1
|
Akla N, Veilleux C, Annabi B. The Chemopreventive Impact of Diet-Derived Phytochemicals on the Adipose Tissue and Breast Tumor Microenvironment Secretome. Nutr Cancer 2024:1-17. [PMID: 39300732 DOI: 10.1080/01635581.2024.2401647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
Cancer cells-derived extracellular vesicles can trigger the transformation of adipose-derived mesenchymal stem cells (ADMSC) into a pro-inflammatory, cancer-associated adipocyte (CAA) phenotype. Such secretome-mediated crosstalk between the adipose tissue and the tumor microenvironment (TME) therefore impacts tumor progression and metastatic processes. In addition, emerging roles of diet-derived phytochemicals, especially epigallocatechin-3-gallate (EGCG) among other polyphenols, in modulating exosome-mediated metabolic and inflammatory signaling pathways have been highlighted. Here, we discuss how selected diet-derived phytochemicals could alter the secretome signature as well as the crosstalk dynamics between the adipose tissue and the TME, with a focus on breast cancer. Their broader implication in the chemoprevention of obesity-related cancers is also discussed.
Collapse
Affiliation(s)
- Naoufal Akla
- Laboratoire d'Oncologie Moléculaire, Département de Chimie and CERMO-FC, Université du Québec à Montréal, Montreal, Canada
| | - Carolane Veilleux
- Laboratoire d'Oncologie Moléculaire, Département de Chimie and CERMO-FC, Université du Québec à Montréal, Montreal, Canada
| | - Borhane Annabi
- Laboratoire d'Oncologie Moléculaire, Département de Chimie and CERMO-FC, Université du Québec à Montréal, Montreal, Canada
| |
Collapse
|
2
|
Yang H, Xun Y, Ke C, Tateishi K, You H. Extranodal lymphoma: pathogenesis, diagnosis and treatment. MOLECULAR BIOMEDICINE 2023; 4:29. [PMID: 37718386 PMCID: PMC10505605 DOI: 10.1186/s43556-023-00141-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
Approximately 30% of lymphomas occur outside the lymph nodes, spleen, or bone marrow, and the incidence of extranodal lymphoma has been rising in the past decade. While traditional chemotherapy and radiation therapy can improve survival outcomes for certain patients, the prognosis for extranodal lymphoma patients remains unsatisfactory. Extranodal lymphomas in different anatomical sites often have distinct cellular origins, pathogenic mechanisms, and clinical manifestations, significantly influencing their diagnosis and treatment. Therefore, it is necessary to provide a comprehensive summary of the pathogenesis, diagnosis, and treatment progress of extranodal lymphoma overall and specifically for different anatomical sites. This review summarizes the current progress in the common key signaling pathways in the development of extranodal lymphomas and intervention therapy. Furthermore, it provides insights into the pathogenesis, diagnosis, and treatment strategies of common extranodal lymphomas, including gastric mucosa-associated lymphoid tissue (MALT) lymphoma, mycosis fungoides (MF), natural killer/T-cell lymphoma (nasal type, NKTCL-NT), and primary central nervous system lymphoma (PCNSL). Additionally, as PCNSL is one of the extranodal lymphomas with the worst prognosis, this review specifically summarizes prognostic indicators and discusses the challenges and opportunities related to its clinical applications. The aim of this review is to assist clinical physicians and researchers in understanding the current status of extranodal lymphomas, enabling them to make informed clinical decisions that contribute to improving patient prognosis.
Collapse
Affiliation(s)
- Hua Yang
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, 528000, China
| | - Yang Xun
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, 528000, China
| | - Chao Ke
- Department of Neurosurgery and Neuro-Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Kensuke Tateishi
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, 2360004, Japan
| | - Hua You
- Laboratory for Excellence in Systems Biomedicine of Pediatric Oncology, Department of Pediatric Hematology and Oncology, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 401122, China.
| |
Collapse
|
3
|
Xulu KR, Nweke EE, Augustine TN. Delineating intra-tumoral heterogeneity and tumor evolution in breast cancer using precision-based approaches. Front Genet 2023; 14:1087432. [PMID: 37662839 PMCID: PMC10469897 DOI: 10.3389/fgene.2023.1087432] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 08/08/2023] [Indexed: 09/05/2023] Open
Abstract
The burden of breast cancer continues to increase worldwide as it remains the most diagnosed tumor in females and the second leading cause of cancer-related deaths. Breast cancer is a heterogeneous disease characterized by different subtypes which are driven by aberrations in key genes such as BRCA1 and BRCA2, and hormone receptors. However, even within each subtype, heterogeneity that is driven by underlying evolutionary mechanisms is suggested to underlie poor response to therapy, variance in disease progression, recurrence, and relapse. Intratumoral heterogeneity highlights that the evolvability of tumor cells depends on interactions with cells of the tumor microenvironment. The complexity of the tumor microenvironment is being unraveled by recent advances in screening technologies such as high throughput sequencing; however, there remain challenges that impede the practical use of these approaches, considering the underlying biology of the tumor microenvironment and the impact of selective pressures on the evolvability of tumor cells. In this review, we will highlight the advances made thus far in defining the molecular heterogeneity in breast cancer and the implications thereof in diagnosis, the design and application of targeted therapies for improved clinical outcomes. We describe the different precision-based approaches to diagnosis and treatment and their prospects. We further propose that effective cancer diagnosis and treatment are dependent on unpacking the tumor microenvironment and its role in driving intratumoral heterogeneity. Underwriting such heterogeneity are Darwinian concepts of natural selection that we suggest need to be taken into account to ensure evolutionarily informed therapeutic decisions.
Collapse
Affiliation(s)
- Kutlwano Rekgopetswe Xulu
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ekene Emmanuel Nweke
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tanya Nadine Augustine
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
4
|
Chang C, Tang X, Woodley DT, Chen M, Li W. The Distinct Assignments for Hsp90α and Hsp90β: More Than Skin Deep. Cells 2023; 12:277. [PMID: 36672211 PMCID: PMC9857327 DOI: 10.3390/cells12020277] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
For decades, the undisputable definition of the cytosolic Hsp90α and hsp90β proteins being evolutionarily conserved, ATP-driven chaperones has ruled basic research and clinical trials. The results of recent studies, however, have fundamentally challenged this paradigm, not to mention the spectacular failures of the paradigm-based clinical trials in cancer and beyond. We now know that Hsp90α and Hsp90β are both ubiquitously expressed in all cell types but assigned for distinct and irreplaceable functions. Hsp90β is essential during mouse development and Hsp90α only maintains male reproductivity in adult mice. Neither Hsp90β nor Hsp90α could substitute each other under these biological processes. Hsp90β alone maintains cell survival in culture and Hsp90α cannot substitute it. Hsp90α also has extracellular functions under stress and Hsp90β does not. The dramatic difference in the steady-state expression of Hsp90 in different mouse organs is due to the variable expressions of Hsp90α. The lowest expression of Hsp90 is less than 2% and the highest expression of Hsp90 is 9% among non-transformed cell lines. The two linker regions only take up less than 5% of the Hsp90 proteins, but harbor 21% of the total amino acid substitutions, i.e., 40% in comparison to the 86% overall amino acid homology. A full understanding of the distinctions between Hsp90α and Hsp90β could lead to new, safe and effective therapeutics targeting Hsp90 in human disorders such as cancer. This is the first comprehensive review of a comparison between the two cytosolic Hsp90 isoforms.
Collapse
Affiliation(s)
| | | | | | | | - Wei Li
- Department of Dermatology and the Norris Comprehensive Cancer Centre, University of Southern California Keck Medical Center, Los Angeles, CA 90033, USA
| |
Collapse
|
5
|
Tumor immunology. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
6
|
Go SI, Park S, Kang MH, Kim HG, Kang JH, Kim JH, Lee GW. Endothelial activation and stress index (EASIX) as a predictive biomarker in small cell lung cancer. Cancer Biomark 2022; 35:217-225. [PMID: 36120771 DOI: 10.3233/cbm-220032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Endothelial activation and insult may contribute to the aggressive clinical course of small-cell lung cancer (SCLC); however, no predictive biomarker for this pathogenesis has been identified. OBJECTIVE To evaluate the clinical impact of the endothelial activation and stress index (EASIX) in SCLC. METHODS In this retrospective study, the EASIX was calculated from measurements of serum lactate dehydrogenase, creatinine, and platelet levels. A total of 264 patients with SCLC treated with platinum-based chemotherapy were stratified into high and low EASIX groups. RESULTS Complete and objective response rates in the limited-stage (LD) were 19.5% vs. 33.3% (P= 0.050) and 85.4% vs. 97.9% (P= 0.028) in the high and low EASIX groups, respectively. There was no significant difference in the response rate between the two groups in the extensive-stage (ED). The median overall survival was 9.8 vs. 40.5 months in LD (P< 0.001) and 7.2 vs. 11.9 months in ED (P< 0.001) in the high and low EASIX groups, respectively. In multivariate analyses, a high EASIX level was an independent prognostic factor for worse progression-free and overall survival irrespective of stage. CONCLUSION EASIX may be a potential predictive biomarker of SCLC.
Collapse
Affiliation(s)
- Se-Il Go
- Division of Hematology-Oncology, Department of Internal Medicine, Institute of Health Science, Gyeongsang National University Changwon Hospital, Gyeongsang National University College of Medicine, Changwon, Korea
| | - Sungwoo Park
- Division of Hematology-Oncology, Department of Internal Medicine, Institute of Health Science, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju, Korea
| | - Myoung Hee Kang
- Division of Hematology-Oncology, Department of Internal Medicine, Institute of Health Science, Gyeongsang National University Changwon Hospital, Gyeongsang National University College of Medicine, Changwon, Korea
| | - Hoon-Gu Kim
- Division of Hematology-Oncology, Department of Internal Medicine, Institute of Health Science, Gyeongsang National University Changwon Hospital, Gyeongsang National University College of Medicine, Changwon, Korea
| | - Jung Hun Kang
- Division of Hematology-Oncology, Department of Internal Medicine, Institute of Health Science, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju, Korea
| | - Jung Hoon Kim
- Division of Hematology-Oncology, Department of Internal Medicine, Institute of Health Science, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju, Korea
| | - Gyeong-Won Lee
- Division of Hematology-Oncology, Department of Internal Medicine, Institute of Health Science, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju, Korea
| |
Collapse
|
7
|
Li R, Yang X. De novo reconstruction of cell interaction landscapes from single-cell spatial transcriptome data with DeepLinc. Genome Biol 2022; 23:124. [PMID: 35659722 PMCID: PMC9164488 DOI: 10.1186/s13059-022-02692-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 05/20/2022] [Indexed: 11/29/2022] Open
Abstract
Based on a deep generative model of variational graph autoencoder (VGAE), we develop a new method, DeepLinc (deep learning framework for Landscapes of Interacting Cells), for the de novo reconstruction of cell interaction networks from single-cell spatial transcriptomic data. DeepLinc demonstrates high efficiency in learning from imperfect and incomplete spatial transcriptome data, filtering false interactions, and imputing missing distal and proximal interactions. The latent representations learned by DeepLinc are also used for inferring the signature genes contributing to the cell interaction landscapes, and for reclustering the cells based on the spatially coded cell heterogeneity in complex tissues at single-cell resolution.
Collapse
Affiliation(s)
- Runze Li
- MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xuerui Yang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
8
|
Li J, Li X, Li M, Qiu H, Saad C, Zhao B, Li F, Wu X, Kuang D, Tang F, Chen Y, Shu H, Zhang J, Wang Q, Huang H, Qi S, Ye C, Bryant A, Yuan X, Kurts C, Hu G, Cheng W, Mei Q. Differential early diagnosis of benign versus malignant lung cancer using systematic pathway flux analysis of peripheral blood leukocytes. Sci Rep 2022; 12:5070. [PMID: 35332177 PMCID: PMC8948197 DOI: 10.1038/s41598-022-08890-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 03/07/2022] [Indexed: 12/24/2022] Open
Abstract
Early diagnosis of lung cancer is critically important to reduce disease severity and improve overall survival. Newer, minimally invasive biopsy procedures often fail to provide adequate specimens for accurate tumor subtyping or staging which is necessary to inform appropriate use of molecular targeted therapies and immune checkpoint inhibitors. Thus newer approaches to diagnosis and staging in early lung cancer are needed. This exploratory pilot study obtained peripheral blood samples from 139 individuals with clinically evident pulmonary nodules (benign and malignant), as well as ten healthy persons. They were divided into three cohorts: original cohort (n = 99), control cohort (n = 10), and validation cohort (n = 40). Average RNAseq sequencing of leukocytes in these samples were conducted. Subsequently, data was integrated into artificial intelligence (AI)-based computational approach with system-wide gene expression technology to develop a rapid, effective, non-invasive immune index for early diagnosis of lung cancer. An immune-related index system, IM-Index, was defined and validated for the diagnostic application. IM-Index was applied to assess the malignancies of pulmonary nodules of 109 participants (original + control cohorts) with high accuracy (AUC: 0.822 [95% CI: 0.75-0.91, p < 0.001]), and to differentiate between phases of cancer immunoediting concept (odds ratio: 1.17 [95% CI: 1.1-1.25, p < 0.001]). The predictive ability of IM-Index was validated in a validation cohort with a AUC: 0.883 (95% CI: 0.73-1.00, p < 0.001). The difference between molecular mechanisms of adenocarcinoma and squamous carcinoma histology was also determined via the IM-Index (OR: 1.2 [95% CI 1.14-1.35, p = 0.019]). In addition, a structural metabolic behavior pattern and signaling property in host immunity were found (bonferroni correction, p = 1.32e - 16). Taken together our findings indicate that this AI-based approach may be used for "Super Early" cancer diagnosis and amend the current immunotherpay for lung cancer.
Collapse
Affiliation(s)
- Jian Li
- Institute of Molecular Medicine and Experimental Immunology, University Clinic of Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Xiaoyu Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Ming Li
- Department of Oncology, Wuhan Pulmonary Hospital, Wuhan, Hubei, People's Republic of China
| | - Hong Qiu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Christian Saad
- Department of Computer Science, University of Augsburg, Augsburg, Germany
| | - Bo Zhao
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Fan Li
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xiaowei Wu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Dong Kuang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Fengjuan Tang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yaobing Chen
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Hongge Shu
- Radiology Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jing Zhang
- Radiology Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Qiuxia Wang
- Radiology Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - He Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Shankang Qi
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Changkun Ye
- Medical Research Center of Yu Huang Hospital, Yu Huang, Zhejiang, People's Republic of China
| | - Amy Bryant
- Department of Biochemical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, USA
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Christian Kurts
- Institute of Molecular Medicine and Experimental Immunology, University Clinic of Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Guangyuan Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| | - Weiting Cheng
- Department of Oncology, Wuhan No. 1 Hospital, Wuhan, Hubei, People's Republic of China.
| | - Qi Mei
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
9
|
Perspectives on Vascular Regulation of Mechanisms Controlling Selective Immune Cell Function in the Tumor Immune Response. Int J Mol Sci 2022; 23:ijms23042313. [PMID: 35216427 PMCID: PMC8877013 DOI: 10.3390/ijms23042313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
The vasculature plays a major role in regulating the tumor immune cell response although the underlying mechanisms explaining such effects remain poorly understood. This review discusses current knowledge on known vascular functions with a viewpoint on how they may yield distinct immune responses. The vasculature might directly influence selective immune cell infiltration into tumors by its cell surface expression of cell adhesion molecules, expression of cytokines, cell junction properties, focal adhesions, cytoskeleton and functional capacity. This will alter the tumor microenvironment and unleash a plethora of responses that will influence the tumor’s immune status. Despite our current knowledge of numerous mechanisms operating, the field is underexplored in that few functions providing a high degree of specificity have yet been provided in relation to the enormous divergence of responses apparent in human cancers. Further exploration of this field is much warranted.
Collapse
|
10
|
Arif AA, Huang YH, Freeman SA, Atif J, Dean P, Lai JCY, Blanchet MR, Wiegand KC, McNagny KM, Underhill TM, Gold MR, Johnson P, Roskelley CD. Inflammation-Induced Metastatic Colonization of the Lung Is Facilitated by Hepatocyte Growth Factor-Secreting Monocyte-Derived Macrophages. Mol Cancer Res 2021; 19:2096-2109. [PMID: 34556524 DOI: 10.1158/1541-7786.mcr-21-0009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/27/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022]
Abstract
A rate-limiting step for circulating tumor cells to colonize distant organ sites is their ability to locate a microenvironmental niche that supports their survival and growth. This can be achieved by features intrinsic to the tumor cells and/or by the conditioning of a "premetastatic" niche. To determine if pulmonary inflammation promotes the latter, we initiated models for inflammatory asthma, hypersensitivity pneumonitis, or bleomycin-induced sterile inflammation before introducing tumor cells with low metastatic potential into the circulation. All types of inflammation increased the end-stage metastatic burden of the lungs 14 days after tumor cell inoculation without overtly affecting tumor extravasation. Instead, the number and size of early micrometastatic lesions found within the interstitial tissues 96 hours after tumor cell inoculation were increased in the inflamed lungs, coincident with increased tumor cell survival and the presence of nearby inflammation-induced monocyte-derived macrophages (MoDM; CD11b+CD11c+). Remarkably, the adoptive transfer of these MoDM was sufficient to increase lung metastasis in the absence of inflammation. These inflammation-induced MoDM secrete a number of growth factors and cytokines, one of which is hepatocyte growth factor (HGF), that augmented tumor cell survival under conditions of stress in vitro. Importantly, blocking HGF signaling with the cMET inhibitor capmatinib abolished inflammation-induced early micrometastatic lesion formation in vivo. These findings indicate that inflammation-induced MoDM and HGF in particular increase the efficiency of early metastatic colonization in the lung by locally preconditioning the microenvironment. IMPLICATIONS: Inflammation preconditions the distant site microenvironment to increase the metastatic potential of tumor cells that arrive there.
Collapse
Affiliation(s)
- Arif A Arif
- Department of Cellular and Physiological Sciences, the Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Microbiology and Immunology, the Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yu-Hsuan Huang
- Department of Cellular and Physiological Sciences, the Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Microbiology and Immunology, the Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Spencer A Freeman
- Division of Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jawairia Atif
- Department of Microbiology and Immunology, the Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pamela Dean
- Department of Cellular and Physiological Sciences, the Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jacqueline C Y Lai
- Department of Microbiology and Immunology, the Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Kimberly C Wiegand
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kelly M McNagny
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - T Michael Underhill
- Department of Cellular and Physiological Sciences, the Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.,The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael R Gold
- Department of Microbiology and Immunology, the Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pauline Johnson
- Department of Microbiology and Immunology, the Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Calvin D Roskelley
- Department of Cellular and Physiological Sciences, the Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
11
|
Hollósi A, Pászty K, Kellermayer M, Charras G, Varga A. BRAF Modulates Stretch-Induced Intercellular Gap Formation through Localized Actin Reorganization. Int J Mol Sci 2021; 22:ijms22168989. [PMID: 34445693 PMCID: PMC8396467 DOI: 10.3390/ijms22168989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 01/02/2023] Open
Abstract
Mechanical forces acting on cell–cell adhesion modulate the barrier function of endothelial cells. The actively remodeled actin cytoskeleton impinges on cell–cell adhesion to counteract external forces. We applied stress on endothelial monolayers by mechanical stretch to uncover the role of BRAF in the stress-induced response. Control cells responded to external forces by organizing and stabilizing actin cables in the stretched cell junctions. This was accompanied by an increase in intercellular gap formation, which was prevented in BRAF knockdown monolayers. In the absence of BRAF, there was excess stress fiber formation due to the enhanced reorganization of actin fibers. Our findings suggest that stretch-induced intercellular gap formation, leading to a decrease in barrier function of blood vessels, can be reverted by BRAF RNAi. This is important when the endothelium experiences changes in external stresses caused by high blood pressure, leading to edema, or by immune or cancer cells in inflammation or metastasis.
Collapse
Affiliation(s)
- Anna Hollósi
- Department of Biophysics and Radiation Biology, Semmelweis University, H-1094 Budapest, Hungary; (A.H.); (K.P.); (M.K.)
| | - Katalin Pászty
- Department of Biophysics and Radiation Biology, Semmelweis University, H-1094 Budapest, Hungary; (A.H.); (K.P.); (M.K.)
| | - Miklós Kellermayer
- Department of Biophysics and Radiation Biology, Semmelweis University, H-1094 Budapest, Hungary; (A.H.); (K.P.); (M.K.)
| | - Guillaume Charras
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK;
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Andrea Varga
- Department of Biophysics and Radiation Biology, Semmelweis University, H-1094 Budapest, Hungary; (A.H.); (K.P.); (M.K.)
- Correspondence:
| |
Collapse
|
12
|
Malhab LJB, Saber-Ayad MM, Al-Hakm R, Nair VA, Paliogiannis P, Pintus G, Abdel-Rahman WM. Chronic Inflammation and Cancer: The Role of Endothelial Dysfunction and Vascular Inflammation. Curr Pharm Des 2021; 27:2156-2169. [PMID: 33655853 DOI: 10.2174/1381612827666210303143442] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/17/2020] [Indexed: 01/17/2023]
Abstract
Long-lasting subclinical inflammation is associated with a wide range of human diseases, particularly at a middle and older age. Recent reports showed that there is a direct causal link between inflammation and cancer development, as several cancers were found to be associated with chronic inflammatory conditions. In patients with cancer, healthy endothelial cells regulate vascular homeostasis, and it is believed that they can limit tumor growth, invasiveness, and metastasis. Conversely, dysfunctional endothelial cells that have been exposed to the inflammatory tumor microenvironment can support cancer progression and metastasis. Dysfunctional endothelial cells can exert these effects via diverse mechanisms, including dysregulated adhesion, permeability, and activation of NF-κB and STAT3 signaling. In this review, we highlight the role of vascular inflammation in predisposition to cancer within the context of two common disease risk factors: obesity and smoking. In addition, we discuss the molecular triggers, pathophysiological mechanisms, and the biological consequences of vascular inflammation during cancer development and metastasis. Finally, we summarize the current therapies and pharmacological agents that target vascular inflammation and endothelial dysfunction.
Collapse
Affiliation(s)
- Lara J Bou Malhab
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Maha M Saber-Ayad
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Ranyah Al-Hakm
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Vidhya A Nair
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Panagiotis Paliogiannis
- Department of Medical, Surgical, and Experimental Surgery, University of Sassari, Viale San Pietro 43,07100 Sassari, Italy
| | - Gianfranco Pintus
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Wael M Abdel-Rahman
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
13
|
Chemotherapy: a double-edged sword in cancer treatment. Cancer Immunol Immunother 2021; 71:507-526. [PMID: 34355266 DOI: 10.1007/s00262-021-03013-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022]
Abstract
Chemotherapy is a well-known and effective treatment for different cancers; unfortunately, it has not been as efficient in the eradication of all cancer cells as been expected. The mechanism of this failure was not fully clarified, yet. Meanwhile, alterations in the physiologic conditions of the tumor microenvironment (TME) were suggested as one of the underlying possibilities. Chemotherapy drugs can activate multiple signaling pathways and augment the secretion of inflammatory mediators. Inflammation may show two opposite roles in the TME. On the one hand, inflammation, as an innate immune response, tries to suppress tumor growth but on the other hand, it might be not powerful enough to eradicate the cancer cells and even it can provide appropriate conditions for cancer promotion and relapse as well. Therefore, the administration of mild anti-inflammatory drugs during chemotherapy might result in more successful clinical results. Here, we will review and discuss this hypothesis. Most chemotherapy agents are triggers of inflammation in the tumor microenvironment through inducing the production of senescence-associated secretory phenotype (SASP) molecules. Some chemotherapy agents can induce systematic inflammation by provoking TLR4 signaling or triggering IL-1B secretion through the inflammasome pathway. NF-kB and MAPK are key signaling pathways of inflammation and could be activated by several chemotherapy drugs. Furthermore, inflammation can play a key role in cancer development, metastasis and exacerbation.
Collapse
|
14
|
Saha B, Mathur T, Tronolone JJ, Chokshi M, Lokhande GK, Selahi A, Gaharwar AK, Afshar-Kharghan V, Sood AK, Bao G, Jain A. Human tumor microenvironment chip evaluates the consequences of platelet extravasation and combinatorial antitumor-antiplatelet therapy in ovarian cancer. SCIENCE ADVANCES 2021; 7:eabg5283. [PMID: 34290095 PMCID: PMC8294767 DOI: 10.1126/sciadv.abg5283] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/04/2021] [Indexed: 05/13/2023]
Abstract
Platelets extravasate from the circulation into tumor microenvironment, enable metastasis, and confer resistance to chemotherapy in several cancers. Therefore, arresting tumor-platelet cross-talk with effective and atoxic antiplatelet agents in combination with anticancer drugs may serve as an effective cancer treatment strategy. To test this concept, we create an ovarian tumor microenvironment chip (OTME-Chip) that consists of a platelet-perfused tumor microenvironment and which recapitulates platelet extravasation and its consequences. By including gene-edited tumors and RNA sequencing, this organ-on-chip revealed that platelets and tumors interact through glycoprotein VI (GPVI) and tumor galectin-3 under shear. Last, as proof of principle of a clinical trial, we showed that a GPVI inhibitor, Revacept, impairs metastatic potential and improves chemotherapy. Since GPVI is an antithrombotic target that does not impair hemostasis, it represents a safe cancer therapeutic. We propose that OTME-Chip could be deployed to study other vascular and hematological targets in cancer.
Collapse
Affiliation(s)
- Biswajit Saha
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77840, USA
| | - Tanmay Mathur
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77840, USA
| | - James J Tronolone
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77840, USA
| | - Mithil Chokshi
- Department of Bioengineering, George R. Brown School of Engineering, Rice University, Houston, TX 77005, USA
| | - Giriraj K Lokhande
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77840, USA
| | - Amirali Selahi
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77840, USA
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77840, USA
- Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, TX 77840, USA
- Center for Remote Health Technologies and Systems, Texas A&M University, College Station TX 77840, USA
| | - Vahid Afshar-Kharghan
- Department of Benign Hematology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gang Bao
- Department of Bioengineering, George R. Brown School of Engineering, Rice University, Houston, TX 77005, USA
| | - Abhishek Jain
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77840, USA.
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA
- Department of Cardiovascular Sciences, Houston Methodist Academic Institute, Houston, TX 77030, USA
| |
Collapse
|
15
|
Cao X, Cui J, Li Z, Zhao G. Preoperative C-Reactive Protein/Albumin Ratio is a Prognostic Indicator for Survival in Surgically Treated Gastrointestinal Stromal Tumors: A Retrospective Cohort Study. Cancer Manag Res 2021; 13:4155-4167. [PMID: 34079369 PMCID: PMC8163582 DOI: 10.2147/cmar.s307873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/10/2021] [Indexed: 11/23/2022] Open
Abstract
Background Systemic inflammation and malnutrition may promote tumor progression. C-reactive protein/albumin ratio (CAR) is linked to the poor long-term survival of several malignant tumors. Purpose To explore the predictive value of CAR in gastrointestinal stromal tumors (GISTs). Methods A retrospective study was conducted on 325 patients with primary GIST surgically treated with curative intent from 2009 to 2018. The cut-off point of CAR was set using X-tile software. Kaplan–Meier method and multivariate Cox regression model were used to study the prognostic value of CAR. The time-dependent receiver operating characteristic curve (tROC) was drawn, and the prognostic accuracy of CAR, Glasgow prognostic score (GPS), and National Institute of Health (NIH) risk classification was compared by the area under the curve (AUC). Results The best cut-off point of CAR was 0.55. Increased CAR was associated with the location of the lower digestive tract, larger tumor size, higher mitotic index, higher NIH risk classification, lower ALB, higher CRP, and higher GPS (all p<0.05). Multivariable analysis revealed that CAR (hazard ratio [HR] 2.598, 95% confidence interval [CI] 1.385–4.874; p=0.003) was an independent predictor of overall survival. Additionally, the AUC of CAR was lower than that of NIH risk classification at 2 years (0.601 vs. 0.775, p=0.002) and 5 years (0.629 vs 0.735, p=0.069). However, the AUC of NIH risk classification significantly increased (2-year OS 0.801, p=0.251; 5-year OS 0.777, p=0.011) when combined with CAR. Conclusion CAR is a new independent predictor of poor survival in patients with GIST. CAR combined with NIH risk classification can effectively improve the performance of prognosis prediction.
Collapse
Affiliation(s)
- Xianglong Cao
- Department of Gastrointestinal Surgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Jian Cui
- Department of Gastrointestinal Surgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Zijian Li
- Department of Gastrointestinal Surgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Gang Zhao
- Department of Gastrointestinal Surgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
16
|
Targeting Lysyl Oxidase Family Meditated Matrix Cross-Linking as an Anti-Stromal Therapy in Solid Tumours. Cancers (Basel) 2021; 13:cancers13030491. [PMID: 33513979 PMCID: PMC7865543 DOI: 10.3390/cancers13030491] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary To improve efficacy of solid cancer treatment, efforts have shifted towards targeting both the cancer cells and the surrounding tumour tissue they grow in. The lysyl oxidase (LOX) family of enzymes underpin the fibrotic remodeling of the tumour microenvironment to promote both cancer growth, spread throughout the body and modulate response to therapies. This review examines how the lysyl oxidase family is involved in tumour development, how they can be targeted, and their potential as diagnostic and prognostic biomarkers in solid tumours. Abstract The lysyl oxidase (LOX) family of enzymes are a major driver in the biogenesis of desmoplastic matrix at the primary tumour and secondary metastatic sites. With the increasing interest in and development of anti-stromal therapies aimed at improving clinical outcomes of cancer patients, the Lox family has emerged as a potentially powerful clinical target. This review examines how lysyl oxidase family dysregulation in solid cancers contributes to disease progression and poor patient outcomes, as well as an evaluation of the preclinical landscape of LOX family targeting therapeutics. We also discuss the suitability of the LOX family as a diagnostic and/or prognostic marker in solid tumours.
Collapse
|
17
|
Aguilar G, Koning T, Ehrenfeld P, Sánchez FA. Role of NO and S-nitrosylation in the Expression of Endothelial Adhesion Proteins That Regulate Leukocyte and Tumor Cell Adhesion. Front Physiol 2020; 11:595526. [PMID: 33281627 PMCID: PMC7691576 DOI: 10.3389/fphys.2020.595526] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022] Open
Abstract
Leukocyte recruitment is one of the most important cellular responses to tissue damage. Leukocyte extravasation is exquisitely regulated by mechanisms of selective leukocyte-endothelium recognition through adhesion proteins in the endothelial cell surface that recognize specific integrins in the activated leukocytes. A similar mechanism is used by tumor cells during metastasis to extravasate and form a secondary tumor. Nitric oxide (NO) has been classically described as an anti-inflammatory molecule that inhibits leukocyte adhesion. However, the evidence available shows also a positive role of NO in leukocyte adhesion. These apparent discrepancies might be explained by the different NO concentrations reached during the inflammatory response, which are highly modulated by the expression of different nitric oxide synthases, along the inflammatory response and by changes in their subcellular locations.
Collapse
Affiliation(s)
- Gaynor Aguilar
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Tania Koning
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Ehrenfeld
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile.,Centro Interdisciplinario de Estudios del Sistema Nervioso, Universidad Austral de Chile, Valdivia, Chile
| | - Fabiola A Sánchez
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile.,Centro Interdisciplinario de Estudios del Sistema Nervioso, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
18
|
Chu HY, Chen YJ, Hsu CJ, Liu YW, Chiou JF, Lu LS, Tseng FG. Physical Cues in the Microenvironment Regulate Stemness-Dependent Homing of Breast Cancer Cells. Cancers (Basel) 2020; 12:E2176. [PMID: 32764400 PMCID: PMC7464848 DOI: 10.3390/cancers12082176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/24/2022] Open
Abstract
Tissue-specific microenvironmental factors contribute to the targeting preferences of metastatic cancers. However, the physical attributes of the premetastatic microenvironment are not yet fully characterized. In this research, we develop a transwell-based alginate hydrogel (TAH) model to study how permeability, stiffness, and roughness of a hanging alginate hydrogel regulate breast cancer cell homing. In this model, a layer of physically characterized alginate hydrogel is formed at the bottom of a transwell insert, which is placed into a matching culture well with an adherent monolayer of breast cancer cells. We found that breast cancer cells dissociate from the monolayer and home to the TAH for continual growth. The process is facilitated by the presence of rich serum in the upper chamber, the increased stiffness of the gel, as well as its surface roughness. This model is able to support the homing ability of MCF-7 and MDA-MB-231 cells drifting across the vertical distance in the culture medium. Cells homing to the TAH display stemness phenotype morphologically and biochemically. Taken together, these findings suggest that permeability, stiffness, and roughness are important physical factors to regulate breast cancer homing to a premetastatic microenvironment.
Collapse
Affiliation(s)
- Hsueh-Yao Chu
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan; (H.-Y.C.); (C.-J.H.); (Y.-W.L.)
| | - Yin-Ju Chen
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 11031, Taiwan; (Y.-J.C.); (J.-F.C.)
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Chun-Jieh Hsu
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan; (H.-Y.C.); (C.-J.H.); (Y.-W.L.)
| | - Yang-Wei Liu
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan; (H.-Y.C.); (C.-J.H.); (Y.-W.L.)
| | - Jeng-Fong Chiou
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 11031, Taiwan; (Y.-J.C.); (J.-F.C.)
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
| | - Long-Sheng Lu
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 11031, Taiwan; (Y.-J.C.); (J.-F.C.)
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan; (H.-Y.C.); (C.-J.H.); (Y.-W.L.)
- Department of Engineering and System Science, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing-Hua University, Hsinchu 30013, Taiwan
- Research Center for Applied Sciences, Academia Sinica, No. 128, Sec. 2, Academia Rd., Nankang, Taipei 11529, Taiwan
| |
Collapse
|
19
|
Guo F, Cui J. Anti-angiogenesis: Opening a new window for immunotherapy. Life Sci 2020; 258:118163. [PMID: 32738363 DOI: 10.1016/j.lfs.2020.118163] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/14/2020] [Accepted: 07/25/2020] [Indexed: 12/31/2022]
Abstract
The tumor microenvironment (TME) provides a guarantee for the survival and development of solid tumors. In recent years, treatment strategies for TME have set off a great upsurge in the field of cancer research. Tumor angiogenesis and tumor immune microenvironment are two important research branches of TME, and antiangiogenic therapy and immunotherapy have gradually become one important focus of cancer treatment research. More interestingly, increasing number of studies have indicated that there are complex regulatory interactions between the two treatment strategies, with multiple regulatory mechanisms involved. Based on these findings, clinical studies on the combination of immunotherapy and antiangiogenic therapy have also been carried out gradually. This combination strategy has shown good results in many types of tumors, but it also faces many challenges. The paper analysed the potential mechanism of the immunotherapy and antiangiogenic therapy combination, discussed the latest significant clinical trial progress and the existing challenges and problems, aiming to offer some available insights on the effective clinical application of this combination pattern.
Collapse
Affiliation(s)
- Feifei Guo
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
20
|
The Biological Role of Apurinic/Apyrimidinic Endonuclease1/Redox Factor-1 as a Therapeutic Target for Vascular Inflammation and as a Serologic Biomarker. Biomedicines 2020; 8:biomedicines8030057. [PMID: 32164272 PMCID: PMC7148461 DOI: 10.3390/biomedicines8030057] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/20/2020] [Accepted: 03/08/2020] [Indexed: 12/11/2022] Open
Abstract
Endothelial dysfunction promotes vascular inflammation by inducing the production of reactive oxygen species and adhesion molecules. Vascular inflammation plays a key role in the pathogenesis of vascular diseases and atherosclerotic disorders. However, whether there is an endogenous system that can participate in circulating immune surveillance or managing a balance in homeostasis is unclear. Apurinic/apyrimidinic endonuclease 1/redox factor-1 (henceforth referred to as APE1/Ref-1) is a multifunctional protein that can be secreted from cells. It functions as an apurinic/apyrimidinic endonuclease in the DNA base repair pathway and modulates redox status and several types of transcriptional factors, in addition to its anti-inflammatory activity. Recently, it was reported that the secretion of APE1/Ref-1 into the extracellular medium of cultured cells or its presence in the plasma can act as a serological biomarker for certain disorders. In this review, we summarize the possible biological functions of APE1/Ref-1 according to its subcellular localization or its extracellular secretions, as therapeutic targets for vascular inflammation and as a serologic biomarker.
Collapse
|
21
|
Deng L, Meng T, Chen L, Wei W, Wang P. The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct Target Ther 2020; 5:11. [PMID: 32296023 PMCID: PMC7048745 DOI: 10.1038/s41392-020-0107-0] [Citation(s) in RCA: 391] [Impact Index Per Article: 97.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 02/08/2023] Open
Abstract
Ubiquitination, an important type of protein posttranslational modification (PTM), plays a crucial role in controlling substrate degradation and subsequently mediates the "quantity" and "quality" of various proteins, serving to ensure cell homeostasis and guarantee life activities. The regulation of ubiquitination is multifaceted and works not only at the transcriptional and posttranslational levels (phosphorylation, acetylation, methylation, etc.) but also at the protein level (activators or repressors). When regulatory mechanisms are aberrant, the altered biological processes may subsequently induce serious human diseases, especially various types of cancer. In tumorigenesis, the altered biological processes involve tumor metabolism, the immunological tumor microenvironment (TME), cancer stem cell (CSC) stemness and so on. With regard to tumor metabolism, the ubiquitination of some key proteins such as RagA, mTOR, PTEN, AKT, c-Myc and P53 significantly regulates the activity of the mTORC1, AMPK and PTEN-AKT signaling pathways. In addition, ubiquitination in the TLR, RLR and STING-dependent signaling pathways also modulates the TME. Moreover, the ubiquitination of core stem cell regulator triplets (Nanog, Oct4 and Sox2) and members of the Wnt and Hippo-YAP signaling pathways participates in the maintenance of CSC stemness. Based on the altered components, including the proteasome, E3 ligases, E1, E2 and deubiquitinases (DUBs), many molecular targeted drugs have been developed to combat cancer. Among them, small molecule inhibitors targeting the proteasome, such as bortezomib, carfilzomib, oprozomib and ixazomib, have achieved tangible success. In addition, MLN7243 and MLN4924 (targeting the E1 enzyme), Leucettamol A and CC0651 (targeting the E2 enzyme), nutlin and MI-219 (targeting the E3 enzyme), and compounds G5 and F6 (targeting DUB activity) have also shown potential in preclinical cancer treatment. In this review, we summarize the latest progress in understanding the substrates for ubiquitination and their special functions in tumor metabolism regulation, TME modulation and CSC stemness maintenance. Moreover, potential therapeutic targets for cancer are reviewed, as are the therapeutic effects of targeted drugs.
Collapse
Affiliation(s)
- Lu Deng
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, 712100, China.
| | - Tong Meng
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, 389 Xincun Road, Shanghai, China
| | - Lei Chen
- Division of Laboratory Safety and Services, Northwest A&F University, Yangling Shaanxi, 712100, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|