1
|
Nardo D, Maddox EG, Riley JL. Cell therapies for viral diseases: a new frontier. Semin Immunopathol 2025; 47:5. [PMID: 39747475 PMCID: PMC11695571 DOI: 10.1007/s00281-024-01031-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025]
Abstract
Despite advances in medicine and antimicrobial research, viral infections continue to pose a major threat to human health. While major strides have been made in generating vaccines and small molecules to combat emerging pathogens, new modalities of treatment are warranted in diseases where there is a lack of treatment options, or where treatment cannot fully eradicate pathogens, as in HIV infection. Cellular therapies, some of which are FDA approved for treating cancer, take advantage of our developing understanding of the immune system, and harness this knowledge to enhance, or direct, immune responses toward infectious agents. As with cancer, viruses that evade immunity, do so by avoiding immune recognition or by redirecting the cellular responses that would eradicate them. As such, infusing virus specific immune cells has the potential to improve patient outcomes and should be investigated as a potential tool in the arsenal to fight infection. The present manuscript summarizes key findings made using cellular therapies for the treatment of viral infections, focusing on the potential that these strategies might have in controlling disease.
Collapse
Affiliation(s)
- David Nardo
- Department of Microbiology and Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Emileigh G Maddox
- Department of Microbiology and Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - James L Riley
- Department of Microbiology and Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
2
|
Russell GC, Hamzaoui Y, Rho D, Sutrave G, Choi JS, Missan DS, Reckard GA, Gustafson MP, Kim GB. Synthetic biology approaches for enhancing safety and specificity of CAR-T cell therapies for solid cancers. Cytotherapy 2024; 26:842-857. [PMID: 38639669 DOI: 10.1016/j.jcyt.2024.03.484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/20/2024]
Abstract
CAR-T cell therapies have been successful in treating numerous hematologic malignancies as the T cell can be engineered to target a specific antigen associated with the disease. However, translating CAR-T cell therapies for solid cancers is proving more challenging due to the lack of truly tumor-associated antigens and the high risk of off-target toxicities. To combat this, numerous synthetic biology mechanisms are being incorporated to create safer and more specific CAR-T cells that can be spatiotemporally controlled with increased precision. Here, we seek to summarize and analyze the advancements for CAR-T cell therapies with respect to clinical implementation, from the perspective of synthetic biology and immunology. This review should serve as a resource for further investigation and growth within the field of personalized cellular therapies.
Collapse
Affiliation(s)
- Grace C Russell
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Yassin Hamzaoui
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Daniel Rho
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Gaurav Sutrave
- The University of Sydney, Sydney, Australia; Department of Haematology, Westmead Hospital, Sydney, Australia; Immuno & Gene Therapy Committee, International Society for Cell and Gene Therapy, Vancouver, Canada
| | - Joseph S Choi
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Dara S Missan
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Gabrielle A Reckard
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Michael P Gustafson
- Immuno & Gene Therapy Committee, International Society for Cell and Gene Therapy, Vancouver, Canada; Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Phoenix, Arizona, USA; Department of Immunology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Gloria B Kim
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, Arizona, USA; Department of Immunology, Mayo Clinic Arizona, Scottsdale, Arizona, USA.
| |
Collapse
|
3
|
Yang Z, Liu Y, Zhao H. CAR T treatment beyond cancer: Hope for immunomodulatory therapy of non-cancerous diseases. Life Sci 2024; 344:122556. [PMID: 38471620 DOI: 10.1016/j.lfs.2024.122556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 03/14/2024]
Abstract
Engineering a patient's own T cells to accurately identify and eliminate cancer cells has effectively cured individuals afflicted with previously incurable hematologic cancers. These findings have stimulated research into employing chimeric antigen receptor (CAR) T therapy across various areas within the field of oncology. However, evidence from both clinical and preclinical investigations emphasize the broader potential of CAR T therapy, extending beyond oncology to address autoimmune disorders, persistent infections, cardiac fibrosis, age-related ailments and other conditions. Concurrently, the advent of novel technologies and platforms presents additional avenues for utilizing CAR T therapy in non-cancerous contexts. This review provides an overview of the rationale behind CAR T therapy, delineates ongoing challenges in its application to cancer treatment, summarizes recent findings in non-cancerous diseases, and engages in discourse regarding emerging technologies that bear relevance. The review delves into prospective applications of this therapeutic approach across a diverse range of scenarios. Lastly, the review underscores concerns related to precision and safety, while also outlining the envisioned trajectory for extending CAR T therapy beyond cancer treatment.
Collapse
Affiliation(s)
- Zhibo Yang
- Department of Neurosurgery, 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong, Shaanxi 723000, China
| | - Yingfeng Liu
- Department of Neurosurgery, Tianshui First People's Hospital, Tianshui, Gansu 741000, China
| | - Hai Zhao
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266005, China.
| |
Collapse
|
4
|
Joseph J, Sandel G, Kulkarni R, Alatrash R, Herrera BB, Jain P. Antibody and Cell-Based Therapies against Virus-Induced Cancers in the Context of HIV/AIDS. Pathogens 2023; 13:14. [PMID: 38251321 PMCID: PMC10821063 DOI: 10.3390/pathogens13010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
Infectious agents, notably viruses, can cause or increase the risk of cancer occurrences. These agents often disrupt normal cellular functions, promote uncontrolled proliferation and growth, and trigger chronic inflammation, leading to cancer. Approximately 20% of all cancer cases in humans are associated with an infectious pathogen. The International Agency for Research on Cancer (IARC) recognizes seven viruses as direct oncogenic agents, including Epstein-Barr Virus (EBV), Kaposi's Sarcoma-associated herpesvirus (KSHV), human T-cell leukemia virus type-1 (HTLV-1), human papilloma virus (HPV), hepatitis C virus (HCV), hepatitis B virus (HBV), and human immunodeficiency virus type 1 (HIV-1). Most viruses linked to increased cancer risk are typically transmitted through contact with contaminated body fluids and high-risk behaviors. The risk of infection can be reduced through vaccinations and routine testing, as well as recognizing and addressing risky behaviors and staying informed about public health concerns. Numerous strategies are currently in pre-clinical phases or undergoing clinical trials for targeting cancers driven by viral infections. Herein, we provide an overview of risk factors associated with increased cancer incidence in people living with HIV (PLWH) as well as other chronic viral infections, and contributing factors such as aging, toxicity from ART, coinfections, and comorbidities. Furthermore, we highlight both antibody- and cell-based strategies directed against virus-induced cancers while also emphasizing approaches aimed at discovering cures or achieving complete remission for affected individuals.
Collapse
Affiliation(s)
- Julie Joseph
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (J.J.); (G.S.)
| | - Grace Sandel
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (J.J.); (G.S.)
| | - Ratuja Kulkarni
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (J.J.); (G.S.)
| | - Reem Alatrash
- Global Health Institute, Rutgers University, New Brunswick, NJ 08901, USA; (R.A.); (B.B.H.)
- Department of Medicine, Division of Allergy, Immunology and Infectious Diseases, Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Bobby Brooke Herrera
- Global Health Institute, Rutgers University, New Brunswick, NJ 08901, USA; (R.A.); (B.B.H.)
- Department of Medicine, Division of Allergy, Immunology and Infectious Diseases, Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Pooja Jain
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (J.J.); (G.S.)
| |
Collapse
|
5
|
Zhou Y, Jadlowsky J, Baiduc C, Klattenhoff AW, Chen Z, Bennett AD, Pumphrey NJ, Jakobsen BK, Riley JL. Chimeric antigen receptors enable superior control of HIV replication by rapidly killing infected cells. PLoS Pathog 2023; 19:e1011853. [PMID: 38100526 PMCID: PMC10773964 DOI: 10.1371/journal.ppat.1011853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/08/2024] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
Engineered T cells hold great promise to become part of an effective HIV cure strategy, but it is currently unclear how best to redirect T cells to target HIV. To gain insight, we generated engineered T cells using lentiviral vectors encoding one of three distinct HIV-specific T cell receptors (TCRs) or a previously optimized HIV-targeting chimeric antigen receptor (CAR) and compared their functional capabilities. All engineered T cells had robust, antigen-specific polyfunctional cytokine profiles when mixed with artificial antigen-presenting cells. However, only the CAR T cells could potently control HIV replication. TCR affinity enhancement did not augment HIV control but did allow TCR T cells to recognize common HIV escape variants. Interestingly, either altering Nef activity or adding additional target epitopes into the HIV genome bolstered TCR T cell anti-HIV activity, but CAR T cells remained superior in their ability to control HIV replication. To better understand why CAR T cells control HIV replication better than TCR T cells, we performed a time course to determine when HIV-specific T cells were first able to activate Caspase 3 in HIV-infected targets. We demonstrated that CAR T cells recognized and killed HIV-infected targets more rapidly than TCR T cells, which correlates with their ability to control HIV replication. These studies suggest that the speed of target recognition and killing is a key determinant of whether engineered T cell therapies will be effective against infectious diseases.
Collapse
Affiliation(s)
- Yuqi Zhou
- Department of Microbiology and Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Julie Jadlowsky
- Department of Microbiology and Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Caitlin Baiduc
- Department of Microbiology and Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Alex W. Klattenhoff
- Department of Microbiology and Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Zhilin Chen
- Department of Microbiology and Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | | | | | - Bent K. Jakobsen
- Adaptimmune Ltd, Abingdon, United Kingdom
- Immunocore Ltd., Abingdon, United Kingdom
| | - James L. Riley
- Department of Microbiology and Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
6
|
Baker DJ, Arany Z, Baur JA, Epstein JA, June CH. CAR T therapy beyond cancer: the evolution of a living drug. Nature 2023; 619:707-715. [PMID: 37495877 DOI: 10.1038/s41586-023-06243-w] [Citation(s) in RCA: 140] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/22/2023] [Indexed: 07/28/2023]
Abstract
Engineering a patient's own T cells to selectively target and eliminate tumour cells has cured patients with untreatable haematologic cancers. These results have energized the field to apply chimaeric antigen receptor (CAR) T therapy throughout oncology. However, evidence from clinical and preclinical studies underscores the potential of CAR T therapy beyond oncology in treating autoimmunity, chronic infections, cardiac fibrosis, senescence-associated disease and other conditions. Concurrently, the deployment of new technologies and platforms provides further opportunity for the application of CAR T therapy to noncancerous pathologies. Here we review the rationale behind CAR T therapy, current challenges faced in oncology, a synopsis of preliminary reports in noncancerous diseases, and a discussion of relevant emerging technologies. We examine potential applications for this therapy in a wide range of contexts. Last, we highlight concerns regarding specificity and safety and outline the path forward for CAR T therapy beyond cancer.
Collapse
Affiliation(s)
- Daniel J Baker
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA.
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Zoltan Arany
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph A Baur
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan A Epstein
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Carl H June
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Rothemejer FH, Lauritsen NP, Juhl AK, Schleimann MH, König S, Søgaard OS, Bak RO, Tolstrup M. Development of HIV-Resistant CAR T Cells by CRISPR/Cas-Mediated CAR Integration into the CCR5 Locus. Viruses 2023; 15:202. [PMID: 36680242 PMCID: PMC9862650 DOI: 10.3390/v15010202] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Adoptive immunotherapy using chimeric antigen receptor (CAR) T cells has been highly successful in treating B cell malignancies and holds great potential as a curative strategy for HIV infection. Recent advances in the use of anti-HIV broadly neutralizing antibodies (bNAbs) have provided vital information for optimal antigen targeting of CAR T cells. However, CD4+ CAR T cells are susceptible to HIV infection, limiting their therapeutic potential. In the current study, we engineered HIV-resistant CAR T cells using CRISPR/Cas9-mediated integration of a CAR cassette into the CCR5 locus. We used a single chain variable fragment (scFv) of the clinically potent bNAb 10-1074 as the antigen-targeting domain in our anti-HIV CAR T cells. Our anti-HIV CAR T cells showed specific lysis of HIV-infected cells in vitro. In a PBMC humanized mouse model of HIV infection, the anti-HIV CAR T cells expanded and transiently limited HIV infection. In conclusion, this study provides proof-of-concept for developing HIV-resistant CAR T cells using CRISPR/Cas9 targeted integration.
Collapse
Affiliation(s)
- Frederik Holm Rothemejer
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Nanna Pi Lauritsen
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Anna Karina Juhl
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Mariane Høgsbjerg Schleimann
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Saskia König
- Department of Biomedicine, Aarhus University, 8200 Aarhus, Denmark
| | - Ole Schmeltz Søgaard
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Rasmus O. Bak
- Department of Biomedicine, Aarhus University, 8200 Aarhus, Denmark
- Aarhus Institute of Advanced Studies, Aarhus University, 8200 Aarhus, Denmark
| | - Martin Tolstrup
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus, Denmark
| |
Collapse
|
8
|
Chikileva I, Shubina I, Burtseva AM, Kirgizov K, Stepanyan N, Varfolomeeva S, Kiselevskiy M. Antiviral Cell Products against COVID-19: Learning Lessons from Previous Research in Anti-Infective Cell-Based Agents. Biomedicines 2022; 10:biomedicines10040868. [PMID: 35453618 PMCID: PMC9027720 DOI: 10.3390/biomedicines10040868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
COVID-19 is a real challenge for the protective immunity. Some people do not respond to vaccination by acquiring an appropriate immunological memory. The risk groups for this particular infection such as the elderly and people with compromised immunity (cancer patients, pregnant women, etc.) have the most serious problems in developing an adequate immune response. Therefore, dendritic cell (DC) vaccines that are loaded ex vivo with SARS-CoV-2 antigens in the optimal conditions are promising for immunization. Lymphocyte effector cells with chimeric antigen receptor (CAR lymphocytes) are currently used mainly as anti-tumor treatment. Before 2020, few studies on the antiviral CAR lymphocytes were reported, but since the outbreak of SARS-CoV-2 the number of such studies has increased. The basis for CARs against SARS-CoV-2 were several virus-specific neutralizing monoclonal antibodies. We propose a similar, but basically novel and more universal approach. The extracellular domain of the immunoglobulin G receptors will be used as the CAR receptor domain. The specificity of the CAR will be determined by the antibodies, which it has bound. Therefore, such CAR lymphocytes are highly universal and have functional activity against any infectious agents that have protective antibodies binding to a foreign surface antigen on the infected cells.
Collapse
Affiliation(s)
- Irina Chikileva
- Research Institute of Experimental Therapy and Diagnostics of Tumor, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (I.S.); (M.K.)
- Correspondence:
| | - Irina Shubina
- Research Institute of Experimental Therapy and Diagnostics of Tumor, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (I.S.); (M.K.)
| | - Anzhelika-Mariia Burtseva
- College of New Materials and Nanotechnologies, National University of Science and Technology “MISiS”, 119049 Moscow, Russia;
| | - Kirill Kirgizov
- Research Institute of Children Oncology and Hematology, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (K.K.); (N.S.); (S.V.)
| | - Nara Stepanyan
- Research Institute of Children Oncology and Hematology, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (K.K.); (N.S.); (S.V.)
| | - Svetlana Varfolomeeva
- Research Institute of Children Oncology and Hematology, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (K.K.); (N.S.); (S.V.)
| | - Mikhail Kiselevskiy
- Research Institute of Experimental Therapy and Diagnostics of Tumor, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (I.S.); (M.K.)
| |
Collapse
|
9
|
Zhou Y, Maldini CR, Jadlowsky J, Riley JL. Challenges and Opportunities of Using Adoptive T-Cell Therapy as Part of an HIV Cure Strategy. J Infect Dis 2021; 223:38-45. [PMID: 33586770 DOI: 10.1093/infdis/jiaa223] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
HIV-infected individuals successfully controlling viral replication via antiretroviral therapy often have a compromised HIV-specific T-cell immune response due to the lack of CD4 T-cell help, viral escape, T-cell exhaustion, and reduction in numbers due to the withdrawal of cognate antigen. A successful HIV cure strategy will likely involve a durable and potent police force that can effectively recognize and eliminate remaining virus that may emerge decades after an individual undergoes an HIV cure regimen. T cells are ideally suited to serve in this role, but given the state of the HIV-specific T-cell response, it is unclear how to best restore HIV-specific T-cell activity prior initiation of a HIV cure strategy. Here, we review several strategies of generating HIV-specific T cells ex vivo that are currently being tested in the clinic and discuss how infused T cells can be part of an HIV cure strategy.
Collapse
Affiliation(s)
- Yuqi Zhou
- Department of Microbiology, Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Colby R Maldini
- Department of Microbiology, Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Julie Jadlowsky
- Department of Microbiology, Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James L Riley
- Department of Microbiology, Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Scott TA, O’Meally D, Grepo NA, Soemardy C, Lazar DC, Zheng Y, Weinberg MS, Planelles V, Morris KV. Broadly active zinc finger protein-guided transcriptional activation of HIV-1. Mol Ther Methods Clin Dev 2021; 20:18-29. [PMID: 33335944 PMCID: PMC7726486 DOI: 10.1016/j.omtm.2020.10.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) causes a persistent viral infection resulting in the demise of immune regulatory cells. Clearance of HIV-1 infection results in integration of proviral DNA into the genome of host cells, which provides a means for evasion and long-term persistence. A therapeutic compound that specifically targets and sustainably activates a latent HIV-1 provirus could be transformative and is the goal for the "shock-and-kill" approach to a functional cure for HIV-1. Substantial progress has been made toward the development of recombinant proteins that target specific genomic loci for gene activation, repression, or inactivation by directed mutations. However, most of these modalities are too large or too complex for efficient therapeutic application. We describe here the development and testing of a novel recombinant zinc finger protein transactivator, ZFP-362-VPR, which specifically and potently enhances proviral HIV-1 transcription both in established latency models and activity across different viral clades. Additionally, ZFP-362-VPR-activated HIV-1 reporter gene expression in a well-established primary human CD4+ T cell latency model and off-target pathways were determined by transcriptome analyses. This study provides clear proof of concept for the application of a novel, therapeutically relevant, protein transactivator to purge cellular reservoirs of HIV-1.
Collapse
Affiliation(s)
- Tristan A. Scott
- Center for Gene Therapy, City of Hope, Beckman Research Institute and Hematological Malignancy and Stem Cell Transplantation Institute at the City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Denis O’Meally
- Center for Gene Therapy, City of Hope, Beckman Research Institute and Hematological Malignancy and Stem Cell Transplantation Institute at the City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Nicole Anne Grepo
- Center for Gene Therapy, City of Hope, Beckman Research Institute and Hematological Malignancy and Stem Cell Transplantation Institute at the City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Citradewi Soemardy
- Center for Gene Therapy, City of Hope, Beckman Research Institute and Hematological Malignancy and Stem Cell Transplantation Institute at the City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Daniel C. Lazar
- Department of Immunology and Infectious Disease, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yue Zheng
- University of Utah School of Medicine, Division of Microbiology and Immunology, Department of Pathology, Salt Lake City, UT 92037, USA
| | - Marc S. Weinberg
- Department of Immunology and Infectious Disease, The Scripps Research Institute, La Jolla, CA 92037, USA
- Wits-SAMRC Antiviral Gene Therapy Research Unit, Department of Molecular Medicine & Hematology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- HIV Pathogenesis Research Unit, Department of Molecular Medicine and Haematology, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Vicente Planelles
- University of Utah School of Medicine, Division of Microbiology and Immunology, Department of Pathology, Salt Lake City, UT 92037, USA
| | - Kevin V. Morris
- Center for Gene Therapy, City of Hope, Beckman Research Institute and Hematological Malignancy and Stem Cell Transplantation Institute at the City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| |
Collapse
|
11
|
Abstract
Genetically engineered T cell immunotherapies have provided remarkable clinical success to treat B cell acute lymphoblastic leukaemia by harnessing a patient's own T cells to kill cancer, and these approaches have the potential to provide therapeutic benefit for numerous other cancers, infectious diseases and autoimmunity. By introduction of either a transgenic T cell receptor or a chimeric antigen receptor, T cells can be programmed to target cancer cells. However, initial studies have made it clear that the field will need to implement more complex levels of genetic regulation of engineered T cells to ensure both safety and efficacy. Here, we review the principles by which our knowledge of genetics and genome engineering will drive the next generation of adoptive T cell therapies.
Collapse
|
12
|
Haeseleer F, Eichholz K, Tareen SU, Iwamoto N, Roederer M, Kirchhoff F, Park H, Okoye AA, Corey L. Real-Time Killing Assays to Assess the Potency of a New Anti-Simian Immunodeficiency Virus Chimeric Antigen Receptor T Cell. AIDS Res Hum Retroviruses 2020; 36:998-1009. [PMID: 32988211 DOI: 10.1089/aid.2020.0163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The success of chimeric antigen receptor (CAR) T cell therapies for treating leukemia has resulted in a booming interest for the technology. Expression of a CAR in T cells allows redirection of their natural cytolytic activity toward cells presenting a specific designated surface antigen. Although CAR T cell therapies have thus far shown promising results mostly in B cell malignancy trials, interest in their potential to treat other diseases is on the rise, including using CAR T cells to control human immunodeficiency virus infection. The assessment of CAR T cell potency toward specific targets in vitro is a critical preclinical step. In this study, we describe novel assays that monitor the cytotoxicity of candidate CAR T cells toward simian immunodeficiency virus (SIV) infected CD4 T cells. The assays involve live cell imaging using a fluorescence microscopy system that records in real time the disappearance or appearance of targets infected with SIV carrying a fluorescent protein gene. The assays are highly reproducible, and their rapid turn around and reduced cost present a significant advance regarding the efficient preclinical evaluation of CAR T cell constructs and are broadly applicable to potential human diseases that could benefit from CAR T cell therapy.
Collapse
Affiliation(s)
- Françoise Haeseleer
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Karsten Eichholz
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Nami Iwamoto
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Haesun Park
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Afam A. Okoye
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Lawrence Corey
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
13
|
Mao Y, Zhao C, Zheng P, Zhang X, Xu J. Current status and future development of anti-HIV chimeric antigen receptor T-cell therapy. Immunotherapy 2020; 13:177-184. [PMID: 33225803 DOI: 10.2217/imt-2020-0199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Despite the success of antiretroviral therapy in suppressing HIV to an undetectable level in the blood and improving patients' quality of life, HIV persists in antiretroviral therapy-treated patients and threatens their lives. Anti-HIV chimeric antigen receptor (CAR) T cells could offer a cure by recognizing and killing virus-producing cells in an Env-specific manner. In this review, the authors summarize several important aspects of the development of anti-HIV CAR T cells, with a special focus on the evolution of CAR design for enhanced potency and targeting specificity, and also outline the challenges that still need to be addressed to take anti-HIV CAR T cells from a hopeful approach to a real HIV cure.
Collapse
Affiliation(s)
- Yunyu Mao
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| | - Chen Zhao
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| | - Peiyong Zheng
- LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| |
Collapse
|
14
|
|
15
|
Ward AR, Mota TM, Jones RB. Immunological approaches to HIV cure. Semin Immunol 2020; 51:101412. [PMID: 32981836 DOI: 10.1016/j.smim.2020.101412] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
Combination antiretroviral therapy (ART) to treat human immunodeficiency virus (HIV) infection has proven remarkably successful - for those who can access and afford it - yet HIV infection persists indefinitely in a reservoir of cells, despite effective ART and despite host antiviral immune responses. An HIV cure is therefore the next aspirational goal and challenge, though approaches differ in their objectives - with 'functional cures' aiming for durable viral control in the absence of ART, and 'sterilizing cures' aiming for the more difficult to realize objective of complete viral eradication. Mechanisms of HIV persistence, including viral latency, anatomical sequestration, suboptimal immune functioning, reservoir replenishment, target cell-intrinsic immune resistance, and, potentially, target cell distraction of immune effectors, likely need to be overcome in order to achieve a cure. A small fraction of people living with HIV (PLWH) naturally control infection via immune-mediated mechanisms, however, providing both sound rationale and optimism that an immunological approach to cure is possible. Herein we review up to date knowledge and emerging evidence on: the mechanisms contributing to HIV persistence, as well as potential strategies to overcome these barriers; promising immunological approaches to achieve viral control and elimination of reservoir-harboring cells, including harnessing adaptive immune responses to HIV and engineered therapies, as well as enhancers of their functions and of complementary innate immune functioning; and combination strategies that are most likely to succeed. Ultimately, a cure must be safe, effective, durable, and, eventually, scalable in order to be widely acceptable and available.
Collapse
Affiliation(s)
- Adam R Ward
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA; Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA; PhD Program in Epidemiology, The George Washington University, Washington, DC, USA
| | - Talia M Mota
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - R Brad Jones
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA; Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA.
| |
Collapse
|
16
|
Dual CD4-based CAR T cells with distinct costimulatory domains mitigate HIV pathogenesis in vivo. Nat Med 2020; 26:1776-1787. [PMID: 32868878 PMCID: PMC9422086 DOI: 10.1038/s41591-020-1039-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023]
Abstract
An effective strategy to cure HIV will likely require a potent and sustained antiviral T cell response. Here we explored the utility of chimeric antigen receptor (CAR) T cells, expressing the CD4 ectodomain to confer specificity for the HIV envelope, to mitigate HIV-induced pathogenesis in bone marrow, liver, thymus (BLT) humanized mice. CAR T cells expressing the 4-1BB/CD3-ζ endodomain were insufficient to prevent viral rebound and CD4+ T cell loss after the discontinuation of antiretroviral therapy. Through iterative improvements to the CAR T cell product, we developed Dual-CAR T cells that simultaneously expressed both 4-1BB/CD3-ζ and CD28/CD3-ζ endodomains. Dual-CAR T cells exhibited expansion kinetics that exceeded 4-1BB-, CD28- and third-generation costimulated CAR T cells, elicited effector functions equivalent to CD28-costimulated CAR T cells and prevented HIV-induced CD4+ T cell loss despite persistent viremia. Moreover, when Dual-CAR T cells were protected from HIV infection through expression of the C34-CXCR4 fusion inhibitor, these cells significantly reduced acute-phase viremia, as well as accelerated HIV suppression in the presence of antiretroviral therapy and reduced tissue viral burden. Collectively, these studies demonstrate the enhanced therapeutic potency of a novel Dual-CAR T cell product with the potential to effectively treat HIV infection.
Collapse
|
17
|
Namdari H, Rezaei F, Teymoori-Rad M, Mortezagholi S, Sadeghi A, Akbari A. CAR T cells: Living HIV drugs. Rev Med Virol 2020; 30:1-14. [PMID: 32713110 DOI: 10.1002/rmv.2139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 12/29/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1), the virus that causes AIDS (acquired immunodeficiency syndrome), is a major global public health issue. Although the advent of combined antiretroviral therapy (ART) has made significant progress in inhibiting HIV replication in patients, HIV-infected cells remain the principal cellular reservoir of HIV, this allows HIV to rebound immediately upon stopping ART, which is considered the major obstacle to curing HIV infection. Chimeric antigen receptor (CAR) cell therapy has provided new opportunities for HIV treatment. Engineering T cells or hematopoietic stem cells (HSCs) to generate CAR T cells is a rapidly growing approach to develop an efficient immune cell to fight HIV. Herein, we review preclinical and clinical data available for the development of CAR T cells. Further, the advantages and disadvantages of clinical application of anti-HIV CAR T cells will be discussed.
Collapse
Affiliation(s)
- Haideh Namdari
- Iranian Tissue Bank Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Rezaei
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Teymoori-Rad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Mortezagholi
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Sadeghi
- Iranian Tissue Bank Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Lee PH, Keller MD, Hanley PJ, Bollard CM. Virus-Specific T Cell Therapies for HIV: Lessons Learned From Hematopoietic Stem Cell Transplantation. Front Cell Infect Microbiol 2020; 10:298. [PMID: 32775304 PMCID: PMC7381350 DOI: 10.3389/fcimb.2020.00298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/19/2020] [Indexed: 12/20/2022] Open
Abstract
Human immunodeficiency virus (HIV) has caused millions of deaths and continues to threaten the health of millions of people worldwide. Despite anti-retroviral therapy (ART) substantially alleviating severity and limiting transmission, HIV has not been eradicated and its persistence can lead to other health concerns such as cancer. The only two cases of HIV cure to date are HIV+ cancer patients receiving an allogeneic hematopoietic stem cell transplantation (allo-HSCT) from a donor with the CCR5 Δ32 mutation. While this approach has not led to such success in other patients and is not applicable to HIV+ individuals without cancer, the encouraging results may point toward a breakthrough in developing a cure strategy for HIV. Adoptive transfer of virus-specific T cells (VSTs) post HSCT has been effectively used to treat and prevent reactivation of latent viral infections such as cytomegalovirus (CMV) and Epstein-Barr virus (EBV), making VSTs an attractive therapeutic to control HIV rebound. Here we will discuss the potential of using adoptive T cell therapies in combination with other treatments such as HSCT and latency reversing agents (LRAs) to achieve a functional cure for HIV.
Collapse
Affiliation(s)
- Ping-Hsien Lee
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, United States
| | - Michael D Keller
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, United States.,Division of Allergy & Immunology, Children's National Hospital, Washington, DC, United States
| | - Patrick J Hanley
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, United States.,Division of Blood and Marrow Transplantation, Children's National Hospital, Washington, DC, United States.,GW Cancer Center, The George Washington University, Washington, DC, United States
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, United States.,Division of Blood and Marrow Transplantation, Children's National Hospital, Washington, DC, United States.,GW Cancer Center, The George Washington University, Washington, DC, United States
| |
Collapse
|
19
|
Hajduczki A, Danielson DT, Elias DS, Bundoc V, Scanlan AW, Berger EA. A Trispecific Anti-HIV Chimeric Antigen Receptor Containing the CCR5 N-Terminal Region. Front Cell Infect Microbiol 2020; 10:242. [PMID: 32523897 PMCID: PMC7261873 DOI: 10.3389/fcimb.2020.00242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/27/2020] [Indexed: 01/24/2023] Open
Abstract
Anti-HIV chimeric antigen receptors (CARs) promote direct killing of infected cells, thus offering a therapeutic approach aimed at durable suppression of infection emerging from viral reservoirs. CD4-based CARs represent a favored option, since they target the essential conserved primary receptor binding site on the HIV envelope glycoprotein (Env). We have previously shown that adding a second Env-binding moiety, such as the carbohydrate recognition domain of human mannose-binding lectin (MBL) that recognizes the highly conserved oligomannose patch on gp120, increases CAR potency in an in vitro HIV suppression assay; moreover it reduces the undesired capacity for the CD4 of the CAR molecule to act as an entry receptor, thereby rendering CAR-expressing CD8+ T cells susceptible to infection. Here, we further improve the bispecific CD4-MBL CAR by adding a third targeting moiety against a distinct conserved Env determinant, i.e. a polypeptide sequence derived from the N-terminus of the HIV coreceptor CCR5. The trispecific CD4-MBL-R5Nt CAR displays enhanced in vitro anti-HIV potency compared to the CD4-MBL CAR, as well as undetectable HIV entry receptor activity. The high anti-HIV potency of the CD4-MBL-R5Nt CAR, coupled with its all-human composition and absence of immunogenic variable regions associated with antibody-based CARs, offer promise for the trispecific construct in therapeutic approaches seeking durable drug-free HIV remission.
Collapse
Affiliation(s)
- Agnes Hajduczki
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - David T Danielson
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - David S Elias
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Virgilio Bundoc
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Aaron W Scanlan
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Edward A Berger
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
20
|
Chan HY, Zhang J, Garliss CC, Kwaa AK, Blankson JN, Smith KN. A T Cell Receptor Sequencing-Based Assay Identifies Cross-Reactive Recall CD8 + T Cell Clonotypes Against Autologous HIV-1 Epitope Variants. Front Immunol 2020; 11:591. [PMID: 32318072 PMCID: PMC7154155 DOI: 10.3389/fimmu.2020.00591] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/13/2020] [Indexed: 12/31/2022] Open
Abstract
HIV-1 positive elite controllers or suppressors control viral replication without antiretroviral therapy, likely via CTL-mediated elimination of infected cells, and therefore represent a model of an HIV-1 functional cure. Efforts to cure HIV-1 accordingly rely on the existence or generation of antigen-specific cytotoxic T lymphocytes (CTL) to eradicate infected cells upon reversal of latency. Detecting and quantifying these HIV-1-specific CTL responses will be crucial for developing vaccine and T cell-based immunotherapies. A recently developed assay, called MANAFEST, uses T cell receptor (TCR) Vβ sequencing of peptide-stimulated cultures followed by a bioinformatic pipeline to identify neoantigen-specific T cells in cancer patients. This assay is more sensitive than conventional immune assays and therefore has the possibility to identify HIV-1 antigenic targets that have not been previously explored for vaccine or T cell immunotherapeutic strategies. Here we show that a modified version of the MANAFEST assay, called ViraFEST, can identify memory CD8+ T cell responses against autologous HIV-1 Gag and Nef epitope variants in an elite suppressor. Nine TCR Vβ clonotypes were identified and 6 of these were cross-reactive for autologous variants or known escape variants. Our findings are a proof of principle that the ViraFEST assay can be used to detect and monitor these responses for downstream use in immunotherapeutic treatment approaches.
Collapse
Affiliation(s)
- Hok Yee Chan
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, United States.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Jiajia Zhang
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, United States.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Caroline C Garliss
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Abena K Kwaa
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Joel N Blankson
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States.,Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Kellie N Smith
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, United States.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|
21
|
Schwarzer R, Gramatica A, Greene WC. Reduce and Control: A Combinatorial Strategy for Achieving Sustained HIV Remissions in the Absence of Antiretroviral Therapy. Viruses 2020; 12:v12020188. [PMID: 32046251 PMCID: PMC7077203 DOI: 10.3390/v12020188] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 12/23/2022] Open
Abstract
Human immunodeficiency virus (HIV-1) indefinitely persists, despite effective antiretroviral therapy (ART), within a small pool of latently infected cells. These cells often display markers of immunologic memory and harbor both replication-competent and -incompetent proviruses at approximately a 1:100 ratio. Although complete HIV eradication is a highly desirable goal, this likely represents a bridge too far for our current and foreseeable technologies. A more tractable goal involves engineering a sustained viral remission in the absence of ART––a “functional cure.” In this setting, HIV remains detectable during remission, but the size of the reservoir is small and the residual virus is effectively controlled by an engineered immune response or other intervention. Biological precedence for such an approach is found in the post-treatment controllers (PTCs), a rare group of HIV-infected individuals who, following ART withdrawal, do not experience viral rebound. PTCs are characterized by a small reservoir, greatly reduced inflammation, and the presence of a poorly understood immune response that limits viral rebound. Our goal is to devise a safe and effective means for replicating durable post-treatment control on a global scale. This requires devising methods to reduce the size of the reservoir and to control replication of this residual virus. In the following sections, we will review many of the approaches and tools that likely will be important for implementing such a “reduce and control” strategy and for achieving a PTC-like sustained HIV remission in the absence of ART.
Collapse
|
22
|
Li J. Advances toward a cure for HIV: getting beyond n=2. TOPICS IN ANTIVIRAL MEDICINE 2020; 27:91-95. [PMID: 32224499 PMCID: PMC7162679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Achieving a cure for HIV remains a priority in HIV research. Two cases of 'sterilizing cure' have been observed-in Timothy Ray Brown and the "London" patient; both patients received allogeneic hematopoietic stem cell transplantation (HSCT) from donors homozygous for the CCR5-delta 32 deletion, which impairs function of an HIV coreceptor on host cells. Other strategies that have been evaluated for achieving sterilizing cure or functional cure--ie, sustained virologic remission in the absence of antiretroviral therapy (ART)-include: HSCT with wild-type CC chemokine receptor (CCR5); early ART to limit size of the HIV latent reservoir; shock and kill strategies using latency reversing agents and/or anti-HIV broadly neutralizing antibodies; and gene therapy, including attempts to modify CCR5 genes, HIV proviruses in autologous host cells, or enhanced T cells. This article summarizes a presentation by Jonathan Li, MD, MMSc, at the International Antiviral Society-USA (IAS-USA) continuing education program held in Atlanta, Georgia, in March 2019.
Collapse
Affiliation(s)
- Jonathan Li
- Brigham and Women's Hospital at Harvard Medical School in Boston, MA, USA
| |
Collapse
|