1
|
Campitiello R, Soldano S, Gotelli E, Hysa E, Montagna P, Casabella A, Paolino S, Pizzorni C, Sulli A, Smith V, Cutolo M. The intervention of macrophages in progressive fibrosis characterizing systemic sclerosis: A systematic review. Autoimmun Rev 2024; 23:103637. [PMID: 39255852 DOI: 10.1016/j.autrev.2024.103637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND AND AIM Systemic sclerosis (SSc) is an immune mediated connective tissue disease characterized by microvascular dysfunction, aberrant immune response, and progressive fibrosis. Although the immuno-pathophysiological mechanisms underlying SSc are not fully clarified, they are often associated with a dysfunctional macrophage activation toward an alternative (M2) phenotype induced by cytokines [i.e., IL-4, IL-10, IL-13, and transforming growth factor (TGF-β)] involved in the fibrotic and anti-inflammatory process. A spectrum of macrophage activation state has been identified ranging from M1 to M2 phenotype, gene expression of phenotype markers, and functional aspects. This systematic review aims to analyze the importance of M2 macrophage polatization during the immune mediated process and the identification of specific pathways, cytokines, and chemokines involved in SSc pathogenesis. Moreover, this review provides an overview on the in vitro and in vivo studies aiming to test therapeutic strategies targeting M2 macrophages. METHODS A systematic literature review was performed according to the preferred Reported Items for Systematic Reviews and Meta-Analyses (PRISMA). The search encompassed the online medical databases PubMed and Embase up to the 30th of June 2024. Original research manuscripts (in vitro study, in vivo study), animal model and human cohort, were considered for the review. Exclusion criteria encompassed reviews, case reports, correspondences, and conference abstracts/posters. The eligible manuscripts main findings were critically analyzed, discussed, and summarized in the correspondent tables. RESULTS Out of the 77 screened abstracts, 49 papers were deemed eligible. Following a critical analysis, they were categorized according to the primary (29 original articles) and secondary (20 original articles) research objectives of this systematic review. The data from the present systematic review suggest the pivotal role of M2 macrophages differentiation and activation together with the dysregulation of the immune system in the SSc pathogenesis. Strong correlations have been found between M2 macrophage presence and clinical manifestations in both murine and human tissue samples. Interestingly, the presence of M2 cell surface markers on peripheral blood monocytes has been highlighted, suggesting a potential biomarker role for this finding. Therapeutic effects reducing M2 macrophage activities have been observed and/or tested for existing and for new drugs, demonstrating potential efficacy in modulating the pro-fibrotic immune response for treatment of SSc. CONCLUSIONS The increased M2 macrophage activation in course of SSc seems to offer new insights on the self-amplifying inflammatory and fibrotic response by the immune system on such disease. Therefore, the revaluation of immunomodulatory and ongoing antifibrotic therapies, as well as novel therapeutical approaches in SSc that contribute to limit the M2 macrophage activation are matter of intense investigations.
Collapse
Affiliation(s)
- Rosanna Campitiello
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Stefano Soldano
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy.
| | - Emanuele Gotelli
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy
| | - Elvis Hysa
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy; Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | - Paola Montagna
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy.
| | - Andrea Casabella
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Sabrina Paolino
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Carmen Pizzorni
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Alberto Sulli
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Vanessa Smith
- Department of Rheumatology, Ghent University Hospital, University of Ghent, Ghent, Belgium; Department of Internal Medicine, Ghent University Hospital, University of Ghent, Ghent, Belgium; Unit for Molecular Immunology and Inflammation, Flemish Institute for Biotechnology, Inflammation Research Center, Ghent, Belgium.
| | - Maurizio Cutolo
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| |
Collapse
|
2
|
Hu M, Yao Z, Xu L, Peng M, Deng G, Liu L, Jiang X, Cai X. M2 macrophage polarization in systemic sclerosis fibrosis: pathogenic mechanisms and therapeutic effects. Heliyon 2023; 9:e16206. [PMID: 37234611 PMCID: PMC10208842 DOI: 10.1016/j.heliyon.2023.e16206] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 03/14/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Systemic sclerosis (SSc, scleroderma), is an autoimmune rheumatic disease characterized by fibrosis of the skin and internal organs, and vasculopathy. Preventing fibrosis by targeting aberrant immune cells that drive extracellular matrix (ECM) over-deposition is a promising therapeutic strategy for SSc. Previous research suggests that M2 macrophages play an essential part in the fibrotic process of SSc. Targeted modulation of molecules that influence M2 macrophage polarization, or M2 macrophages, may hinder the progression of fibrosis. Here, in an effort to offer fresh perspectives on the management of scleroderma and fibrotic diseases, we review the molecular mechanisms underlying the regulation of M2 macrophage polarization in SSc-related organ fibrosis, potential inhibitors targeting M2 macrophages, and the mechanisms by which M2 macrophages participate in fibrosis.
Collapse
Affiliation(s)
- Mingyue Hu
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Zhongliu Yao
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Li Xu
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Muzi Peng
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Guiming Deng
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Liang Liu
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Xueyu Jiang
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Yueyang Hospital of Chinese Medicine, Hunan University of Chinese Medicine, Yueyang, Hunan 414000, China
| | - Xiong Cai
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| |
Collapse
|
3
|
Khodeneva N, Sugimoto MA, Davan-Wetton CSA, Montero-Melendez T. Melanocortin therapies to resolve fibroblast-mediated diseases. Front Immunol 2023; 13:1084394. [PMID: 36793548 PMCID: PMC9922712 DOI: 10.3389/fimmu.2022.1084394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 11/28/2022] [Indexed: 02/01/2023] Open
Abstract
Stromal cells have emerged as central drivers in multiple and diverse diseases, and consequently, as potential new cellular targets for the development of novel therapeutic strategies. In this review we revise the main roles of fibroblasts, not only as structural cells but also as players and regulators of immune responses. Important aspects like fibroblast heterogeneity, functional specialization and cellular plasticity are also discussed as well as the implications that these aspects may have in disease and in the design of novel therapeutics. An extensive revision of the actions of fibroblasts on different conditions uncovers the existence of numerous diseases in which this cell type plays a pathogenic role, either due to an exacerbation of their 'structural' side, or a dysregulation of their 'immune side'. In both cases, opportunities for the development of innovative therapeutic approaches exist. In this regard, here we revise the existing evidence pointing at the melanocortin pathway as a potential new strategy for the treatment and management of diseases mediated by aberrantly activated fibroblasts, including scleroderma or rheumatoid arthritis. This evidence derives from studies involving models of in vitro primary fibroblasts, in vivo models of disease as well as ongoing human clinical trials. Melanocortin drugs, which are pro-resolving mediators, have shown ability to reduce collagen deposition, activation of myofibroblasts, reduction of pro-inflammatory mediators and reduced scar formation. Here we also discuss existing challenges, both in approaching fibroblasts as therapeutic targets, and in the development of novel melanocortin drug candidates, that may help advance the field and deliver new medicines for the management of diseases with high medical needs.
Collapse
|
4
|
dos Santos HT, Nam K, Gil D, Yellepeddi V, Baker OJ. Current experimental methods to investigate the impact of specialized pro-resolving lipid mediators on Sjögren's syndrome. Front Immunol 2023; 13:1094278. [PMID: 36713415 PMCID: PMC9878840 DOI: 10.3389/fimmu.2022.1094278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
Sjögren's syndrome is a chronic inflammatory autoimmune disease characterized by diminished secretory function of the exocrine glands. Although extensive investigation has been done to understand Sjögren's syndrome, the causes of the disease are as yet unknown and treatments remain largely ineffective, with established therapeutic interventions being limited to use of saliva substitutes with modest effectiveness. A primary feature of Sjögren's syndrome is uncontrolled inflammation of exocrine tissues and previous studies have demonstrated that lipid-based specialized pro-resolving mediators reduce inflammation and restores tissue integrity in salivary glands. However, these studies are limited to a single specialized pro-resolving lipid mediator's family member resolvin D1 or RvD1 and its aspirin-triggered epimer, AT-RvD1. Consequently, additional studies are needed to explore the potential benefits of other members of the specialized pro-resolving lipid mediator's family and related molecules (e.g., additional resolvin subtypes as well as lipoxins, maresins and protectins). In support of this goal, the current review aims to briefly describe the range of current experimental methods to investigate the impact of specialized pro-resolving lipid mediators on Sjögren's syndrome, including both strengths and weaknesses of each approach where this information is known. With this article, the possibilities presented by specialized pro-resolving lipid mediators will be introduced to a wider audience in immunology and practical advice is given to researchers who may wish to take up this work.
Collapse
Affiliation(s)
- Harim T. dos Santos
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Kihoon Nam
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Diana Gil
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, United States,Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States,Department of Biological and Biomedical Engineering, College of Engineering, University of Missouri, Columbia, MO, United States
| | - Venkata Yellepeddi
- Division of Clinical Pharmacology, Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, UT, United States,Department of Molecular Pharmaceutics, College of Pharmacy, University of Utah, Salt Lake City, UT, United States
| | - Olga J. Baker
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States,Department of Biochemistry, University of Missouri, Columbia, MO, United States,*Correspondence: Olga J. Baker,
| |
Collapse
|
5
|
Yang Y, Zhao J, Jiang C, Zhang Y, Han M, Liu H. WKYMVm Works by Targeting Immune Cells. J Inflamm Res 2023; 16:45-55. [PMID: 36636250 PMCID: PMC9831254 DOI: 10.2147/jir.s390394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/24/2022] [Indexed: 01/07/2023] Open
Abstract
WKYMVm (Trp-Lys-Tyr-Met-Val-D-Met) is a synthetic hexapeptide identified as a potent agonist of FPRs. FPRs are widely expressed on the cell membrane of immune cells. Therefore, WKYMVm participates in the regulation of immune cells by activating FPRs, and plays a therapeutic role in infections, tumors, autoimmune diseases and so on. WKYMVm can promote the chemotactic migration, increase the bactericidal activity of neutrophils and monocytes. WKYMVm also regulates the number and polarization of macrophages, affects the maturation of DCs and the differentiation of T cells, and promotes the activation and chemotaxis of NK cells. These functions make WKYMVm a candidate drug for immunotherapy. In this paper, we summarize the regulatory effects and underlying mechanisms of WKYMVm on six immune cells (neutrophils, monocytes, macrophages, DCs, T cells and NK cells) to increase comprehensive understanding and promote further research on WKYMVm.
Collapse
Affiliation(s)
- Yuting Yang
- Department of Gastroenterology, Second Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Jin Zhao
- Department of Pulmonary and Critical Care Medicine, Air Force Medical Center, PLA, Beijing, 100000, People’s Republic of China
| | - Chunmeng Jiang
- Department of Gastroenterology, Second Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Yue Zhang
- Department of Gastroenterology, Second Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Mei Han
- Department of Gastroenterology, Second Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Hui Liu
- Department of Gastroenterology, Second Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China,Correspondence: Hui Liu; Mei Han, Department of Gastroenterology, Second Hospital of Dalian Medical University, 467 Zhongshan Road, Shahekou Region, Dalian, Liaoning, 116000, People’s Republic of China, Email ;
| |
Collapse
|
6
|
Aubeux D, Tessier S, Pérez F, Geoffroy V, Gaudin A. In vitro phenotypic effects of Lipoxin A4 on M1 and M2 polarized macrophages derived from THP-1. Mol Biol Rep 2023; 50:339-348. [PMID: 36331745 DOI: 10.1007/s11033-022-08041-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Lipoxin A4 (LXA4) is a specialized pro-resolving mediator involved in the resolution phase of inflammation that is crucial for the return of tissues to homeostasis, healing, and regenerative processes. LXA4 can modify the microenvironment via its receptor, formyl peptide receptor 2 (FPR2) and thus modulate the inflammatory response. However, the effect of exogeneous LXA4 application on polarized macrophages remains unstudied. The objective of this study was to assess the effect of LXA4 on macrophage activity and on the phenotype modulation of polarized M1 and M2 macrophages derived from THP-1 monocytes. METHODS AND RESULTS Once differentiated, human macrophages were incubated with interleukin 4 (IL-4) and IL-13 to obtain M2-polarized macrophages or with interferon gamma and lipopolysaccharide for classical macrophage activation. The mRNA and protein expression of M1 and M2 markers confirmed the polarization of THP-1-derived macrophages. LXA4 (0-100 nM) did not affect the viability of M1 and M2 macrophages or the phagocytic activity of these cells. Gene expression of FPR2, referred as a receptor for the LXA4, was higher in M1 compared with M2, and was not modified by the LXA4 at the doses used. Moreover, LXA4 exhibited anti-inflammatory properties illustrated by the decreasing in the gene expression of pro-inflammatory cytokines (IL-6, tumor necrosis factor alpha, IL-1β) in M1 and by the increase in the expression of anti-inflammatory cytokines (IL-10) in M2 macrophages. CONCLUSIONS These results provide new insights regarding the potential of LXA4 to regulate the polarization state of macrophages.
Collapse
Affiliation(s)
- Davy Aubeux
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, 44000, Nantes, France
| | - Solène Tessier
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, 44000, Nantes, France
| | - Fabienne Pérez
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, 44000, Nantes, France
| | - Valérie Geoffroy
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, 44000, Nantes, France
| | - Alexis Gaudin
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, 44000, Nantes, France.
| |
Collapse
|
7
|
Ma H, Guo X, Wang Z, Han M, Liu H. Therapeutic potential of WKYMVm in diseases. Front Pharmacol 2022; 13:986963. [PMID: 36120322 PMCID: PMC9479759 DOI: 10.3389/fphar.2022.986963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
The synthetic hexapeptide WKYMVm, screened from a synthetic peptide library, has been identified as an agonist of FPRs with the strongest activating effect on FPR2. WKYMVm plays an anti-inflammatory role in most inflammatory diseases by increasing the chemotaxis of phagocytes and regulating the secretion of inflammatory factors. WKYMVm can inhibit or promote the progression of different types of tumors, which depends on the regulation of WKYMVm on various components such as immune cells, inflammatory factors, chemokines, and tumor epithelial cells. Another major function of WKYMVm is to promote angiogenesis, which is reflected in its therapeutic value in ischemic diseases, wound healing and bone repair. In addition to the above functions, this paper also reviews the effects of WKYMVm on fibrosis, insulin resistance, osteolytic diseases and neurodegenerative diseases. By summarizing related studies, this review can increase people’s comprehensive understanding of WKYMVm, promote its broad and in-depth research, and help to exert its therapeutic value as soon as possible.
Collapse
Affiliation(s)
- Huan Ma
- Department of Gastroenterology, Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xiaoming Guo
- Department of Endoscopy, Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Zhiguo Wang
- Department of Endoscopy, Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Mei Han
- Department of Gastroenterology, Second Hospital of Dalian Medical University, Dalian, Liaoning, China
- *Correspondence: Hui Liu, , Mei Han,
| | - Hui Liu
- Department of Gastroenterology, Second Hospital of Dalian Medical University, Dalian, Liaoning, China
- *Correspondence: Hui Liu, , Mei Han,
| |
Collapse
|
8
|
Combination Therapy of Placenta-Derived Mesenchymal Stem Cells with WKYMVm Promotes Hepatic Function in a Rat Model with Hepatic Disease via Vascular Remodeling. Cells 2022; 11:cells11020232. [PMID: 35053347 PMCID: PMC8773666 DOI: 10.3390/cells11020232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/24/2022] Open
Abstract
Changes in the structure and function of blood vessels are important factors that play a primary role in regeneration of injured organs. WKYMVm has been reported as a therapeutic factor that promotes the migration and proliferation of angiogenic cells. Additionally, we previously demonstrated that placenta-derived mesenchymal stem cells (PD-MSCs) induce hepatic regeneration in hepatic failure via antifibrotic effects. Therefore, our objectives were to analyze the combination effect of PD-MSCs and WKYMVm in a rat model with bile duct ligation (BDL) and evaluate their therapeutic mechanism. To analyze the anti-fibrotic and angiogenic effects on liver regeneration, it was analyzed using ELISA, qRT-PCR, Western blot, immunofluorescence, and immunohistochemistry. Collagen accumulation was significantly decreased in PD-MSCs with the WKYMVm combination (Tx+WK) group compared with the nontransplantation (NTx) and PD-MSC-transplanted (Tx) group (p < 0.05). Furthermore, the combination of PD-MSCs with WKYMVm significantly promoted hepatic function by increasing hepatocyte proliferation and albumin as well as angiogenesis by activated FPR2 signaling (p < 0.05). The combination therapy of PD-MSCs with WKYMVm could be an efficient treatment in hepatic diseases via vascular remodeling. Therefore, the combination therapy of PD-MSCs with WKYMVm could be a new therapeutic strategy in degenerative medicine.
Collapse
|
9
|
Filina Y, Gabdoulkhakova A, Rizvanov A, Safronova V. MAP kinases in regulation of NOX activity stimulated through two types of formyl peptide receptors in murine bone marrow granulocytes. Cell Signal 2021; 90:110205. [PMID: 34826588 DOI: 10.1016/j.cellsig.2021.110205] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/29/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022]
Abstract
The functional activity of the phagocytes, as well as the development and resolution of the inflammation, is determined by formylpeptide receptors (FPRs) signaling. There is a growing data on the signaling pathways from two major types of formylpeptide receptors, FPR1 and FPR2, which could be activated by different sets of ligands to provide certain defense functions. Generation of reactive oxygen species (ROS) by the membrane enzyme NADPH oxidase is the most important among them. One of the most studied and significant mechanism for the regulation of activity of NADPH oxidase is phosphorylation by a variety of kinases, including MAP kinases. The question arose whether the role of MAPKs differ in the activation of NADPH oxidase through FPR1 and FPR2. We have studied Fpr1- and Fpr2-induced phosphorylation of p38, ERK, and JNK kinases and their role in the activation of the respiratory burst in isolated mice bone marrow granulocytes. Data has shown distinct patterns of MAP kinase activity for Fpr1 and Fpr2: JNK was involved in both Fpr1 and Fpr2 mediated activation of ROS production, while p38 MAPK and ERK were involved in Fpr1 induced ROS generation only.
Collapse
Affiliation(s)
- Yuliya Filina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation.
| | - Aida Gabdoulkhakova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation; Kazan State Medical Academy, Federal State Budgetary Educational Institution of Further Professional Education "Russian Medical Academy of Continuous Professional Education" of the Ministry of Healthcare of the Russian Federation, Kazan, Russian Federation
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Valentina Safronova
- Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino, Russian Federation
| |
Collapse
|
10
|
Dos Santos HT, Nam K, Maslow F, Trump B, Baker OJ. Specialized pro-resolving receptors are expressed in salivary glands with Sjögren's syndrome. Ann Diagn Pathol 2021; 56:151865. [PMID: 34847389 DOI: 10.1016/j.anndiagpath.2021.151865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/27/2021] [Accepted: 11/11/2021] [Indexed: 12/31/2022]
Abstract
Our previous studies demonstrated that resolvin D1 (RvD1) and its aspirin-trigged (AT) form AT-RvD1, are effective in decreasing inflammation while restoring saliva flow rates in a Sjögren's syndrome (SS)-like mouse model before and after disease onset. Resolvins are specialized pro-resolving mediators (SPM) that actively regulate inflammation. However, we only have extensive data within the salivary glands for RvD1 and AT-RvD1, both of which bind to the receptor ALX/FPR2. As such, the presence of other SPM receptors is unknown within salivary glands. Therefore, the goal of this study was to determine the expression of SPM receptors in non-SS and SS patients. For this purpose, six human minor salivary glands from female subjects were analyzed by H&E using the Chisholm and Mason classification to determine the degree of lymphocytic infiltration. Next, confocal immunofluorescence analysis was performed to determine the presence and distribution of different SPM receptors in mucous acini and striated ducts. We observed diffuse presence of lymphocytic infiltration and clinical data were consistent with SS diagnosis in three patients. Moreover, confocal immunofluorescence analysis indicated the presence of the receptors ALX/FPR2, BLT1 and CMKLR1 in the mucous acini and striated ducts of both non-SS and SS patients. GPR32 was absent in SS and non-SS minor salivary glands. In summary, our results showed that various SPM receptors are expressed in non-SS and SS minor salivary glands, all of which may pose as potential targets for promoting pro-epithelial and anti-inflammatory/pro-resolution signaling on SS patients.
Collapse
Affiliation(s)
- Harim Tavares Dos Santos
- Department of Otolaryngology-Head and Neck Surgery, University of Missouri, Columbia, MO, USA; Department of Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Kihoon Nam
- Department of Otolaryngology-Head and Neck Surgery, University of Missouri, Columbia, MO, USA; Department of Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Frank Maslow
- Department of Otolaryngology-Head and Neck Surgery, University of Missouri, Columbia, MO, USA; Department of Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Bryan Trump
- School of Dentistry and Department of Dermatology, University of Utah, Salt Lake City, UT, USA
| | - Olga J Baker
- Department of Otolaryngology-Head and Neck Surgery, University of Missouri, Columbia, MO, USA; Department of Biochemistry, University of Missouri, Columbia, MO, USA; Department of Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
11
|
The Therapeutic Effects of Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells on Scleroderma. Tissue Eng Regen Med 2021; 19:141-150. [PMID: 34784013 PMCID: PMC8782977 DOI: 10.1007/s13770-021-00405-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/27/2021] [Accepted: 10/02/2021] [Indexed: 11/15/2022] Open
Abstract
Background: Scleroderma is a multisystem disease in which tissue fibrosis is caused by inflammation and vascular damage. The mortality of scleroderma has remained high due to a lack of effective treatments. However, exosomes derived from human umbilical cord mesenchymal stem cells (HUMSCs)-Ex have been regarded as potential treatments for various autoimmune diseases, and may also act as candidates for treating scleroderma. Methods: Mice with scleroderma received a single 50 μg HUMSCs-Ex. HUMSCs-Ex was characterized using transmission electron microscopy, nanoparticle tracking analysis and nanoflow cytometry. The therapeutic efficacy was assessed using histopathology, immunohistochemistry, immunofluorescence, quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assay and western blot. Results: HUMSCs-Ex ameliorated the deposition of extracellular matrix and suppressed the epithelial-mesenchymal transition process, and the effects lasted at least three weeks. In addition, HUMSCs-Ex promoted M1 macrophage polarization and inhibited M2 macrophage polarization, leading to the restoration of the balance of M1/M2 macrophages. Conclusion: We investigated the potential antifibrotic and anti-inflammatory effects of HUMSCs-Ex in a bleomycin-induced mouse model of scleroderma. So HUMSCs-Ex could be considered as a candidate therapy for scleroderma. Supplementary Information The online version contains supplementary material available at 10.1007/s13770-021-00405-5.
Collapse
|
12
|
Dos Santos HT, Nam K, Hunt JP, Buchmann LO, Monroe MM, Baker OJ. SPM Receptor Expression and Localization in Irradiated Salivary Glands. J Histochem Cytochem 2021; 69:523-534. [PMID: 34339312 DOI: 10.1369/00221554211031678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Radiation therapy-mediated salivary gland destruction is characterized by increased inflammatory cell infiltration and fibrosis, both of which ultimately lead to salivary gland hypofunction. However, current treatments (e.g., artificial saliva and sialagogues) only promote temporary relief of symptoms. As such, developing alternative measures against radiation damage is critical for restoring salivary gland structure and function. One promising option for managing radiation therapy-mediated damage in salivary glands is by activation of specialized proresolving lipid mediator receptors due to their demonstrated role in resolution of inflammation and fibrosis in many tissues. Nonetheless, little is known about the presence and function of these receptors in healthy and/or irradiated salivary glands. Therefore, the goal of this study was to detect whether these specialized proresolving lipid mediator receptors are expressed in healthy salivary glands and, if so, if they are maintained after radiation therapy-mediated damage. Our results indicate that specialized proresolving lipid mediator receptors are heterogeneously expressed in inflammatory as well as in acinar and ductal cells within human submandibular glands and that their expression persists after radiation therapy. These findings suggest that epithelial cells as well as resident immune cells represent potential targets for modulation of resolution of inflammation and fibrosis in irradiated salivary glands.
Collapse
Affiliation(s)
| | - Kihoon Nam
- Department of Otolaryngology-Head and Neck Surgery, University of Missouri, Columbia, Missouri
| | - Jason P Hunt
- Department of Otolaryngology, Department of Surgery, The University of Utah, Salt Lake City, Utah
| | - Luke O Buchmann
- Department of Otolaryngology, Department of Surgery, The University of Utah, Salt Lake City, Utah
| | - Marcus M Monroe
- Department of Otolaryngology, Department of Surgery, The University of Utah, Salt Lake City, Utah
| | - Olga J Baker
- Department of Otolaryngology-Head and Neck Surgery, University of Missouri, Columbia, Missouri.,Department of Biochemistry, University of Missouri, Columbia, Missouri
| |
Collapse
|
13
|
Echinochrome A Treatment Alleviates Fibrosis and Inflammation in Bleomycin-Induced Scleroderma. Mar Drugs 2021; 19:md19050237. [PMID: 33922418 PMCID: PMC8146844 DOI: 10.3390/md19050237] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
Abstract
Scleroderma is an autoimmune disease caused by the abnormal regulation of extracellular matrix synthesis and is activated by non-regulated inflammatory cells and cytokines. Echinochrome A (EchA), a natural pigment isolated from sea urchins, has been demonstrated to have antioxidant activities and beneficial effects in various disease models. The present study demonstrates for the first time that EchA treatment alleviates bleomycin-induced scleroderma by normalizing dermal thickness and suppressing collagen deposition in vivo. EchA treatment reduces the number of activated myofibroblasts expressing α-SMA, vimentin, and phosphorylated Smad3 in bleomycin-induced scleroderma. In addition, it decreased the number of macrophages, including M1 and M2 types in the affected skin, suggesting the induction of an anti-inflammatory effect. Furthermore, EchA treatment markedly attenuated serum levels of inflammatory cytokines, such as tumor necrosis factor-α and interferon-γ, in a murine scleroderma model. Taken together, these results suggest that EchA is highly useful for the treatment of scleroderma, exerting anti-fibrosis and anti-inflammatory effects.
Collapse
|
14
|
Reyes AWB, Huy TXN, Vu SH, Kang CK, Min W, Lee HJ, Lee JH, Kim S. Formyl peptide receptor 2 (FPR2) antagonism is a potential target for the prevention of Brucella abortus 544 infection. Immunobiology 2021; 226:152073. [PMID: 33657463 DOI: 10.1016/j.imbio.2021.152073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 10/22/2022]
Abstract
Here, we explore the potential role of formyl peptide receptor 2 (FPR2) during Brucella abortus infection. FPR2 manipulation affected B. abortus internalization but not its growth within macrophages. During the activation of FPR2 induced by its agonist AGP-8694, a high level of Brucella uptake was accompanied by an increase in ERK phosphorylation, while intracellular survival at 24 h postincubation was observed to be associated with slightly reduced nitrite accumulation but augmented superoxide anion production. Attenuated secretion of IL-6 and IL-10 were observed 48 h postincubation in the bone marrow-derived macrophages (BMDMs) treated with the FPR2 antagonist WRW4. An opposite pattern of bacterial uptake was observed upon treatment with the FPR2 antagonist, but no significant changes in the activation of MAPKs or the production of nitrite or superoxide anion were observed. Interestingly, AGP-8694 treatment of mice did not lead to differences in spleen or liver weight but slightly enhanced bacterial proliferation was observed in the spleen. Although the weights of the spleen or liver did not differ, WRW4 treatment led to reduced bacterial proliferation in the spleen. Furthermore, FPR2 antagonist treatment was associated with high serum levels of the proinflammatory cytokines IL-12, TNF-α, IFN-γ and MCP-1, while the production of TNF-α was inhibited in AGP-8694-treated mice. IL-6 and IL-10 levels were slightly increased in AGP-8694-treated mice at 24 h postinfection. Our findings demonstrated the contribution of FPR2 via manipulating this receptor using its reported agonist AGP-8694 and antagonist WRW4 in both in vitro and in vivo systems. Although activation of the receptor did not consistently induced Brucella infection, FPR2 inhibition may be a promising strategy to treat brucellosis in animals which encourages further investigation.
Collapse
Affiliation(s)
- Alisha Wehdnesday Bernard Reyes
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Tran Xuan Ngoc Huy
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; Institute of Applied Sciences, Ho Chi Minh City University of Technology - HUTECH, 475A Dien Bien Phu St., Ward 25, Binh Thanh District, Ho Chi Minh City, Viet Nam
| | - Son Hai Vu
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; Institute of Applied Sciences, Ho Chi Minh City University of Technology - HUTECH, 475A Dien Bien Phu St., Ward 25, Binh Thanh District, Ho Chi Minh City, Viet Nam
| | - Chang Keun Kang
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Wongi Min
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hu Jang Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Suk Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
15
|
Batchu S, Yu S. Age-associated Ligand-receptor Interactions Imputed from Nasopharyngeal Transcriptomes of COVID-19 Patients. Immunol Invest 2021; 51:851-858. [PMID: 33533266 DOI: 10.1080/08820139.2021.1882484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has exhibited different clinical manifestations amongst various age cohorts. As the immune microenvironment may play a role in clinical progression, it is crucial to examine molecular interactions to gain insight into host response. Therefore, to elucidate any differences in host response related to age, the present study imputed ligand-receptor interactions within the nasopharyngeal immune microenvironment in patients affected with SARS-COV-2. Tissue purities, the proportion of non-immune cells in the tissue sample, of 467 nasopharyngeal transcriptome profiles were estimated using known mRNA expression signatures of stromal/immune cells. Using the purity estimates and bulk tissue expression values, non-negative linear regression was used to estimate average expression of each gene in the stromal/tumor compartments. The inferred expression profiles were annotated with a curated database of ligand-receptor interactions and assumed as reasonable proxies for the law of mass action, allowing for quantification of directional ligand-receptor complex concentrations under equilibrium. It was found that older patients (>60 years) exhibited decreased interactions with receptors selectin L receptor SELL and increased interactions with pro-inflammatory chemokine receptors CXCR2 and CCR1. Younger patients showed increased interactions with various members of the TNF receptor super family (TNFRSF). The interactions were further related to immune cell subtypes, with older patients predicted to have less CD8+ and CD4+ resting T cells but increased neutrophil proportions. Collectively, the results suggest certain ligand-receptor interactions of the nasopharyngeal immune microenvironment are age-associated in response to SARS-CoV-2.
Collapse
Affiliation(s)
- Sai Batchu
- Cooper Medical School at Rowan University, Camden, New Jersey, USA
| | - Siyuan Yu
- Cooper Medical School at Rowan University, Camden, New Jersey, USA
| |
Collapse
|
16
|
Kang GJ, Kim EJ, Lee CH. Therapeutic Effects of Specialized Pro-Resolving Lipids Mediators on Cardiac Fibrosis via NRF2 Activation. Antioxidants (Basel) 2020; 9:antiox9121259. [PMID: 33321955 PMCID: PMC7764646 DOI: 10.3390/antiox9121259] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
Heart disease is the number one mortality disease in the world. In particular, cardiac fibrosis is considered as a major factor causing myocardial infarction and heart failure. In particular, oxidative stress is a major cause of heart fibrosis. In order to control such oxidative stress, the importance of nuclear factor erythropoietin 2 related factor 2 (NRF2) has recently been highlighted. In this review, we will discuss the activation of NRF2 by docosahexanoic acid (DHA), eicosapentaenoic acid (EPA), and the specialized pro-resolving lipid mediators (SPMs) derived from polyunsaturated lipids, including DHA and EPA. Additionally, we will discuss their effects on cardiac fibrosis via NRF2 activation.
Collapse
Affiliation(s)
- Gyeoung Jin Kang
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; (G.J.K.); (E.J.K.)
| | - Eun Ji Kim
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; (G.J.K.); (E.J.K.)
- College of Pharmacy, Dongguk University, Seoul 04620, Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 04620, Korea
- Correspondence: ; Tel.: +82-31-961-5213
| |
Collapse
|
17
|
Yellepeddi VK, Parashar K, Dean SM, Watt KM, Constance JE, Baker OJ. Predicting Resolvin D1 Pharmacokinetics in Humans with Physiologically-Based Pharmacokinetic Modeling. Clin Transl Sci 2020; 14:683-691. [PMID: 33202089 PMCID: PMC7993257 DOI: 10.1111/cts.12930] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Sjögren’s syndrome (SS) is an autoimmune disease with no effective treatment options. Resolvin D1 (RvD1) belongs to a class of lipid‐based specialized pro‐resolving mediators that showed efficacy in preclinical models of SS. We developed a physiologically‐based pharmacokinetic (PBPK) model of RvD1 in mice and optimized the model using plasma and salivary gland pharmacokinetic (PK) studies performed in NOD/ShiLtJ mice with SS‐like features. The predictive performance of the PBPK model was also evaluated with two external datasets from the literature reporting RvD1 PKs. The PBPK model adequately captured the observed concentrations of RvD1 administered at different doses and in different species. The PKs of RvD1 in virtual humans were predicted using the verified PBPK model at various doses (0.01–10 mg/kg). The first‐in‐human predictions of RvD1 will be useful for the clinical trial design and translation of RvD1 as an effective treatment strategy for SS.
Collapse
Affiliation(s)
- Venkata K Yellepeddi
- Division of Clinical Pharmacology, Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, Utah, USA.,Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | | | - Spencer M Dean
- School of Dentistry, University of Utah, Salt Lake City, Utah, USA
| | - Kevin M Watt
- Division of Clinical Pharmacology, Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Jonathan E Constance
- Division of Clinical Pharmacology, Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, Utah, USA.,Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Olga J Baker
- Department of Otolaryngology-Head and Neck Surgery, Department of Biochemistry, Christopher S. Bond Life Sciences Center, School of Medicine, University of Missouri-Columbia, Columbia, Missouri, USA
| |
Collapse
|
18
|
Lee H, Lee J, Park Y, Kim JH, Eickelberg O, Yang SR. WKYMVm ameliorates acute lung injury via neutrophil antimicrobial peptide derived STAT1/IRF1 pathway. Biochem Biophys Res Commun 2020; 533:313-318. [PMID: 32958247 DOI: 10.1016/j.bbrc.2020.09.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023]
Abstract
Formyl peptide receptors (FPRs) are mainly expressed on leucocytes and sense microbe-associated molecular pattern (MAMP) molecules, thereby regulating leukocyte chemotaxis and activation. The formyl peptide receptor 2 (FPR2) selective agonist WKYMVm (Trp-Lys-Met-Val-D-Met) has shown potent pro-angiogenic, anti-inflammatory, and anti-apoptotic properties. In this study, we investigated whether WKYMVm exhibits bactericidal activity during neutrophil accumulation in acute lung injury (ALI) in mice and determined its cellular signaling pathways in HL-60 neutrophil-like cells. A daily intraperitoneal treatment of ALI mice with WKYMVm (2.5- and 5 mg/kg/d) daily over four days decreased the levels of proinflammatory cytokines TNF-α, IL-6, and IL-1β, while it increased the MPO and NO release by differentiated HL-60 neutrophil-like cells. The IRF1 level and STAT1 phosphorylation at S727 were increased in the lungs of mice with ALI treated with WKYMVm. Lung histology induced by ALI was unaffected by treatment with WKYMVm. In vitro, WKYMVm increased MPO, NO, and SOD activity, as well as IRF1 and STAT1 phosphorylation at Ser727. Taken together, our data suggest therapeutic potential of WKYMVm, via FPR2-dependent regulation of STAT1/IRF1, in ALI.
Collapse
Affiliation(s)
- Hanbyeol Lee
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Jooyeon Lee
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Youngheon Park
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Jae Ho Kim
- Department of Physiology, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
| | - Oliver Eickelberg
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Se-Ran Yang
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon, 24341, Republic of Korea.
| |
Collapse
|
19
|
Wang H, Peng X, Ge Y, Zhang S, Wang Z, Fan Y, Huang W, Qiu M, Ye RD. A Ganoderma-Derived Compound Exerts Inhibitory Effect Through Formyl Peptide Receptor 2. Front Pharmacol 2020; 11:337. [PMID: 32265709 PMCID: PMC7105723 DOI: 10.3389/fphar.2020.00337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/06/2020] [Indexed: 12/28/2022] Open
Abstract
Formyl peptide receptors (FPRs) are G protein-coupled receptors (GPCRs) widely expressed in neutrophils and other phagocytes. FPRs play important roles in host defense, inflammation, and the pathogenesis of infectious and inflammatory diseases. Because of these functions, FPRs are potential targets for anti-inflammatory therapies. In order to search for potentially novel anti-inflammatory agents, we examined Ganoderma (Lingzhi), a Chinese medicinal herbs known for its anti-inflammatory effects, and found that compound 18 (C18) derived from Ganoderma cochlear could limit the inflammatory response through FPR-related signaling pathways. Further studies showed that C18 could bind to FPR2 and induce conformation change of the receptor that differed from the conformational change induced by the pan-agonist, WKYMVm. C18 inhibited at the receptor level and blocked WKYMVm signaling through FPR2, resulting in reduced superoxide production and compromised cell chemotaxis. These results identified for the first time that a Ganoderma-derived component with inhibitory effects that acts through a G protein-coupled receptor FPR2. Considering its less than optimal IC50 value, further optimization of C18 would be necessary for future applications.
Collapse
Affiliation(s)
- Huirong Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, Macau.,Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xingrong Peng
- Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
| | - Yunjun Ge
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, Macau
| | - Shuo Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenyi Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, China
| | - Yu Fan
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, Macau
| | - Wei Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Minghua Qiu
- Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
| | - Richard D Ye
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, Macau.,Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|