1
|
Zhand S, Goss DM, Cheng YY, Warkiani ME. Recent Advances in Microfluidics for Nucleic Acid Analysis of Small Extracellular Vesicles in Cancer. Adv Healthc Mater 2024:e2401295. [PMID: 39707658 DOI: 10.1002/adhm.202401295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/28/2024] [Indexed: 12/23/2024]
Abstract
Small extracellular vesicles (sEVs) are membranous vesicles released from cellular structures through plasma membrane budding. These vesicles contain cellular components such as proteins, lipids, mRNAs, microRNAs, long-noncoding RNA, circular RNA, and double-stranded DNA, originating from the cells they are shed from. Ranging in size from ≈25 to 300 nm and play critical roles in facilitating cell-to-cell communication by transporting signaling molecules. The discovery of sEVs in bodily fluids and their involvement in intercellular communication has revolutionized the fields of diagnosis, prognosis, and treatment, particularly in diseases like cancer. Conventional methods for isolating and analyzing sEVs, particularly their nucleic acid content face challenges including high costs, low purity, time-consuming processes, limited standardization, and inconsistent yield. The development of microfluidic devices, enables improved precision in sorting, isolating, and molecular-level separation using small sample volumes, and offers significant potential for the enhanced detection and monitoring of sEVs associated with cancer. These advanced techniques hold great promise for creating next-generation diagnostic and prognostic tools given their possibility of being cost-effective, simple to operate, etc. This comprehensive review explores the current state of research on microfluidic devices for the detection of sEV-derived nucleic acids as biomarkers and their translation into practical point-of-care and clinical applications.
Collapse
Affiliation(s)
- Sareh Zhand
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Dale Mark Goss
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Yuen Yee Cheng
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute of Molecular Theranostics, Sechenov First Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
2
|
Grace PS, Peters JM, Sixsmith J, Lu R, Luedeman C, Fenderson BA, Vickers A, Slein MD, Irvine EB, McKitrick T, Wei MH, Cummings RD, Wallace A, Cavacini LA, Choudhary A, Proulx MK, Sundling C, Källenius G, Reljic R, Ernst JD, Casadevall A, Locht C, Pinter A, Sasseti CM, Bryson BD, Fortune SM, Alter G. Antibody-Fab and -Fc features promote Mycobacterium tuberculosis restriction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617070. [PMID: 39416184 PMCID: PMC11482752 DOI: 10.1101/2024.10.07.617070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is a leading cause of death by an infectious disease globally, with no efficacious vaccine. Antibodies are implicated in Mtb control, but the mechanisms of antibody action remain poorly understood. We assembled a library of TB monoclonal antibodies (mAb) and screened for the ability to restrict Mtb in mice, identifying protective antibodies targeting known and novel antigens. To dissect the mechanism of mAb-mediated Mtb restriction, we optimized a protective lipoarabinomannan-specific mAb through Fc-swapping. In vivo analysis of these Fc-variants revealed a critical role for Fc-effector function in Mtb restriction. Restrictive Fc-variants altered distribution of Mtb across innate immune cells. Single-cell transcriptomics highlighted distinctly activated molecular circuitry within innate immune cell subpopulations, highlighting early activation of neutrophils as a key signature of mAb-mediated Mtb restriction. Therefore, improved antibody-mediated restriction of Mtb is associated with reorganization of the tissue-level immune response to infection and depends on the collaboration of antibody Fab and Fc.
Collapse
|
3
|
Hop HT, Liao PC, Wu HY. Enhancement of mycobacterial pathogenesis by host interferon-γ. Cell Mol Life Sci 2024; 81:380. [PMID: 39222120 PMCID: PMC11368887 DOI: 10.1007/s00018-024-05425-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The cytokine IFNγ is a principal effector of macrophage activation and immune resistance to mycobacterial infection; however, pathogenic mycobacteria are capable of surviving in IFNγ-activated macrophages by largely unknown mechanisms. In this study, we find that pathogenic mycobacteria, including M. bovis BCG and M. tuberculosis can sense IFNγ to promote their proliferative activity and virulence phenotype. Moreover, interaction with the host intracellular environment increases the susceptibility of mycobacteria to IFNγ through upregulating expression of mmpL10, a mycobacterial IFNγ receptor, thereby facilitating IFNγ-dependent survival and growth of mycobacteria in macrophages. Transmission electron microscopy analysis reveals that IFNγ triggers the secretion of extracellular vesicles, an essential virulence strategy of intracellular mycobacteria, while proteomics identifies numerous pivotal IFNγ-induced effectors required for mycobacterial infection in macrophages. Our study suggests that sensing host IFNγ is a crucial virulence mechanism used by pathogenic mycobacteria to survive and proliferate inside macrophages.
Collapse
Affiliation(s)
- Huynh Tan Hop
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan.
| | - Pao-Chi Liao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Hsin-Yi Wu
- Instrumentation Center, National Taiwan University, Taipei, 106, Taiwan
| |
Collapse
|
4
|
Mukhtar F, Guarnieri A, Brancazio N, Falcone M, Di Naro M, Azeem M, Zubair M, Nicolosi D, Di Marco R, Petronio Petronio G. The role of Mycobacterium tuberculosis exosomal miRNAs in host pathogen cross-talk as diagnostic and therapeutic biomarkers. Front Microbiol 2024; 15:1441781. [PMID: 39176271 PMCID: PMC11340542 DOI: 10.3389/fmicb.2024.1441781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024] Open
Abstract
Tuberculosis (TB) is a global threat, affecting one-quarter of the world's population. The World Health Organization (WHO) reports that 6 million people die annually due to chronic illnesses, a statistic that includes TB-related deaths. This high mortality is attributed to factors such as the emergence of drug-resistant strains and the exceptional survival mechanisms of Mycobacterium tuberculosis (MTB). Recently, microRNAs (miRNAs) have garnered attention for their crucial role in TB pathogenesis, surpassing typical small RNAs (sRNA) in their ability to alter the host's immune response. For instance, miR-155, miR-125b, and miR-29a have been identified as key players in the immune response to MTB, particularly in modulating macrophages, T cells, and cytokine production. While sRNAs are restricted to within cells, exo-miRNAs are secreted from MTB-infected macrophages. These exo-miRNAs modify the function of surrounding cells to favor the bacterium, perpetuating the infection cycle. Another significant aspect is that the expression of these miRNAs affects specific genes and pathways involved in immune functions, suggesting their potential use in diagnosing TB and as therapeutic targets. This review compiles existing information on the immunomodulatory function of exosomal miRNAs from MTB, particularly focusing on disease progression and the scientific potential of this approach compared to existing diagnostic techniques. Thus, the aim of the study is to understand the role of exosomal miRNAs in TB and to explore their potential for developing novel diagnostic and therapeutic methods.
Collapse
Affiliation(s)
- Farwa Mukhtar
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, Campobasso, Italy
| | - Antonio Guarnieri
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, Campobasso, Italy
| | - Natasha Brancazio
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, Campobasso, Italy
| | - Marilina Falcone
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, Campobasso, Italy
| | - Maria Di Naro
- Department of Drug and Health Sciences, Università degli Studi di Catania, Catania, Italy
| | - Muhammad Azeem
- Department of Precision Medicine in the Medical, Surgical and Critical Care Area (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Muhammad Zubair
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Daria Nicolosi
- Department of Drug and Health Sciences, Università degli Studi di Catania, Catania, Italy
| | - Roberto Di Marco
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, Campobasso, Italy
| | - Giulio Petronio Petronio
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, Campobasso, Italy
| |
Collapse
|
5
|
Wuo MG, Dulberger CL, Warner TC, Brown RA, Sturm A, Ultee E, Bloom-Ackermann Z, Choi C, Zhu J, Garner EC, Briegel A, Hung DT, Rubin EJ, Kiessling LL. Fluorogenic Probes of the Mycobacterial Membrane as Reporters of Antibiotic Action. J Am Chem Soc 2024; 146:17669-17678. [PMID: 38905328 PMCID: PMC11646346 DOI: 10.1021/jacs.4c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
The genus Mycobacterium includes species such as Mycobacterium tuberculosis, which can cause deadly human diseases. These bacteria have a protective cell envelope that can be remodeled to facilitate their survival in challenging conditions. Understanding how such conditions affect membrane remodeling can facilitate antibiotic discovery and treatment. To this end, we describe an optimized fluorogenic probe, N-QTF, that reports on mycolyltransferase activity, which is vital for cell division and remodeling. N-QTF is a glycolipid probe that can reveal dynamic changes in the mycobacterial cell envelope in both fast- and slow-growing mycobacterial species. Using this probe to monitor the consequences of antibiotic treatment uncovered distinct cellular phenotypes. Even antibiotics that do not directly inhibit cell envelope biosynthesis cause conspicuous phenotypes. For instance, mycobacteria exposed to the RNA polymerase inhibitor rifampicin release fluorescent extracellular vesicles (EVs). While all mycobacteria release EVs, fluorescent EVs were detected only in the presence of RIF, indicating that exposure to the drug alters EV content. Macrophages exposed to the EVs derived from RIF-treated cells released lower levels of cytokines, suggesting the EVs moderate immune responses. These data suggest that antibiotics can alter EV content to impact immunity. Our ability to see such changes in EV constituents directly results from exploiting these chemical probes.
Collapse
Affiliation(s)
- Michael G. Wuo
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue Cambridge, MA 02139, United States
| | - Charles L. Dulberger
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health. 677 Huntington Ave, Boston, MA 02115, United States
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford St, Cambridge, MA 02138, United States
| | - Theodore C. Warner
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue Cambridge, MA 02139, United States
| | - Robert A. Brown
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue Madison, WI 53706, United States
| | - Alexander Sturm
- Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA 02142, United States
| | - Eveline Ultee
- Institute of Biology, Leiden University, Rapenburg 70, 2311 EZ Leiden, The Netherlands
| | | | - Catherine Choi
- Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA 02142, United States
| | - Junhao Zhu
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health. 677 Huntington Ave, Boston, MA 02115, United States
| | - Ethan C. Garner
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford St, Cambridge, MA 02138, United States
| | - Ariane Briegel
- Institute of Biology, Leiden University, Rapenburg 70, 2311 EZ Leiden, The Netherlands
| | - Deborah T. Hung
- Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA 02142, United States
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, United States
- Department of Genetics, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, United States
| | - Eric J. Rubin
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health. 677 Huntington Ave, Boston, MA 02115, United States
| | - Laura L. Kiessling
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue Cambridge, MA 02139, United States
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue Madison, WI 53706, United States
| |
Collapse
|
6
|
Rudraprasad D, K V, Nirmal J, Ali MH, Joseph J. Complement Cascade 8 - Alpha and Calpain-2 in Extracellular Vesicles of Human Vitreous as Biomarkers of Infectious Endophthalmitis. Transl Vis Sci Technol 2024; 13:14. [PMID: 38767905 PMCID: PMC11114616 DOI: 10.1167/tvst.13.5.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 04/09/2024] [Indexed: 05/22/2024] Open
Abstract
Purpose Extracellular vesicles (EVs) are messenger pigeons of the cells that communicate about cellular microenvironment. In this study, we evaluated the expression of C8α and calpain-2 in EVs from vitreous of patients with bacterial endophthalmitis to assess its utility as a diagnostic marker. Methods EVs were isolated from vitreous of patients with bacterial endophthalmitis (culture positive and culture negative) and noninfectious control by exosome isolation reagent and characterized, and the levels of C8α and calpain-2 was assessed by enzyme-linked immunosorbent assay in isolated EVs and direct vitreous. The receiver operating characteristic curve was generated to assess the diagnostic performance. Results Scanning electron microscopy (SEM) and dynamic light scattering (DLS) confirmed the presence of EVs having a diameter (nm) of 275.2 ± 93, 92 ± 22, and 77.28 ± 12 in culture-positive (CP), culture-negative (CN), and control respectively. The expression level (ng/mL) of C8α in the EVs obtained from CP was 144 ± 22 and CN was 31.2 ± 9.8, which was significantly higher (P < 0.01) than control 3.7 ± 2.4. Interestingly, C8α is not expressed directly in the vitreous of CN and controls. Calpain-2 was significantly downregulated (P ≤ 0.0001) in CP (0.94 ± 0.16) and CN (0.70 ± 0.14) than control. The sensitivity and specificity of 1 for C8α and calpain-2 in the EVs implied that its diagnostic accuracy was significant. Conclusions This study showed that the EV proteins C8α and calpain-2 could be suitable diagnostic markers for endophthalmitis. However, the presence of C8α in the EVs of CN samples but not in direct vitreous promises EVs as the future of diagnostics. Translational Relevance Expression levels of EV-calpain-2 and EV-C8α could diagnose CN bacterial endophthalmitis.
Collapse
Affiliation(s)
- Dhanwini Rudraprasad
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Velmurugan K
- Department of pharmacy, BITS Pilani, Hyderabad, Telangana, India
| | - Jayabalan Nirmal
- Department of pharmacy, BITS Pilani, Hyderabad, Telangana, India
| | - Md. Hasnat Ali
- Center for Biostatistics and Epidemiology, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Joveeta Joseph
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India
- Ramoji Foundation Centre of Ocular Infections, LV Prasad Eye Institute, Hyderabad, Telangana, India
| |
Collapse
|
7
|
Xiong Y, Lou P, Xu C, Han B, Liu J, Gao J. Emerging role of extracellular vesicles in veterinary practice: novel opportunities and potential challenges. Front Vet Sci 2024; 11:1335107. [PMID: 38332755 PMCID: PMC10850357 DOI: 10.3389/fvets.2024.1335107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/12/2024] [Indexed: 02/10/2024] Open
Abstract
Extracellular vesicles are nanoscale vesicles that transport signals between cells, mediating both physiological and pathological processes. EVs facilitate conserved intercellular communication. By transferring bioactive molecules between cells, EVs coordinate systemic responses, regulating homeostasis, immunity, and disease progression. Given their biological importance and involvement in pathogenesis, EVs show promise as biomarkers for veterinary diagnosis, and candidates for vaccine production, and treatment agents. Additionally, different treatment or engineering methods could be used to boost the capability of extracellular vesicles. Despite the emerging veterinary interest, EV research has been predominantly human-based. Critical knowledge gaps remain regarding isolation protocols, cargo loading mechanisms, in vivo biodistribution, and species-specific functions. Standardized methods for veterinary EV characterization and validation are lacking. Regulatory uncertainties impede veterinary clinical translation. Advances in fundamental EV biology and technology are needed to propel the veterinary field forward. This review introduces EVs from a veterinary perspective by introducing the latest studies, highlighting their potential while analyzing challenges to motivate expanded veterinary investigation and translation.
Collapse
Affiliation(s)
- Yindi Xiong
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Peng Lou
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Chuang Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingping Liu
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Wang N, Yao Y, Qian Y, Qiu D, Cao H, Xiang H, Wang J. Cargoes of exosomes function as potential biomarkers for Mycobacterium tuberculosis infection. Front Immunol 2023; 14:1254347. [PMID: 37928531 PMCID: PMC10622749 DOI: 10.3389/fimmu.2023.1254347] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
Exosomes as double-membrane vesicles contain various contents of lipids, proteins, mRNAs and non-coding RNAs, and involve in multiple physiological processes, for instance intercellular communication and immunomodulation. Currently, numerous studies found that the components of exosomal proteins, nucleic acids or lipids released from host cells are altered following infection with Mycobacterium tuberculosis. Exosomal contents provide excellent biomarkers for the auxiliary diagnosis, efficacy evaluation, and prognosis of tuberculosis. This study aimed to review the current literatures detailing the functions of exosomes in the procedure of M. tuberculosis infection, and determine the potential values of exosomes as biomarkers to assist in the diagnosis and monitoring of tuberculosis.
Collapse
Affiliation(s)
- Nan Wang
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, Jiangsu, China
| | - Yongliang Yao
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, Jiangsu, China
| | - Yingfen Qian
- Department of Clinical Laboratory, Kunshan Fourth People’s Hospital, Suzhou, Jiangsu, China
| | - Dewen Qiu
- Department of Clinical Laboratory, Jiangxi Maternal and Child Health Hospital Maternal and Child Heath Hospital of Nanchang College, Nanchang, China
| | - Hui Cao
- Department of Food and Nutrition Safety, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Huayuan Xiang
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, Jiangsu, China
| | - Jianjun Wang
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, Jiangsu, China
| |
Collapse
|
9
|
Wang L, Zheng X, Ma J, Gu J, Sha W. Comparative Proteomic Analysis of Exosomes Derived from Patients Infected with Non-Tuberculous Mycobacterium and Mycobacterium tuberculosis. Microorganisms 2023; 11:2334. [PMID: 37764178 PMCID: PMC10535683 DOI: 10.3390/microorganisms11092334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
The non-tuberculous mycobacterium (NTM) is a very troublesome opportunistic pathogen, placing a heavy burden on public health. The pathogenesis of NTM pulmonary infection is not well-revealed yet, and its diagnosis is always challenging. This study aimed to use a comprehensive proteomics analysis of plasma exosomes to distinguish patients with rapidly growing NTM M. abscessus (MAB), slowly growing NTM M. intracellulare (MAC), and Mycobacterium tuberculosis (MTB). The identified protein components were quantified with label-free proteomics and determined with a bioinformatics analysis. The complement and coagulation were significantly enriched in patients with Mycobacterium infection, and a total of 24 proteins were observed with up-regulation, which included C1R, C1S, C2, MASP2, C4B, C8B, C9, etc. Of them, 18 proteins were significantly up-regulated in patients with MAB, while 6 and 10 were up-regulated in patients with MAC or MTB, respectively. Moreover, MAB infection was also related to the HIF-1 signaling pathway and phagosome processes, and MTB infection was associated with the p53 signaling pathway. This study provided a comprehensive description of the exosome proteome in the plasma of patients infected with MAB, MAC, and MTB and revealed potential diagnostic and differential diagnostic markers.
Collapse
Affiliation(s)
- Li Wang
- Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- Department of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xubin Zheng
- Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Jun Ma
- Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- Department of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jin Gu
- Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- Department of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200092, China
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Wei Sha
- Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- Department of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200092, China
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
10
|
Wang Y, Wang S, Li L, Zou Y, Liu B, Fang X. Microfluidics‐based molecular profiling of tumor‐derived exosomes for liquid biopsy. VIEW 2023. [DOI: 10.1002/viw.20220048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Yuqing Wang
- School of Pharmacy Shanghai Stomatological Hospital Department of Chemistry Fudan University Shanghai China
| | - Shurong Wang
- School of Pharmacy Shanghai Stomatological Hospital Department of Chemistry Fudan University Shanghai China
| | - Lanting Li
- School of Pharmacy Shanghai Stomatological Hospital Department of Chemistry Fudan University Shanghai China
| | - Yan Zou
- School of Pharmacy Shanghai Stomatological Hospital Department of Chemistry Fudan University Shanghai China
| | - Baohong Liu
- School of Pharmacy Shanghai Stomatological Hospital Department of Chemistry Fudan University Shanghai China
| | - Xiaoni Fang
- School of Pharmacy Shanghai Stomatological Hospital Department of Chemistry Fudan University Shanghai China
| |
Collapse
|
11
|
Wang J, Li Y, Wang N, Wu J, Ye X, Jiang Y, Tang L. Functions of exosomal non-coding RNAs to the infection with Mycobacterium tuberculosis. Front Immunol 2023; 14:1127214. [PMID: 37033928 PMCID: PMC10073540 DOI: 10.3389/fimmu.2023.1127214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Tuberculosis (TB) is a major infectious disease induced by Mycobacterium tuberculosis (M. tb) which causes the world's dominant fatal bacterial contagious disease. Increasing studies have indicated that exosomes may be a novel option for the diagnosis and treatment of TB. Exosomes are nanovesicles (30-150 nm) containing lipids, proteins and non-coding RNAs (ncRNAs) released from various cells, and can transfer their cargos and communicate between cells. Furthermore, exosomal ncRNAs exhibit diagnosis potential in bacterial infections, including TB. Additionally, differential exosomal ncRNAs regulate the physiological and pathological functions of M. tb-infected cells and act as diagnostic markers for TB. This current review explored the potential biological roles and the diagnostic application prospects of exosomal ncRNAs, and included recent information on their pathogenic and therapeutic functions in TB.
Collapse
Affiliation(s)
- Jianjun Wang
- Department of Clinical Laboratory, The First People’s Hospital of Kunshan, Suzhou, China
- *Correspondence: Lijun Tang, ; Jianjun Wang,
| | - Yujie Li
- Department of Clinical Laboratory, The First People’s Hospital of Kunshan, Suzhou, China
| | - Nan Wang
- Department of Clinical Laboratory, The First People’s Hospital of Kunshan, Suzhou, China
| | - Jianhong Wu
- Department of Clinical Laboratory, The First People’s Hospital of Kunshan, Suzhou, China
| | - Xiaojian Ye
- Department of Clinical Laboratory, The First People’s Hospital of Kunshan, Suzhou, China
| | - Yibiao Jiang
- Department of Clinical Laboratory, The First People’s Hospital of Kunshan, Suzhou, China
| | - Lijun Tang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, China
- *Correspondence: Lijun Tang, ; Jianjun Wang,
| |
Collapse
|
12
|
Activated polymorphonuclear derived extracellular vesicles are potential biomarkers of periprosthetic joint infection. PLoS One 2022; 17:e0268076. [PMID: 35533148 PMCID: PMC9084519 DOI: 10.1371/journal.pone.0268076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 04/21/2022] [Indexed: 11/30/2022] Open
Abstract
Background Extracellular vesicles (EVs) are considered as crucial players in a wide variety of biological processes. Although their importance in joint diseases or infections has been shown by numerous studies, much less is known about their function in periprosthetic joint infection (PJI). Our aim was to investigate activated polymorphonuclear (PMN)-derived synovial EVs in patients with PJI. Questions/Purposes (1) Is there a difference in the number and size of extracellular vesicles between periprosthetic joint aspirates of patients with PJI and aseptic loosening? (2) Are these vesicles morphologically different in the two groups? (3) Are there activated PMN-derived EVs in septic samples evaluated by flow cytometry after CD177 labelling? (4) Is there a difference in the protein composition carried by septic and aseptic vesicles? Methods Thirty-four patients (n = 34) were enrolled into our investigation, 17 with PJI and 17 with aseptic prosthesis loosening. Periprosthetic joint fluid was aspirated and EVs were separated. Samples were analysed by nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM) and flow cytometry (after Annexin V and CD177 labelling). The protein content of the EVs was studied by mass spectrometry (MS). Results NTA showed particle size distribution in both groups between 150 nm and 450 nm. The concentration of EVs was significantly higher in the septic samples (p = 0.0105) and showed a different size pattern as compared to the aseptic ones. The vesicular nature of the particles was confirmed by TEM and differential detergent lysis. In the septic group, FC analysis showed a significantly increased event number both after single and double labelling with fluorochrome conjugated Annexin V (p = 0.046) and Annexin V and anti-CD177 (p = 0.0105), respectively. MS detected a significant difference in the abundance of lactotransferrin (p = 0.00646), myeloperoxidase (p = 0.01061), lysozyme C (p = 0.04687), annexin A6 (p = 0.03921) and alpha-2-HS-glycoprotein (p = 0.03146) between the studied groups. Conclusions An increased number of activated PMN derived EVs were detected in the synovial fluid of PJI patients with a characteristic size distribution and a specific protein composition. The activated PMNs-derived extracellular vesicles can be potential biomarkers of PJI.
Collapse
|
13
|
Utility of cell-free transrenal DNA for the diagnosis of Tuberculous Meningitis: A proof-of-concept study. Tuberculosis (Edinb) 2022; 135:102213. [DOI: 10.1016/j.tube.2022.102213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/21/2022] [Accepted: 05/22/2022] [Indexed: 11/24/2022]
|
14
|
Xie Y, Zhang Z, Zhang M, Cao H. Cofilin‑1 as a potential biomarker for Mycobacterium tuberculosis infection. Exp Ther Med 2022; 23:253. [PMID: 35261625 PMCID: PMC8855514 DOI: 10.3892/etm.2022.11178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/05/2022] [Indexed: 11/23/2022] Open
Abstract
Tuberculosis (TB) induced by Mycobacterium tuberculosis (M. tb), is one of the deadliest human infections worldwide. Our previous studies demonstrated cofilin-1 (CFL1) expression was significantly increased in exosomes from Mycobacterium avium (M. avium)-infected macrophages. The expression of CFL1 protein in M. tb infected hosts was investigated in the present study to predict whether CFL1 could have potential as a biomarker for M. tb infection. In the present study, the mRNA and protein expression levels of CFL1 in M. avium-infected macrophages and supernatants were analyzed via reverse transcription-quantitative PCR and western blotting. Furthermore, CFL1 expression in macrophages was knocked down in vivo, and then CFL1 expression levels in M. avium-infected macrophages and supernatant were detected via western blotting and ELISA. In addition, CFL1 was detected in the peripheral blood mononuclear cells and plasma of patients with TB using western blotting and ELISA. The specificity and sensitivity of CFL1 as a biomarker and the association between TB infection and normal individuals were compared and analyzed using GraphPad Prism 5. CFL1 protein expression levels were significantly increased in M. avium-infected macrophages and supernatant. Meanwhile, CFL1 was upregulated in patients with TB. Bioinformatics statistics indicated the high specificity and sensitivity of CFL1 in patients with TB. Thus, these results suggest that CFL1 may act as a potential biomarker of TB infection.
Collapse
Affiliation(s)
- Yiping Xie
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Zhiqin Zhang
- Biological Sample Bank, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Min Zhang
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Hui Cao
- Department of food safety and evaluation, Institute of Food Safety and Evaluation, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
15
|
Zhang M, Xie Y, Li S, Ye X, Jiang Y, Tang L, Wang J. Proteomics Analysis of Exosomes From Patients With Active Tuberculosis Reveals Infection Profiles and Potential Biomarkers. Front Microbiol 2022; 12:800807. [PMID: 35069505 PMCID: PMC8770970 DOI: 10.3389/fmicb.2021.800807] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
Although mycobacterial proteins in exosomes from peripheral serum of patients with tuberculosis (TB) have been identified, other exact compositions of exosomes remain unknown. In the present study, a comprehensive proteomics analysis of serum exosomes derived from patients with active TB (ATB) was performed. Exosomes from patients with ATB were characterized using nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), and western blotting analysis. Then identified protein components were quantified by label-free proteomics and were determined via bioinformatics analysis. A total of 123 differential proteins were identified in ATB serum exosomes and analyzed with Gene Ontology (GO) analysis. Among these proteins heat shock protein70 (HSP70), CD81, major histocompatibility complex-I (MHC-I ) and tumor susceptibility gene101 (TSG101) were present in exosomes of ATB and normal individuals confirmed via western blotting. In addition, among identified exosomal proteins lipopolysaccharide binding protein (LBP) increased significantly, but CD36 and MHC-I decreased significantly in ATB exosomes. Meanwhile, MHC-I was down-expressed in serum and peripheral blood mononuclear cells (PBMCs) of ATB, but interestingly CD36 was down-regulated in serum and up-expressed in PBMCs of ATB patients validated with ELISA and flow cytometry. CD36 was up-regulated by M. tuberculosis H37Ra infection in macrophages and suppressed in exosomes from H37Ra infected macrophages detected by western blotting. This study provided a comprehensive description of the exosome proteome in the serum of patients with ATB and revealed certain potential biomarkers associated with TB infection.
Collapse
Affiliation(s)
- Min Zhang
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Zhenjiang, China
| | - Yiping Xie
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Zhenjiang, China
| | - Shasha Li
- Central Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaojian Ye
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Zhenjiang, China
| | - Yibiao Jiang
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Zhenjiang, China
| | - Lijun Tang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, China
| | - Jianjun Wang
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
16
|
Delivery of Toxins and Effectors by Bacterial Membrane Vesicles. Toxins (Basel) 2021; 13:toxins13120845. [PMID: 34941684 PMCID: PMC8703475 DOI: 10.3390/toxins13120845] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/22/2023] Open
Abstract
Pathogenic bacteria interact with cells of their host via many factors. The surface components, i.e., adhesins, lipoproteins, LPS and glycoconjugates, are particularly important in the initial stages of colonization. They enable adhesion and multiplication, as well as the formation of biofilms. In contrast, virulence factors such as invasins and toxins act quickly to damage host cells, causing tissue destruction and, consequently, organ dysfunction. These proteins must be exported from the bacterium and delivered to the host cell in order to function effectively. Bacteria have developed a number of one- and two-step secretion systems to transport their proteins to target cells. Recently, several authors have postulated the existence of another transport system (sometimes called "secretion system type zero"), which utilizes extracellular structures, namely membrane vesicles (MVs). This review examines the role of MVs as transporters of virulence factors and the interaction of toxin-containing vesicles and other protein effectors with different human cell types. We focus on the unique ability of vesicles to cross the blood-brain barrier and deliver protein effectors from intestinal or oral bacteria to the central nervous system.
Collapse
|
17
|
Armijos-Jaramillo V, Mosquera A, Rojas B, Tejera E. The search for molecular mimicry in proteins carried by extracellular vesicles secreted by cells infected with Plasmodium falciparum. Commun Integr Biol 2021; 14:212-220. [PMID: 34527168 PMCID: PMC8437455 DOI: 10.1080/19420889.2021.1972523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 11/23/2022] Open
Abstract
Red blood cells infected with Plasmodium falciparum secrete extracellular vesicles in order to facilitate the survival and infection of human cells. Various researchers have studied the composition of these extracellular vesicles and identified the proteins contained inside. In this work, we used that information to detect potential P. falciparum molecules that could be imitating host proteins. We carried out several searches to detect sequences and structural similarities between the parasite and host. Additionally, the possibility of functional mimicry was explored in line with the potential role that each candidate can perform for the parasite inside the host. Lastly, we determined a set of eight sequences (mainly moonlighting proteins) with a remarkable resemblance to human proteins. Due to the resemblance observed, this study proposes the possibility that certain P. falciparum molecules carried by extracellular vesicles could be imitating human proteins to manipulate the host cell's physiology.
Collapse
Affiliation(s)
- Vinicio Armijos-Jaramillo
- Carrera de Ingeniería en Biotecnología, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito, Ecuador
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Quito, Ecuador
| | - Andrea Mosquera
- Carrera de Ingeniería en Biotecnología, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito, Ecuador
| | - Brian Rojas
- Carrera de Ingeniería en Biotecnología, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito, Ecuador
| | - Eduardo Tejera
- Carrera de Ingeniería en Biotecnología, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito, Ecuador
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Quito, Ecuador
| |
Collapse
|
18
|
Yan Z, Wang H, Mu L, Hu ZD, Zheng WQ. Regulatory roles of extracellular vesicles in immune responses against Mycobacterium tuberculosis infection. World J Clin Cases 2021; 9:7311-7318. [PMID: 34616797 PMCID: PMC8464473 DOI: 10.12998/wjcc.v9.i25.7311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/19/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are cystic vesicles naturally released by most mammalian cells and bacteria. EV contents include proteins, lipids, and nucleic acids. EVs can act as messengers to transmit a variety of molecules to recipient cells and thus play important regulatory roles in intercellular signal transduction. EVs, released by either a host cell or a pathogen, can carry pathogen-associated antigens and thus act as modulators of immune responses. EVs derived from Mycobacterium tuberculosis (Mtb)-infected cells can regulate the innate immune response through various pathways, such as regulating the release of inflammatory cytokines. In addition, EVs can mediate antigen presentation and regulate the adaptive immune response by transmitting immunoregulatory molecules to T helper cells. In this review, we summarize the regulatory roles of EVs in the immune response against Mtb.
Collapse
Affiliation(s)
- Zhi Yan
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
- Department of Parasitology, the College of Basic Medical Sciences of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
| | - Hua Wang
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
- Department of Parasitology, the College of Basic Medical Sciences of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
| | - Lan Mu
- Department of Parasitology, the College of Basic Medical Sciences of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
| | - Zhi-De Hu
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
| | - Wen-Qi Zheng
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
- Department of Parasitology, the College of Basic Medical Sciences of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
| |
Collapse
|
19
|
Liotta L, Luchini A. Unconventional Approaches to Direct Detection of Borreliosis and Other Tick Borne Illnesses: A Path Forward. JOURNAL OF CELLULAR IMMUNOLOGY 2021; 3:164-172. [PMID: 34414392 PMCID: PMC8372993 DOI: 10.33696/immunology.3.094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Lance Liotta
- George Mason University, Manassas, Virginia, USA
| | | |
Collapse
|
20
|
Zakeri A, Whitehead BJ, Stensballe A, de Korne C, Williams AR, Everts B, Nejsum P. Parasite worm antigens instruct macrophages to release immunoregulatory extracellular vesicles. J Extracell Vesicles 2021; 10:e12131. [PMID: 34429858 PMCID: PMC8365858 DOI: 10.1002/jev2.12131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence suggests that immune cells not only communicate with each other through cytokines, chemokines, and cell surface receptors, but also by releasing small membranous structures known as extracellular vesicles (EVs). EVs carry a variety of different molecules that can be taken up by recipient cells. Parasitic worms are well known for their immunomodulatory properties, but whether they can affect immune responses by altering EV-driven communication between host immune cells remains unclear. Here we provide evidence that stimulation of bone marrow-derived macrophages (BMDMs) with soluble products of Trichuris suis (TSPs), leads to the release of EVs with anti-inflammatory properties. Specifically, we found that EVs from TSP-pulsed BMDMs, but not those from unstimulated BMDMs can suppress TNFα and IL-6 release in LPS-stimulated BMDMs and BMDCs. However, no polarization toward M1 or M2 was observed in macrophages exposed to EVs. Moreover, EVs enhanced reactive oxygen species (ROS) production in the exposed BMDMs, which was associated with a deregulated redox homeostasis as revealed by pathway analysis of transcriptomic data. Proteomic analysis identified cytochrome p450 (CYP450) as a potential source of ROS in EVs from TSP-pulsed BMDMs. Finally, pharmacological inhibition of CYP450 activity could suppress ROS production in those BMDMs. In summary, we find that TSPs can modulate immune responses not only via direct interactions but also indirectly by eliciting the release of EVs from BMDMs that exert anti-inflammatory effects on recipient cells.
Collapse
Affiliation(s)
- Amin Zakeri
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | | | - Allan Stensballe
- Department of Medicine and Health TechnologyAalborg UniversityAalborgDenmark
| | - Clarize de Korne
- Department of ParasitologyLeiden University Medical CentreLeidenNetherlands
- Interventional Molecular Imaging laboratoryDepartment of RadiologyLeiden University Medical CentreLeidenNetherlands
| | - Andrew R. Williams
- Department of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksbergDenmark
| | - Bart Everts
- Department of ParasitologyLeiden University Medical CentreLeidenNetherlands
| | - Peter Nejsum
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| |
Collapse
|
21
|
Sahu S, Sharma K, Sharma M, Narang T, Dogra S, Minz RW, Chhabra S. Neutrophil NETworking in ENL: Potential as a Putative Biomarker: Future Insights. Front Med (Lausanne) 2021; 8:697804. [PMID: 34336901 PMCID: PMC8316588 DOI: 10.3389/fmed.2021.697804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/17/2021] [Indexed: 12/11/2022] Open
Abstract
Erythema nodosum leprosum (ENL), also known as type 2 reaction (T2R) is an immune complex mediated (type III hypersensitivity) reactional state encountered in patients with borderline lepromatous and lepromatous leprosy (BL and LL) either before, during, or after the institution of anti-leprosy treatment (ALT). The consequences of ENL may be serious, leading to permanent nerve damage and deformities, constituting a major cause of leprosy-related morbidity. The incidence of ENL is increasing with the increasing number of multibacillary cases. Although the diagnosis of ENL is not difficult to make for physicians involved in the care of leprosy patients, its management continues to be a most challenging aspect of the leprosy eradication program: the chronic and recurrent painful skin lesions, neuritis, and organ involvement necessitates prolonged treatment with prednisolone, thalidomide, and anti-inflammatory and immunosuppressive drugs, which further adds to the existing morbidity. In addition, the use of immunosuppressants like methotrexate, azathioprine, cyclosporine, or biologics carries a risk of reactivation of persisters (Mycobacterium leprae), apart from their own end-organ toxicities. Most ENL therapeutic guidelines are primarily designed for acute episodes and there is scarcity of literature on management of patients with chronic and recurrent ENL. It is difficult to predict which patients will develop chronic or recurrent ENL and plan the treatment accordingly. We need simple point-of-care or ELISA-based tests from blood or skin biopsy samples, which can help us in identifying patients who are likely to require prolonged treatment and also inform us about the prognosis of reactions so that appropriate therapy may be started and continued for better ENL control in such patients. There is a significant unmet need for research for better understanding the immunopathogenesis of, and biomarkers for, ENL to improve clinical stratification and therapeutics. In this review we will discuss the potential of neutrophils (polymorphonuclear granulocytes) as putative diagnostic and prognostic biomarkers by virtue of their universal abundance in human blood, functional versatility, phenotypic heterogeneity, metabolic plasticity, differential hierarchical cytoplasmic granule mobilization, and their ability to form NETs (neutrophil extracellular traps). We will touch upon the various aspects of neutrophil biology relevant to ENL pathophysiology in a step-wise manner. We also hypothesize about an element of metabolic reprogramming of neutrophils by M. leprae that could be investigated and exploited for biomarker discovery. In the end, a potential role for neutrophil derived exosomes as a novel biomarker for ENL will also be explored.
Collapse
Affiliation(s)
- Smrity Sahu
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Keshav Sharma
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Maryada Sharma
- Department of Otolaryngology and Head and Neck Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Tarun Narang
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sunil Dogra
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ranjana Walker Minz
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Seema Chhabra
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
22
|
Srivatsav AT, Kapoor S. The Emerging World of Membrane Vesicles: Functional Relevance, Theranostic Avenues and Tools for Investigating Membrane Function. Front Mol Biosci 2021; 8:640355. [PMID: 33968983 PMCID: PMC8101706 DOI: 10.3389/fmolb.2021.640355] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Lipids are essential components of cell membranes and govern various membrane functions. Lipid organization within membrane plane dictates recruitment of specific proteins and lipids into distinct nanoclusters that initiate cellular signaling while modulating protein and lipid functions. In addition, one of the most versatile function of lipids is the formation of diverse lipid membrane vesicles for regulating various cellular processes including intracellular trafficking of molecular cargo. In this review, we focus on the various kinds of membrane vesicles in eukaryotes and bacteria, their biogenesis, and their multifaceted functional roles in cellular communication, host-pathogen interactions and biotechnological applications. We elaborate on how their distinct lipid composition of membrane vesicles compared to parent cells enables early and non-invasive diagnosis of cancer and tuberculosis, while inspiring vaccine development and drug delivery platforms. Finally, we discuss the use of membrane vesicles as excellent tools for investigating membrane lateral organization and protein sorting, which is otherwise challenging but extremely crucial for normal cellular functioning. We present current limitations in this field and how the same could be addressed to propel a fundamental and technology-oriented future for extracellular membrane vesicles.
Collapse
Affiliation(s)
- Aswin T. Srivatsav
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
- Wadhwani Research Center of Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
23
|
TLRs in Mycobacterial Pathogenesis: Black and White or Shades of Gray. Curr Microbiol 2021; 78:2183-2193. [PMID: 33844035 DOI: 10.1007/s00284-021-02488-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 04/01/2021] [Indexed: 12/19/2022]
Abstract
Toll-like receptors (TLRs) play critical role in the innate recognition of pathogens besides orchestrating innate and adaptive immune responses. These receptors exhibit exquisite specificity for different pathogens or their products and, through a complex network of signalling, generate appropriate immune responses. TLRs induce both pro- and anti-inflammatory signals depending on interactions with the adapter molecules thereby impacting the outcome of infection. Hence, TLR signalling ought to be stringently regulated to avoid harmful effects on the host. Mycobacteria express antigens which are sensed by TLRs leading to activation of various signalling molecules important for initiating the death of infected cells and containment of pathogens. Conversely, it also utilizes TLRs for immune evasion and persistence. Due to the enormous diversity in the repertoire of virulence traits expressed by mycobacteria, genetic variations in TLRs often impair the host's ability to respond to mycobacterial-stress, affecting health and disease manifestations. Thus, understanding TLR signalling is of great importance for insights into host-mycobacterial interactions and designing effective measures for controlling the spread and persistence of the bacterium.
Collapse
|
24
|
Mirzaei R, Babakhani S, Ajorloo P, Ahmadi RH, Hosseini-Fard SR, Keyvani H, Ahmadyousefi Y, Teimoori A, Zamani F, Karampoor S, Yousefimashouf R. The emerging role of exosomal miRNAs as a diagnostic and therapeutic biomarker in Mycobacterium tuberculosis infection. Mol Med 2021; 27:34. [PMID: 33794771 PMCID: PMC8017856 DOI: 10.1186/s10020-021-00296-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), has been the world's driving fatal bacterial contagious disease globally. It continues a public health emergency, and around one-third of the global community has been affected by latent TB infection (LTBI). This is mostly due to the difficulty in diagnosing and treating patients with TB and LTBI. Exosomes are nanovesicles (40-100 nm) released from different cell types, containing proteins, lipids, mRNA, and miRNA, and they allow the transfer of one's cargo to other cells. The functional and diagnostic potential of exosomal miRNAs has been demonstrated in bacterial infections, including TB. Besides, it has been recognized that cells infected by intracellular pathogens such as Mtb can be secreting an exosome, which is implicated in the infection's fate. Exosomes, therefore, open a unique viewpoint on the investigative process of TB pathogenicity. This study explores the possible function of exosomal miRNAs as a diagnostic biomarker. Moreover, we include the latest data on the pathogenic and therapeutic role of exosomal miRNAs in TB.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran. .,Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Sajad Babakhani
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Parisa Ajorloo
- Department of Biology, Sciences and Research Branch, Islamic Azad University, Tehran, Iran
| | - Razieh Heidari Ahmadi
- Department of Genetics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences Islamic Azad University, Tehran, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Keyvani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Yaghoub Ahmadyousefi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran.,Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Teimoori
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Farhad Zamani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran. .,Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran. .,Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
25
|
Mycobacterium tuberculosis Load in Host Cells and the Antibacterial Activity of Alveolar Macrophages Are Linked and Differentially Regulated in Various Lung Lesions of Patients with Pulmonary Tuberculosis. Int J Mol Sci 2021; 22:ijms22073452. [PMID: 33810600 PMCID: PMC8037353 DOI: 10.3390/ijms22073452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Tuberculosis (TB) is a disease caused by Mycobacterium tuberculosis (Mtb) infection with the formation of a broad range of abnormal lung lesions within a single patient. Although host-pathogen interactions determine disease outcome, they are poorly understood within individual lesions at different stages of maturation. We compared Mtb load in a tuberculoma wall and the lung tissue distant from tuberculomas in TB patients. These data were combined with an analysis of activation and bactericidal statuses of alveolar macrophages and other cell subtypes examined both in ex vivo culture and on the histological sections obtained from the same lung lesions. The expression of pattern recognition receptors CD14, CD11b, and TLR-2, transcription factors HIF-1α, HIF-2α, and NF-κB p50 and p65, enzymes iNOS and COX-2, reactive oxygen species (ROS) biosynthesis, and lipid production were detected for various lung lesions, with individual Mtb loads in them. The walls of tuberculomas with insufficient inflammation and excessive fibrosis were identified as being the main niche for Mtb survival (single or as colonies) in non-foamy alveolar macrophages among various lung lesions examined. The identification of factors engaged in the control of Mtb infection and tissue pathology in local lung microenvironments, where host-pathogen relationships take place, is critical for the development of new therapeutic strategies.
Collapse
|
26
|
Mohammadzadeh R, Ghazvini K, Farsiani H, Soleimanpour S. Mycobacterium tuberculosis extracellular vesicles: exploitation for vaccine technology and diagnostic methods. Crit Rev Microbiol 2020; 47:13-33. [PMID: 33044878 DOI: 10.1080/1040841x.2020.1830749] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tuberculosis (TB) is a fatal epidemic disease usually caused by Mycobacterium tuberculosis (Mtb). Pervasive latent infection, multidrug- and extensively drug-resistant tuberculosis (MDR- and XDR-TB), and TB/HIV co-infection make TB a global health problem, which emphasises the design and development of efficient vaccines and diagnostic biomarkers. Extracellular vesicles (EVs) secretion is a conserved phenomenon in all the domains of life. Various cargos such as nucleic acids, toxins, lipoproteins, and enzymes have been recognised in these nano-sized vesicles that may be involved in bacterial physiology and pathogenesis. The intrinsic adjuvant effect, native immunogenic cargo, sensing by host immune cells, circulation in all body fluids, and comprehensive distribution of antigens introduce EVs as a promising tool for designing novel vaccines, diagnostic biomarkers, and drug delivery systems. Genetic engineering of the EV-producing bacteria and the subsequent production of proper EVs could facilitate the development of the EV-based therapeutic applications. Recently, it was demonstrated that thick-walled mycobacteria release EVs, which contain immunodominant cargos such as lipoglycans and lipoproteins. The present article is a comprehensive review on the recent findings of Mtb EVs biology and the exploitation of EVs for the vaccine technology and diagnostic methods.
Collapse
Affiliation(s)
- Roghayeh Mohammadzadeh
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiarash Ghazvini
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Farsiani
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Reference Tuberculosis Laboratory, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
27
|
Li H, Xing S, Xu J, He Y, Lai Y, Wang Y, Zhang G, Guo S, Deng M, Zeng M, Liu W. Aptamer-based CRISPR/Cas12a assay for the ultrasensitive detection of extracellular vesicle proteins. Talanta 2020; 221:121670. [PMID: 33076176 DOI: 10.1016/j.talanta.2020.121670] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/24/2020] [Accepted: 09/12/2020] [Indexed: 12/15/2022]
Abstract
Tumor-derived extracellular vesicles (TEVs) have emerged as promising sources of diagnostic and prognostic biomarkers for nasopharyngeal carcinoma (NPC). However, the lack of high-sensitivity analytic methods for ultratrace membrane proteins on TEVs hamper their clinical application of TEVs. Herein, by combining aptamers that specifically bind to protein targets on TEVs, PCR-based exponential amplification and CRISPR/Cas12a real-time DNA detection, we developed a novel technique, termed the aptamer-CRISPR/Cas12a assay, to detect CD109+ and EGFR+ TEVs from cell lines and complex biofluids. The platform enables highly sensitive detection of CD109+ and EGFR+ TEVs at as low as 100 particles/mL with a linear range spanning 6 orders of magnitude (102-108 particles/mL), which was found to be sufficient to effectively detect TEV proteins directly in low-volume (50 μl) samples. Furthermore, clinical serum sample analysis verified that the combination of serum CD109+ and EGFR+ TEV levels yielded high diagnostic accuracy, with an AUC of 0.934 (95% CI: 0.868-1.000), a sensitivity of 84.1% and a specificity of 85.0%, in discriminating NPC from healthy controls. Moreover, the dramatic decrease in both biomarkers in responders after radiotherapy indicated their potential roles in radiotherapy surveillance. Given that the aptamer-CRISPR/Cas12a assay rapidly and conveniently detects ultralow concentrations of CD109+ and EGFR+ TEVs directly in serum, it could be useful in NPC diagnosis and prognosis.
Collapse
Affiliation(s)
- Huilan Li
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Shan Xing
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Jianhua Xu
- Laboratory of Oncology Science and Molecular Biology, ShunDe Hospital of the Guangzhou University of Chinese Medicine, No. 12 Jinsha Avenue, Shunde District, Foshan, 528333, PR China
| | - Yi He
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Yanzhen Lai
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China; Heyuan People's Hospital, Heyuan, China
| | - Yu Wang
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Ge Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, No. 132 Waihuandong Road, University Town, Guangzhou, 510006, PR China
| | - Songhe Guo
- School of Pharmaceutical Sciences, Sun Yat-sen University, No. 132 Waihuandong Road, University Town, Guangzhou, 510006, PR China
| | - Min Deng
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No. 78, Hengzhigang Road, Guangzhou, 510095, PR China.
| | - Musheng Zeng
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China.
| | - Wanli Liu
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China.
| |
Collapse
|