1
|
Michelin L, Bellei N, Ferreira da Costa Gomes M, Raboni SM, Kairalla M, Correa RA, Levi M, Chebabo A, Ballalai I, Cimerman S, Roteli-Martins CM, Aidé S, Dalcolmo MP, de Veras BMG, De Ávila Kfouri R, Cintra O. Respiratory syncytial virus: challenges in diagnosis and impact on the elderly: Recommendations from a multidisciplinary panel. Hum Vaccin Immunother 2024; 20:2388943. [PMID: 39161095 PMCID: PMC11340750 DOI: 10.1080/21645515.2024.2388943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
Respiratory syncytial virus (RSV) is an important cause of respiratory illness. While most attention is paid to childhood infection, the RSV burden in adults ≥60 y should also be considered. In Brazil, this is generally underrecognized, where greater focus is toward other respiratory pathogens. This article presents insights from a multidisciplinary panel gathered to review epidemiologic data and current diagnostic approaches to RSV in Brazil (and their limitations) and develop communication strategies to improve knowledge and awareness. National surveillance data indicate a steady increase in cases of RSV-related severe acute respiratory illness (RSV-SARI) in those aged ≥60 y in recent years, with high fatality rates (>30%). Routine RSV testing in older individuals with respiratory symptoms is relatively low. Educational activities targeted toward health-care professionals and the general public are critical to raising awareness of the importance of RSV in older individuals, particularly as protective vaccines are now available.
Collapse
Affiliation(s)
| | - Nancy Bellei
- Laboratório de Virologia Clínica, Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina (EPM), Disciplina de Infectologia, São Paulo, Brazil
| | | | - Sonia M Raboni
- Molecular Virology Research Laboratory, Universidade Federal do Paraná, Curitiba, Brazil
| | | | - Ricardo Amorim Correa
- Departamento de Clínica Médica, Serviço de Pneumologia, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Monica Levi
- Sociedade Brasileira de Imunizações (SBim), São Paulo, Brazil
| | - Alberto Chebabo
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Isabela Ballalai
- Sociedade Brasileira de Imunizações (SBim), Rio de Janeiro, Brazil
| | - Sergio Cimerman
- Sociedade Brasileira de Imunizações (SBim), São Paulo, Brazil
- Instituto de Infectologia Emílio Ribas, São Paulo, Brazil
- Universidade Paulista (UNIP) - Campus Alphaville, São Paulo, Brazil
| | | | - Susana Aidé
- Maternal and Child Department, Faculty of Medicine, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | | | | | - Renato De Ávila Kfouri
- Universidade Federal de Sao Paulo, Sao Paulo, Brazil
- Sociedade Brasileira de Imunizações (SBim), São Paulo, Brazil
| | | |
Collapse
|
2
|
Sarna M, Le H, Taye BW, Glass K, Levy A, Richmond P, Moore HC. Clinical outcomes and severity of laboratory-confirmed RSV compared with influenza, parainfluenza and human metapneumovirus in Australian children attending secondary care. BMJ Open Respir Res 2024; 11:e002613. [PMID: 39694679 DOI: 10.1136/bmjresp-2024-002613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024] Open
Abstract
INTRODUCTION Acute lower respiratory infections (ALRIs) are a major contributor to the global infectious disease burden and a common cause of hospitalisation for children under 2 years. We compared clinical severity in children hospitalised with respiratory syncytial virus (RSV), parainfluenza virus (PIV), human metapneumovirus (hMPV) and influenza virus (IFV). METHODS We used a probabilistically linked population cohort born in Western Australia between 2010 and 2020 and hospitalised before the age of 2 years. Outcomes compared included length of hospital stay (LOS), admission to intensive care unit (ICU), need for respiratory support (RS), complex hospital course (RS, death, ICU admission or LOS >75th percentile), 7-day and 30-day mortality, hospital-in-the-home care, 30-day all-cause and ALRI-specific readmissions and emergency department presentations 14 days prior to hospitalisation. Logistic regression was used for binary outcomes, and negative binomial regression was used for discrete count variables. Incidence rates, time to RS and time to readmissions were calculated using survival analysis techniques. RESULTS The final cohort included 210 997 hospitalised children under 24 months of age for a total of 315 769 admissions. Infants hospitalised before 6 months had the highest rates for all virus-specific hospitalisations, particularly RSV hospitalisations (50.4 per 1000 child-years (95% CI 48.7 to 52.1)). Infants <6 months had higher odds of an ICU admission (adjusted OR (aOR) 2.39, 95% CI 1.36 to 4.19) and RS (aOR 4.68, 95% CI 2.95 to 7.44) and a complex hospital course (aOR 2.69, 95% CI 2.13 to 3.42) with RSV and four times higher hazards of requiring RS earlier (adjusted HR (aHR) 4.06, 95% CI 2.59 to 6.36). An ALRI-coded 30-day readmission was recorded in 10%-24% of virus-specific hospitalisations. DISCUSSION Young infants have a more severe and complex hospital course with RSV hospitalisation compared with hospitalisation with other respiratory viruses and should be prioritised for prevention measures such as the single-dose monoclonal antibody, nirsevimab.
Collapse
Affiliation(s)
- Mohinder Sarna
- Wesfarmers Centre of Vaccines and Infectious Diseases, The Kids Research Institute Australia, Nedlands, Western Australia, Australia
- School of Population Health, Curtin University, Perth, Western Australia, Australia
| | - Huong Le
- Wesfarmers Centre of Vaccines and Infectious Diseases, The Kids Research Institute Australia, Nedlands, Western Australia, Australia
- School of Population Health, Curtin University, Perth, Western Australia, Australia
| | - Belaynew Wasie Taye
- Wesfarmers Centre of Vaccines and Infectious Diseases, The Kids Research Institute Australia, Nedlands, Western Australia, Australia
- School of Population Health, Curtin University, Perth, Western Australia, Australia
| | - Kathryn Glass
- Wesfarmers Centre of Vaccines and Infectious Diseases, The Kids Research Institute Australia, Nedlands, Western Australia, Australia
- National Centre for Epidemiology and Population Health, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Avram Levy
- PathWest Laboratory Medicine QEII Medical Centre, Perth, Western Australia, Australia
- School of Biomedical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
| | - Peter Richmond
- Department of General Paediatrics, Perth Children's Hospital, Nedlands, Western Australia, Australia
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
| | - Hannah C Moore
- The Kids Research Institute Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
3
|
Troncoso-Bravo T, Ramírez MA, Loaiza RA, Román-Cárdenas C, Papazisis G, Garrido D, González PA, Bueno SM, Kalergis AM. Advancement in the development of mRNA-based vaccines for respiratory viruses. Immunology 2024; 173:481-496. [PMID: 39161170 DOI: 10.1111/imm.13844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
Acute respiratory infections are the leading cause of death and illness in children under 5 years old and represent a significant burden in older adults. Primarily caused by viruses infecting the lower respiratory tract, symptoms include cough, congestion, and low-grade fever, potentially leading to bronchiolitis and pneumonia. Messenger ribonucleic acid (mRNA)-based vaccines are biopharmaceutical formulations that employ mRNA molecules to induce specific immune responses, facilitating the expression of viral or bacterial antigens and promoting immunization against infectious diseases. Notably, this technology had significant relevance during the COVID-19 pandemic, as these formulations helped to limit SARS-CoV-2 virus infections, hospitalizations, and deaths. Importantly, mRNA vaccines promise to be implemented as new alternatives for fighting other respiratory viruses, such as influenza, human respiratory syncytial virus, and human metapneumovirus. This review article analyzes mRNA-based vaccines' main contributions, perspectives, challenges, and implications against respiratory viruses.
Collapse
Affiliation(s)
- Tays Troncoso-Bravo
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Ingeniería Química y Bioprocesos, Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mario A Ramírez
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ricardo A Loaiza
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina Román-Cárdenas
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Georgios Papazisis
- Laboratory of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Clinical Research Unit, Special Unit for Biomedical Research and Education (SUBRE), School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Daniel Garrido
- Departamento de Ingeniería Química y Bioprocesos, Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
4
|
Gourzoulidis G, Tzanetakos C, Solakidi A, Markatis E, Detsis M, Mendes D, Barmpouni M. Cost-Effectiveness of Bivalent Respiratory Syncytial Virus Prefusion F Vaccine for Prevention of Respiratory Syncytial Virus Among Older Adults in Greece. Vaccines (Basel) 2024; 12:1232. [PMID: 39591135 PMCID: PMC11598676 DOI: 10.3390/vaccines12111232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES To evaluate the health benefits, costs, and cost-effectiveness of vaccination with bivalent respiratory syncytial virus stabilized prefusion F vaccine (RSVpreF) for the prevention of lower respiratory tract disease caused by respiratory syncytial virus (RSV) in Greek adults 60 years of age and older. METHODS A Markov model was adapted to simulate lifetime risk of health and economic outcomes from the public payer's perspective over a lifetime horizon. Epidemiology, vaccine effectiveness, utilities, and direct medical costs (EUR, 2024) were obtained from published studies, official sources, and local experts. Model outcomes included the number of medically attended RSV cases, stratified by care setting (i.e., hospital, emergency department [ED], outpatient visits [OV]), and attributable RSV-related deaths, costs, life years (LY), quality-adjusted life-years (QALY), and incremental cost-effectiveness ratios (ICERs) of RSVpreF vaccination compared with no vaccination. RESULTS The model projected 258,170 hospitalizations, 112,248 ED encounters, 1,201,604 OV, and 25,463 deaths related to RSV in Greek older adults resulting in direct medical costs of EUR 1.6 billion over the lifetime horizon. Assuming RSV vaccination would reach the same coverage rates as pneumococcal and influenza programmes, 18,118 hospitalizations, 7874 ED encounters, 48,079 OV, and 1706 deaths could be prevented over the modelled time horizon. The health benefits associated with RSVpreF contributed to an incremental gain of 10,976 LYs and 7230 QALYs compared with no vaccination. The incremental analysis reported that vaccination with RSVpreF was estimated to be a cost-effective strategy resulting in ICERs of EUR 12,991 per LY gained, EUR 19,723 per QALY gained, and EUR 7870 per hospitalized RSV case avoided compared with no vaccination. CONCLUSIONS Vaccination with RSVpreF was a cost-effective strategy for the prevention of RSV disease in Greek adults over 60 years of age. The introduction of RSV vaccination can improve public health by averting RSV cases and deaths and has the potential to fulfil an unmet medical need.
Collapse
Affiliation(s)
| | | | - Argyro Solakidi
- Pfizer Hellas, 154 51 Athens, Greece; (A.S.); (E.M.); (M.D.); (M.B.)
| | | | - Marios Detsis
- Pfizer Hellas, 154 51 Athens, Greece; (A.S.); (E.M.); (M.D.); (M.B.)
| | | | - Myrto Barmpouni
- Pfizer Hellas, 154 51 Athens, Greece; (A.S.); (E.M.); (M.D.); (M.B.)
| |
Collapse
|
5
|
Rajanala K, Upadhyay AK. Vaccines for Respiratory Viruses-COVID and Beyond. Vaccines (Basel) 2024; 12:936. [PMID: 39204059 PMCID: PMC11360283 DOI: 10.3390/vaccines12080936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
The COVID-19 (coronavirus disease 2019) pandemic had an extensive impact on global morbidity and mortality. Several other common respiratory viruses, such as the influenza virus and respiratory syncytial virus (RSV), are endemic or epidemic agents causing acute respiratory infections that are easily transmissible and pose a significant threat to communities due to efficient person-to-person transmission. These viruses can undergo antigenic variation through genetic mutations, resulting in the emergence of novel strains or variants, thereby diminishing the effectiveness of current vaccines, and necessitating ongoing monitoring and adjustment of vaccine antigens. As the virus-specific immunity is maintained only for several weeks or months after the infection, there is an emergent need to develop effective and durable vaccines. Additionally, specific populations, such as elderly or immunocompromised individuals, may exhibit reduced immune responses to respiratory viruses, posing significant challenges to develop vaccines that elicit durable and potent immunity. We present a comprehensive review of the molecular mechanisms underlying the pathogenesis and virulence of common respiratory viruses, such as RSV, influenza virus, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We discuss several vaccine approaches that are under development. A thorough understanding of the current strategies and the challenges encountered during the vaccine development process can lead to the advancement of effective next-generation vaccines.
Collapse
|
6
|
Berdnikovs S, Newcomb DC, Hartert TV. How early life respiratory viral infections impact airway epithelial development and may lead to asthma. Front Pediatr 2024; 12:1441293. [PMID: 39156016 PMCID: PMC11327159 DOI: 10.3389/fped.2024.1441293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/25/2024] [Indexed: 08/20/2024] Open
Abstract
Childhood asthma is a common chronic disease of the airways that results from host and environment interactions. Most risk factor studies of asthma point to the first year of life as a susceptibility window of mucosal exposure that directly impacts the airway epithelium and airway epithelial cell development. The development of the airway epithelium, which forms a competent barrier resulting from coordinated interactions of different specialized cell subsets, occurs during a critical time frame in normal postnatal development in the first year of life. Understanding the normal and aberrant developmental trajectory of airway epithelial cells is important in identifying pathways that may contribute to barrier dysfunction and asthma pathogenesis. Respiratory viruses make first contact with and infect the airway mucosa. Human rhinovirus (HRV) and respiratory syncytial virus (RSV) are mucosal pathogens that are consistently identified as asthma risk factors. Respiratory viruses represent a unique early life exposure, different from passive irritant exposures which injure the developing airway epithelium. To replicate, respiratory viruses take over the host cell transcriptional and translational processes and exploit host cell energy metabolism. This takeover impacts the development and differentiation processes of airway epithelial cells. Therefore, delineating the mechanisms through which early life respiratory viral infections alter airway epithelial cell development will allow us to understand the maturation and heterogeneity of asthma and develop tools tailored to prevent disease in specific children. This review will summarize what is understood about the impact of early life respiratory viruses on the developing airway epithelium and define critical gaps in our knowledge.
Collapse
Affiliation(s)
- Sergejs Berdnikovs
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Dawn C. Newcomb
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Tina V. Hartert
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
7
|
Zambrana W, Huang C, Solis D, Sahoo MK, Pinsky BA, Boehm AB. Spatial and temporal variation in respiratory syncytial virus (RSV) subtype RNA in wastewater and relation to clinical specimens. mSphere 2024; 9:e0022424. [PMID: 38926903 PMCID: PMC11288019 DOI: 10.1128/msphere.00224-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Respiratory syncytial virus (RSV) causes a large burden of respiratory illness globally. It has two subtypes, RSV A and RSV B, but little is known regarding the predominance of these subtypes during different seasons and their impact on morbidity and mortality. Using molecular methods, we quantified RSV A and RSV B RNA in wastewater solids across multiple seasons and metropolitan areas to gain insight into the predominance of RSV subtypes. We determined the predominant subtype for each group using the proportion of RSV A to total RSV (RSV A + RSV B) in each wastewater sample (PA,WW) and conducted a comparative analysis temporally, spatially, and against clinical specimens. A median PA,WW of 0.00 in the first season and 0.58 in the second season indicated a temporal shift in the predominant subtype. Spatially, while we observed dominance of the same subtype, PA,WW was higher in some areas (PA,WW = 0.58-0.88). The same subtype predominated in wastewater and clinical samples, but clinical samples showed higher levels of RSV A (RSV A positivity in clinical samples = 0.79, median PA,WW = 0.58). These results suggest that wastewater, alongside clinical data, holds promise for enhanced subtype surveillance.IMPORTANCERespiratory syncytial virus (RSV) causes a large burden of respiratory illness globally. It has two subtypes, RSV A and RSV B, but little is known regarding the predominance of these subtypes during different seasons and their impact on morbidity and mortality. The study illustrates that information on subtype predominance can be gleaned from wastewater. As a biological composite sample from the entire contributing population, wastewater monitoring of RSV A and B can complement clinical surveillance of RSV.
Collapse
Affiliation(s)
- Winnie Zambrana
- Department of Civil & Environmental Engineering, Stanford University, Stanford, California, USA
| | - ChunHong Huang
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Daniel Solis
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Malaya K. Sahoo
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Benjamin A. Pinsky
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Alexandria B. Boehm
- Department of Civil & Environmental Engineering, Stanford University, Stanford, California, USA
| |
Collapse
|
8
|
王 洪, 谢 海, 徐 乌, 李 明. [Urolithin A alleviates respiratory syncytial virus-induced lung infection in neonatal mice by activating miR-136-mediated Sirt1 signaling]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1370-1381. [PMID: 39051083 PMCID: PMC11270657 DOI: 10.12122/j.issn.1673-4254.2024.07.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE To observe the therapeutic effects of urolithin A (UA) on respiratory syncytial virus (RSV)-induced lung infection in neonatal mice and explore the underlying mechanisms. METHODS Babl/c mice (5-7 days old) were subjected to nasal instillation of RSV and received intraperitoneal injection of saline or 2.5, 5 and 10 mg/kg UA 2 h after the infection and then once daily for 2 weeks. Bronchoalveolar lavage fluid (BALF) was then collected for detection of inflammatory cells and mediators, and lung pathology was evaluated with HE staining. RSV-infected BEAS-2B cells were treated with 2.5, 5 or 10 µmol/ L UA. Inflammatory factors, cell viability, apoptosis and autophagy were analyzed using ELISA, CCK-8 assay, TUNEL staining, flow cytometry, Western blotting and immunofluorescence staining. The cellular expressions of miR-136 and Sirt1 mRNAs were detected using qRT-PCR. A dual-luciferase reporter system was used to verify the binding between miR-136 and Sirt1. RESULTS In neonatal Babl/c mice, RSV infection caused obvious lung pathologies, promoted pulmonary cell apoptosis and LC3-Ⅱ/Ⅰ, Beclin-1 and miR-136 expressions, and increased the total cell number, inflammatory cells and factors in the BALF and decreased p62 and Sirt1 expressions. All these changes were alleviated dose-dependently by UA. In BEAS-2B cells, RSV infection significantly increased cell apoptosis, LC3B-positive cells and miR-136 expression and reduced Sirt1 expression (P<0.01), which were dose-dependently attenuated by UA. Dual-luciferase reporter assay confirmed the binding between miR-136 and Sirt1. In RSV-infected BEAS-2B cells with UA treatment, overexpression of miR-136 and Ex527 treatment both significantly increased the inflammatory factors and cell apoptosis but decreased LC3B expression, and these changes were further enhanced by their combined treatment. CONCLUSION UA ameliorates RSV-induced lung infection in neonatal mice by activating miR-136-mediated Sirt1 signaling pathway.
Collapse
|
9
|
Buendía JA, Zuluaga Salazar AF. Is there an association between TLR 4 Asp 299Gly and severe RSV infection? Systematic review and metanalysis. Pediatr Pulmonol 2024; 59:2066-2069. [PMID: 38656667 DOI: 10.1002/ppul.27031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/21/2024] [Accepted: 04/14/2024] [Indexed: 04/26/2024]
Affiliation(s)
- Jefferson A Buendía
- Department of Pharmacology and Toxicology, Research Group in Pharmacology and Toxicology, University of Antioquia, Medellín, Colombia
- Warwick Evidence, Warwick Medical School, University of Warwick, Coventry, CV47AL, United Kingdom
| | - Andrés Felipe Zuluaga Salazar
- Department of Pharmacology and Toxicology, Research Group in Pharmacology and Toxicology, University of Antioquia, Medellín, Colombia
- Laboratorio Integrado de Medicina Especializada (LIME), Facultad de Medicina, IPS Universitaria, Universidad de Antioquia, Antioquia, Colombia
| |
Collapse
|
10
|
Verstraelen S, Roymans D, Jacobs A, Hollanders K, Remy S, Jochmans D, Klein J, Grauwet T. Proof of stability of an RSV Controlled Human Infection Model challenge agent. Virol J 2024; 21:112. [PMID: 38750558 PMCID: PMC11097566 DOI: 10.1186/s12985-024-02386-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
In 2018, SGS Belgium NV developed RSV-NICA (Respiratory Syncytial Virus-Nasobronchial Infective Challenge Agent), an RSV type A challenge agent for use in RSV Controlled Human Infection Model (CHIM) studies.It is widely recognized that the stability of RSV can be influenced by a variety of environmental parameters, such as temperature and pH. Consequently, our objective was to evaluate the stability of the viral titer of RSV-NICA following five years of controlled storage and to determine the uniformity of the viral titers across different vials of a GMP-qualified batch of RSV-NICA. In addition, we examined the capacity of RSV-NICA to infect human primary airway epithelial cells (MucilAir™), the principal target cells of RSV, and evaluated the influence of single and recurrent freeze-thaw cycles on the infectious viral titer of the challenge agent.The aliquoted RSV-NICA virus stock was subjected to standard virological and molecular methods to gather data on the titer and consistency of the viral titer contained within 24 representative vials of the stock. Our findings illustrate that over a span of five years of cryo-storage, the infectious viral titer in 75% of the tested vials exhibited a comparable average infectious viral titer (4.75 ± 0.06 vs 4.99 ± 0.11; p-value = 0.14). A considerable reduction down to an undetectable level of infectious virus was observed in the remaining vials. RSV-NICA demonstrated its capacity to effectively infect differentiated human airway epithelial cells, with active virus replication detected in these cells through increasing RSV genome copy number over time. Virus tropism for ciliated cells was suggested by the inhibition of cilia beating coupled with an increase in viral RNA titers. No discernable impact on membrane barrier function of the epithelial lung tissues nor cytotoxicity was detected. Pooling of vials with infectious titers > 4.0 log10 TCID50/ml and freeze-thawing of these combined vials showed no deterioration of the infectious titer. Furthermore, pooling and re-aliquoting of vials spanning the entire range of viral titers (including vials with undetectable infectious virus) along with subjecting the vials to three repeated freeze-thaw cycles did not result in a decrease of the infectious titers in the tested vials.Taken together, our findings indicate that long-term cryo-storage of vials containing RSV-NICA challenge agent may influence the infectious viral titer of the virus, leading to a decrease in the homogeneity of this titer throughout the challenge stock. However, our study also demonstrates that when heterogeneity of the infectious titer of an RSV stock is observed, rounds of pooling, re-aliquoting and subsequent re-titration serve as an effective method not only to restore the homogeneity of the infectious titer of an RSV-A stock, but also to optimize patient-safety, scientific and operational aspects of viral inoculation of study participants during at least the period of one RSV CHIM trial. RSV-NICA is a stable, suitable CHIM challenge agent that can be utilized in efficacy trials for RSV vaccines and antiviral entities.
Collapse
Affiliation(s)
- Sandra Verstraelen
- Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO), Industriezone Vlasmeer 7, Mol, 2400, Belgium.
| | - Dirk Roymans
- DNS Life Sciences Consulting, Brandhoefstraat 63, Turnhout, 2300, Belgium
| | - An Jacobs
- Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO), Industriezone Vlasmeer 7, Mol, 2400, Belgium
| | - Karen Hollanders
- Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO), Industriezone Vlasmeer 7, Mol, 2400, Belgium
| | - Sylvie Remy
- Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO), Industriezone Vlasmeer 7, Mol, 2400, Belgium
| | - Dirk Jochmans
- Rega Institute for Medical Research, Herestraat 49, Leuven, 3000, Belgium
| | - Jelle Klein
- Clinical Pharmacology Unit, SGS, Drie Eikenstraat 655, Edegem, 2650, Belgium
| | - Tini Grauwet
- Clinical Pharmacology Unit, SGS, Drie Eikenstraat 655, Edegem, 2650, Belgium
| |
Collapse
|
11
|
Berber E, Mulik S, Rouse BT. Meeting the Challenge of Controlling Viral Immunopathology. Int J Mol Sci 2024; 25:3935. [PMID: 38612744 PMCID: PMC11011832 DOI: 10.3390/ijms25073935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
The mission of this review is to identify immune-damaging participants involved in antiviral immunoinflammatory lesions. We argue these could be targeted and their activity changed selectively by maneuvers that, at the same time, may not diminish the impact of components that help resolve lesions. Ideally, we need to identify therapeutic approaches that can reverse ongoing lesions that lack unwanted side effects and are affordable to use. By understanding the delicate balance between immune responses that cause tissue damage and those that aid in resolution, novel strategies can be developed to target detrimental immune components while preserving the beneficial ones. Some strategies involve rebalancing the participation of immune components using various approaches, such as removing or blocking proinflammatory T cell products, expanding regulatory cells, restoring lost protective cell function, using monoclonal antibodies (moAb) to counteract inhibitory molecules, and exploiting metabolic differences between inflammatory and immuno-protective responses. These strategies can help reverse ongoing viral infections. We explain various approaches, from model studies and some clinical evidence, that achieve innate and adaptive immune rebalancing, offering insights into potential applications for controlling chronic viral-induced lesions.
Collapse
Affiliation(s)
- Engin Berber
- Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Sachin Mulik
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA;
| | - Barry T. Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
12
|
Boattini M, Almeida A, Comini S, Bianco G, Cavallo R, Costa C. From Forgotten Pathogen to Target for New Vaccines: What Clinicians Need to Know about Respiratory Syncytial Virus Infection in Older Adults. Viruses 2024; 16:531. [PMID: 38675874 PMCID: PMC11053843 DOI: 10.3390/v16040531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Respiratory syncytial virus (RSV) is increasingly recognized as being implicated in acute illness in older adults, with a significant weight in hospitalizations for respiratory illness and death. By means of a best-evidence review, this paper aims to investigate whether RSV can be considered a forgotten pathogen in older patients, looking at trends in the literature volume and exploring possible epidemiological and clinical features underlying the focus given to it. We then present an assessment of its disease burden and present and future strategies for its reduction, particularly in light of the recent availability of new vaccines.
Collapse
Affiliation(s)
- Matteo Boattini
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, 10126 Turin, Italy; (G.B.)
- Department of Public Health and Paediatrics, University of Torino, 10126 Turin, Italy
- Lisbon Academic Medical Centre, 1649-028 Lisbon, Portugal
| | - André Almeida
- Department of Internal Medicine 4, Centro Hospitalar Universitário de Lisboa Central, Centro Clínico Académico de Lisboa, 1169-024 Lisbon, Portugal;
- NOVA Medical School, Universidade Nova de Lisboa, Centro Clínico Académico de Lisboa, 1169-056 Lisbon, Portugal
| | - Sara Comini
- Operative Unit of Clinical Pathology, Carlo Urbani Hospital, 60035 Jesi, Italy
| | - Gabriele Bianco
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, 10126 Turin, Italy; (G.B.)
- Department of Public Health and Paediatrics, University of Torino, 10126 Turin, Italy
- Department of Experimental Medicine, University of Salento, Via Provinciale Monteroni n. 165, 73100 Lecce, Italy
| | - Rossana Cavallo
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, 10126 Turin, Italy; (G.B.)
- Department of Public Health and Paediatrics, University of Torino, 10126 Turin, Italy
| | - Cristina Costa
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, 10126 Turin, Italy; (G.B.)
- Department of Public Health and Paediatrics, University of Torino, 10126 Turin, Italy
| |
Collapse
|
13
|
Johnson M, Chelysheva I, Öner D, McGinley J, Lin GL, O'Connor D, Robinson H, Drysdale SB, Gammin E, Vernon S, Muller J, Wolfenden H, Westcar S, Anguvaa L, Thwaites RS, Bont L, Wildenbeest J, Martinón-Torres F, Aerssens J, Openshaw PJM, Pollard AJ. A Genome-Wide Association Study of Respiratory Syncytial Virus Infection Severity in Infants. J Infect Dis 2024; 229:S112-S119. [PMID: 38271230 DOI: 10.1093/infdis/jiae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV) is a significant cause of infant morbidity and mortality worldwide. Most children experience at least one 1 RSV infection by the age of two 2 years, but not all develop severe disease. However, the understanding of genetic risk factors for severe RSV is incomplete. Consequently, we conducted a genome-wide association study of RSV severity. METHODS Disease severity was assessed by the ReSVinet scale, in a cohort of 251 infants aged 1 week to 1 year. Genotyping data were collected from multiple European study sites as part of the RESCEU Consortium. Linear regression models were used to assess the impact of genotype on RSV severity and gene expression as measured by microarray. RESULTS While no SNPs reached the genome-wide statistical significance threshold (P < 5 × 10-8), we identified 816 candidate SNPs with a P-value of <1 × 10-4. Functional annotation of candidate SNPs highlighted genes relevant to neutrophil trafficking and cytoskeletal functions, including LSP1 and RAB27A. Moreover, SNPs within the RAB27A locus significantly altered gene expression (false discovery rate, FDR P < .05). CONCLUSIONS These findings may provide insights into genetic mechanisms driving severe RSV infection, offering biologically relevant information for future investigations.
Collapse
Affiliation(s)
- Mari Johnson
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | - Irina Chelysheva
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | - Deniz Öner
- Biomarkers Infectious Diseases, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Joseph McGinley
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | - Gu-Lung Lin
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | - Daniel O'Connor
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | - Hannah Robinson
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | - Simon B Drysdale
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | - Emma Gammin
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | - Sophie Vernon
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | - Jill Muller
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | | | | | | | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Louis Bont
- Department of Paediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Netherlands
| | - Joanne Wildenbeest
- Department of Paediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Netherlands
| | - Federico Martinón-Torres
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela
- Genetics, Vaccines and Infections Research Group, Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Jeroen Aerssens
- Biomarkers Infectious Diseases, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Peter J M Openshaw
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| |
Collapse
|
14
|
da Silva RP, Thomé BL, da Souza APD. Exploring the Immune Response against RSV and SARS-CoV-2 Infection in Children. BIOLOGY 2023; 12:1223. [PMID: 37759622 PMCID: PMC10525162 DOI: 10.3390/biology12091223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
Viral respiratory tract infections are a significant public health concern, particularly in children. RSV is a prominent cause of lower respiratory tract infections among infants, whereas SARS-CoV-2 has caused a global pandemic with lower overall severity in children than in adults. In this review, we aimed to compare the innate and adaptive immune responses induced by RSV and SARS-CoV-2 to better understand differences in the pathogenesis of infection. Some studies have demonstrated that children present a more robust immune response against SARS-CoV-2 than adults; however, this response is dissimilar to that of RSV. Each virus has a distinctive mechanism to escape the immune response. Understanding the mechanisms underlying these differences is crucial for developing effective treatments and improving the management of pediatric respiratory infections.
Collapse
Affiliation(s)
| | | | - Ana Paula Duarte da Souza
- Laboratory of Clinical and Experimental Immunology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil; (R.P.d.S.); (B.L.T.)
| |
Collapse
|
15
|
Bergeron HC, Hansen MR, Tripp RA. Interferons-Implications in the Immune Response to Respiratory Viruses. Microorganisms 2023; 11:2179. [PMID: 37764023 PMCID: PMC10535750 DOI: 10.3390/microorganisms11092179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Interferons (IFN) are an assemblage of signaling proteins made and released by various host cells in response to stimuli, including viruses. Respiratory syncytial virus (RSV), influenza virus, and SARS-CoV-2 are major causes of respiratory disease that induce or antagonize IFN responses depending on various factors. In this review, the role and function of type I, II, and III IFN responses to respiratory virus infections are considered. In addition, the role of the viral proteins in modifying anti-viral immunity is noted, as are the specific IFN responses that underly the correlates of immunity and protection from disease.
Collapse
Affiliation(s)
| | | | - Ralph A. Tripp
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30605, USA; (H.C.B.); (M.R.H.)
| |
Collapse
|
16
|
Vicente J, Benedetti M, Martelliti P, Vázquez L, Gentilini MV, Peñaranda Figueredo FA, Nabaes Jodar MS, Viegas M, Barquero AA, Bueno CA. The Flavonoid Cyanidin Shows Immunomodulatory and Broad-Spectrum Antiviral Properties, Including SARS-CoV-2. Viruses 2023; 15:v15040989. [PMID: 37112969 PMCID: PMC10143848 DOI: 10.3390/v15040989] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
New antiviral treatments are needed to deal with the unpredictable emergence of viruses. Furthermore, vaccines and antivirals are only available for just a few viral infections, and antiviral drug resistance is an increasing concern. Cyanidin (a natural product also called A18), a key flavonoid that is present in red berries and other fruits, attenuates the development of several diseases, through its anti-inflammatory effects. Regarding its mechanism of action, A18 was identified as an IL-17A inhibitor, resulting in the attenuation of IL-17A signaling and associated diseases in mice. Importantly, A18 also inhibits the NF-κB signaling pathway in different cell types and conditions in vitro and in vivo. In this study, we report that A18 restricts RSV, HSV-1, canine coronavirus, and SARS-CoV-2 multiplication, indicating a broad-spectrum antiviral activity. We also found that A18 can control cytokine and NF-κB induction in RSV-infected cells independently of its antiviral activity. Furthermore, in mice infected with RSV, A18 not only significantly reduces viral titers in the lungs, but also diminishes lung injury. Thus, these results provide evidence that A18 could be used as a broad-spectrum antiviral and may contribute to the development of novel therapeutic targets to control these viral infections and pathogenesis.
Collapse
Affiliation(s)
- Josefina Vicente
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Martina Benedetti
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Paula Martelliti
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Luciana Vázquez
- Unidad Operativa Centro de Contención Biológica (UOCCB), Administración Nacional de Laboratorios e Institutos de Salud (ANLIS), Buenos Aires 1282, Argentina
| | - María Virginia Gentilini
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTYB)-CONICET, Buenos Aires 1093, Argentina
| | - Freddy Armando Peñaranda Figueredo
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Mercedes Soledad Nabaes Jodar
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1425, Argentina
- Laboratorio de Virología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires 1417, Argentina
| | - Mariana Viegas
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1425, Argentina
- Laboratorio de Virología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires 1417, Argentina
| | - Andrea Alejandra Barquero
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Carlos Alberto Bueno
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| |
Collapse
|
17
|
Talukdar SN, Osan J, Ryan K, Grove B, Perley D, Kumar BD, Yang S, Dallman S, Hollingsworth L, Bailey KL, Mehedi M. RSV-induced expanded ciliated cells contribute to bronchial wall thickening. Virus Res 2023; 327:199060. [PMID: 36746339 PMCID: PMC10007709 DOI: 10.1016/j.virusres.2023.199060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/02/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023]
Abstract
Viral infection, particularly respiratory syncytial virus (RSV), causes inflammation in the bronchiolar airways (bronchial wall thickening, also known as bronchiolitis). This bronchial wall thickening is a common pathophysiological feature in RSV infection, but it causes more fatalities in infants than in children and adults. However, the molecular mechanism of RSV-induced bronchial wall thickening remains unknown, particularly in healthy adults. Using highly differentiated pseudostratified airway epithelium generated from primary human bronchial epithelial cells, we revealed RSV-infects primarily ciliated cells. The infected ciliated cells expanded substantially without compromising epithelial membrane integrity and ciliary functions and contributed to the increased height of the airway epithelium. Furthermore, we identified multiple factors, e.g., cytoskeletal (ARP2/3-complex-driven actin polymerization), immunological (IP10/CXCL10), and viral (NS2), contributing to RSV-induced uneven epithelium height increase in vitro. Thus, RSV-infected expanded cells contribute to a noncanonical inflammatory phenotype, which contributes to bronchial wall thickening in the airway, and is termed cytoskeletal inflammation.
Collapse
Affiliation(s)
- Sattya N Talukdar
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, United States
| | - Jaspreet Osan
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, United States
| | - Ken Ryan
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, United States
| | - Bryon Grove
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, United States
| | - Danielle Perley
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, United States
| | - Bony D Kumar
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, United States
| | - Shirley Yang
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, United States
| | - Sydney Dallman
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, United States
| | - Lauren Hollingsworth
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, United States
| | - Kristina L Bailey
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep and Allergy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Masfique Mehedi
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, United States.
| |
Collapse
|
18
|
Chi H, Chung CH. Respiratory Syncytial Virus Outbreak in Infants and Young Children during COVID-19 Pandemic in Taiwan. CHILDREN 2023; 10:children10040629. [PMID: 37189878 DOI: 10.3390/children10040629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/09/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023]
Abstract
Respiratory syncytial virus (RSV) is a major burden of disease in babies and young children, including hospitalizations and deaths. RSV is a seasonal disease that peaks when temperatures decrease in temperate zones and humidity increases in tropical regions. Existing research reveals that RSV hospitalization activity is year-round in Taiwan, which is a subtropical region with small peaks in spring and fall. The monthly distribution and COVID-19 pandemic impact were unclear. The aim of this study was to investigate Taiwan’s RSV hospitalization seasonality and the COVID-19 pandemic effects. The National Health Insurance Database and Death Registration Files from the Center for Health and Welfare Data Science Center were connected to birth data for this study. RSV hospitalization (RSVH) in infants aged 0–1 years ranged from 0.9518% (2009) to 1.7113% (2020), substantially higher than in children aged 1–5. Most years had 2 or 3 RSV epidemic seasons in 0–5-year-olds over the 13-year follow-up. RSVH incidence was low until the autumn of 2020, when a major rise occurred after September and lasted until December 2020. We detected RSVH peaks in February–May and July–August. The 2020 RSV outbreak was found at the end of 2020.
Collapse
|
19
|
Kaler J, Hussain A, Patel K, Hernandez T, Ray S. Respiratory Syncytial Virus: A Comprehensive Review of Transmission, Pathophysiology, and Manifestation. Cureus 2023; 15:e36342. [PMID: 37082497 PMCID: PMC10111061 DOI: 10.7759/cureus.36342] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2023] [Indexed: 03/21/2023] Open
Abstract
With an increasing global incidence in children younger than the age of five, respiratory syncytial virus (RSV) is one of the most common viral respiratory infections worldwide. Despite the increasing number of cases among infants and young children, RSV can infect any age group; however, some individuals are more high risk than others. Premature infants, young children, elderly, and immunocompromised individuals are the most likely to suffer a more severe presentation of RSV in comparison to healthy adults. RSV is transmitted through respiratory droplets via direct contact with an infected individual or with contaminated surfaces. The viral genome of RSV consists of 11 proteins. Out of these 11, two proteins allow for the attachment of the virus to the respiratory epithelial cells and fusion with host cells. Upon fusion, the viral material transfers to the host cell, where viral replication occurs. It is important to acknowledge that an individual is considered infectious and can transmit the virus even before the symptomatic presentation of RSV begins. As long as the individual is shedding the virus, he or she is considered infectious. The length of viral shedding also differs depending on the severity of the infection, who is infected, and the underlying immune status of an individual. Currently, there is no definitive treatment for RSV; however, supportive therapy is considered the mainstay treatment. Some pharmaceutical treatments such as ribavirin have been FDA-approved; however, the administration is typically limited to children and infants. Palivizumab is also administered as an immune prophylaxis; however, both therapies are constantly at the end of a cost-effective debate due to their extensively expensive nature and questionable adverse effect profiles. Supportive therapy includes hydration, supplemental oxygen, and mechanical ventilation in hospitalized cases; however, most RSV cases can be treated as outpatient cases. Prevention techniques such as hand washing and maintaining social distancing are imperative to minimize the transmission of the virus as much as remotely possible.
Collapse
|
20
|
Tovo PA, Garazzino S, Savino F, Daprà V, Pruccoli G, Dini M, Filisetti G, Funiciello E, Galliano I, Bergallo M. Expressions of Type I and III Interferons, Endogenous Retroviruses, TRIM28, and SETDB1 in Children with Respiratory Syncytial Virus Bronchiolitis. Curr Issues Mol Biol 2023; 45:1197-1217. [PMID: 36826024 PMCID: PMC9954910 DOI: 10.3390/cimb45020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Interferons (IFNs) and IFN-stimulated genes (ISGs) play essential roles for the control of viral infections. Their expression in infants with respiratory syncytial virus (RSV) bronchiolitis is poorly defined. Human endogenous retroviruses (HERVs) represent 8% of our genome and modulate inflammatory and immune reactions. TRIM28 and SETDB1 participate in the epigenetic regulation of genes involved in the immune response, including IFNs and HERVs. No study has explored the expression of HERVs, TRIM28, and SETDB1 during RSV bronchiolitis. We assessed, through a PCR real-time Taqman amplification assay, the transcription levels of six IFN-I ISGs, four IFNλs, the pol genes of HERV-H, -K, and -W families, the env genes of Syncytin (SYN)1 and SYN2, and of TRIM28/SETDB1 in whole blood from 37 children hospitalized for severe RSV bronchiolitis and in healthy children (HC). The expression of most IFN-I ISGs was significantly higher in RSV+ patients than in age-matched HC, but it was inhibited by steroid therapy. The mRNA concentrations of IFN-λs were comparable between patients and age-matched HC. This lack of RSV-driven IFN-III activation may result in the defective protection of the airway mucosal surface leading to severe bronchiolitis. The expression of IFN-III showed a positive correlation with age in HC, that could account for the high susceptibility of young children to viral respiratory tract infections. The transcription levels of every HERV gene were significantly lower in RSV+ patients than in HC, while the expressions of TRIM28/SETDB1 were overlapping. Given the negative impact of HERVs and the positive effects of TRIM28/SETDB1 on innate and adaptive immune responses, the downregulation of the former and the normal expression of the latter may contribute to preserving immune functions against infection.
Collapse
Affiliation(s)
- Pier-Angelo Tovo
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Correspondence: Correspondence: (P.-A.T.); (M.B.)
| | - Silvia Garazzino
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Infectious Diseases Unit, Department of Pediatrics, Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy
| | - Francesco Savino
- Early Infancy Special Care Unit, Department of Pediatric Care, Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy
| | - Valentina Daprà
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Pediatric Laboratory, Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
| | - Giulia Pruccoli
- Infectious Diseases Unit, Department of Pediatrics, Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy
| | - Maddalena Dini
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Pediatric Laboratory, Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
| | - Giacomo Filisetti
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Early Infancy Special Care Unit, Department of Pediatric Care, Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy
| | - Elisa Funiciello
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Infectious Diseases Unit, Department of Pediatrics, Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy
| | - Ilaria Galliano
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Pediatric Laboratory, Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
| | - Massimiliano Bergallo
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Pediatric Laboratory, Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Correspondence: Correspondence: (P.-A.T.); (M.B.)
| |
Collapse
|
21
|
Rodríguez-Guilarte L, Ramírez MA, Andrade CA, Kalergis AM. LAG-3 Contribution to T Cell Downmodulation during Acute Respiratory Viral Infections. Viruses 2023; 15:147. [PMID: 36680187 PMCID: PMC9865459 DOI: 10.3390/v15010147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023] Open
Abstract
LAG-3 is a type I transmembrane protein expressed on immune cells, such as activated T cells, and binds to MHC class II with high affinity. LAG-3 is an inhibitory receptor, and its multiple biological activities on T cell activation and effector functions play a regulatory role in the immune response. Immunotherapies directed at immune checkpoints, including LAG-3, have become a promising strategy for controlling malignant tumors and chronic viral diseases. Several studies have suggested an association between the expression of LAG-3 with an inadequate immune response during respiratory viral infections and the susceptibility to reinfections, which might be a consequence of the inhibition of T cell effector functions. However, important information relative to therapeutic potential during acute viral lower respiratory tract infections and the mechanism of action of the LAG-3 checkpoint remains to be characterized. In this article, we discuss the contribution of LAG-3 to the impairment of T cells during viral respiratory infections. Understanding the host immune response to respiratory infections is crucial for developing effective vaccines and therapies.
Collapse
Affiliation(s)
- Linmar Rodríguez-Guilarte
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Mario A. Ramírez
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Catalina A. Andrade
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Alexis M. Kalergis
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| |
Collapse
|
22
|
Raes M, Daelemans S, Cornette L, Moniotte S, Proesmans M, Schaballie H, Frère J, Vanden Driessche K, Van Brusselen D. The burden and surveillance of RSV disease in young children in Belgium-expert opinion. Eur J Pediatr 2023; 182:451-460. [PMID: 36371521 PMCID: PMC9660201 DOI: 10.1007/s00431-022-04698-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/13/2022]
Abstract
UNLABELLED Infections with respiratory syncytial virus (RSV) can cause severe disease. In young children, RSV is the most common cause of lower respiratory tract illness and life-threatening infections most commonly occur in the first years of life. In adults, elderly and immunocompromised people are most vulnerable. Recently there has been an acceleration in the development of candidate RSV vaccines, monoclonal antibodies and therapeutics which are expected to become available in Europe within the next 2-10 years. Understanding the true burden of childhood RSV disease will become very important to support public health authorities and policy makers in the assessment of new therapeutic opportunities against RSV disease. A systematic literature search was performed to map local data on the burden of RSV disease and to evaluate available RSV surveillance systems. A group of 9 paediatric infectious diseases specialists participated in an expert panel. The purpose of this meeting was to evaluate and map the burden associated with RSV infection in children, including patient pathways and the epidemiological patterns of virus circulation in Belgium. Sources of information on the burden of RSV disease in Belgium are very limited. For the outpatient setting, it is estimated that 5-10% of young patients seen in primary care are referred to the hospital. Around 3500 children between 0 and 12 months of age are hospitalized for RSV-bronchiolitis every year and represent the majority of all hospitalizations. The current Belgian RSV surveillance system was evaluated and found to be insufficient. Knowledge gaps are highlighted and future perspectives and priorities offered. CONCLUSION The Belgian population-based RSV surveillance should be improved, and a hospital-led reporting system should be put in place to enable the evaluation of the true burden of RSV disease in Belgium and to improve disease management in the future. WHAT IS KNOWN • RSV bronchiolitis is a very important cause of infant hospitalization. • The burden of disease in the community is poorly studied and underestimated. WHAT IS NEW • This expert opinion summarizes knowledge gaps and offers insights that allow improvement of local surveillance systems in order to establish a future-proof RSV surveillance system.
Collapse
Affiliation(s)
- Marc Raes
- Department of Paediatrics, Jessa Hospital, Hasselt, Belgium.
| | - Siel Daelemans
- Paediatric Pulmonary and Infectious Diseases, University Hospital Brussel, Brussels, Belgium
| | - Luc Cornette
- Department of Neonatology, AZ Sint-Jan Hospital, Brugge, Belgium
| | - Stéphane Moniotte
- Department of Paediatric Cardiology, University Hospital Saint-Luc, UCLouvain, Brussels, Belgium
| | - Marijke Proesmans
- Paediatric Department, University Hospital Gasthuisberg, Leuven, Belgium
| | - Heidi Schaballie
- Department of Paediatric Pulmonology, Infectious Diseases and Immune Disorders, University Hospital, Ghent, Belgium
| | - Julie Frère
- Department of Paediatrics and Infectious Diseases, University Hospital, Liège, Belgium
| | | | - Daan Van Brusselen
- Department of Paediatric Infectious Diseases, GZA Hospitals, Antwerp, Belgium
| |
Collapse
|
23
|
Talukdar SN, Osan J, Ryan K, Grove B, Perley D, Kumar BD, Yang S, Dallman S, Hollingsworth L, Bailey KL, Mehedi M. RSV-induced Expanded Ciliated Cells Contribute to Bronchial Wall Thickening.. [DOI: 10.1101/2022.10.31.514471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractViral infection, particularly respiratory syncytial virus (RSV), causes inflammation in the bronchiolar airways (bronchial wall thickening, also known as bronchiolitis), reducing airflow through the bronchioles. This bronchial wall thickening is a common pathophysiological feature in RSV infection, but it causes more fatalities in infants than in children and adults. However, the molecular mechanism of RSV-induced bronchial wall thickening remains unknown, particularly in healthy adults. RSV infection in the airway epithelium of healthy adult bronchial cells reveals RSV-infects primarily ciliated cells. RSV infection expands the cell cytoskeleton substantially without compromising epithelial membrane integrity and ciliary functions. The RSV-induced actin cytoskeleton expansion increases ununiformly epithelial height, and cytoskeletal (actin polymerization), immunological (INF-L1, TNF-α, IP10/CXCL10), and viral (NS2) factors are probably responsible. Interestingly, RSV-infected cell cytoskeleton’s expansion resembles a noncanonical inflammatory phenotype, which contributes to bronchial wall thickening, and is termed cytoskeletal inflammation.Author SummaryRSV infects everyone. Although RSV-induced fatal pathophysiology (e.g., bronchiolitis) is more common in infants than adults, this bronchiolitis (or bronchial wall thickening) is common in the lower respiratory tract due to RSV infection in all ages. To determine the molecular mechanism of RSV-induced bronchial wall thickening, we infectedin vitroadult airway epithelium with RSV. We found that RSV-infection induced a substantial actin-cytoskeleton expansion, consequently increased the height of the epithelium. We identified actin polymerization, secretion of proinflammatory cytokines and chemokines, and viral proteins contribute to the RSV-induced cytoskeletal expansion. Our results suggest that RSV-induces a novel noncanonical epithelial host response termed cytoskeletal inflammation, which may contribute to bronchial wall thickening.
Collapse
|
24
|
Li L, Wang H, Liu A, Chen J, Yang Y, Wang W. Age-Dependent Clinical Characteristics of Acute Lower Respiratory Infections in Young Hospitalized Children with Respiratory Syncytial Virus Infection. Infect Drug Resist 2022; 15:5971-5979. [PMID: 36262595 PMCID: PMC9576216 DOI: 10.2147/idr.s380681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/05/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Human respiratory syncytial virus (HRSV) is the most common cause of acute lower respiratory infection (LRTI) in children. The main clinical manifestations are fever, cough, wheezing, and intercostal retractions. Its age-dependent clinical characteristics remain to be defined. Objective We investigated whether HRSV caused any age-related differences in clinical manifestations of LRTI. Methods We enrolled 130 hospitalized children with LRTI caused by HRSV. These were stratified into four age groups. The main signs and symptoms and rates thereof were compared across the four age groups. Results The incidence of pneumonia was the same in all four age groups. Patients in the 1-6 months old group experienced fever and the highest body temperature ≥ 38.5°C less frequently than patients in other age groups.The frequency of fever increased with age among the patients under 24 months old. Children over 12 months old experienced less wheezing, tachypnoea, hypoxia, and intercostal retractions than children in the 1-6 months old group. Conclusion HRSV caused age-related differences in clinical manifestations of LRTI. Reduced fever responses among patients 6 months old and younger during RSV infection does not implicate less severity, wheezing, tachypnoea, hypoxia, and intercostal retractions are the main clinical manifestations, Fever responses were enhanced with advancing age among children under 24 months old.
Collapse
Affiliation(s)
- Li Li
- Department of Respiratory Diseases, Shenzhen Children’s Hospital, Shenzhen, People’s Republic of China
| | - Heping Wang
- Department of Respiratory Diseases, Shenzhen Children’s Hospital, Shenzhen, People’s Republic of China
| | - Ailiang Liu
- Department of Respiratory Diseases, Shenzhen Children’s Hospital, Shenzhen, People’s Republic of China
| | - Jiehua Chen
- Department of Respiratory Diseases, Shenzhen Children’s Hospital, Shenzhen, People’s Republic of China
| | - Yonghong Yang
- Department of Respiratory Diseases, Shenzhen Children’s Hospital, Shenzhen, People’s Republic of China,Microbiology Laboratory, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, People’s Republic of China,Correspondence: Yonghong Yang, Microbiology Laboratory, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, People’s Republic of China, Email
| | - Wenjian Wang
- Department of Respiratory Diseases, Shenzhen Children’s Hospital, Shenzhen, People’s Republic of China,Wenjian Wang, Department of Respiratory Diseases, Shenzhen Children’s Hospital, No. 7019 Yitian Road, Futian District, Shenzhen, Guangdong, People’s Republic of China, Email
| |
Collapse
|
25
|
Dar HA, Almajhdi FN, Aziz S, Waheed Y. Immunoinformatics-Aided Analysis of RSV Fusion and Attachment Glycoproteins to Design a Potent Multi-Epitope Vaccine. Vaccines (Basel) 2022; 10:1381. [PMID: 36146460 PMCID: PMC9502547 DOI: 10.3390/vaccines10091381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Respiratory syncytial virus (RSV) usually causes respiratory tract infections of upper airways in infants and young children. Despite recent medical advances, no approved vaccine is available to control RSV infections. Therefore, we conducted an immunoinformatics study to design and evaluate a potential multi-epitope vaccine against RSV. Sequence-based analyses of the glycoproteins F and G revealed a total of eight CD8 T-cell and three CD4 T-cell epitopes after considering antigenicity, binding affinity and other parameters. Molecular docking analysis confirmed that these T-cell epitopes developed strong structural associations with HLA allele(s). By integrating these prioritized epitopes with linkers and a cholera toxin-derived adjuvant, a multi-epitope vaccine was designed. The developed vaccine was found to be stable, non-allergenic, flexible and antigenic. Molecular docking analysis revealed a striking mean HADDOCK score (-143.3) of top-ranked vaccine-TLR cluster and a Gibbs free energy change (ΔG) value of -11.3 kcal mol-1. As per computational immune simulation results, the vaccine generated a high titer of antibodies (especially IgM) and effector T-cells. Also, codon optimization and in silico cloning ensured the increased expression of vaccine in Escherichia coli. Altogether, we anticipate that the multi-epitope vaccine reported in this study will stimulate humoral and cellular responses against RSV infection, subject to follow-up experimental validation.
Collapse
Affiliation(s)
- Hamza Arshad Dar
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Fahad Nasser Almajhdi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shahkaar Aziz
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar 25000, Pakistan
| | - Yasir Waheed
- Office of Research, Innovation & Commercialization, Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad 44000, Pakistan
| |
Collapse
|
26
|
Dalziel SR, Haskell L, O'Brien S, Borland ML, Plint AC, Babl FE, Oakley E. Bronchiolitis. Lancet 2022; 400:392-406. [PMID: 35785792 DOI: 10.1016/s0140-6736(22)01016-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 03/27/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023]
Abstract
Viral bronchiolitis is the most common cause of admission to hospital for infants in high-income countries. Respiratory syncytial virus accounts for 60-80% of bronchiolitis presentations. Bronchiolitis is diagnosed clinically without the need for viral testing. Management recommendations, based predominantly on high-quality evidence, advise clinicians to support hydration and oxygenation only. Evidence suggests no benefit with use of glucocorticoids or bronchodilators, with further evidence required to support use of hypertonic saline in bronchiolitis. Evidence is scarce in the intensive care unit. Evidence suggests use of high-flow therapy in bronchiolitis is limited to rescue therapy after failure of standard subnasal oxygen only in infants who are hypoxic and does not decrease rates of intensive care unit admission or intubation. Despite systematic reviews and international clinical practice guidelines promoting supportive rather than interventional therapy, universal de-implementation of interventional care in bronchiolitis has not occurred and remains a major challenge.
Collapse
Affiliation(s)
- Stuart R Dalziel
- Department of Surgery, The University of Auckland, Auckland, New Zealand; Department of Paediatrics: Child and Youth Health, The University of Auckland, Auckland, New Zealand; Children's Emergency Department, Starship Children's Hospital, Auckland, New Zealand.
| | - Libby Haskell
- Department of Paediatrics: Child and Youth Health, The University of Auckland, Auckland, New Zealand; Children's Emergency Department, Starship Children's Hospital, Auckland, New Zealand
| | - Sharon O'Brien
- Emergency Department, Perth Children's Hospital, Perth, WA, Australia; School of Nursing, Curtin University, Perth, WA, Australia
| | - Meredith L Borland
- Emergency Department, Perth Children's Hospital, Perth, WA, Australia; Division of Paediatrics, School of Medicine, University of Western Australia, Perth, WA, Australia; Division of Emergency Medicine, School of Medicine, University of Western Australia, Perth, WA, Australia
| | - Amy C Plint
- Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada; Department of Emergency Medicine, University of Ottawa, Ottawa, ON, Canada; Emergency Department, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Franz E Babl
- Department of Emergency Medicine, Royal Children's Hospital, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia; Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Ed Oakley
- Department of Emergency Medicine, Royal Children's Hospital, Melbourne, VIC, Australia; Department of Critical Care, University of Melbourne, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia; Murdoch Children's Research Institute, Melbourne, VIC, Australia
| |
Collapse
|
27
|
McLaughlin JM, Khan F, Begier E, Swerdlow DL, Jodar L, Falsey AR. Rates of Medically-Attended RSV among US Adults: A Systematic Review and Meta-Analysis. Open Forum Infect Dis 2022; 9:ofac300. [PMID: 35873302 PMCID: PMC9301578 DOI: 10.1093/ofid/ofac300] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/14/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
Background
Adult respiratory syncytial virus (RSV) vaccines are in late stages of development. A comprehensive synthesis of adult RSV burden is needed to inform public health decision-making.
Methods
We performed a systematic review and meta-analysis of studies describing the incidence of medically-attended RSV (MA-RSV) among US adults. We also identified studies reporting nasopharyngeal (NP) or nasal swab RT-PCR results with paired serology (four-fold-rise) or sputum (RT-PCR) to calculate RSV detection ratios quantifying improved diagnostic yield after adding a second specimen type (ie, serology or sputum).
Results
We identified 14 studies with 15 unique MA-RSV incidence estimates, all based on NP or nasal swab RT-PCR testing alone. Pooled annual RSV-associated incidence per 100,000 adults ≥65 years of age was 178 (95%CI: 152‒204; n = 8 estimates) hospitalizations (4 prospective studies: 189; 4 model-based studies: 157), 133 (95%CI: 0‒319, n = 2) emergency department (ED) admissions, and 1519 (95%CI: 1109‒1929, n = 3) outpatient visits. Based on 6 studies, RSV detection was ∼1.5 times higher when adding paired serology or sputum. After adjustment for this increased yield, annual RSV-associated rates per 100,000 adults ≥65 years were 267 hospitalizations (UI: 228‒306) (prospective: 282; model-based: 236), 200 ED admissions (UI: 0‒478), and 2278 outpatient visits (UI: 1663‒2893). Persons <65 years with chronic medical conditions were 1.2−28 times more likely to be hospitalized for RSV depending on risk condition.
Conclusions
The true burden of RSV has been underestimated and is significant among older adults and individuals with chronic medical conditions. A highly effective adult RSV vaccine would have substantial public-health impact.
Collapse
Affiliation(s)
| | - Farid Khan
- Pfizer Vaccines , Collegeville, PA , USA
| | | | | | - Luis Jodar
- Pfizer Vaccines , Collegeville, PA , USA
| | - Ann R Falsey
- Department of Medicine, Division of Infectious Diseases, University of Rochester , Rochester, NY , USA
- Rochester General Hospital , Rochester, NY , USA
| |
Collapse
|
28
|
Coussement J, Zuber B, Garrigues E, Gros A, Vandueren C, Epaillard N, Voiriot G, Tandjaoui-Lambiotte Y, Lascarrou JB, Boissier F, Lemiale V, Contou D, Hraiech S, Meert AP, Sauneuf B, Munting A, Ricome S, Messika J, Muller G, Njimi H, Grimaldi D. Characteristics and Outcomes of Patients in the ICU With Respiratory Syncytial Virus Compared With Those With Influenza Infection: A Multicenter Matched Cohort Study. Chest 2022; 161:1475-1484. [PMID: 35063450 DOI: 10.1016/j.chest.2021.12.670] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/13/2021] [Accepted: 12/28/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The characteristics and outcomes of adult patients with respiratory syncytial virus (RSV) infection who require ICU admission are poorly defined. Although several studies in adults with RSV infection have been published in recent years, they did not focus specifically on patients with critical illness. RESEARCH QUESTION What are the characteristics and outcomes of adult patients in the ICU with RSV infection and how do they compare with those of patients in the ICU with influenza infection? STUDY DESIGN AND METHODS This retrospective, multicenter study in France and Belgium (17 sites) compared the characteristics and outcomes of adult patients in the ICU with RSV infection vs those with influenza infection between November 2011 and April 2018. Each patient with RSV infection was matched by institution and date of diagnosis with a patient with influenza infection. In-hospital mortality was compared between the two groups, with adjustment for prognostic factors in a multivariate model (sex, age, main underlying conditions, and concurrent bloodstream infection). RESULTS Data from 618 patients (309 with RSV infection and 309 with influenza infection) were analyzed. Patients with RSV infection were significantly more likely to have an underlying chronic respiratory condition (60.2% vs 40.1%; P < .001) and to be immunocompromised (35% vs 26.2%; P = .02) than patients with influenza infection. Several differences in clinical signs and biological data at diagnosis were found between the groups. In-hospital mortality was not significantly different between the two groups (23.9% in the RSV group vs 25.6% in the influenza group; P = .63), even after adjustment for prognostic factors in a multivariate model. INTERPRETATION Adult patients in the ICU with RSV infection differ from adult patients in the ICU with influenza in terms of comorbidities and characteristics at diagnosis. RSV infection was associated with high in-hospital mortality, approaching 25%. In multivariate analysis, RSV infection was associated with a similar odds of in-hospital death compared with influenza infection.
Collapse
Affiliation(s)
- Julien Coussement
- Department of Infectious Diseases, CUB-Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium.
| | | | - Eve Garrigues
- Médecine Intensive Réanimation, CHU Ambroise Paré, Boulogne-Billancourt, France
| | - Antoine Gros
- Intensive Care Unit, Centre Hospitalier de Versailles, Le Chesnay, France
| | - Charlotte Vandueren
- Intensive Care Unit, CUB-Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Nicolas Epaillard
- Service de Réanimation Médicale, Hopital Saint Antoine, Paris, France
| | - Guillaume Voiriot
- Sorbonne Université, Service de Médecine Intensive Réanimation, Hôpital Tenon, Paris, France
| | - Yacine Tandjaoui-Lambiotte
- Service de Réanimation Médico-Chirurgicale, CHU Avicenne, Assistance Publique-Hôpitaux de Paris, France; INSERM U1272 Hypoxie & Poumon, Bobigny, France
| | | | - Florence Boissier
- Service de Médecine Intensive Réanimation, CHU de Poitiers, Poitiers, France; INSERM CIC 1402 (ALIVE group), Université de Poitiers, Poitiers, France
| | - Virginie Lemiale
- Medical Intensive Care Unit, Saint Louis University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Damien Contou
- Réanimation Polyvalente, Centre Hospitalier Victor Dupouy, Argenteuil, France
| | - Sami Hraiech
- Assistance Publique-Hôpitaux de Marseille, Hôpital Nord, Médecine Intensive Réanimation, Marseille, France; Centre d'Études et de Recherches sur les Services de Santé et Qualité de Vie EA 3279, Marseille, France
| | - Anne-Pascale Meert
- Service de Médecine Interne, Soins Intensifs & Urgences Oncologiques, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Bertrand Sauneuf
- Intensive Care Unit, Centre Hospitalier Public du Cotentin, Cherbourg-en-Cotentin, France
| | - Aline Munting
- Department of Infectious Diseases, CHU UCL Namur, Yvoir, Belgium
| | - Sylvie Ricome
- Service de Réanimation Polyvalente, Centre Hospitalier Robert Ballanger, Aulnay-sous-Bois, France
| | - Jonathan Messika
- Université de Paris, Assistance Publique-Hôpitaux de Paris, Hôpital Louis Mourier, DMU ESPRIT, PHERE UMRS 1152, INSERM, Paris, France
| | - Gregoire Muller
- Medical Intensive Care Unit, Centre Hospitalier Régional d'Orléans, Orléans, France
| | - Hassane Njimi
- Intensive Care Unit, CUB-Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - David Grimaldi
- Intensive Care Unit, CUB-Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
29
|
Wetzke M, Funken D, Lange M, Bejo L, Haid S, Monteiro JGT, Schütz K, Happle C, Schulz TF, Seidenberg J, Pietschmann T, Hansen G. IRIS: Infection with RespIratory Syncytial Virus in infants-a prospective observational cohort study. BMC Pulm Med 2022; 22:88. [PMID: 35291998 PMCID: PMC8922907 DOI: 10.1186/s12890-022-01842-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV) is the most common cause of acute lower respiratory tract infection in infants. Globally, RSV is responsible for approximately 3.2 million hospital admissions and about 60,000 in-hospital deaths per year. METHODS Infection with RespIratory Syncytial Virus (IRIS) is an observational, multi-centre study enrolling infants with severe RSV infection and healthy controls. Inclusion criteria are age between 0 and 36 months and hospitalisation due to RSV infection at three German sites. Exclusion criteria are premature birth, congenital or acquired bronchopulmonary or cardiac diseases, and immunodeficiency. Healthy control probands are enrolled via recruitment of patients undergoing routine surgical procedures. Blood and respiratory specimens are collected upon admission, and RSV and other pathogens are analysed by multiplex polymerase chain reaction. Different biomaterials, including plasma, nasal lining fluid, blood cells, DNA, and RNA specimens, are sampled in a dedicated biobank. Detailed information on demographic characteristics and medical history is recorded, and comprehensive clinical data, including vital signs, medication, and interventions. DISCUSSION The IRIS study aims to discover host and viral factors controlling RSV disease courses in infants. The approach including multi-omics characterisation in clinically well-characterized children with RSV bronchiolitis seeks to improve our understanding of the immune response against this virus. It may disclose novel diagnostic and treatment approaches for respiratory infections in infants. TRIAL REGISTRATION ClinicalTrials.gov, NCT04925310. Registered 01 October 2021-Retrospectively registered. https://clinicaltrials.gov/ct2/show/NCT04925310?cond=NCT04925310&draw=2&rank=1.
Collapse
Affiliation(s)
- Martin Wetzke
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hanover, Germany.,German Center for Infection Research (DZIF), Site Hanover-Brunswick, Germany.,Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Dominik Funken
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hanover, Germany
| | - Mathias Lange
- Department of Pediatric Pneumology and Allergology, Universitätsklinik für Kinder- und Jugendmedizin Oldenburg, Oldenburg, Germany
| | - Levente Bejo
- Helios Childrens Hospital Hildesheim, Hildesheim, Germany
| | - Sibylle Haid
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Joao G Tereno Monteiro
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hanover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Katharina Schütz
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hanover, Germany
| | - Christine Happle
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hanover, Germany.,Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Thomas F Schulz
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.,Institute of Virology, Hannover Medical School, 30625, Hannover, Germany
| | - Jürgen Seidenberg
- Department of Pediatric Pneumology and Allergology, Universitätsklinik für Kinder- und Jugendmedizin Oldenburg, Oldenburg, Germany
| | - Thomas Pietschmann
- German Center for Infection Research (DZIF), Site Hanover-Brunswick, Germany.,Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Gesine Hansen
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hanover, Germany. .,Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany. .,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| |
Collapse
|
30
|
Li JJ, Liu ML, Lv JN, Chen RL, Ding K, He JQ. Polysaccharides from Platycodonis Radix ameliorated respiratory syncytial virus-induced epithelial cell apoptosis and inflammation through activation of miR-181a-mediated Hippo and SIRT1 pathways. Int Immunopharmacol 2022; 104:108510. [PMID: 34999393 DOI: 10.1016/j.intimp.2021.108510] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 12/11/2022]
Abstract
Respiratory syncytial virus (RSV) is the leading cause of bronchiolitis in young children, but there are few safe and effective treatments for this disease. Platycodonis Radix is widely used as an antitussive and expectorant drug for preventing various diseases in lower respiratory tract, in which the polysaccharides are one of the main bioactivity constituents. In this study, the protective effects of the P. Radix polysaccharides (PRP) against RSV-induced bronchiolitis in juvenile mice and RSV-induced apoptosis of epithelial HEp-2 cells were investigated. The results showed that PRP obviously decreased the levels of IL-1β, IL-4, IL-6, TNF-α, IFN-γ and TSLP in lung tissues, and reduced the number of inflammatory cells in bronchoalveolar lavage fluid (BALF) of RSV-infected mice. Furthermore, it reduced the apoptosis of RSV-infected HEp-2 cells and remarkably inhibited the mRNA expressions of RSV L gene, which indicated that PRP affected transcription and replication of RSV in host cells. Compared with that in RSV-infected group, miR-181a-5p in the PRP-treated group presented the highest relative abundance and its expression was violently reduced by approximately 30%. Mechanistically, PRP had the similar effects as miR-181a-5p antagomir on RSV-induced apoptosis and inflammation in HEp-2 cells via upregulating BCL2, MLL3 and SIRT1, which could be reversed by miR-181a-5p mimic. Therefore, it demonstrated that PRP not only protected against RSV-induced lung inflammation in mice but also inhibited apoptosis of RSV-infected HEp-2 cells via suppressing miR-181a-5p and transcriptionally activating Hippo and SIRT1 pathways.
Collapse
Affiliation(s)
- Juan-Juan Li
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Mei-Ling Liu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Jia-Ni Lv
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Rui-Lin Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China; The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ke Ding
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Jia-Qi He
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China.
| |
Collapse
|
31
|
Schultz BM, Acevedo OA, Kalergis AM, Bueno SM. Role of Extracellular Trap Release During Bacterial and Viral Infection. Front Microbiol 2022; 13:798853. [PMID: 35154050 PMCID: PMC8825568 DOI: 10.3389/fmicb.2022.798853] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/04/2022] [Indexed: 12/20/2022] Open
Abstract
Neutrophils are innate immune cells that play an essential role during the clearance of pathogens that can release chromatin structures coated by several cytoplasmatic and granular antibacterial proteins, called neutrophil extracellular traps (NETs). These supra-molecular structures are produced to kill or immobilize several types of microorganisms, including bacteria and viruses. The contribution of the NET release process (or NETosis) to acute inflammation or the prevention of pathogen spreading depends on the specific microorganism involved in triggering this response. Furthermore, studies highlight the role of innate cells different from neutrophils in triggering the release of extracellular traps during bacterial infection. This review summarizes the contribution of NETs during bacterial and viral infections, explaining the molecular mechanisms involved in their formation and the relationship with different components of such pathogens.
Collapse
Affiliation(s)
- Bárbara M Schultz
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Orlando A Acevedo
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
32
|
Yamaguto GE, Zhen F, Moreira MM, Montesanti BM, Raboni SM. Community Respiratory Viruses and Healthcare-associated Infections: epidemiological and clinical aspects. J Hosp Infect 2022; 122:187-193. [DOI: 10.1016/j.jhin.2022.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/16/2021] [Accepted: 01/14/2022] [Indexed: 11/28/2022]
|
33
|
Bergeron HC, Tripp RA. Immunopathology of RSV: An Updated Review. Viruses 2021; 13:2478. [PMID: 34960746 PMCID: PMC8703574 DOI: 10.3390/v13122478] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
RSV is a leading cause of respiratory tract disease in infants and the elderly. RSV has limited therapeutic interventions and no FDA-approved vaccine. Gaps in our understanding of virus-host interactions and immunity contribute to the lack of biological countermeasures. This review updates the current understanding of RSV immunity and immunopathology with a focus on interferon responses, animal modeling, and correlates of protection.
Collapse
Affiliation(s)
| | - Ralph A. Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
34
|
Wu J, Zhang L, Wang X. Host Sex Steroids Interact With Virus Infection: New Insights Into Sex Disparity in Infectious Diseases. Front Microbiol 2021; 12:747347. [PMID: 34803967 PMCID: PMC8600311 DOI: 10.3389/fmicb.2021.747347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/27/2021] [Indexed: 01/08/2023] Open
Abstract
Sex hormones are steroid hormones synthesized from the gonads of animals and tissues such as the placenta and adrenocortical reticular zone. The physiological functions of sex hormones are complex. Sex hormones are not only pathologically correlated with many diseases of the reproductive system, but are etiological factors in some viral infectious diseases, including disease caused by infections of coronaviruses, herpesviruses, hepatitis viruses, and other kinds of human viruses, which either exhibit a male propensity in clinical practice, or crosstalk with androgen receptor (AR)-related pathways in viral pathogenesis. Due to the global pandemic of coronavirus disease 2019 (COVID-19), the role of androgen/AR in viral infectious disease is highlighted again, majorly representing by the recent advances of AR-responsive gene of transmembrane protease/serine subfamily member 2 (TMPRSS2), which proteolytically activates the receptor-mediated virus entry by many coronaviruses and influenza virus, along with the role of androgen-mediated signaling for the transcription of hepatitis B virus (HBV), and the role of sex hormone responsive genes during Zika virus (ZIKV) pathogenesis, et al. Collectively, we propose to provide a comprehensive overview of the role of male sex hormones during multiple phases in the life cycle of different human viruses, which may be partly responsible for the sex-specific prevalence, severity and mortality of some diseases, therefore, may provide clues to develop more efficient prevention and treatment strategies for high-risk populations.
Collapse
Affiliation(s)
- Jinfeng Wu
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Lei Zhang
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xing Wang
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
35
|
Alfaro-García JP, Granados-Alzate MC, Vicente-Manzanares M, Gallego-Gómez JC. An Integrated View of Virus-Triggered Cellular Plasticity Using Boolean Networks. Cells 2021; 10:cells10112863. [PMID: 34831086 PMCID: PMC8616224 DOI: 10.3390/cells10112863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Virus-related mortality and morbidity are due to cell/tissue damage caused by replicative pressure and resource exhaustion, e.g., HBV or HIV; exaggerated immune responses, e.g., SARS-CoV-2; and cancer, e.g., EBV or HPV. In this context, oncogenic and other types of viruses drive genetic and epigenetic changes that expand the tumorigenic program, including modifications to the ability of cancer cells to migrate. The best-characterized group of changes is collectively known as the epithelial–mesenchymal transition, or EMT. This is a complex phenomenon classically described using biochemistry, cell biology and genetics. However, these methods require enormous, often slow, efforts to identify and validate novel therapeutic targets. Systems biology can complement and accelerate discoveries in this field. One example of such an approach is Boolean networks, which make complex biological problems tractable by modeling data (“nodes”) connected by logical operators. Here, we focus on virus-induced cellular plasticity and cell reprogramming in mammals, and how Boolean networks could provide novel insights into the ability of some viruses to trigger uncontrolled cell proliferation and EMT, two key hallmarks of cancer.
Collapse
Affiliation(s)
- Jenny Paola Alfaro-García
- Molecular and Translation Medicine Group, Faculty of Medicine, University of Antioquia, Medellin 050010, Colombia; (J.P.A.-G.); (M.C.G.-A.)
| | - María Camila Granados-Alzate
- Molecular and Translation Medicine Group, Faculty of Medicine, University of Antioquia, Medellin 050010, Colombia; (J.P.A.-G.); (M.C.G.-A.)
| | - Miguel Vicente-Manzanares
- Molecular Mechanisms Program, Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain
- Correspondence: (M.V.-M.); (J.C.G.-G.)
| | - Juan Carlos Gallego-Gómez
- Molecular and Translation Medicine Group, Faculty of Medicine, University of Antioquia, Medellin 050010, Colombia; (J.P.A.-G.); (M.C.G.-A.)
- Correspondence: (M.V.-M.); (J.C.G.-G.)
| |
Collapse
|
36
|
Cantarutti A, Barbieri E, Scamarcia A, Cantarutti L, Canova C, Giaquinto C. Use of the Bacterial Lysate OM-85 in the Paediatric Population in Italy: A Retrospective Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18136871. [PMID: 34206831 PMCID: PMC8297025 DOI: 10.3390/ijerph18136871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 01/22/2023]
Abstract
Background: In Italy, the bacterial lysate OM-85 (Broncho-Vaxom®, Broncho-Munal®, Ommunal®, Paxoral®, Vaxoral®) is registered for the prophylaxis of recurrent respiratory tract infections (RTIs) in adults and children above one year of age, but there are limited data on its use in the paediatric population. We aim to estimate the impact of OM-85 treatment on RTIs and antibiotic prescriptions in children. Methods: This study included children aged 1 to 14 years enrolled in Pedianet, a paediatric general practice research database, from January 2007 to June 2017, having at least one prescription of OM-85. Children with less than 12 months of follow-up before (PRE period) and after (POST period) the OM-85 prescription were excluded. The frequency of antibiotic prescriptions and the frequency of RTI episodes in the PRE and POST periods were compared through the post-hoc test. Subgroup analysis was performed in children with recurrent RTIs. Results: 1091 children received 1382 OM-85 prescriptions for a total follow-up of 619,525.5 person-years. Overall, antibiotic prescriptions decreased from a mean of 2.8 (SD (standard deviation) 2.7) prescriptions in the PRE period to a mean of 2.2 (SD 2.6) prescriptions in the POST period (p < 0.0001). RTIs decreased from a mean of 3.4 (SD 2.9) episodes in the PRE period to a mean of 2.5 (SD 2.6) episodes in the POST period (p < 0.0001). No change in antibiotic class was noted, and co-amoxiclav remained the preferred therapy in 28% of cases, followed by amoxicillin. These results were confirmed among children with recurrent RTIs. Conclusions: OM-85 is effective in preventing both antibiotic prescriptions and RTIs in children.
Collapse
Affiliation(s)
- Anna Cantarutti
- Unit of Biostatistics, Epidemiology and Public Health, Department of Statistics and Quantitative Methods, University of Milano-Bicocca, 20126 Milan, Italy
- National Centre for Healthcare Research and Pharmacoepidemiology, Department of Statistics and Quantitative Methods, University of Milano-Bicocca, 20126 Milan, Italy
- Società Servizi Telematici-Pedianet, 35121 Padua, Italy
| | - Elisa Barbieri
- Division of Pediatric Infectious Diseases, Department for Woman and Child Health, University of Padua, 35128 Padua, Italy
| | | | | | - Cristina Canova
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | - Carlo Giaquinto
- Società Servizi Telematici-Pedianet, 35121 Padua, Italy
- Division of Pediatric Infectious Diseases, Department for Woman and Child Health, University of Padua, 35128 Padua, Italy
| |
Collapse
|
37
|
Pacheco GA, Gálvez NMS, Soto JA, Andrade CA, Kalergis AM. Bacterial and Viral Coinfections with the Human Respiratory Syncytial Virus. Microorganisms 2021; 9:microorganisms9061293. [PMID: 34199284 PMCID: PMC8231868 DOI: 10.3390/microorganisms9061293] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023] Open
Abstract
The human respiratory syncytial virus (hRSV) is one of the leading causes of acute lower respiratory tract infections in children under five years old. Notably, hRSV infections can give way to pneumonia and predispose to other respiratory complications later in life, such as asthma. Even though the social and economic burden associated with hRSV infections is tremendous, there are no approved vaccines to date to prevent the disease caused by this pathogen. Recently, coinfections and superinfections have turned into an active field of study, and interactions between many viral and bacterial pathogens have been studied. hRSV is not an exception since polymicrobial infections involving this virus are common, especially when illness has evolved into pneumonia. Here, we review the epidemiology and recent findings regarding the main polymicrobial infections involving hRSV and several prevalent bacterial and viral respiratory pathogens, such as Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, Klebsiella pneumoniae, human rhinoviruses, influenza A virus, human metapneumovirus, and human parainfluenza viruses. As reports of most polymicrobial infections involving hRSV lack a molecular basis explaining the interaction between hRSV and these pathogens, we believe this review article can serve as a starting point to interesting and very much needed research in this area.
Collapse
Affiliation(s)
- Gaspar A. Pacheco
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute of Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (G.A.P.); (N.M.S.G.); (J.A.S.); (C.A.A.)
| | - Nicolás M. S. Gálvez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute of Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (G.A.P.); (N.M.S.G.); (J.A.S.); (C.A.A.)
| | - Jorge A. Soto
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute of Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (G.A.P.); (N.M.S.G.); (J.A.S.); (C.A.A.)
| | - Catalina A. Andrade
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute of Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (G.A.P.); (N.M.S.G.); (J.A.S.); (C.A.A.)
| | - Alexis M. Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute of Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (G.A.P.); (N.M.S.G.); (J.A.S.); (C.A.A.)
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
- Correspondence: ; Tel.: +56-2-686-2842; Fax: +56-2-222-5515
| |
Collapse
|
38
|
Sex and Gender Differences in Lung Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:227-258. [PMID: 34019273 DOI: 10.1007/978-3-030-68748-9_14] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sex differences in the anatomy and physiology of the respiratory system have been widely reported. These intrinsic sex differences have also been shown to modulate the pathophysiology, incidence, morbidity, and mortality of several lung diseases across the life span. In this chapter, we describe the epidemiology of sex differences in respiratory diseases including neonatal lung disease (respiratory distress syndrome, bronchopulmonary dysplasia) and pediatric and adult disease (including asthma, cystic fibrosis, idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, lung cancer, lymphangioleiomyomatosis, obstructive sleep apnea, pulmonary arterial hypertension, and respiratory viral infections such as respiratory syncytial virus, influenza, and SARS-CoV-2). We also discuss the current state of research on the mechanisms underlying the observed sex differences in lung disease susceptibility and severity and the importance of considering both sex and gender variables in research studies' design and analysis.
Collapse
|
39
|
New Look at RSV Infection: Tissue Clearing and 3D Imaging of the Entire Mouse Lung at Cellular Resolution. Viruses 2021; 13:v13020201. [PMID: 33525646 PMCID: PMC7912480 DOI: 10.3390/v13020201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Respiratory Syncytial Virus (RSV) is the major cause of severe acute respiratory tract illness in young children worldwide and a main pathogen for the elderly and immune-compromised people. In the absence of vaccines or effective treatments, a better characterization of the pathogenesis of RSV infection is required. To date, the pathophysiology of the disease and its diagnosis has mostly relied on chest X-ray and genome detection in nasopharyngeal swabs. The development of new imaging approaches is instrumental to further the description of RSV spread, virus-host interactions and related acute respiratory disease, at the level of the entire lung. METHODS By combining tissue clearing, 3D microscopy and image processing, we developed a novel visualization tool of RSV infection in undissected mouse lungs. RESULTS Whole tissue analysis allowed the identification of infected cell subtypes, based on both morphological traits and position within the cellular network. Furthermore, 3D imaging was also valuable to detect the cytoplasmic viral factories, also called inclusion bodies, a hallmark of RSV infection. CONCLUSIONS Whole lung clearing and 3D deep imaging represents an unprecedented visualization method of infected lungs to allow insight into RSV pathophysiology and improve the 2D histology analyses.
Collapse
|
40
|
Cortez V, Schultz-Cherry S. The role of goblet cells in viral pathogenesis. FEBS J 2021; 288:7060-7072. [PMID: 33507606 PMCID: PMC8013445 DOI: 10.1111/febs.15731] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 12/19/2022]
Abstract
Goblet cells are specialized epithelial cells that are essential to the formation of the mucus barriers in the airways and intestines. Armed with an arsenal of defenses, goblet cells can rapidly respond to infection but must balance this response with maintaining homeostasis. Whereas goblet cell defenses against bacterial and parasitic infections have been characterized, we are just beginning to understand their responses to viral infections. Here, we outline what is known about the enteric and respiratory viruses that target goblet cells, the direct and bystander effects caused by viral infection and how viral interactions with the mucus barrier can alter the course of infection. Together, these factors can play a significant role in driving viral pathogenesis and disease outcomes.
Collapse
Affiliation(s)
- Valerie Cortez
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
41
|
Nicolas De Lamballerie C, Pizzorno A, Dubois J, Padey B, Julien T, Traversier A, Carbonneau J, Orcel E, Lina B, Hamelin ME, Roche M, Textoris J, Boivin G, Legras-Lachuer C, Terrier O, Rosa-Calatrava M. Human Respiratory Syncytial Virus-Induced Immune Signature of Infection Revealed by Transcriptome Analysis of Clinical Pediatric Nasopharyngeal Swab Samples. J Infect Dis 2020; 223:1052-1061. [PMID: 32726438 DOI: 10.1093/infdis/jiaa468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/24/2020] [Indexed: 11/12/2022] Open
Abstract
Human respiratory syncytial virus (HRSV) constitutes one the main causes of respiratory infection in neonates and infants worldwide. Transcriptome analysis of clinical samples using high-throughput technologies remains an important tool to better understand virus-host complex interactions in the real-life setting but also to identify new diagnosis/prognosis markers or therapeutics targets. A major challenge when exploiting clinical samples such as nasal swabs, washes, or bronchoalveolar lavages is the poor quantity and integrity of nucleic acids. In this study, we applied a tailored transcriptomics workflow to exploit nasal wash samples from children who tested positive for HRSV. Our analysis revealed a characteristic immune signature as a direct reflection of HRSV pathogenesis and highlighted putative biomarkers of interest such as IP-10, TMEM190, MCEMP1, and TIMM23.
Collapse
Affiliation(s)
- Claire Nicolas De Lamballerie
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France.,Viroscan3D SAS, Lyon, France
| | - Andrés Pizzorno
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France
| | - Julia Dubois
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France
| | - Blandine Padey
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France
| | - Thomas Julien
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France.,VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Aurélien Traversier
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France
| | - Julie Carbonneau
- Research Center in Infectious Diseases, Centre Hospitalier Universitaire de Quebec and Laval University, Quebec City, Quebec, Canada
| | | | - Bruno Lina
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France
| | - Marie-Eve Hamelin
- Research Center in Infectious Diseases, Centre Hospitalier Universitaire de Quebec and Laval University, Quebec City, Quebec, Canada
| | | | - Julien Textoris
- Pathophysiology of Injury-Induced Immunosuppression, Hospices Civils de Lyon, bioMérieux, Université Claude Bernard Lyon 1, Hôpital Edouard Herriot, Lyon, France
| | - Guy Boivin
- Research Center in Infectious Diseases, Centre Hospitalier Universitaire de Quebec and Laval University, Quebec City, Quebec, Canada
| | - Catherine Legras-Lachuer
- Viroscan3D SAS, Lyon, France.,Ecologie Microbienne, UMR CNRS 5557, USC INRA 1364, Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne, France
| | - Olivier Terrier
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France
| | - Manuel Rosa-Calatrava
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France.,VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| |
Collapse
|
42
|
Fergie J, Suh M, Jiang X, Fryzek JP, Gonzales T. Respiratory Syncytial Virus and All-Cause Bronchiolitis Hospitalizations Among Preterm Infants Using the Pediatric Health Information System (PHIS). J Infect Dis 2020; 225:1197-1204. [PMID: 32691037 PMCID: PMC8974836 DOI: 10.1093/infdis/jiaa435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/17/2020] [Indexed: 12/25/2022] Open
Abstract
Background In 2014, the American Academy of Pediatrics stopped recommending palivizumab to otherwise healthy 29–34 weeks’ gestational age (wGA) infants aged <12 months at respiratory syncytial virus (RSV) season start. Here, we compare the burden of RSV hospitalizations (RSVH) and all-cause bronchiolitis hospitalizations (BH) before and after 2014 among otherwise healthy 29–34 wGA infants hospitalized at ≤6 months of age. Methods A historical, observational cohort study was conducted to evaluate RSVH and BH in 29–34 wGA infants during the 2010–2017 RSV seasons using encounter data from 51 United States children’s hospitals that comprise the Pediatric Health Information System. Results The overall cohort included 67 570 RSVH out of 96 281 patients with BH. wGA was known for 22 937 RSVH and 33 289 BH. For 29–34 wGA infants, there were 8.7% and 14.2% RSVH before and after 2014, respectively (P < .0001). Intensive care unit admissions increased for RSVH (from 54.5% to 64.2%; P = .0002) and BH (from 46.7% to 54.5%; P = .0005) after controlling for sex, race, comorbidity, and cluster. The total cost of care increased for RSVH from $37 million to nearly $60 million. Conclusions RSVH, BH, and their severity increased among 29–34 wGA infants in the 3 RSV seasons following 2014.
Collapse
Affiliation(s)
- Jaime Fergie
- Department of Pediatrics, Driscoll Children’s Hospital, Corpus Christi, Texas, USA
| | - Mina Suh
- EpidStrategies, Rockville, Maryland, USA
| | | | | | | |
Collapse
|
43
|
Soto JA, Gálvez NMS, Andrade CA, Pacheco GA, Bohmwald K, Berrios RV, Bueno SM, Kalergis AM. The Role of Dendritic Cells During Infections Caused by Highly Prevalent Viruses. Front Immunol 2020; 11:1513. [PMID: 32765522 PMCID: PMC7378533 DOI: 10.3389/fimmu.2020.01513] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are a type of innate immune cells with major relevance in the establishment of an adaptive response, as they are responsible for the activation of lymphocytes. Since their discovery, several reports of their role during infectious diseases have been performed, highlighting their functions and their mechanisms of action. DCs can be categorized into different subsets, and each of these subsets expresses a wide arrange of receptors and molecules that aid them in the clearance of invading pathogens. Interferon (IFN) is a cytokine -a molecule of protein origin- strongly associated with antiviral immune responses. This cytokine is secreted by different cell types and is fundamental in the modulation of both innate and adaptive immune responses against viral infections. Particularly, DCs are one of the most important immune cells that produce IFN, with type I IFNs (α and β) highlighting as the most important, as they are associated with viral clearance. Type I IFN secretion can be induced via different pathways, activated by various components of the virus, such as surface proteins or genetic material. These molecules can trigger the activation of the IFN pathway trough surface receptors, including IFNAR, TLR4, or some intracellular receptors, such as TLR7, TLR9, and TLR3. Here, we discuss various types of dendritic cells found in humans and mice; their contribution to the activation of the antiviral response triggered by the secretion of IFN, through different routes of the induction for this important antiviral cytokine; and as to how DCs are involved in human infections that are considered highly frequent nowadays.
Collapse
Affiliation(s)
- Jorge A Soto
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolas M S Gálvez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina A Andrade
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gaspar A Pacheco
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karen Bohmwald
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roslye V Berrios
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
44
|
Tahir ul Qamar M, Shokat Z, Muneer I, Ashfaq UA, Javed H, Anwar F, Bari A, Zahid B, Saari N. Multiepitope-Based Subunit Vaccine Design and Evaluation against Respiratory Syncytial Virus Using Reverse Vaccinology Approach. Vaccines (Basel) 2020; 8:E288. [PMID: 32521680 PMCID: PMC7350008 DOI: 10.3390/vaccines8020288] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
Respiratory syncytial virus (RSV) is primarily associated with respiratory disorders globally. Despite the availability of information, there is still no competitive vaccine available for RSV. Therefore, the present study has been designed to develop a multiepitope-based subunit vaccine (MEV) using a reverse vaccinology approach to curb RSV infections. Briefly, two highly antigenic and conserved proteins of RSV (glycoprotein and fusion protein) were selected and potential epitopes of different categories (B-cell and T-cell) were identified from them. Eminently antigenic and overlapping epitopes, which demonstrated strong associations with their respective human leukocyte antigen (HLA) alleles and depicted collective ~70% coverage of the world's populace, were shortlisted. Finally, 282 amino acids long MEV construct was established by connecting 13 major histocompatibility complex (MHC) class-I with two MHC class-II epitopes with appropriate adjuvant and linkers. Adjuvant and linkers were added to increase the immunogenic stimulation of the MEV. Developed MEV was stable, soluble, non-allergenic, non-toxic, flexible and highly antigenic. Furthermore, molecular docking and molecular dynamics (MD) simulations analyses were carried out. Results have shown a firm and robust binding affinity of MEV with human pathogenic toll-like receptor three (TLR3). The computationally mediated immune response of MEV demonstrated increased interferon-γ production, a significant abundance of immunoglobulin and activation of macrophages which are essential for immune-response against RSV. Moreover, MEV codons were optimized and in silico cloning was performed, to ensure its increased expression. These outcomes proposed that the MEV developed in this study will be a significant candidate against RSV to control and prevent RSV-related disorders if further investigated experimentally.
Collapse
Affiliation(s)
| | - Zeeshan Shokat
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan; (Z.S.); (U.A.A.); (H.J.)
| | - Iqra Muneer
- School of Life Sciences, University of Science and Technology of China, Hefei 230052, China;
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan; (Z.S.); (U.A.A.); (H.J.)
| | - Hamna Javed
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan; (Z.S.); (U.A.A.); (H.J.)
| | - Farooq Anwar
- Department of Chemistry, University of Sargodha, Sargodha 40100, Pakistan;
| | - Amna Bari
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China;
| | - Barira Zahid
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China;
| | - Nazamid Saari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|