel Karsten C, Leonard Seiler D. The role of C5a receptors in autoimmunity. Immunobiology 2023; 228:152413. [PMID: 37598588 DOI: 10.1016/j.imbio.2023.152413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/04/2023] [Accepted: 06/10/2023] [Indexed: 08/22/2023]
Abstract
The complement system is an essential component of the innate immune response and plays a vital role in host defense and inflammation. Dysregulation of the complement system, particularly involving the anaphylatoxin C5a and its receptors (C5aR1 and C5aR2), has been linked to several autoimmune diseases, indicating the potential for targeted therapies. C5aR1 and C5aR2 are seven-transmembrane receptors with distinct signaling mechanisms that play both partially overlapping and opposing roles in immunity. Both receptors are expressed on a broad spectrum of immune and non-immune cells and are involved in cellular functions and physiological processes during homeostasis and inflammation. Dysregulated C5a-mediated inflammation contributes to autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, epidermolysis bullosa acquisita, antiphospholipid syndrome, and others. Therefore, targeting C5a or its receptors may yield therapeutic innovations in these autoimmune diseases by reducing the recruitment and activation of immune cells that lead to tissue inflammation and injury, thereby exacerbating the autoimmune response. Clinical trials focused on the inhibition of C5 cleavage or the C5a/C5aR1-axis using small molecules or monoclonal antibodies hold promise for bringing novel treatments for autoimmune diseases into practice. However, given the heterogeneous nature of (systemic) autoimmune diseases, there are still several challenges, such as patient selection, optimal dosing, and treatment duration, that require further investigation and development to realize the full therapeutic potential of C5a receptor inhibition, ideally in the context of a personalized medicine approach. Here, we aim to provide a brief overview of the current knowledge on the function of C5a receptors, the involvement of C5a receptors in autoimmune disorders, the molecular mechanisms underlying C5a receptor-mediated autoimmunity, and the potential for targeted therapies to modulate their activity.
Collapse
Affiliation(s)
- Jovan Schanzenbacher
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Katja Hendrika Kähler
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Evelyn Mesler
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Marie Kleingarn
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | | | - Daniel Leonard Seiler
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany.
| |
Collapse
|
8
|
Fernandes A, Rodrigues PM, Pintado M, Tavaria FK. A systematic review of natural products for skin applications: Targeting inflammation, wound healing, and photo-aging. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154824. [PMID: 37119762 DOI: 10.1016/j.phymed.2023.154824] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/04/2023] [Accepted: 04/15/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Every day the skin is constantly exposed to several harmful factors that induce oxidative stress. When the cells are incapable to maintain the balance between antioxidant defenses and reactive oxygen species, the skin no longer can keep its integrity and homeostasis. Chronic inflammation, premature skin aging, tissue damage, and immunosuppression are possible consequences induced by sustained exposure to environmental and endogenous reactive oxygen species. Skin immune and non-immune cells together with the microbiome are essential to efficiently trigger skin immune responses to stress. For this reason, an ever-increasing demand for novel molecules capable of modulating immune functions in the skin has risen the level of their development, particularly in the field of natural product-derived molecules. PURPOSE In this review, we explore different classes of molecules that showed evidence in modulate skin immune responses, as well as their target receptors and signaling pathways. Moreover, we describe the role of polyphenols, polysaccharides, fatty acids, peptides, and probiotics as possible treatments for skin conditions, including wound healing, infection, inflammation, allergies, and premature skin aging. METHODS Literature was searched, analyzed, and collected using databases, including PubMed, Science Direct, and Google Scholar. The search terms used included "Skin", "wound healing", "natural products", "skin microbiome", "immunomodulation", "anti-inflammatory", "antioxidant", "infection", "UV radiation", "polyphenols", "polysaccharides", "fatty acids", "plant oils", "peptides", "antimicrobial peptides", "probiotics", "atopic dermatitis", "psoriasis", "auto-immunity", "dry skin", "aging", etc., and several combinations of these keywords. RESULTS Natural products offer different solutions as possible treatments for several skin conditions. Significant antioxidant and anti-inflammatory activities were reported, followed by the ability to modulate immune functions in the skin. Several membrane-bound immune receptors in the skin recognize diverse types of natural-derived molecules, promoting different immune responses that can improve skin conditions. CONCLUSION Despite the increasing progress in drug discovery, several limiting factors need future clarification. Understanding the safety, biological activities, and precise mechanisms of action is a priority as well as the characterization of the active compounds responsible for that. This review provides directions for future studies in the development of new molecules with important pharmaceutical and cosmeceutical value.
Collapse
Affiliation(s)
- A Fernandes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| | - P M Rodrigues
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - M Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - F K Tavaria
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
9
|
Li D, Cao R, Dong W, Cheng M, Pan X, Hu Z, Hao J. Identification of potential biomarkers for ankylosing spondylitis based on bioinformatics analysis. BMC Musculoskelet Disord 2023; 24:413. [PMID: 37226132 DOI: 10.1186/s12891-023-06550-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/19/2023] [Indexed: 05/26/2023] Open
Abstract
OBJECTIVE The aim of this study was to search for key genes in ankylosing spondylitis (AS) through comprehensive bioinformatics analysis, thus providing some theoretical support for future diagnosis and treatment of AS and further research. METHODS Gene expression profiles were collected from Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/ ) by searching for the term "ankylosing spondylitis". Ultimately, two microarray datasets (GSE73754 and GSE11886) were downloaded from the GEO database. A bioinformatic approach was used to screen differentially expressed genes and perform functional enrichment analysis to obtain biological functions and signalling pathways associated with the disease. Weighted correlation network analysis (WGCNA) was used to further obtain key genes. Immune infiltration analysis was performed using the CIBERSORT algorithm to conduct a correlation analysis of key genes with immune cells. The GWAS data of AS were analysed to identify the pathogenic regions of key genes in AS. Finally, potential therapeutic agents for AS were predicted using these key genes. RESULTS A total of 7 potential biomarkers were identified: DYSF, BASP1, PYGL, SPI1, C5AR1, ANPEP and SORL1. ROC curves showed good prediction for each gene. T cell, CD4 naïve cell, and neutrophil levels were significantly higher in the disease group than in the paired normal group, and key gene expression was strongly correlated with immune cells. CMap results showed that the expression profiles of ibuprofen, forskolin, bongkrek-acid, and cimaterol showed the most significant negative correlation with the expression profiles of disease perturbations, suggesting that these drugs may play a role in AS treatment. CONCLUSION The potential biomarkers of AS screened in this study are closely related to the level of immune cell infiltration and play an important role in the immune microenvironment. This may provide help in the clinical diagnosis and treatment of AS and provide new ideas for further research.
Collapse
Affiliation(s)
- Dongxu Li
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Ruichao Cao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Wei Dong
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Minghuang Cheng
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Xiaohan Pan
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Zhenming Hu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Jie Hao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China.
- Orthopedic Laboratory of Chongqing Medical University, Yuzhong, Chongqing, China.
| |
Collapse
|
10
|
Emtenani S, Holtsche MM, Stahlkopf R, Seiler DL, Burn T, Liu H, Parker M, Yilmaz K, Dikmen HO, Lang MH, Sadik CD, Karsten CM, van Beek N, Ludwig RJ, Köhl J, Schmidt E. Differential expression of C5aR1 and C5aR2 in innate and adaptive immune cells located in early skin lesions of bullous pemphigoid patients. Front Immunol 2022; 13:942493. [PMID: 36466856 PMCID: PMC9716273 DOI: 10.3389/fimmu.2022.942493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/05/2022] [Indexed: 10/20/2023] Open
Abstract
Bullous pemphigoid (BP), the by far most frequent autoimmune subepidermal blistering disorder (AIBD), is characterized by the deposition of autoantibodies against BP180 (type XVII collagen; Col17) and BP230 as well as complement components at the dermal-epidermal junction (DEJ). The mechanisms of complement activation in BP patients, including the generation of C5a and regulation of its two cognate C5aRs, i.e., C5aR1 and C5aR2, are incompletely understood. In this study, transcriptome analysis of perilesional and non-lesional skin biopsies of BP patients compared to site-, age-, and sex-matched controls showed an upregulated expression of C5AR1, C5AR2, CR1, and C3AR1 and other complement-associated genes in perilesional BP skin. Of note, increased expressions of C5AR2 and C3AR1 were also observed in non-lesional BP skin. Subsequently, double immunofluorescence (IF) staining revealed T cells and macrophages as the dominant cellular sources of C5aR1 in early lesions of BP patients, while C5aR2 mainly expressed on mast cells and eosinophils. In addition, systemic levels of various complement factors and associated molecules were measured in BP patients and controls. Significantly higher plasma levels of C3a, CD55, and mannose-binding lectin-pathway activity were found in BP patients compared to controls. Finally, the functional relevance of C5aR1 and C5aR2 in BP was explored by two in vitro assays. Specific inhibition of C5aR1, resulted in significantly reduced migration of human neutrophils toward the chemoattractant C5a, whereas stimulation of C5aR2 showed no effect. In contrast, the selective targeting of C5aR1 and/or C5aR2 had no effect on the release of reactive oxygen species (ROS) from Col17-anti-Col17 IgG immune complex-stimulated human leukocytes. Collectively, this study delineates a complex landscape of activated complement receptors, complement factors, and related molecules in early BP skin lesions. Our results corroborate findings in mouse models of pemphigoid diseases that the C5a/C5aR1 axis is pivotal for attracting inflammatory cells to the skin and substantiate our understanding of the C5a/C5aR1 axis in human BP. The broad expression of C5aRs on multiple cell types critical for BP pathogenesis call for clinical studies targeting this axis in BP and other complement-mediated AIBDs.
Collapse
Affiliation(s)
- Shirin Emtenani
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Maike M. Holtsche
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Richard Stahlkopf
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Daniel L. Seiler
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Timothy Burn
- Incyte Research Institute, Wilmington, DE, United States
| | - Huiqing Liu
- Incyte Research Institute, Wilmington, DE, United States
| | - Melissa Parker
- Incyte Research Institute, Wilmington, DE, United States
| | - Kaan Yilmaz
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Hasan O. Dikmen
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Markus Huber Lang
- Institute of Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Christian D. Sadik
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Christian M. Karsten
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Nina van Beek
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Ralf J. Ludwig
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Centre, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
11
|
Li X, Xing J, Wang F, Li J, Li J, Hou R, Zhang K. The mRNA Expression Profile of Psoriatic Lesion Distinct from Non-Lesion. Clin Cosmet Investig Dermatol 2022; 15:2035-2043. [PMID: 36193053 PMCID: PMC9526433 DOI: 10.2147/ccid.s385894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022]
Abstract
Purpose Psoriasis is a chronic recurring autoimmune skin disease with a complex etiology and chronic progression; however, its molecular mechanisms remain unclear. Patients and Methods We performed transcriptomic analysis to profile the mRNA expression of psoriatic lesions (PL) and non-lesion (NL) tissues from psoriasis patients along with normal skin from healthy donors. RT-qPCR was used to validate the mRNA expression profiles. Results A total of 237 differentially expressed genes were screened and identified by RNA sequencing. GO and KEGG analysis indicated that these DEGs were enriched in the PPAR signaling pathway and intermediate filament cytoskeleton. For PPAR signaling pathway, the expression of five genes, including ADIPOQ, AQP7, PLIN1, FABP4 and LPL, were all significantly decreased in psoriatic lesions compared to normal skin by RT-qPCR. There is a clear difference between psoriatic lesions and non-lesion in the expression of ADIPOQ, AQP7 and LPL. For intermediate filament cytoskeleton, including KRT27, KRT25, KRT71, KRT86 and KRT85 were significantly decreased in the psoriasis lesions, showing agreement with the RNA-seq data. Conclusion This study revealed a significant difference between the mRNA expression profiles of PL, NL tissue and normal skin.
Collapse
Affiliation(s)
- Xinhua Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030009, People's Republic of China
| | - Jianxiao Xing
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030009, People's Republic of China
| | - Fangdi Wang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030009, People's Republic of China
| | - Juan Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030009, People's Republic of China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030009, People's Republic of China
| | - Ruixia Hou
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030009, People's Republic of China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Taiyuan Central Hospital, Taiyuan, Shanxi Province, 030009, People's Republic of China
| |
Collapse
|
12
|
Ruocco A, Sirico A, Novelli R, Iannelli S, Van Breda SV, Kyburz D, Hasler P, Aramini A, Amendola PG. The role of C5a-C5aR1 axis in bone pathophysiology: A mini-review. Front Cell Dev Biol 2022; 10:957800. [PMID: 36003145 PMCID: PMC9393612 DOI: 10.3389/fcell.2022.957800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Bone remodeling is a physiological, dynamic process that mainly depends on the functions of 2 cell types: osteoblasts and osteoclasts. Emerging evidence suggests that complement system is crucially involved in the regulation of functions of these cells, especially during inflammatory states. In this context, complement component 5a (C5a), a powerful pro-inflammatory anaphylatoxin that binds the receptor C5aR1, is known to regulate osteoclast formation and osteoblast inflammatory responses, and has thus been proposed as potential therapeutic target for the treatment of inflammatory bone diseases. In this review, we will analyze the role of C5a-C5aR1 axis in bone physiology and pathophysiology, describing its involvement in the pathogenesis of some of the most frequent inflammatory bone diseases such as rheumatoid arthritis, and also in osteoporosis and bone cancer and metastasis. Moreover, we will examine C5aR1-based pharmacological approaches that are available and have been tested so far for the treatment of these conditions. Given the growing interest of the scientific community on osteoimmunology, and the scarcity of data regarding the role of C5a-C5aR1 axis in bone pathophysiology, we will highlight the importance of this axis in mediating the interactions between skeletal and immune systems and its potential use as a therapeutic target.
Collapse
Affiliation(s)
| | | | | | | | | | - Diego Kyburz
- Departement Biomedizin, University of Basel, Basel, Switzerland
| | - Paul Hasler
- Division of Rheumatology, Kantonsspital Aarau AG, Aarau, Switzerland
| | | | | |
Collapse
|
13
|
Kamata M, Tada Y. Dendritic Cells and Macrophages in the Pathogenesis of Psoriasis. Front Immunol 2022; 13:941071. [PMID: 35837394 PMCID: PMC9274091 DOI: 10.3389/fimmu.2022.941071] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/01/2022] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by scaly indurated erythema. This disease impairs patients’ quality of life enormously. Pathological findings demonstrate proliferation and abnormal differentiation of keratinocytes and massive infiltration of inflammatory immune cells. The pathogenesis of psoriasis is complicated. Among immune cells, dendritic cells play a pivotal role in the development of psoriasis in both the initiation and the maintenance phases. In addition, it has been indicated that macrophages contribute to the pathogenesis of psoriasis especially in the initiation phase, although studies on macrophages are limited. In this article, we review the roles of dendritic cells and macrophages in the pathogenesis of psoriasis.
Collapse
|
14
|
Zeng J, Wang D, Luo J, Li L, Lin L, Li J, Zheng W, Zuo D, Yang B. Mannan-binding lectin exacerbates the severity of psoriasis by promoting plasmacytoid dendritic cell differentiation via the signal transducer and activator of transcription 3-interferon regulatory factor 8 axis. J Dermatol 2022; 49:496-507. [PMID: 35347767 DOI: 10.1111/1346-8138.16323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/29/2021] [Accepted: 01/09/2022] [Indexed: 11/26/2022]
Abstract
Psoriasis is a chronic inflammatory skin disease mediated by host immune responses. Plasmacytoid dendritic cells (pDC) and interferon (IFN)-α secreted by pDC are involved in the initiation of psoriasis. Mannan-binding lectin (MBL), a vital component of the complement pathway, plays a critical role in innate immune defense and the inflammatory response. Our previous study found that MBL could exacerbate skin inflammation in psoriatic mice, but the effect of MBL on pDC remains unstudied. Herein, we revealed that the circulating level of MBL was elevated in patients with psoriasis compared with the healthy controls. Moreover, the MBL level was positively correlated with disease severity, relative inflammatory cytokine levels, and peripheral blood (PB) pDC frequency in psoriasis. An in vitro study determined that the MBL protein could promote the differentiation of human pDC and upregulate the production of relative inflammatory cytokines and chemokines. Additionally, MBL-deficient (MBL-/- ) mice exhibited decreased accumulation of pDC in lymph nodes, spleens, and skin lesions with reduced secretion of pDC-related cytokines compared with wild-type (WT) mice in the preliminary stage of psoriasis induced by imiquimod. Notably, the differentiation of pDC from bone marrow (BM) cells derived from MBL-/- mice was weakened compared with that from WT mice upon Fms-like tyrosine kinase 3 ligand (Flt3L) incubation. Mechanistic research indicated that the signal transducer and activator of transcription 3 (STAT3)-interferon regulatory factor 8 (IRF8) axis was responsible for MBL-modulated pDC differentiation. In summary, these results suggest that MBL exacerbates the severity of psoriasis by enhancing pDC differentiation and pDC-related cytokine secretion via the STAT3-IRF8 axis, thus providing a new target for psoriasis treatment.
Collapse
Affiliation(s)
- Jiaqi Zeng
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Di Wang
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Jialiang Luo
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Lei Li
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Luyang Lin
- Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangzhou Institute of Dermatology, Guangzhou, China
| | - Jingyi Li
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Wen Zheng
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Daming Zuo
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.,Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Bin Yang
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
Liu J, Wei X, Hu J, Tan X, Kang X, Gao L, Li N, Shi X, Yuan M, Hu W, Liu M. Different concentrations of C5a affect human dental pulp mesenchymal stem cells differentiation. BMC Oral Health 2021; 21:470. [PMID: 34560867 PMCID: PMC8464103 DOI: 10.1186/s12903-021-01833-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
Background During the process of deep decay, when decay approaches the pulp, an immune response is triggered inside the pulp, which activates the complement cascade. The effect of complement component 5a (C5a) on the differentiation of dental pulp mesenchymal stem cells (DPSCs) is related to dentin reparation. The aim of the present study was to stimulate DPSCs with different concentrations of C5a and evaluate the differentiation of odontoblasts using dentin sialoprotein (DSP). Methods DPSCs were divided into the following six groups: (i) Control; (ii) DPSCs treated with 50 ng/ml C5a; (iii) DPSCs treated with 100 ng/ml C5a; (iv) DPSCs treated with 200 ng/ml C5a; (v) DPSCs treated with 300 ng/ml C5a; and (vi) DPSCs treated with 400 ng/ml C5a. Flow cytometry and multilineage differentiation potential were used to identify DPSCs. Mineralization induction, Real-time PCR and Western blot were conducted to evaluate the differentiation of odontoblast in the 6 groups. Result DPSCs can express mesenchymal stem cell markers, including CD105, CD90, CD73 and, a less common marker, mesenchymal stromal cell antigen-1. In addition, DPSCs can differentiate into adipocytes, neurocytes, chondrocytes and odontoblasts. All six groups formed mineralized nodules after 28 days of culture. Reverse transcription-quantitative PCR and western blotting indicated that the high concentration C5a groups expressed higher DSP levels and promoted DPSC differentiation, whereas the low concentration C5a groups displayed an inhibitory effect. Conclusion In this study, the increasing concentration of C5a, which accompanies the immune process in the dental pulp, has demonstrated an enhancing effect on odontoblast differentiation at higher C5a concentrations in vitro.
Collapse
Affiliation(s)
- Jie Liu
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, People's Republic of China
| | - Xiaoling Wei
- Department of Prosthodontics, The Second Affiliated Hospital of Harbin Medical University and The Key Laboratory of Myocardial Ischemia Ministry of Education, Harbin, 150086, Heilongjiang, People's Republic of China
| | - Junlong Hu
- Plastic Surgery Hospital of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xiaohan Tan
- Department of Prosthodontics, The Second Affiliated Hospital of Harbin Medical University and The Key Laboratory of Myocardial Ischemia Ministry of Education, Harbin, 150086, Heilongjiang, People's Republic of China
| | - Xiaocui Kang
- Department of Prosthodontics, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, People's Republic of China
| | - Li Gao
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, People's Republic of China
| | - Ning Li
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University and The Key Laboratory of Myocardial Ischemia Ministry of Education, Harbin, 150086, Heilongjiang, People's Republic of China
| | - Xin Shi
- Department of Prosthodontics, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Harbin, 150086, Heilongjiang, People's Republic of China
| | - Mengtong Yuan
- Department of Prosthodontics, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Harbin, 150086, Heilongjiang, People's Republic of China
| | - Weiping Hu
- Department of Prosthodontics, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Harbin, 150086, Heilongjiang, People's Republic of China.
| | - Mingyue Liu
- Department of Prosthodontics, The Second Affiliated Hospital of Harbin Medical University and The Key Laboratory of Myocardial Ischemia Ministry of Education, No. 246, Xuefu Road, Harbin, 150086, Heilongjiang, People's Republic of China.
| |
Collapse
|
16
|
Dysregulation of the gut-brain-skin axis and key overlapping inflammatory and immune mechanisms of psoriasis and depression. Biomed Pharmacother 2021; 137:111065. [PMID: 33540138 DOI: 10.1016/j.biopha.2020.111065] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/14/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022] Open
Abstract
The occurrence, progression and recurrence of psoriasis are thought to be related to mood and psychological disorders such as depression. Psoriasis can lead to depression, and depression, in turn, exacerbates psoriasis. No specific mechanism can explain the association between psoriasis and depression. The gut-brain-skin axis has been used to explain correlations among the gut microbiota, emotional states and systemic and skin inflammation, and this axis may be associated with overlapping mechanisms between psoriasis and depression. Therefore, in the context of the gut-brain-skin axis, we systematically summarized and comparatively analysed the inflammatory and immune mechanisms of psoriasis and depression and illustrated the dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis and the gut microbiota. This review provides a theoretical basis and new targets for the treatment of psoriasis and depression.
Collapse
|
17
|
Ort M, Dingemanse J, van den Anker J, Kaufmann P. Treatment of Rare Inflammatory Kidney Diseases: Drugs Targeting the Terminal Complement Pathway. Front Immunol 2020; 11:599417. [PMID: 33362783 PMCID: PMC7758461 DOI: 10.3389/fimmu.2020.599417] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
The complement system comprises the frontline of the innate immune system. Triggered by pathogenic surface patterns in different pathways, the cascade concludes with the formation of a membrane attack complex (MAC; complement components C5b to C9) and C5a, a potent anaphylatoxin that elicits various inflammatory signals through binding to C5a receptor 1 (C5aR1). Despite its important role in pathogen elimination, priming and recruitment of myeloid cells from the immune system, as well as crosstalk with other physiological systems, inadvertent activation of the complement system can result in self-attack and overreaction in autoinflammatory diseases. Consequently, it constitutes an interesting target for specialized therapies. The paradigm of safe and efficacious terminal complement pathway inhibition has been demonstrated by the approval of eculizumab in paroxysmal nocturnal hematuria. In addition, complement contribution in rare kidney diseases, such as lupus nephritis, IgA nephropathy, atypical hemolytic uremic syndrome, C3 glomerulopathy, or antineutrophil cytoplasmic antibody-associated vasculitis has been demonstrated. This review summarizes the involvement of the terminal effector agents of the complement system in these diseases and provides an overview of inhibitors for complement components C5, C5a, C5aR1, and MAC that are currently in clinical development. Furthermore, a link between increased complement activity and lung damage in severe COVID-19 patients is discussed and the potential for use of complement inhibitors in COVID-19 is presented.
Collapse
Affiliation(s)
- Marion Ort
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland.,Pediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland
| | - Jasper Dingemanse
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | - John van den Anker
- Pediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland.,Division of Clinical Pharmacology, Children's National Hospital, Washington, DC, United States
| | - Priska Kaufmann
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| |
Collapse
|
18
|
Rapalli VK, Waghule T, Gorantla S, Dubey SK, Saha RN, Singhvi G. Psoriasis: pathological mechanisms, current pharmacological therapies, and emerging drug delivery systems. Drug Discov Today 2020; 25:2212-2226. [PMID: 33011340 DOI: 10.1016/j.drudis.2020.09.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/31/2020] [Accepted: 09/23/2020] [Indexed: 01/09/2023]
Abstract
Psoriasis is a chronic autoimmune skin disorder triggered by either genetic factors, environmental factors, life style, or a combination thereof. Clinical investigations have identified pathogenesis, such as T cell and cytokine-mediated, genetic disposition, antimicrobial peptides, lipocalin-2, galectin-3, vaspin, fractalkine, and human neutrophil peptides in the progression of psoriasis. In addition to traditional therapies, newer therapeutics, including phosphodiesterase type 4 (PDE4) inhibitors, Janus kinase (JAK) inhibitors, monoclonal antibodies (mAbs), gene therapy, anti-T cell therapy, and phytoconstituents have been explored. In this review, we highlight nanotechnology-related developments for psoriasis treatment, including patented delivery systems and therapeutics currently in clinical trials.
Collapse
Affiliation(s)
- Vamshi Krishna Rapalli
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani 333031, India
| | - Tejashree Waghule
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani 333031, India
| | - Srividya Gorantla
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani 333031, India
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani 333031, India
| | - Ranendra Narayan Saha
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani 333031, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani 333031, India.
| |
Collapse
|
19
|
Zheng QY, Xu F, Yang Y, Sun DD, Zhong Y, Wu S, Li GQ, Gao WW, Wang T, Xu GL, Liang SJ. C5a/C5aR1 mediates IMQ-induced psoriasiform skin inflammation by promoting IL-17A production from γδ-T cells. FASEB J 2020; 34:10590-10604. [PMID: 32557852 DOI: 10.1096/fj.202000384r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/15/2020] [Accepted: 05/27/2020] [Indexed: 12/19/2022]
Abstract
Psoriasis is a chronic relapsing inflammatory skin disease, affecting up to 3% of the global population. Accumulating evidence suggests that the complement system is involved in its pathogenesis. Our previous study revealed that the C5a/C5aR1 pathway is crucial for disease development. However, the underlying mechanisms remain largely unknown. To explore potential mechanisms, psoriatic skin lesions and histological changes were assessed following imiquimod (IMQ) cream treatment. Inflammatory cytokine expression was tested by real-time RT-PCR. Immunohistochemistry and flow cytometry were used to identify inflammatory cell infiltration and interleukin (IL-17A) IL-17A expression. A C5aR1 antagonist (C5aR1a) and PI3K inhibitor (wortmannin) were used for blocking experiments (both in vivo and in vitro) to explore the mechanism. C5a/C5aR1-pathway inhibition significantly attenuated psoriasis-like skin lesions with decreased epidermal hyperplasia, downregulated type 17-related inflammatory gene expression, and reduced IL-17A-producing γδ-T cell responses. Mechanistically, C5a/C5aR1 promoted the latter phenotype via PI3K-Akt signaling. Consistently, C5aR1 deficiency clearly ameliorated IMQ-induced chronic psoriasiform dermatitis, with a significant decrease in IL-17A expression. Finally, blocking C5aR1 signaling further decreased psoriasiform skin inflammation in IL-17-deficient mice. Results suggest that C5a/C5aR1 mediates experimental psoriasis and skin inflammation by upregulating IL-17A expression from γδ-T cells. Blocking C5a/C5aR1/IL-17A axis is expected to be a promising strategy for psoriasis treatment.
Collapse
Affiliation(s)
- Quan-You Zheng
- Department of Urology, 958th Hospital, Southwest Hospital, Army Medical University, Chongqing, China.,Department of Immunology, Basical Medicine College, Army Medical University, Chongqing, China
| | - Feng Xu
- Department of Immunology, Basical Medicine College, Army Medical University, Chongqing, China
| | - Yi Yang
- Department of Rheumatism and Immunology, Daping Hospital, Army Medical University, Chongqing, China
| | - Dao-Dong Sun
- Department of Urology, 958th Hospital, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yu Zhong
- Department of Urology, 958th Hospital, Southwest Hospital, Army Medical University, Chongqing, China
| | - Shun Wu
- Department of Nephrology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Gui-Qing Li
- Department of Immunology, Basical Medicine College, Army Medical University, Chongqing, China
| | - Wei-Wu Gao
- Department of Immunology, Basical Medicine College, Army Medical University, Chongqing, China
| | - Tao Wang
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Gui-Lian Xu
- Department of Immunology, Basical Medicine College, Army Medical University, Chongqing, China
| | - Shen-Ju Liang
- Department of Rheumatism and Immunology, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
20
|
Wang A, Bai Y. Dendritic cells: The driver of psoriasis. J Dermatol 2019; 47:104-113. [PMID: 31833093 DOI: 10.1111/1346-8138.15184] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/17/2019] [Indexed: 12/20/2022]
Abstract
Psoriasis is a chronic skin inflammatory disorder, the immune mechanism of which has been profoundly elucidated in the past few years. The dominance of the interleukin (IL)-23/IL-17 axis is a significant breakthrough in the understanding of the pathogenesis of psoriasis, and treatment targeting IL-23 and IL-17 has successfully benefited patients with the disease. The skin contains a complex network of dendritic cells (DC) mainly composed of epidermal Langerhans cells, bone marrow-derived dermal conventional DC, plasmacytoid DC and inflammatory DC. As the prominent cellular source of α-interferon, tumor necrosis factor-α, IL-12 and IL-23, DC play a pivotal role in psoriasis. Thus, targeting pathogenic DC subsets is a valid strategy for alleviating and preventing psoriasis and other DC-derived diseases. In this review, we survey the known role of DC in this disease.
Collapse
Affiliation(s)
- Ao Wang
- Clinical Institute of China-Japan Friendship Hospital, Graduate School of Peking Union Medical College, Beijing, China.,Department of Dermatology and Venerology, China-Japan Friendship Hospital, Beijing, China
| | - YanPing Bai
- Clinical Institute of China-Japan Friendship Hospital, Graduate School of Peking Union Medical College, Beijing, China.,Department of Dermatology and Venerology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
21
|
Grand D, Navrazhina K, Frew JW. Integrating complement into the molecular pathogenesis of Hidradenitis Suppurativa. Exp Dermatol 2019; 29:86-92. [PMID: 31688984 DOI: 10.1111/exd.14056] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/16/2019] [Accepted: 11/01/2019] [Indexed: 12/20/2022]
Abstract
Complement inhibition has been identified as a potential therapeutic target for multiple inflammatory disorders including Hidradenitis Suppurativa (HS). It is currently unclear how complement integrates into our current model of molecular pathogenesis in HS and whether it represents a central component of pathogenesis, or a neutrophil-associated bystander. Levels of C5a in serum and tissue correlate with disease activity and degree of neutrophilic infiltrates in HS. C5a has been associated with Th17 immune axis activation in psoriasis, rheumatoid arthritis and Crohn's disease with strong similarities to TH17 activation in HS. Porphyromonas species (which are identified in the HS microbiome) are able to cleave inactive C5 into C5a implicating the cutaneous microbiome as an activator of complement. C3a and C5a are associated with activation of the NLRP3 inflammasome, implicated in the inflammatory drive in HS. Complement receptors are present upon dendritic cells, monocytes, fibroblasts and adipocytes, which may broaden the potential contribution of complement to multiple aspects of HS pathogenesis. Dysregulation of complement receptor pathways has been documented in obesity, insulin resistance and polycystic ovarian syndrome leading to the possibility that complement may explain the epidemiological associations between these conditions and HS. The therapeutic potential of complement inhibitors in HS may be related to the therapeutic target (complement receptor or complement subunit) and the presence of alternate receptors (such as C5aR2) or ligands (including C3a, PAMPs and DAMPs). Integrating complement into the known pathogenesis of HS may aid in explaining the contradictory results between Phase 2 studies of C5a antagonists. It also allows for the identification of existing knowledge gaps to target further clinical investigation and research.
Collapse
Affiliation(s)
- David Grand
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, USA.,Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kristina Navrazhina
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, USA.,Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, Weill Cornell University, New York, NY, USA
| | - John W Frew
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, USA
| |
Collapse
|