1
|
Gong P, Ding Y, Li W, Yang J, Su X, Tian R, Zhou Y, Wang T, Jiang J, Liu R, Fang J, Feng C, Shao C, Shi Y, Li P. Neutrophil-Driven M2-Like Macrophages Are Critical for Skin Fibrosis in a Systemic Sclerosis Model. J Invest Dermatol 2024; 144:2426-2439.e3. [PMID: 38580106 DOI: 10.1016/j.jid.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 01/04/2024] [Accepted: 03/03/2024] [Indexed: 04/07/2024]
Abstract
Systemic sclerosis (SSc) is a challenging autoimmune disease characterized by progressive fibrosis affecting the skin and internal organs. Despite the known infiltration of macrophages and neutrophils, their precise contributions to SSc pathogenesis remain elusive. In this study, we elucidated that CD206hiMHCIIlo M2-like macrophages constitute the predominant pathogenic immune cell population in the fibrotic skin of a bleomycin-induced SSc mouse model. These cells emerged as pivotal contributors to the profibrotic response by orchestrating the production of TGF-β1 through a MerTK signaling-dependent manner. Notably, we observed that neutrophil infiltration was a prerequisite for accumulation of M2-like macrophages. Strategies such as neutrophil depletion or inhibition of CXCR1/2 were proven effective in reducing M2-like macrophages, subsequently mitigating SSc progression. Detailed investigations revealed that in fibrotic skin, neutrophil-released neutrophil extracellular traps were responsible for the differentiation of M2-like macrophages. Our findings illuminate the significant involvement of the neutrophil-macrophage-fibrosis axis in SSc pathogenesis, offering critical information for the development of potential therapeutic strategies.
Collapse
Affiliation(s)
- Pixia Gong
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Suzhou Medical College of Soochow University, Suzhou, China; Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yayun Ding
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Suzhou Medical College of Soochow University, Suzhou, China
| | - Wen Li
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jie Yang
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xiao Su
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Suzhou Medical College of Soochow University, Suzhou, China
| | - Ruifeng Tian
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yipeng Zhou
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Suzhou Medical College of Soochow University, Suzhou, China
| | - Tingting Wang
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Suzhou Medical College of Soochow University, Suzhou, China
| | - Junjie Jiang
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Suzhou Medical College of Soochow University, Suzhou, China
| | - Rui Liu
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jiankai Fang
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Suzhou Medical College of Soochow University, Suzhou, China
| | - Chao Feng
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Suzhou Medical College of Soochow University, Suzhou, China
| | - Changshun Shao
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yufang Shi
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Suzhou Medical College of Soochow University, Suzhou, China.
| | - Peishan Li
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Suzhou Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
2
|
Yin W, Chen Y, Wang W, Guo M, Tong L, Zhang M, Wang Z, Yuan H. Macrophage-mediated heart repair and remodeling: A promising therapeutic target for post-myocardial infarction heart failure. J Cell Physiol 2024; 239:e31372. [PMID: 39014935 DOI: 10.1002/jcp.31372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024]
Abstract
Heart failure (HF) remains prevalent in patients who survived myocardial infarction (MI). Despite the accessibility of the primary percutaneous coronary intervention and medications that alleviate ventricular remodeling with functional improvement, there is an urgent need for clinicians and basic scientists to further reveal the mechanisms behind post-MI HF as well as investigate earlier and more efficient treatment after MI. Growing numbers of studies have highlighted the crucial role of macrophages in cardiac repair and remodeling following MI, and timely intervention targeting the immune response via macrophages may represent a promising therapeutic avenue. Recently, technology such as single-cell sequencing has provided us with an updated and in-depth understanding of the role of macrophages in MI. Meanwhile, the development of biomaterials has made it possible for macrophage-targeted therapy. Thus, an overall and thorough understanding of the role of macrophages in post-MI HF and the current development status of macrophage-based therapy will assist in the further study and development of macrophage-targeted treatment for post-infarction cardiac remodeling. This review synthesizes the spatiotemporal dynamics, function, mechanism and signaling of macrophages in the process of HF after MI, as well as discusses the emerging bio-materials and possible therapeutic agents targeting macrophages for post-MI HF.
Collapse
Affiliation(s)
- Wenchao Yin
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Yong Chen
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wenjun Wang
- Department of Intensive Care Unit, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Mengqi Guo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lingjun Tong
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mingxiang Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Department of Cardiology, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zhaoyang Wang
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Haitao Yuan
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
3
|
Zhao X, Wang Q, Wang W, Lu S. Increased neutrophil extracellular traps caused by diet-induced obesity delay fracture healing. FASEB J 2024; 38:e70126. [PMID: 39446097 PMCID: PMC11580727 DOI: 10.1096/fj.202401523r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/28/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Obesity, recognized as a risk factor for nonunion, detrimentally impacts bone health, with significant physical and economic repercussions for affected individuals. Nevertheless, the precise pathomechanisms by which obesity impairs fracture healing remain insufficiently understood. Multiple studies have identified neutrophil granulocytes as key players in the systemic immune response, being the predominant immune cells in early fracture hematomas. This study identified a previously unreported critical period for neutrophil infiltration into the callus. In vivo experiments demonstrated that diet-induced obesity (DIO) mice showed earlier neutrophil infiltration, along with increased formation of neutrophil extracellular traps (NETs), compared to control mice during the endochondral phase of fracture repair. Furthermore, Padi4 knockout was found to reduce NET formation and mitigate the fracture healing delays caused by high-fat diets. Mechanistically, in vitro analyses revealed that NETs, by activating NLRP3 inflammasomes, inhibited the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and concurrently promoted M1-like macrophage polarization. These findings establish a connection between NET formation during the endochondral phase and delayed fracture healing, suggesting that targeting NETs could serve as a promising therapeutic approach for addressing obesity-induced delays in fracture recovery.
Collapse
Affiliation(s)
- Xuan Zhao
- Department of Orthopedics, Xuanwu HospitalCapital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Qijun Wang
- Department of Orthopedics, Xuanwu HospitalCapital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Wei Wang
- Department of Orthopedics, Xuanwu HospitalCapital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Shibao Lu
- Department of Orthopedics, Xuanwu HospitalCapital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| |
Collapse
|
4
|
Brockman ML, Scruggs TA, Wang L, Kabboul G, Calvert JW, Levit RD. The Cardioprotective Role of Neutrophil-Specific STING in Myocardial Ischemia/Reperfusion Injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611551. [PMID: 39314411 PMCID: PMC11418936 DOI: 10.1101/2024.09.06.611551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Background Neutrophils are the most rapid and abundant immune cells to infiltrate the myocardium following myocardial ischemia/reperfusion injury (MI/R). Neutrophil heterogeneity has not been well characterized in MI/R, and studies have shown conflicting results regarding the impact of neutrophil depletion on cardiac injury. We thus aim to study the impact of neutrophils with enriched type I interferon signature and the role of STING (stimulator of interferon genes) signaling in neutrophils on cardiac reperfusion injury. Methods We utilized single-cell RNA sequencing to study neutrophil heterogeneity in response to MI/R. We generated a neutrophil-specific STING knockout mouse to assess the role of neutrophil STING in a model of MI/R. We examined cardiac function following injury via echocardiography and assessed the immune cell trajectory following injury utilizing flow cytometry. Results We identified a population of neutrophils with enriched type I interferon signaling and response to type I interferon following MI/R. We found that genetic deletion of neutrophil-specific STING led to worsened cardiac function following MI/R. Further investigation of the immune response by flow cytometry revealed decreased neutrophil infiltration into the myocardium and a shift in macrophage polarization. Conclusions Our findings suggest that neutrophil-specific STING is cardioprotective in MI/R, partly due to its effects on downstream immune cells. These results demonstrate that early alterations or therapeutic interventions can influence key events in the resolution of inflammation following MI/R.
Collapse
Affiliation(s)
- Maegan L. Brockman
- Department of Medicine; Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Triniti A. Scruggs
- Department of Medicine; Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Lanfang Wang
- Department of Medicine; Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Gabriella Kabboul
- Department of Medicine; Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University
| | - John W. Calvert
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Rebecca D. Levit
- Department of Medicine; Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
5
|
Kostin S, Krizanic F, Kelesidis T, Pagonas N. The role of NETosis in heart failure. Heart Fail Rev 2024; 29:1097-1106. [PMID: 39073665 DOI: 10.1007/s10741-024-10421-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
The hallmark of heart failure (HF) is structural myocardial remodeling including cardiomyocyte hypertrophy, fibrosis, cardiomyocyte cell death, and a low-grade aseptic inflammation. The initiation and maintenance of persistent chronic low-grade inflammation in HF are not fully understood. Oxidative stress-mediated neutrophil extracellular traps (NETs) are the main immune defense mechanism against external bacterial infections. Furthermore, NETs play important roles in noninfectious diseases. In the settings of myocardial infarction, myocarditis, or cardiomyopathies, neutrophils infiltrate the cardiac tissue and undergo NETosis that further aggravate the inflammation. A number of stimuli may cause NETosis that is a form of programmed cell death of neutrophils that is different from apoptosis of these cells. Whether NETosis is directly involved in the pathogenesis and development of HF is still unclear. In this review, we analyzed the mechanisms and markers of NETosis, especially placing the accent on the activation of the neutrophil-specific myeloperoxidase (MPO), elastase (NE), and peptidylarginine deiminase 4 (PAD4). These conclusions are supported by the recent genetic and pharmacological studies which demonstrated that MPO, NE, and PAD4 inhibitors are effective at least in the settings of post-myocardial infarction adverse remodeling, cardiac valve diseases, cardiomyopathies, and decompensated left ventricular hypertrophy whose deterioration can lead to HF. This is essential for understanding NETosis as a contributor to pathophysiology of HF and developments of new therapies of HF.
Collapse
Affiliation(s)
- Sawa Kostin
- Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany.
| | - Florian Krizanic
- Department of Internal Medicine and Cardiology, Medical School Theodor Fontane, University Hospital Ruppin-Brandenburg, Neuruppin, Germany
| | | | - Nikolaos Pagonas
- Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany
- Department of Internal Medicine and Cardiology, Medical School Theodor Fontane, University Hospital Ruppin-Brandenburg, Neuruppin, Germany
| |
Collapse
|
6
|
Cheng J, Rink L, Wessels I. Zinc Supplementation Reduces the Formation of Neutrophil Extracellular Traps by Decreasing the Expression of Peptidyl Arginine Deiminase 4. Mol Nutr Food Res 2024; 68:e2400013. [PMID: 39138624 DOI: 10.1002/mnfr.202400013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/12/2024] [Indexed: 08/15/2024]
Abstract
SCOPE Neutrophils play a decisive role during the immediate defense against infections. However, as observed during rheumatoid arthritis, activated neutrophils can also cause tissue damage. Previous studies indicate that zinc supplementation may alter certain neutrophil functions. However, precise underlying mechanisms and possible effects of zinc deficiency remain incompletely understood. The objective of this study is to investigate the effects of changes in zinc status on formation of neutrophil extracellular traps (NETs) and other fundamental neutrophil functions. METHODS AND RESULTS Interleukin (IL)-17 and tumor necrosis factor (TNF)-α are used to simulate the inflammatory environment observed in autoimmune diseases. The study analyzes the impact of the zinc status on NETs release, using a fluorescence plate reader, and on the expression of peptidylarginine deiminase 4 (PAD4), S100A8/A9, and certain cytokines by PCR and western blot. These results show that zinc supplementation significantly reduces NETs formation and downregulates PAD4 protein expression. Zinc supplementation results in increased protein expression of interleukin-1 receptor antagonist (IL-1RA) and IL-8 in stimulated cells. CONCLUSION The results suggest that changes in extracellular zinc availability may influence the functions of neutrophils. Therefore, maintaining an appropriate zinc level is advisable for preserving innate immunity and to prevent hyper-activation of neutrophils.
Collapse
Affiliation(s)
- Jianan Cheng
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Inga Wessels
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| |
Collapse
|
7
|
Wang H, Rouhi N, Slotabec LA, Seale BC, Wen C, Filho F, Adenawoola MI, Li J. Myeloid Cells in Myocardial Ischemic Injury: The Role of the Macrophage Migration Inhibitory Factor. Life (Basel) 2024; 14:981. [PMID: 39202723 PMCID: PMC11355293 DOI: 10.3390/life14080981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
Ischemic heart disease, manifesting as myocardial infarction (MI), remains the leading cause of death in the western world. Both ischemia and reperfusion (I/R) cause myocardial injury and result in cardiac inflammatory responses. This sterile inflammation in the myocardium consists of multiple phases, involving cell death, tissue remodeling, healing, and scar formation, modulated by various cytokines, including the macrophage migration inhibitory factor (MIF). Meanwhile, different immune cells participate in these phases, with myeloid cells acting as first responders. They migrate to the injured myocardium and regulate the initial phase of inflammation. The MIF modulates the acute inflammatory response by affecting the metabolic profile and activity of myeloid cells. This review summarizes the role of the MIF in regulating myeloid cell subsets in MI and I/R injury and discusses emerging evidence of metabolism-directed cellular inflammatory responses. Based on the multifaceted role of the MIF affecting myeloid cells in MI or I/R, the MIF can be a therapeutic target to achieve metabolic balance under pathology and alleviate inflammation in the heart.
Collapse
Affiliation(s)
- Hao Wang
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA; (H.W.); (N.R.); (L.A.S.); (B.C.S.); (C.W.); (F.F.); (M.I.A.)
| | - Nadiyeh Rouhi
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA; (H.W.); (N.R.); (L.A.S.); (B.C.S.); (C.W.); (F.F.); (M.I.A.)
| | - Lily A. Slotabec
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA; (H.W.); (N.R.); (L.A.S.); (B.C.S.); (C.W.); (F.F.); (M.I.A.)
- G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS 39216, USA
| | - Blaise C. Seale
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA; (H.W.); (N.R.); (L.A.S.); (B.C.S.); (C.W.); (F.F.); (M.I.A.)
| | - Changhong Wen
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA; (H.W.); (N.R.); (L.A.S.); (B.C.S.); (C.W.); (F.F.); (M.I.A.)
| | - Fernanda Filho
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA; (H.W.); (N.R.); (L.A.S.); (B.C.S.); (C.W.); (F.F.); (M.I.A.)
| | - Michael I. Adenawoola
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA; (H.W.); (N.R.); (L.A.S.); (B.C.S.); (C.W.); (F.F.); (M.I.A.)
| | - Ji Li
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA; (H.W.); (N.R.); (L.A.S.); (B.C.S.); (C.W.); (F.F.); (M.I.A.)
- G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
8
|
Carvalho WA, Gaspar EB, Domingues R, Regitano LCA, Cardoso FF. Genetic factors underlying host resistance to Rhipicephalus microplus tick infestation in Braford cattle: a systems biology perspective. Mamm Genome 2024; 35:186-200. [PMID: 38480585 DOI: 10.1007/s00335-024-10030-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 01/29/2024] [Indexed: 05/29/2024]
Abstract
Approximately 80% of the world's cattle are raised in regions with a high risk of tick-borne diseases, resulting in significant economic losses due to parasitism by Rhipicephalus (Boophilus) microplus. However, the lack of a systemic biology approach hampers a comprehensive understanding of tick-host interactions that mediate tick resistance phenotypes. Here, we conducted a genome-wide association study (GWAS) of 2933 Braford cattle and found 340 single-nucleotide polymorphisms (SNPs) associated with tick counts. Gene expression analyses were performed on skin samples obtained from previously tick-exposed heifers with extremely high or low estimated breeding values for R. microplus counts. Evaluations were performed both before and after artificial infestation with ticks. Differentially expressed genes were found within 1-Mb windows centered at significant SNPs from GWAS. A total of 330 genes were related to the breakdown of homeostasis that was induced by larval attachment to bovine skin. Enrichment analysis pointed to a key role of proteolysis and signal transduction via JAK/STAT, NFKB and WNT/beta catenin signaling pathways. Integrative analysis on matrixEQTL revealed two cis-eQTLs and four significant SNPs in the genes peptidyl arginine deiminase type IV (PADI4) and LOC11449251. The integration of genomic data from QTL maps and transcriptome analyses has identified a set of twelve key genes that show significant associations with tick loads. These genes could be key candidates to improve the accuracy of genomic predictions for tick resistance in Braford cattle.
Collapse
|
9
|
Zhuang Q, Li M, Hu D, Li J. Recent advances in potential targets for myocardial ischemia reperfusion injury: Role of macrophages. Mol Immunol 2024; 169:1-9. [PMID: 38447462 DOI: 10.1016/j.molimm.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 03/08/2024]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a complex process that occurs when blood flow is restored after myocardium infarction (MI) with exacerbated tissue damage. Macrophages, essential cell type of the immune response, play an important role in MIRI. Macrophage subpopulations, namely M1 and M2, are distinguished by distinct phenotypes and functions. In MIRI, macrophages infiltrate in infarcted area, shaping the inflammatory response and influencing tissue healing. Resident cardiac macrophages interact with monocyte-derived macrophages in MIRI, and influence injury progression. Key factors including chemokines, cytokines, and toll-like receptors modulate macrophage behavior in MIRI. This review aims to address recent findings on the classification and the roles of macrophages in the myocardium, spanning from MI to subsequent MIRI, and highlights various signaling pathways implicated in macrophage polarization underlining the complexity of MIRI. This article will shed light on developing advanced therapeutic strategies for MIRI management.
Collapse
Affiliation(s)
- Qigang Zhuang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mingyue Li
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing 210009, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Junyi Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
10
|
Arya SB, Collie SP, Xu Y, Fernandez M, Sexton JZ, Mosalaganti S, Coulombe PA, Parent CA. Neutrophils secrete exosome-associated DNA to resolve sterile acute inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.21.590456. [PMID: 38712240 PMCID: PMC11071349 DOI: 10.1101/2024.04.21.590456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Acute inflammation, characterized by a rapid influx of neutrophils, is a protective response that can lead to chronic inflammatory diseases when left unresolved. Secretion of LTB 4 -containing exosomes is required for effective neutrophil infiltration during inflammation. In this study, we show that neutrophils release nuclear DNA in a non-lytic, rapid, and repetitive manner, via a mechanism distinct from suicidal NET release and cell death. The packaging of nuclear DNA occurs in the lumen of nuclear envelope (NE)-derived multivesicular bodies (MVBs) that harbor the LTB 4 synthesizing machinery and is mediated by the lamin B receptor (LBR) and chromatin decondensation. Disruption of secreted exosome-associated DNA (SEAD) in a model of sterile inflammation in mouse skin amplifies and prolongs the presence of neutrophils, impeding the onset of resolution. Together, these findings advance our understanding of neutrophil functions during inflammation and the physiological significance of NETs, with implications for novel treatments for inflammatory disorders.
Collapse
|
11
|
Numazaki K, Tada H, Nishioka T, Nemoto E, Matsushita K, Mizoguchi I, Sugawara S. Neutrophil extracellular traps inhibit osteoclastogenesis. Biochem Biophys Res Commun 2024; 705:149743. [PMID: 38442445 DOI: 10.1016/j.bbrc.2024.149743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
Neutrophil extracellular traps (NETs) released by neutrophils upon inflammation or infection, act as an innate immune defense against pathogens. NETs also influence inflammatory responses and cell differentiation in host cells. Osteoclasts, which are derived from myeloid stem cells, are critical for the bone remodeling by destroying bone. In the present study, we explores the impact of NETs, induced by the inflammatory agent calcium ionophore A23187, on the differentiation and activation of osteoclasts, potentially through suppressing RANK expression. Our results collectively suggested that the inhibition of RANKL-mediated osteoclastogenesis by NETs might lead to the suppression of excessive bone resorption during inflammation.
Collapse
Affiliation(s)
- Kento Numazaki
- Division of Oral Immunology, Tohoku University Graduate School of Dentistry, Sendai, 980-8575, Japan; Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai, 980-8575, Japan
| | - Hiroyuki Tada
- Division of Oral Immunology, Tohoku University Graduate School of Dentistry, Sendai, 980-8575, Japan.
| | - Takashi Nishioka
- Liaison Center for Innovative Dentistry, Division for Advanced Education Development, Tohoku University Graduate School of Dentistry, Sendai, 980-8575, Japan; Oral and Maxillofacial Radiology, Tohoku University Hospital, Sendai, 980-8575, Japan
| | - Eiji Nemoto
- Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, 980-8575, Japan
| | - Kenji Matsushita
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, 474-8511, Japan
| | - Itaru Mizoguchi
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai, 980-8575, Japan
| | - Shunji Sugawara
- Division of Oral Immunology, Tohoku University Graduate School of Dentistry, Sendai, 980-8575, Japan
| |
Collapse
|
12
|
Ibrahim N, Eilenberg W, Neumayer C, Brostjan C. Neutrophil Extracellular Traps in Cardiovascular and Aortic Disease: A Narrative Review on Molecular Mechanisms and Therapeutic Targeting. Int J Mol Sci 2024; 25:3983. [PMID: 38612791 PMCID: PMC11012109 DOI: 10.3390/ijms25073983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Neutrophil extracellular traps (NETs), composed of DNA, histones, and antimicrobial proteins, are released by neutrophils in response to pathogens but are also recognized for their involvement in a range of pathological processes, including autoimmune diseases, cancer, and cardiovascular diseases. This review explores the intricate roles of NETs in different cardiovascular conditions such as thrombosis, atherosclerosis, myocardial infarction, COVID-19, and particularly in the pathogenesis of abdominal aortic aneurysms. We elucidate the mechanisms underlying NET formation and function, provide a foundational understanding of their biological significance, and highlight the contribution of NETs to inflammation, thrombosis, and tissue remodeling in vascular disease. Therapeutic strategies for preventing NET release are compared with approaches targeting components of formed NETs in cardiovascular disease. Current limitations and potential avenues for clinical translation of anti-NET treatments are discussed.
Collapse
Affiliation(s)
| | | | | | - Christine Brostjan
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, University Hospital Vienna, 1090 Vienna, Austria; (N.I.); (W.E.); (C.N.)
| |
Collapse
|
13
|
Kiwit A, Lu Y, Lenz M, Knopf J, Mohr C, Ledermann Y, Klinke-Petrowsky M, Pagerols Raluy L, Reinshagen K, Herrmann M, Boettcher M, Elrod J. The Dual Role of Neutrophil Extracellular Traps (NETs) in Sepsis and Ischemia-Reperfusion Injury: Comparative Analysis across Murine Models. Int J Mol Sci 2024; 25:3787. [PMID: 38612596 PMCID: PMC11011604 DOI: 10.3390/ijms25073787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
A better understanding of the function of neutrophil extracellular traps (NETs) may facilitate the development of interventions for sepsis. The study aims to investigate the formation and degradation of NETs in three murine sepsis models and to analyze the production of reactive oxygen species (ROS) during NET formation. Murine sepsis was induced by midgut volvulus (720° for 15 min), cecal ligation and puncture (CLP), or the application of lipopolysaccharide (LPS) (10 mg/kg body weight i.p.). NET formation and degradation was modulated using mice that were genetically deficient for peptidyl arginine deiminase-4 (PAD4-KO) or DNase1 and 1L3 (DNase1/1L3-DKO). After 48 h, mice were killed. Plasma levels of circulating free DNA (cfDNA) and neutrophil elastase (NE) were quantified to assess NET formation and degradation. Plasma deoxyribonuclease1 (DNase1) protein levels, as well as tissue malondialdehyde (MDA) activity and glutathione peroxidase (GPx) activity, were quantified. DNase1 and DNase1L3 in liver, intestine, spleen, and lung tissues were assessed. The applied sepsis models resulted in a simultaneous increase in NET formation and oxidative stress. NET formation and survival differed in the three models. In contrast to LPS and Volvulus, CLP-induced sepsis showed a decreased and increased 48 h survival in PAD4-KO and DNase1/1L3-DKO mice, when compared to WT mice, respectively. PAD4-KO mice showed decreased formation of NETs and ROS, while DNase1/1L3-DKO mice with impaired NET degradation accumulated ROS and chronicled the septic state. The findings indicate a dual role for NET formation and degradation in sepsis and ischemia-reperfusion (I/R) injury: NETs seem to exhibit a protective capacity in certain sepsis paradigms (CLP model), whereas, collectively, they seem to contribute adversely to scenarios where sepsis is combined with ischemia-reperfusion (volvulus).
Collapse
Affiliation(s)
- Antonia Kiwit
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martini Strasse 52, 20246 Hamburg, Germany
| | - Yuqing Lu
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Moritz Lenz
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martini Strasse 52, 20246 Hamburg, Germany
| | - Jasmin Knopf
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Ulmenweg 18, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Ulmenweg 18, 91054 Erlangen, Germany
| | - Christoph Mohr
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Yannick Ledermann
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Michaela Klinke-Petrowsky
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Laia Pagerols Raluy
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martini Strasse 52, 20246 Hamburg, Germany
| | - Konrad Reinshagen
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martini Strasse 52, 20246 Hamburg, Germany
| | - Martin Herrmann
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Ulmenweg 18, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Ulmenweg 18, 91054 Erlangen, Germany
| | - Michael Boettcher
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martini Strasse 52, 20246 Hamburg, Germany
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Julia Elrod
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martini Strasse 52, 20246 Hamburg, Germany
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| |
Collapse
|
14
|
Ibrahim N, Bleichert S, Klopf J, Kurzreiter G, Hayden H, Knöbl V, Artner T, Krall M, Stiglbauer-Tscholakoff A, Oehler R, Petzelbauer P, Busch A, Bailey MA, Eilenberg W, Neumayer C, Brostjan C. Reducing Abdominal Aortic Aneurysm Progression by Blocking Neutrophil Extracellular Traps Depends on Thrombus Formation. JACC Basic Transl Sci 2024; 9:342-360. [PMID: 38559632 PMCID: PMC10978405 DOI: 10.1016/j.jacbts.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/02/2023] [Accepted: 11/01/2023] [Indexed: 04/04/2024]
Abstract
Neutrophil extracellular traps (NETs) are implicated in the pathogenesis of abdominal aortic aneurysm (AAA), located in adventitia and intraluminal thrombus. We compared the therapeutic potential of targeting upstream or downstream effector molecules of NET formation in 2 murine AAA models based on angiotensin II or peri-adventitial elastase application. In both models, NETs were detected in formed aneurysms at treatment start. Although NET inhibitors failed in the elastase model, they prevented progression of angiotensin II-induced aneurysms with thrombus, which resembles established human disease (including thrombus development). Blockade of upstream NET mediators was more effective than interference with downstream NET molecules.
Collapse
Affiliation(s)
- Nahla Ibrahim
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna and University Hospital Vienna, Vienna, Austria
| | - Sonja Bleichert
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna and University Hospital Vienna, Vienna, Austria
| | - Johannes Klopf
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna and University Hospital Vienna, Vienna, Austria
| | - Gabriel Kurzreiter
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna and University Hospital Vienna, Vienna, Austria
| | - Hubert Hayden
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna and University Hospital Vienna, Vienna, Austria
| | - Viktoria Knöbl
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna and University Hospital Vienna, Vienna, Austria
| | - Tyler Artner
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna and University Hospital Vienna, Vienna, Austria
| | - Moritz Krall
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna and University Hospital Vienna, Vienna, Austria
| | - Alexander Stiglbauer-Tscholakoff
- Division of Cardiovascular and Interventional Radiology, Division of Molecular and Gender Imaging, Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna and University Hospital Vienna, Vienna, Austria
| | - Rudolf Oehler
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna and University Hospital Vienna, Vienna, Austria
| | - Peter Petzelbauer
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna and University Hospital Vienna, Vienna, Austria
| | - Albert Busch
- Department for Visceral, Thoracic and Vascular Surgery, Technical University of Dresden and University Hospital Carl-Gustav Carus, Dresden, Germany
| | - Marc A. Bailey
- Leeds Institute for Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
- Leeds Vascular Institute, Leeds General Infirmary, Leeds, United Kingdom
| | - Wolf Eilenberg
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna and University Hospital Vienna, Vienna, Austria
| | - Christoph Neumayer
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna and University Hospital Vienna, Vienna, Austria
| | - Christine Brostjan
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna and University Hospital Vienna, Vienna, Austria
| |
Collapse
|
15
|
Zhang J, Su L, Liu Z, Tang J, Zhang L, Li Z, Zhou D, Sun Z, Xi K, Lu P, Deng G. A responsive hydrogel modulates innate immune cascade fibrosis to promote ocular surface reconstruction after chemical injury. J Control Release 2024; 365:1124-1138. [PMID: 38123070 DOI: 10.1016/j.jconrel.2023.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/27/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023]
Abstract
Following an ocular chemical injury, the release of neutrophil extracellular traps (NETs) triggers an innate immune cascade fibrotic effect involving macrophages (Mø), which limits corneal repair. However, the interplay and mechanisms between NETs and macrophages, as well as the coordination between the innate immunity and corneal repair, remain challenging issues. Using a co-culture system, we report that chemical stimulation exacerbates the accumulation of reactive oxygen species (ROS) within the polymorphonuclear neutrophils, leading to NET formation and the activation of M2 macrophages, ultimately inducing pathological fibrosis of the ocular surface through the IL-10/STAT3/TGF-β1/Smad2 axis. Inspired by the locally formed acidic microenvironment mediated by innate acute inflammatory stimulation, we further integrate sericin with oxidized chitosan nanoparticles loaded with black phosphorus quantum dots (BPQDs) using Schiff base chemistry to construct a functional pH-responsive hydrogel. Following corneal injury, the hydrogel selectively releases BPQDs in response to the acidic environment, inhibiting the innate immune cascade fibrosis triggered by the PMN-ROS-NETs. Thus, corneal pathological fibrosis is alleviated and reshaping of the ocular surface takes place. These results represent a refinement of the mechanism of inherent immune effector cell interactions, and provide new research ideas for the construction of nano biomaterials that regulate pathological fibrosis.
Collapse
Affiliation(s)
- Jun Zhang
- Changzhou Third People's Hospital, Changzhou Medical Center, Nanjing Medical University, 300 Lanlin North Road, Changzhou, Jiangsu 213000, China; Department of Ophthalmology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, SuZhou, Jiangsu 215000, China.
| | - Lei Su
- Department of Gynaecology and Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, 26 Daoqian Street, SuZhou, Jiangsu 215000, China
| | - Zhinan Liu
- Changzhou Third People's Hospital, Changzhou Medical Center, Nanjing Medical University, 300 Lanlin North Road, Changzhou, Jiangsu 213000, China
| | - Jincheng Tang
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 708 Renmin Road, SuZhou, Jiangsu 215000, China
| | - Lichen Zhang
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 708 Renmin Road, SuZhou, Jiangsu 215000, China
| | - Ziang Li
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 708 Renmin Road, SuZhou, Jiangsu 215000, China
| | - Dong Zhou
- Changzhou Third People's Hospital, Changzhou Medical Center, Nanjing Medical University, 300 Lanlin North Road, Changzhou, Jiangsu 213000, China
| | - Zhuo Sun
- Changzhou Third People's Hospital, Changzhou Medical Center, Nanjing Medical University, 300 Lanlin North Road, Changzhou, Jiangsu 213000, China
| | - Kun Xi
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 708 Renmin Road, SuZhou, Jiangsu 215000, China.
| | - Peirong Lu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, SuZhou, Jiangsu 215000, China.
| | - Guohua Deng
- Changzhou Third People's Hospital, Changzhou Medical Center, Nanjing Medical University, 300 Lanlin North Road, Changzhou, Jiangsu 213000, China.
| |
Collapse
|
16
|
Stachowicz A, Sadiq A, Walker B, Sundararaman N, Fert-Bober J. Treatment of human cardiac fibroblasts with the protein arginine deiminase inhibitor BB-Cl-amidine activates the Nrf2/HO-1 signaling pathway. Biomed Pharmacother 2023; 167:115443. [PMID: 37703660 DOI: 10.1016/j.biopha.2023.115443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Cardiac fibrosis contributes to end-stage extracellular matrix remodeling and heart failure (HF). Cardiac fibroblasts (CFs) differentiate into myofibroblasts (myoFbs) to preserve the structural integrity of the heart; however, the molecular mechanisms regulating CF transdifferentiation remain poorly understood. Protein arginine deiminase (PAD), which converts arginine to citrulline, has been shown to play a role in myocardial infarction, fibrosis, and HF. This study aimed to investigate the role of PAD in CF differentiation to myoFbs and identify the citrullinated proteins that were associated with phenotypic changes in CFs. RESULTS Gene expression analysis showed that PAD1 and PAD2 isoforms, but not PAD4 isoforms, were abundant in both CFs and myoFbs, and PAD1 was significantly upregulated in myoFbs. The pan-PAD inhibitor BB-Cl-amidine (BB-Cl) downregulated the mRNA expression of PAD1 and PAD2 as well as the protein expression of the fibrosis marker COL1A1 in CFs and myoFbs. Interestingly, a proteomic approach pointed to the activation of the Nrf2/HO-1 signaling pathway upon BB-Cl treatment in CFs and myoFbs. BB-Cl administration resulted in the upregulation of HO-1 at both the gene and protein levels in CFs and myoFbs. Importantly, the protein citrullination landscape of CFs consisting of 86 novel citrullination sites associated with focal adhesion (FN1(R1054)), inflammation (TAGLN(R12)) and DNA replication (EEF2(R767)) pathways was identified. CONCLUSIONS In summary, we revealed that BB-Cl treatment resulted in increased HO-1 expression via the Nrf2 pathway, which could prevent excessive tissue damage, thereby leading to substantial clinical benefits for the treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Aneta Stachowicz
- Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland; Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alia Sadiq
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Brian Walker
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Niveda Sundararaman
- Advanced Clinical Biosystems Research Institute, Precision Biomarker Laboratories, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Justyna Fert-Bober
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Advanced Clinical Biosystems Research Institute, Precision Biomarker Laboratories, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
17
|
Shafqat A, Omer MH, Albalkhi I, Alabdul Razzak G, Abdulkader H, Abdul Rab S, Sabbah BN, Alkattan K, Yaqinuddin A. Neutrophil extracellular traps and long COVID. Front Immunol 2023; 14:1254310. [PMID: 37828990 PMCID: PMC10565006 DOI: 10.3389/fimmu.2023.1254310] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/06/2023] [Indexed: 10/14/2023] Open
Abstract
Post-acute COVID-19 sequelae, commonly known as long COVID, encompasses a range of systemic symptoms experienced by a significant number of COVID-19 survivors. The underlying pathophysiology of long COVID has become a topic of intense research discussion. While chronic inflammation in long COVID has received considerable attention, the role of neutrophils, which are the most abundant of all immune cells and primary responders to inflammation, has been unfortunately overlooked, perhaps due to their short lifespan. In this review, we discuss the emerging role of neutrophil extracellular traps (NETs) in the persistent inflammatory response observed in long COVID patients. We present early evidence linking the persistence of NETs to pulmonary fibrosis, cardiovascular abnormalities, and neurological dysfunction in long COVID. Several uncertainties require investigation in future studies. These include the mechanisms by which SARS-CoV-2 brings about sustained neutrophil activation phenotypes after infection resolution; whether the heterogeneity of neutrophils seen in acute SARS-CoV-2 infection persists into the chronic phase; whether the presence of autoantibodies in long COVID can induce NETs and protect them from degradation; whether NETs exert differential, organ-specific effects; specifically which NET components contribute to organ-specific pathologies, such as pulmonary fibrosis; and whether senescent cells can drive NET formation through their pro-inflammatory secretome in long COVID. Answering these questions may pave the way for the development of clinically applicable strategies targeting NETs, providing relief for this emerging health crisis.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Mohamed H. Omer
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | | | | | | | | | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | |
Collapse
|
18
|
Manda-Handzlik A, Cieloch A, Kuźmicka W, Mroczek A, Stelmaszczyk-Emmel A, Demkow U, Wachowska M. Secretomes of M1 and M2 macrophages decrease the release of neutrophil extracellular traps. Sci Rep 2023; 13:15633. [PMID: 37730741 PMCID: PMC10511515 DOI: 10.1038/s41598-023-42167-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023] Open
Abstract
The release of neutrophil extracellular traps (NETs) can be either beneficial or detrimental for the host, thus it is necessary to maintain a balance between formation and clearance of NETs. Multiple physiological factors eliciting NET release have been identified, yet the studies on natural signals limiting NET formation have been scarce. Accordingly, our aim was to analyze whether cytokines or immune cells can inhibit NET formation. To that end, human granulocytes were incubated with interleukin (IL)-4, IL-10, transforming growth factor beta-2 or adenosine and then stimulated to release NETs. Additionally, neutrophils were cultured in the presence of natural killer (NK) cells, regulatory T cells (Tregs), pro-inflammatory or anti-inflammatory macrophages (M1 or M2 macrophages), or in the presence of NK/Tregs/M1 macrophages or M2 macrophages-conditioned medium and subsequently stimulated to release NETs. Our studies showed that secretome of M1 and M2 macrophages, but not of NK cells and Tregs, diminishes NET formation. Co-culture experiments did not reveal any effect of immune cells on NET release. No effect of cytokines or adenosine on NET release was found. This study highlights the importance of paracrine signaling at the site of infection and is the first to show that macrophage secretome can regulate NET formation.
Collapse
Affiliation(s)
- Aneta Manda-Handzlik
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Zwirki i Wigury 63a Street, 02-091, Warsaw, Poland.
| | - Adrianna Cieloch
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Zwirki i Wigury 63a Street, 02-091, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Zwirki i Wigury 61 Street, 02-091, Warsaw, Poland
| | - Weronika Kuźmicka
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Zwirki i Wigury 63a Street, 02-091, Warsaw, Poland
| | - Agnieszka Mroczek
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Zwirki i Wigury 63a Street, 02-091, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Zwirki i Wigury 61 Street, 02-091, Warsaw, Poland
| | - Anna Stelmaszczyk-Emmel
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Zwirki i Wigury 63a Street, 02-091, Warsaw, Poland
| | - Urszula Demkow
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Zwirki i Wigury 63a Street, 02-091, Warsaw, Poland
| | - Małgorzata Wachowska
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Zwirki i Wigury 63a Street, 02-091, Warsaw, Poland
| |
Collapse
|
19
|
Kong X, Zhang Y, Xiang L, You Y, Duan Y, Zhao Y, Li S, Wu R, Zhang J, Zhou L, Duan L. Fusobacterium nucleatum-triggered neutrophil extracellular traps facilitate colorectal carcinoma progression. J Exp Clin Cancer Res 2023; 42:236. [PMID: 37684625 PMCID: PMC10492297 DOI: 10.1186/s13046-023-02817-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Fusobacterium nucleatum (Fn) acts as a procarcinogenic bacterium in colorectal carcinoma (CRC) by regulating the inflammatory tumor microenvironment (TME). Neutrophil extracellular traps (NETs), which can be generated by persistent inflammation, have been recently considered to be significant contributors in promoting cancer progression. However, whether NETs are implicated in Fn-related carcinogenesis is still poorly characterized. Here, we explored the role of NETs in Fn-related CRC as well as their potential clinical significance. METHODS Fn was measured in tissue specimens and feces samples from CRC patients. The expression of NET markers were also detected in tissue specimens, freshly isolated neutrophils and blood serum from CRC patients, and the correlation of circulating NETs levels with Fn was evaluated. Cell-based experiments were conducted to investigate the mechanism by which Fn modulates NETs formation. In addition, we clarified the functional mechanism of Fn-induced NETs on the growth and metastasis of CRC in vitro and in vivo experiments. RESULTS Tissue and blood samples from CRC patients, particularly those from Fn-infected CRC patients, exhibited greater neutrophil infiltration and higher NETs levels. Fn infection induced abundant NETs production in in vitro studies. Subsequently, we demonstrated that Fn-induced NETs indirectly accelerated malignant tumor growth through angiopoiesis, and facilitated tumor metastasis, as manifested by epithelial-mesenchymal transition (EMT)-related cell migration, matrix metalloproteinase (MMP)-mediated basement membrane protein degradation, and trapping of CRC cells. Mechanistically, the Toll-like receptor (TLR4)-reactive oxygen species (ROS) signaling pathway and NOD-like receptor (NOD1/2)-dependent signaling were responsible for Fn-stimulated NETs formation. More importantly, circulating NETs combined with carcinoembryonic antigen (CEA) could predict CRC occurrence and metastasis, with areas under the ROC curves (AUCs) of 0.92 and 0.85, respectively. CONCLUSIONS Our findings indicated that Fn-induced NETs abundance by activating TLR4-ROS and NOD1/2 signalings in neutrophils facilitated CRC progression. The combination of circulating NETs and CEA was identified as a novel screening strategy for predicting CRC occurrence and metastasis.
Collapse
Affiliation(s)
- Xuehua Kong
- Department of Laboratory Medicine, Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, No. 1 of Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, No.74 Linjiang Road, Yu Zhong District, Chongqing, 400010, China
| | - Yu Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, No.74 Linjiang Road, Yu Zhong District, Chongqing, 400010, China
| | - Linwei Xiang
- Department of Laboratory Medicine, Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, No. 1 of Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, No.74 Linjiang Road, Yu Zhong District, Chongqing, 400010, China
| | - Yan You
- Department of Pathology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yaqian Duan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, No.74 Linjiang Road, Yu Zhong District, Chongqing, 400010, China
| | - Yuqing Zhao
- Department of Laboratory Medicine, Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, No. 1 of Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Shue Li
- Department of Academic Research, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Rui Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chonqing Medical University, Chongqing, 400016, China
| | - Jiangbo Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lan Zhou
- Department of Laboratory Medicine, Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, No. 1 of Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| | - Liang Duan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, No.74 Linjiang Road, Yu Zhong District, Chongqing, 400010, China.
| |
Collapse
|
20
|
Qu X, Hou X, Zhu K, Chen W, Chen K, Sang X, Wang C, Zhang Y, Xu H, Wang J, Hou Q, Lv L, Hou L, Zhang D. Neutrophil extracellular traps facilitate sympathetic hyperactivity by polarizing microglia toward M1 phenotype after traumatic brain injury. FASEB J 2023; 37:e23112. [PMID: 37534961 DOI: 10.1096/fj.202300752r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/05/2023] [Accepted: 07/13/2023] [Indexed: 08/04/2023]
Abstract
Traumatic brain injury (TBI), particularly diffuse axonal injury (DAI), often results in sympathetic hyperactivity, which can exacerbate the prognosis of TBI patients. A key component of this process is the role of neutrophils in causing neuroinflammation after TBI by forming neutrophil extracellular traps (NETs), but the connection between NETs and sympathetic excitation following TBI remains unclear. Utilizing a DAI rat model, the current investigation examined the role of NETs and the HMGB1/JNK/AP1 signaling pathway in this process. The findings revealed that sympathetic excitability intensifies and peaks 3 days post-injury, a pattern mirrored by the activation of microglia, and the escalated NETs and HMGB1 levels. Subsequent in vitro exploration validated that HMGB1 fosters microglial activation via the JNK/AP1 pathway. Moreover, in vivo experimentation revealed that the application of anti-HMGB1 and AP1 inhibitors can mitigate microglial M1 polarization post-DAI, effectively curtailing sympathetic hyperactivity. Therefore, this research elucidates that post-TBI, NETs within the PVN may precipitate sympathetic hyperactivity by stimulating M1 microglial polarization through the HMGB1/JNK/AP1 pathway.
Collapse
Affiliation(s)
- Xiaolin Qu
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoxiang Hou
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Kaixin Zhu
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
- Department of Neurosurgery, The First Naval Hospital of Southern Theater Command, Zhanjiang, China
| | - Wen Chen
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Kun Chen
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xianzheng Sang
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Chenqing Wang
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yelei Zhang
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Haoxiang Xu
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Junyu Wang
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Qibo Hou
- College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Liquan Lv
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Lijun Hou
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Danfeng Zhang
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
21
|
Chang Y, Ou Q, Zhou X, Nie K, Liu J, Zhang S. Global research trends and focus on the link between rheumatoid arthritis and neutrophil extracellular traps: a bibliometric analysis from 1985 to 2023. Front Immunol 2023; 14:1205445. [PMID: 37680637 PMCID: PMC10481536 DOI: 10.3389/fimmu.2023.1205445] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/11/2023] [Indexed: 09/09/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that currently has an unknown cause and pathogenesis, and is associated with many complications and a high disability rate. The neutrophil extracellular trap network (NETs) is a newly discovered mechanism that allows neutrophils to capture and kill pathogens. Multiple studies in recent years have highlighted its relevance to the progression of rheumatoid arthritis. Despite the growing number of studies indicating the crucial role of NETs in RA, there has been no bibliometric review of research hotspots and trends in this area. In this study, we retrieved articles related to NETs in RA from the Web of Science Core Collection (WoSCC) database from 1985 to 2023 and used visualization tools such as Citespace, VOSviewer, Tableau Public, and Microsoft Office Excel 2021 to analyze the data. After screening, we included a total of 416 publications involving 2,334 researchers from 1,357 institutions in 167 countries/regions, with relevant articles published in 219 journals. The U.S., China, and Germany are the top 3 countries/regions with 124, 57, and 37 publications respectively. Mariana J. Kaplan is the most published author, and journals such as Frontiers in Immunology and International Journal of Molecular Sciences have had a significant impact on research in this field. The clinical application of PAD enzymes and their inhibitors, and the drug development of NETs as therapeutic targets for RA is a trend for future research. Our study provides a comprehensive bibliometric analysis and summary of NETs in RA publications, which will aid researchers in conducting further scientific research.
Collapse
Affiliation(s)
- Yonglong Chang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qinling Ou
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Xuhui Zhou
- Department of Addiction Medicine, Hunan Institute of Mental Health, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, Hunan, China
| | - Kechao Nie
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jinhui Liu
- College of Integrated Traditional Chinese & Western Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Sifang Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Metabolic Diseases, Changsha, China
| |
Collapse
|
22
|
Yao M, Ma J, Wu D, Fang C, Wang Z, Guo T, Mo J. Neutrophil extracellular traps mediate deep vein thrombosis: from mechanism to therapy. Front Immunol 2023; 14:1198952. [PMID: 37680629 PMCID: PMC10482110 DOI: 10.3389/fimmu.2023.1198952] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023] Open
Abstract
Deep venous thrombosis (DVT) is a part of venous thromboembolism (VTE) that clinically manifests as swelling and pain in the lower limbs. The most serious clinical complication of DVT is pulmonary embolism (PE), which has a high mortality rate. To date, its underlying mechanisms are not fully understood, and patients usually present with clinical symptoms only after the formation of the thrombus. Thus, it is essential to understand the underlying mechanisms of deep vein thrombosis for an early diagnosis and treatment of DVT. In recent years, many studies have concluded that Neutrophil Extracellular Traps (NETs) are closely associated with DVT. These are released by neutrophils and, in addition to trapping pathogens, can mediate the formation of deep vein thrombi, thereby blocking blood vessels and leading to the development of disease. Therefore, this paper describes the occurrence and development of NETs and discusses the mechanism of action of NETs on deep vein thrombosis. It aims to provide a direction for improved diagnosis and treatment of deep vein thrombosis in the near future.
Collapse
Affiliation(s)
- Mengting Yao
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jiacheng Ma
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Dongwen Wu
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Chucun Fang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zilong Wang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Tianting Guo
- Department of Orthopedics, Guangdong Provincial People’s Hospital Ganzhou Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| | - Jianwen Mo
- Department of Orthopedic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
23
|
Li J, Yin L, Chen S, Li Z, Ding J, Wu J, Yang K, Xu J. The perspectives of NETosis on the progression of obesity and obesity-related diseases: mechanisms and applications. Front Cell Dev Biol 2023; 11:1221361. [PMID: 37649550 PMCID: PMC10465184 DOI: 10.3389/fcell.2023.1221361] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023] Open
Abstract
Obesity is a disease commonly associated with urbanization and can also be characterized as a systemic, chronic metabolic condition resulting from an imbalance between energy intake and expenditure. The World Health Organization (WHO) has identified obesity as the most serious chronic disease that is increasingly prevalent in the world population. If left untreated, it can lead to dangerous health issues such as hypertension, hyperglycemia, hyperlipidemia, hyperuricemia, nonalcoholic steatohepatitis, atherosclerosis, and vulnerability to cardiovascular and cerebrovascular events. The specific mechanisms by which obesity affects the development of these diseases can be refined to the effect on immune cells. Existing studies have shown that the development of obesity and its associated diseases is closely related to the balance or lack thereof in the number and function of various immune cells, of which neutrophils are the most abundant immune cells in humans, infiltrating and accumulating in the adipose tissues of obese individuals, whereas NETosis, as a newly discovered type of neutrophil-related cell death, its role in the development of obesity and related diseases is increasingly emphasized. The article reviews the significant role that NETosis plays in the development of obesity and related diseases, such as diabetes and its complications. It discusses the epidemiology and negative impacts of obesity, explains the mechanisms of NETosis, and examines its potential as a targeted drug to treat obesity and associated ailments.
Collapse
Affiliation(s)
- Jinyu Li
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, China
- The First Clinical Medical College of Nanchang University, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lijia Yin
- The First Clinical Medical College of Nanchang University, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Siyi Chen
- The First Clinical Medical College of Nanchang University, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zelin Li
- The First Clinical Medical College of Nanchang University, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiatong Ding
- The Second Clinical Medical College of Nanchang University, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiaqiang Wu
- The Second Clinical Medical College of Nanchang University, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kangping Yang
- The Second Clinical Medical College of Nanchang University, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jixiong Xu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, Jiangxi, China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, Jiangxi, China
| |
Collapse
|
24
|
Ijichi T, Sundararaman N, Martin TG, Pandey R, Koronyo E, Kirk JA, Marbán E, Van Eyk JE, Fert-Bober J. Peptidyl arginine deiminase inhibition alleviates angiotensin II-induced fibrosis. Am J Transl Res 2023; 15:4558-4572. [PMID: 37560217 PMCID: PMC10408542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/14/2023] [Indexed: 08/11/2023]
Abstract
OBJECTIVES The conversion of protein arginine residues to citrulline by calcium-dependent peptidyl arginine deiminases (PADs) has been implicated in the pathogenesis of several diseases, indicating that PADs are therapeutic targets. A recent study indicated that PAD4 regulates age-related organ fibrosis and dysfunction; however, the specific role of this PAD and its citrullination substrate remains unclear. We investigated whether pharmacological inhibition of PAD activity could affect the progression of fibrosis and restore heart function. METHODS Cardiac hypertrophy was induced by chronic infusion of angiotensin (Ang) II. After 2 weeks of AngII infusion, a PAD inhibitor (Cl-amidine hydrochloride) or vehicle (saline) was injected every other day for the next 14 days together with the continued administration of AngII for a total of up to 28 days. Cardiac fibrosis and remodeling were evaluated by quantitative heart tissue histology, echocardiography, and mass spectrometry. RESULTS A reverse AngII-induced effect was observed in PAD inhibitor-treated mice (n=6) compared with AngII vehicle-treated mice, as indicated by a significant reduction in the heart/body ratio (AngII: 6.51±0.8 mg/g vs. Cl-amidine: 5.27±0.6 mg/g), a reduction in fibrosis (AngII: 2.1-fold increased vs. Cl-amidine: 1.8-fold increased), and a reduction in left ventricular posterior wall diastole (LWVPd) (AngII: 1.1±0.04 vs. Cl-amidine: 0.78±0.02 mm). Label-free quantitative proteomics analysis of heart tissue indicated that proteins involved in fibrosis (e.g., periostin), cytoskeleton organization (e.g., transgelin), and remodeling (e.g., myosin light chain, carbonic anhydrase) were normalized by Cl-amidine treatment. CONCLUSION Our findings demonstrate that pharmacological inhibition of PAD may be an effective strategy to attenuate cardiac fibrosis.
Collapse
Affiliation(s)
- Takeshi Ijichi
- Smidt Heart Institute, Cedars-Sinai Medical CenterLos Angeles, CA 90048, The United States
- Department of Cardiology, School of Medicine, Tokai UniversityIsehara, Kanagawa 259-1193, Japan
| | - Niveda Sundararaman
- Smidt Heart Institute, Cedars-Sinai Medical CenterLos Angeles, CA 90048, The United States
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical CenterLos Angeles, CA 90048, The United States
| | - Thomas G Martin
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of MedicineMaywood, IL 60153, The United States
| | - Rakhi Pandey
- Smidt Heart Institute, Cedars-Sinai Medical CenterLos Angeles, CA 90048, The United States
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical CenterLos Angeles, CA 90048, The United States
| | - Etai Koronyo
- Smidt Heart Institute, Cedars-Sinai Medical CenterLos Angeles, CA 90048, The United States
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical CenterLos Angeles, CA 90048, The United States
| | - Jonathan A Kirk
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of MedicineMaywood, IL 60153, The United States
| | - Eduardo Marbán
- Smidt Heart Institute, Cedars-Sinai Medical CenterLos Angeles, CA 90048, The United States
| | - Jennifer E Van Eyk
- Smidt Heart Institute, Cedars-Sinai Medical CenterLos Angeles, CA 90048, The United States
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical CenterLos Angeles, CA 90048, The United States
| | - Justyna Fert-Bober
- Smidt Heart Institute, Cedars-Sinai Medical CenterLos Angeles, CA 90048, The United States
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical CenterLos Angeles, CA 90048, The United States
| |
Collapse
|
25
|
Aendekerk JP, Ysermans R, Busch MH, Theunissen ROMFIH, Bijnens N, Potjewijd J, Damoiseaux JGMC, Reutelingsperger CP, van Paassen P. Assessment of longitudinal serum neutrophil extracellular trap-inducing activity in anti-neutrophil cytoplasmic antibody-associated vasculitis and glomerulonephritis in a prospective cohort using a novel bio-impedance technique. Kidney Int 2023; 104:151-162. [PMID: 37088424 DOI: 10.1016/j.kint.2023.03.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/23/2023] [Accepted: 03/17/2023] [Indexed: 04/25/2023]
Abstract
Neutrophil extracellular traps (NET) have been implicated in the pathogenesis of anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). Here, we developed a novel, label-free, high-throughput bio-impedance technique to effectively measure serum NET-inducing activity. Using this technique, NET-inducing activity of serum derived from patients with AAV was assessed in a prospective cohort of 62 patients presenting with active AAV with major organ involvement. Thirty-five patients presented with new and 27 patients presented with relapsing AAV, of whom 38 had kidney and/or 31 had lung involvement. NET-inducing activity was assessed at diagnosis of active AAV (time zero), during the first 6 weeks of treatment, and after 6 months of treatment. Forty-seven patients revealed elevated NET-inducing activity at time zero. After initiation of immunosuppressive treatment, NET-inducing activity was reduced at six weeks. A subsequent increase at six months could potentially identify patients with relapsing disease (hazard ratio, 11.45 [interquartile range 1.36-96.74]). NET-inducing activity at time zero correlated with kidney function and proteinuria. Importantly, in kidney tissue, NETs co-localized with lesions typical of ANCA-associated glomerulonephritis and even correlated with systemic serum NET-inducing activity. Thus, our prospective data corroborate the importance of NET formation in AAV and ANCA-associated glomerulonephritis and the potential of longitudinal evaluation, as monitored by our novel bio-impedance assay and detailed histological evaluation.
Collapse
Affiliation(s)
- Joop P Aendekerk
- Department of Internal Medicine, Division of Nephrology and Clinical Immunology, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands; Department of Pathology, Maastricht University Medical Center, Maastricht, The Netherlands.
| | - Renée Ysermans
- Department of Internal Medicine, Division of Nephrology and Clinical Immunology, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
| | - Matthias H Busch
- Department of Internal Medicine, Division of Nephrology and Clinical Immunology, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
| | - Ruud O M F I H Theunissen
- Department of Internal Medicine, Division of Nephrology and Clinical Immunology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Nele Bijnens
- Department of Internal Medicine, Division of Nephrology and Clinical Immunology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Judith Potjewijd
- Department of Internal Medicine, Division of Nephrology and Clinical Immunology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jan G M C Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Chris P Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
| | - Pieter van Paassen
- Department of Internal Medicine, Division of Nephrology and Clinical Immunology, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands.
| |
Collapse
|
26
|
Yap J, Irei J, Lozano-Gerona J, Vanapruks S, Bishop T, Boisvert WA. Macrophages in cardiac remodelling after myocardial infarction. Nat Rev Cardiol 2023; 20:373-385. [PMID: 36627513 DOI: 10.1038/s41569-022-00823-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/25/2022] [Indexed: 01/12/2023]
Abstract
Myocardial infarction (MI), as a result of thrombosis or vascular occlusion, is the most prevalent cause of morbidity and mortality among all cardiovascular diseases. The devastating consequences of MI are compounded by the complexities of cellular functions involved in the initiation and resolution of early-onset inflammation and the longer-term effects related to scar formation. The resultant tissue damage can occur as early as 1 h after MI and activates inflammatory signalling pathways to elicit an immune response. Macrophages are one of the most active cell types during all stages after MI, including the cardioprotective, inflammatory and tissue repair phases. In this Review, we describe the phenotypes of cardiac macrophage involved in MI and their cardioprotective functions. A specific subset of macrophages called resident cardiac macrophages (RCMs) are derived from yolk sac progenitor cells and are maintained as a self-renewing population, although their numbers decrease with age. We explore sophisticated sequencing techniques that demonstrate the cardioprotective properties of this cardiac macrophage phenotype. Furthermore, we discuss the interactions between cardiac macrophages and other important cell types involved in the pathology and resolution of inflammation after MI. We summarize new and promising therapeutic approaches that target macrophage-mediated inflammation and the cardioprotective properties of RCMs after MI. Finally, we discuss future directions for the study of RCMs in MI and cardiovascular health in general.
Collapse
Affiliation(s)
- Jonathan Yap
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Jason Irei
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Javier Lozano-Gerona
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Selena Vanapruks
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Tianmai Bishop
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - William A Boisvert
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA.
| |
Collapse
|
27
|
Wu Y, Wei S, Wu X, Li Y, Han X. Neutrophil extracellular traps in acute coronary syndrome. J Inflamm (Lond) 2023; 20:17. [PMID: 37165396 PMCID: PMC10171160 DOI: 10.1186/s12950-023-00344-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023] Open
Abstract
Acute coronary syndrome (ACS) is a group of clinical syndromes caused by acute myocardial ischemia, which can cause heart failure, arrhythmia and even sudden death. It is the major cause of disability and death worldwide. Neutrophil extracellular traps (NETs) are reticular structures released by neutrophils activation and have various biological functions. NETs are closely related to the occurrence and development of ACS and also the subsequent damage after myocardial infarction. The mechanisms are complex and interdependent on various pathways, which require further exploration. This article reviewed the role and mechanism of NETs in ACS, thereby providing a valuable reference for the diagnosis and clinical treatment of ACS.
Collapse
Affiliation(s)
- Yawen Wu
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, No. 80 Cuiyingmen, Chengguan District, Lanzhou, 730030, China
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Shilin Wei
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Xiangyang Wu
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, No. 80 Cuiyingmen, Chengguan District, Lanzhou, 730030, China
| | - Yongnan Li
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, No. 80 Cuiyingmen, Chengguan District, Lanzhou, 730030, China.
| | - Xue Han
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, No. 80 Cuiyingmen, Chengguan District, Lanzhou, 730030, China.
| |
Collapse
|
28
|
Sun Q, Hu S, Lou Z, Gao J. The macrophage polarization in inflammatory dermatosis and its potential drug candidates. Biomed Pharmacother 2023; 161:114469. [PMID: 37002572 DOI: 10.1016/j.biopha.2023.114469] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Inflammatory dermatosis is characterized by persistent inflammatory infiltration and hard repair of diseased skin. As a member of the human innate immune cells, macrophages usually show different phenotypes in different diseases. The macrophage phenotype (M1/M2) imbalance caused by the increase of M1 macrophages or the decrease of M2 macrophages is common in inflammatory dermatosis. In recent years, with the deepening research on inflammatory skin diseases, more and more natural medicines/traditional Chinese medicines (TCMs), represented by Shikonin and Angelica Dahurica, have shown their therapeutic effects by affecting the polarization of macrophages. This review introduced macrophage polarization in different inflammatory dermatosis, such as psoriasis. Then summarized the natural medicines/TCMs that have potential therapeutic effects so far and introduced their mechanisms of action and the proteins/signal pathways involved. We found that the TCMs with therapeutic effects listed in this review are closely related to the theory of five flavors and four properties of Chinese medicinal, and most of them are bitter, acrid and sweet. Bitter TCMs have antipyretic, anti-inflammatory and antibacterial effects, which may improve the persistent inflammation of M1 macrophage infiltration. Acrid TCMs have the effect of promoting blood circulation, while sweet TCMs have the effect of nourishing. These 2 flavors may accelerate the repair of skin lesions of inflammatory dermatosis by affecting M2 macrophages. In conclusion, we hope to provide sufficient knowledge for natural medicine research and the development of inflammatory dermatosis related to macrophage phenotype imbalance.
Collapse
Affiliation(s)
- Qingru Sun
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China
| | - Shiyu Hu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China
| | - Zhaohuan Lou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China
| | - Jianli Gao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China.
| |
Collapse
|
29
|
Han F, Chen H, Chen L, Yuan C, Shen Q, Lu G, Chen W, Gong W, Ding Y, Gu A, Tao L. Inhibition of Gasdermin D blocks the formation of NETs and protects acute pancreatitis in mice. Biochem Biophys Res Commun 2023; 654:26-33. [PMID: 36889032 DOI: 10.1016/j.bbrc.2023.02.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 02/18/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023]
Abstract
The persistent activation of neutrophils and the excessive neutrophil extracellular traps (NETs) formation are the main determinants of pancreatic tissue injury and systemic inflammatory response in acute pancreatitis (AP). Thus, inhibiting the release of NETs can effectively prevent the aggravation of AP. Here, our study showed that the pore-forming protein gasdermin D (GSDMD) was activity in neutrophils of AP mice and patients and played the vital role in NETs formation. Through the application of GSDMD inhibitor or the construction of neutrophil GSDMD specific knockout mice, it was found in vivo and in vitro that inhibition of GSDMD could block the NETs formation, reduce pancreatic injury, systemic inflammatory reaction and organ failure in AP mice. To sum up, our findings confirmed that neutrophil GSDMD was the therapeutic target for improving the occurrence and development of AP.
Collapse
Affiliation(s)
- Fei Han
- Dalian Medical University, Dalian, 116044, Liaoning, China; Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225100, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225100, Jiangsu, China
| | - Hao Chen
- Dalian Medical University, Dalian, 116044, Liaoning, China; The First Affiliated Hospital of Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Lin Chen
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225100, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225100, Jiangsu, China
| | - Chenchen Yuan
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225100, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225100, Jiangsu, China
| | - Qinhao Shen
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225100, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225100, Jiangsu, China
| | - Guotao Lu
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225100, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225100, Jiangsu, China
| | - Weiwei Chen
- Department of Gastroenterology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Weijuan Gong
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225100, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225100, Jiangsu, China
| | - Yanbing Ding
- Dalian Medical University, Dalian, 116044, Liaoning, China; Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225100, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225100, Jiangsu, China.
| | - Aidong Gu
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, Jiangsu, China.
| | - Lide Tao
- Department of Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225100, Jiangsu, China.
| |
Collapse
|
30
|
Sun S, Zou X, Wang D, Liu Y, Zhang Z, Guo J, Lu R, Huang W, Wang S, Li Z, Tian J, Yu H, Fu J, Fang S. IRGM/Irgm1 deficiency inhibits neutrophil-platelet interactions and thrombosis in experimental atherosclerosis and arterial injury. Biomed Pharmacother 2023; 158:114152. [PMID: 36580725 DOI: 10.1016/j.biopha.2022.114152] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Neutrophil extracellular traps (NETs) closely link inflammation and thrombosis. The immune-related GTPase family M protein (IRGM) and its ortholog of mouse IRGM1 are positively correlated with plaque rupture during atherosclerosis process. However, whether and how IRGM/IRGM1 affects NETs formation and atherosclerotic thrombosis remains unknown, which will further promote the development of antithrombotic treatment tools. METHODS The thrombi images, platelet activation makers and NETs makers were detected in the serum of STEMI patients and controls. To futher investigate IRGM/IRGM1 affects NETs formation and atherothrombosis in vivo, ApoE-/-Irgm1+/- and ApoE-/- mice received diets rich in fat and 2.5% FeCl3 was then used to induce experimental arterial thrombosis in an atherosclerosis background. In vitro, PMA and thrombin were used to stimulate neutrophils and platelets, respectively, and the expression of IRGM/IRGM1 were modified. To reveal the molecular mechanisms, MAPK-cPLA2 signals inhibitors were used. RESULTS Serum IRGM was positively correlated with PF4 and neutrophil elastase. Subsequently, Irgm1 deficient mice have a longer occlusion time and lower growth rate. In vitro, as expected, IRGM/Irgm1 deficiency inhibits platelet activation and platelet-neutrophil interaction. More importantly, IRGM promoted NETs production through activating MAPK-cPLA2 signals in PMA stimulated neuropils, whereas inhibiting the production of NETs eliminated the difference in platelet activation and thrombosis caused by IRGM/Irgm1 modification in vivo and vitro. Similarly, inhibition of platelet activation also eliminated the influence of IRGM/Irgm1 modification on NETs production. CONCLUSIONS Overall, our data indicate that IRGM/Irgm1 deficiency in neuropils inhibits the intense interaction between neutrophils and platelets, and ultimately inhibits thrombosis.
Collapse
Affiliation(s)
- Song Sun
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Xiaoyi Zou
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Duo Wang
- Department of Neurology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yige Liu
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Zhenming Zhang
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Junchen Guo
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Rongzhe Lu
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Wei Huang
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Shanjie Wang
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Zhaoying Li
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Jiangtian Tian
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Huai Yu
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Jin Fu
- Department of Neurology, Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Shaohong Fang
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China.
| |
Collapse
|
31
|
Nappi F, Bellomo F, Avtaar Singh SS. Worsening Thrombotic Complication of Atherosclerotic Plaques Due to Neutrophils Extracellular Traps: A Systematic Review. Biomedicines 2023; 11:biomedicines11010113. [PMID: 36672621 PMCID: PMC9855935 DOI: 10.3390/biomedicines11010113] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 01/04/2023] Open
Abstract
Neutrophil extracellular traps (NETs) recently emerged as a newly recognized contributor to venous and arterial thrombosis. These strands of DNA, extruded by activated or dying neutrophils, decorated with various protein mediators, become solid-state reactors that can localize at the critical interface of blood with the intimal surface of diseased arteries alongside propagating and amplifying the regional injury. NETs thus furnish a previously unsuspected link between inflammation, innate immunity, thrombosis, oxidative stress, and cardiovascular diseases. In response to disease-relevant stimuli, neutrophils undergo a specialized series of reactions that culminate in NET formation. DNA derived from either nuclei or mitochondria can contribute to NET formation. The DNA liberated from neutrophils forms a reticular mesh that resembles morphologically a net, rendering the acronym NETs particularly appropriate. The DNA backbone of NETs not only presents intrinsic neutrophil proteins (e.g., MPO (myeloperoxidase) and various proteinases) but can congregate other proteins found in blood (e.g., tissue factor procoagulant). This systematic review discusses the current hypothesis of neutrophil biology, focusing on the triggers and mechanisms of NET formation. Furthermore, the contribution of NETs to atherosclerosis and thrombosis is extensively addressed. Again, the use of NET markers in clinical trials was considered. Ultimately, given the vast body of the published literature, we aim to integrate the experimental evidence with the growing body of clinical information relating to NET critically.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord of Saint-Denis, 93200 Saint-Denis, France
- Correspondence: ; Tel.: +33-(14)-9334104; Fax: +33-149334119
| | - Francesca Bellomo
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | | |
Collapse
|
32
|
Salas A. What good can neutrophils do in UC? Gut 2022; 71:2375-2376. [PMID: 35074905 DOI: 10.1136/gutjnl-2021-326484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/05/2022] [Indexed: 12/08/2022]
Affiliation(s)
- Azucena Salas
- IDIBAPS, CIBERehd, Hospital Clinic de Barcelona, Barcelona, Spain
| |
Collapse
|
33
|
Liu Y, Yan P, Bin Y, Qin X, Wu Z. Neutrophil extracellular traps and complications of liver transplantation. Front Immunol 2022; 13:1054753. [PMID: 36466888 PMCID: PMC9712194 DOI: 10.3389/fimmu.2022.1054753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/26/2022] [Indexed: 08/29/2023] Open
Abstract
Many end-stage liver disease etiologies are attributed to robust inflammatory cell recruitment. Neutrophils play an important role in inflammatory infiltration and neutrophil phagocytosis, oxidative burst, and degranulation. It has also been suggested that neutrophils may release neutrophil extracellular traps (NETs) to kill pathogens. It has been proven that neutrophil infiltration within the liver contributes to an inflammatory microenvironment and immune cell activation. Growing evidence implies that NETs are involved in the progression of numerous complications of liver transplantation, including ischemia-reperfusion injury, acute rejection, thrombosis, and hepatocellular carcinoma recurrence. NETs are discussed in this comprehensive review, focusing on their effects on liver transplantation complications. Furthermore, we discuss NETs as potential targets for liver transplantation therapy.
Collapse
Affiliation(s)
- Yanyao Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Yan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Bin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyan Qin
- Department of General Surgery and Trauma Surgery, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Zhongjun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
34
|
Paunel-Görgülü A, Conforti A, Mierau N, Zierden M, Xiong X, Wahlers T. Peptidylarginine deiminase 4 deficiency in bone marrow cells prevents plaque progression without decreasing atherogenic inflammation in apolipoprotein E-knockout mice. Front Cardiovasc Med 2022; 9:1046273. [PMID: 36465436 PMCID: PMC9709396 DOI: 10.3389/fcvm.2022.1046273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/01/2022] [Indexed: 08/30/2023] Open
Abstract
INTRODUCTION Despite multiple studies in the past, the role of peptidylarginine deiminase 4 (PAD4) in atherosclerosis is currently insufficiently understood. In this regard, PAD4 deletion or inhibition of enzymatic activity was previously reported to ameliorate disease progression and inflammation. Besides, strong influence of neutrophil extracellular traps (NETs) on atherosclerosis burden has been proposed. Here, we studied the role of PAD4 for atherogenesis and plaque progression in a mouse model of atherosclerosis. METHODS AND RESULTS Lethally irradiated ApoE -/- mice were reconstituted with ApoE -/-/Pad4 -/- bone marrow cells and fed a high-fat diet (HFD) for 4 and 10 weeks, respectively. PAD4 deficiency did not prevent the development of atherosclerotic lesions after 4 weeks of HFD. However, after 10 weeks of HFD, mice with bone marrow cells-restricted PAD4 deficiency displayed significantly reduced lesion size, impaired lipid incorporation, decreased necrotic core area and less collagen when compared to ApoE -/- bone marrow-transplanted mice as demonstrated by histological staining. Moreover, flow cytometric analysis and quantitative real-time PCR revealed different macrophage subsets in atherosclerotic lesions and higher inflammatory response in these mice, as reflected by increased content of M1-like macrophages and upregulated aortic expression of the pro-inflammatory genes CCL2 and iNOS. Notably, diminished oxLDL uptake by in vitro-polarized M1-like macrophages was evidenced when compared to M2-like cells. CONCLUSION These results suggest that pharmacological inhibition of PAD4 may impede lipid accumulation and lesion progression despite no beneficial effects on vascular inflammation.
Collapse
Affiliation(s)
- Adnana Paunel-Görgülü
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany
| | - Andreas Conforti
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany
| | - Natalia Mierau
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany
| | - Mario Zierden
- Department of Cardiology, Heart Center, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Xiaolin Xiong
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany
| | - Thorsten Wahlers
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany
| |
Collapse
|
35
|
Ngo ATP, Gollomp K. Building a better
NET
: Neutrophil extracellular trap targeted therapeutics in the treatment of infectious and inflammatory disorders. Res Pract Thromb Haemost 2022. [DOI: 10.1002/rth2.12808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Anh T. P. Ngo
- Division of Hematology Children's Hospital of Philadelphia Philadelphia Pennsylvania USA
| | - Kandace Gollomp
- Division of Hematology Children's Hospital of Philadelphia Philadelphia Pennsylvania USA
- Department of Pediatrics, Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania USA
| |
Collapse
|
36
|
Li H, Zhao L, Wang Y, Zhang MC, Qiao C. Roles, detection, and visualization of neutrophil extracellular traps in acute pancreatitis. Front Immunol 2022; 13:974821. [PMID: 36032164 PMCID: PMC9414080 DOI: 10.3389/fimmu.2022.974821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are produced in large quantities at the site of inflammation, and they locally capture and eliminate various pathogens. Thus, NETs quickly control the infection of pathogens in the body and play vital roles in immunity and antibacterial effects. However, evidence is accumulating that NET formation can exacerbate pancreatic tissue damage during acute pancreatitis (AP). In this review, we describe the research progress on NETs in AP and discuss the possibility of NETs as potential therapeutic targets. In addition, since the current detection and visualization methods of NET formation are not uniform and the selection of markers is still controversial, a synopsis of these issues is provided in this review.
Collapse
Affiliation(s)
- Hongxuan Li
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lingyu Zhao
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Yueying Wang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Meng-Chun Zhang
- Department of Pharmacology, Harbin Medical University, Harbin, China
| | - Cong Qiao
- Department of Pathology, Harbin Medical University, Harbin, China
| |
Collapse
|
37
|
Neutrophils and Neutrophil Extracellular Traps in Cardiovascular Disease: An Overview and Potential Therapeutic Approaches. Biomedicines 2022; 10:biomedicines10081850. [PMID: 36009397 PMCID: PMC9405087 DOI: 10.3390/biomedicines10081850] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/18/2022] [Accepted: 07/23/2022] [Indexed: 11/17/2022] Open
Abstract
Recent advances in pharmacotherapy have markedly improved the prognosis of cardiovascular disease (CVD) but have not completely conquered it. Therapies targeting the NOD-like receptor family pyrin domain containing 3 inflammasome and its downstream cytokines have proven effective in the secondary prevention of cardiovascular events, suggesting that inflammation is a target for treating residual risk in CVD. Neutrophil-induced inflammation has long been recognized as important in the pathogenesis of CVD. Circadian rhythm-related and disease-specific microenvironment changes give rise to neutrophil diversity. Neutrophils are primed by various stimuli, such as chemokines, cytokines, and damage-related molecular patterns, and the activated neutrophils contribute to the inflammatory response in CVD through degranulation, phagocytosis, reactive oxygen species generation, and the release of neutrophil extracellular traps (NETs). In particular, NETs promote immunothrombosis through the interaction with vascular endothelial cells and platelets and are implicated in the development of various types of CVD, such as acute coronary syndrome, deep vein thrombosis, and heart failure. NETs are promising candidates for anti-inflammatory therapy in CVD, and their efficacy has already been demonstrated in various animal models of the disease; however, they have yet to be clinically applied in humans. This narrative review discusses the diversity and complexity of neutrophils in the trajectory of CVD, the therapeutic potential of targeting NETs, and the related clinical issues.
Collapse
|
38
|
D’Alessio S, Cheng H, Eaton L, Kraev I, Pamenter ME, Lange S. Acute Hypoxia Alters Extracellular Vesicle Signatures and the Brain Citrullinome of Naked Mole-Rats (Heterocephalus glaber). Int J Mol Sci 2022; 23:ijms23094683. [PMID: 35563075 PMCID: PMC9100269 DOI: 10.3390/ijms23094683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
Peptidylarginine deiminases (PADs) and extracellular vesicles (EVs) may be indicative biomarkers of physiological and pathological status and adaptive responses, including to diseases and disorders of the central nervous system (CNS) and related to hypoxia. While these markers have been studied in hypoxia-intolerant mammals, in vivo investigations in hypoxia-tolerant species are lacking. Naked mole-rats (NMR) are among the most hypoxia-tolerant mammals and are thus a good model organism for understanding natural and beneficial adaptations to hypoxia. Thus, we aimed to reveal CNS related roles for PADs in hypoxia tolerance and identify whether circulating EV signatures may reveal a fingerprint for adaptive whole-body hypoxia responses in this species. We found that following in vivo acute hypoxia, NMR: (1) plasma-EVs were remodelled, (2) whole proteome EV cargo contained more protein hits (including citrullinated proteins) and a higher number of associated KEGG pathways relating to the total proteome of plasma-EVs Also, (3) brains had a trend for elevation in PAD1, PAD3 and PAD6 protein expression, while PAD2 and PAD4 were reduced, while (4) the brain citrullinome had a considerable increase in deiminated protein hits with hypoxia (1222 vs. 852 hits in normoxia). Our findings indicate that circulating EV signatures are modified and proteomic content is reduced in hypoxic conditions in naked mole-rats, including the circulating EV citrullinome, while the brain citrullinome is elevated and modulated in response to hypoxia. This was further reflected in elevation of some PADs in the brain tissue following acute hypoxia treatment. These findings indicate a possible selective role for PAD-isozymes in hypoxia response and tolerance.
Collapse
Affiliation(s)
- Stefania D’Alessio
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London W1W 6 UW, UK;
| | - Hang Cheng
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (H.C.); (L.E.); (M.E.P.)
| | - Liam Eaton
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (H.C.); (L.E.); (M.E.P.)
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Walton Hall, Milton Keynes MK7 6AA, UK;
| | - Matthew E. Pamenter
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (H.C.); (L.E.); (M.E.P.)
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London W1W 6 UW, UK;
- Correspondence: ; Tel.: +44-(0)-20-7911-5000 (ext. 64832)
| |
Collapse
|
39
|
Lu Y, Chang N, Zhao X, Xue R, Liu J, Yang L, Li L. Activated Neutrophils Secrete Chitinase-Like 1 and Attenuate Liver Inflammation by Inhibiting Pro-Inflammatory Macrophage Responses. Front Immunol 2022; 13:824385. [PMID: 35529851 PMCID: PMC9069964 DOI: 10.3389/fimmu.2022.824385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/21/2022] [Indexed: 11/26/2022] Open
Abstract
Excessive activation and recruitment of neutrophils are generally considered to be associated with pathological aggravation of multiple diseases. However, as the role of neutrophils in tissue injury repair is receiving increasing attention, it is necessary to further explore the beneficial role of activated neutrophils in promoting the resolution of inflammation after injury. In this study, we found that activated neutrophils have a crucial function in suppressing liver inflammation. In methionine-choline-deficient and high-fat (MCDHF) diet induced liver inflammation in mice, tail vein injection of activated neutrophils (A-Neu, stimulated by sphingosine 1-phosphate) inhibited the expressions of pro-inflammatory cytokines in the liver, including C-C chemokine motif ligand 4, tumor necrosis factor and nitric oxide synthase 2, and attenuated liver injury. However, non-activated neutrophils (N-Neu) did not have these effects. In vitro, pro-inflammatory macrophages were co-cultured with N-Neu or A-Neu by transwell, respectively. A-Neu was found to suppress the pro-inflammatory phenotype of macrophages by using RT-qPCR, western blot and cytometric bead array. Microarray analysis showed that there were systematic variations in transcript expression levels between N-Neu and A-Neu. GeneVenn software was used to show the gene expression overlap between GO terms including Regulation of Cell Communication, Cytokine Secretion, Inflammatory Response and Extracellular Space clusters. We identified that Chitinase-like 1 (CHIL1) secreted by S1P activated neutrophils may be an important mediators affecting the pro-inflammatory macrophage responses. In the injured liver of mice induced by MCDHF diet, the expression of Chil1 mRNA increased and was positively correlated with the neutrophil marker Ly6g. Moreover, the secretion of CHIL1 in A-Neu increased significantly. Strikingly, the effect of A-Neu on macrophage response was reproduced by incubating pro-inflammatory macrophages with recombinant CHIL1. A-Neu conditioned medium were incubated with CHIL1 antibody-conjugated protein G beads, magnetically separated to immunodepletion CHIL1 from the A-Neu supernatant, which can partially weaken its inhibitory effect of A-Neu on the production of macrophage pro-inflammatory cytokines. Together, the conclusions indicated that A-Neu could inhibit the pro-inflammatory macrophage responses by secreting CHIL1, thereby effectively inhibiting liver inflammation.
Collapse
|
40
|
Song H, Chen S, Zhang T, Huang X, Zhang Q, Li C, Chen C, Chen S, Liu D, Wang J, Tu Y, Wu Y, Liu Y. Integrated Strategies of Diverse Feature Selection Methods Identify Aging-Based Reliable Gene Signatures for Ischemic Cardiomyopathy. Front Mol Biosci 2022; 9:805235. [PMID: 35300115 PMCID: PMC8921505 DOI: 10.3389/fmolb.2022.805235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
Objective: Ischemic cardiomyopathy (ICM) is a major cardiovascular state associated with prominently increased morbidity and mortality. Our purpose was to detect reliable gene signatures for ICM through integrated feature selection strategies.Methods: Transcriptome profiles of ICM were curated from the GEO project. Classification models, including least absolute shrinkage and selection operator (LASSO), support vector machine (SVM), and random forest, were adopted for identifying candidate ICM-specific genes for ICM. Immune cell infiltrates were estimated using the CIBERSORT method. Expressions of candidate genes were verified in ICM and healthy myocardial tissues via Western blotting. JC-1 staining, flow cytometry, and TUNEL staining were presented in hypoxia/reoxygenation (H/R)-stimulated H9C2 cells with TRMT5 deficiency.Results: Following the integration of three feature selection methods, we identified seven candidate ICM-specific genes including ASPN, TRMT5, LUM, FCN3, CNN1, PCNT, and HOPX. ROC curves confirmed the excellent diagnostic efficacy of this combination of previous candidate genes in ICM. Most of them presented prominent interactions with immune cell infiltrates. Their deregulations were confirmed in ICM than healthy myocardial tissues. TRMT5 expressions were remarkedly upregulated in H/R-stimulated H9C2 cells. TRMT5 deficiency enhanced mitochondrial membrane potential and reduced apoptosis in H/R-exposed H9C2 cells.Conclusion: Collectively, our findings identified reliable gene signatures through combination strategies of diverse feature selection methods, which facilitated the early detection of ICM and revealed the underlying mechanisms.
Collapse
Affiliation(s)
- Huafeng Song
- Department of Cardiology, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shaoze Chen
- Department of Cardiology, Huanggang Central Hospital, Huanggang, China
| | - Tingting Zhang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaofei Huang
- Department of Cardiology, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qiyu Zhang
- Department of Cardiology, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Cuizhi Li
- Department of Cardiology, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chunlin Chen
- Department of Cardiology, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shaoxian Chen
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Cardiovascular Institute, School of Medicine, Guangdong Provincial People’s Hospital and Guangdong Academy of Medical Sciences, South China University of Technology, Guangzhou, China
| | - Dehui Liu
- Department of Cardiology, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiawen Wang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
- *Correspondence: Jiawen Wang, ; Yingfeng Tu, ; Yueheng Wu, ; Youbin Liu,
| | - Yingfeng Tu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Jiawen Wang, ; Yingfeng Tu, ; Yueheng Wu, ; Youbin Liu,
| | - Yueheng Wu
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Cardiovascular Institute, School of Medicine, Guangdong Provincial People’s Hospital and Guangdong Academy of Medical Sciences, South China University of Technology, Guangzhou, China
- *Correspondence: Jiawen Wang, ; Yingfeng Tu, ; Yueheng Wu, ; Youbin Liu,
| | - Youbin Liu
- Department of Cardiology, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Jiawen Wang, ; Yingfeng Tu, ; Yueheng Wu, ; Youbin Liu,
| |
Collapse
|
41
|
You Q, Shen Y, Wu Y, Li Y, Liu C, Huang F, Gu HF, Wu J. Neutrophil Extracellular Traps Caused by Gut Leakage Trigger the Autoimmune Response in Nonobese Diabetic Mice. Front Immunol 2022; 12:711423. [PMID: 35111148 PMCID: PMC8801438 DOI: 10.3389/fimmu.2021.711423] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/27/2021] [Indexed: 01/14/2023] Open
Abstract
Increased formation of neutrophil extracellular traps (NETs) is associated with gut leakage in type 1 diabetes (T1D). To explore the mechanism of how enteropathy exacerbated by NETs triggers pancreatic autoimmunity in T1D, we carried out a correlation analysis for NET formation with gut barrier functions and autoimmunity in nonobese diabetic (NOD) mice. Inducing chronic colitis or knocking out of peptidyl arginine deiminase type 4 (PAD4) in NOD mice were used to further study the effect of NET formation on the progression of T1D. Microbial alterations in Deferribacteres and Proteobacteria, along with the loss of gut barrier function, were found to be associated with increased endotoxin and abnormal formation of NETs in NOD mice. Both DSS-induced colitis and knockout of PAD4 in NOD mice indicated that PAD4-dependent NET formation was involved in the aggravation of gut barrier dysfunction, the production of autoantibodies, and the activation of enteric autoimmune T cells, which then migrated to pancreatic lymph nodes (PLNs) and caused self-damage. The current study thus provides evidence that PAD4-dependent NET formation is engaged in leaky gut triggering pancreatic autoimmunity and suggests that either degradation of NETs or inhibition of NET formation may be helpful for innovative therapeutic interventions in T1D.
Collapse
Affiliation(s)
- Qi You
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yiming Shen
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yiling Wu
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yuyan Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Chang Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Fengjie Huang
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Harvest F Gu
- Center for Pathophysiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jie Wu
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
42
|
Al-Kuraishy HM, Al-Gareeb AI, Al-Hussaniy HA, Al-Harcan NAH, Alexiou A, Batiha GES. Neutrophil Extracellular Traps (NETs) and Covid-19: A new frontiers for therapeutic modality. Int Immunopharmacol 2022; 104:108516. [PMID: 35032828 PMCID: PMC8733219 DOI: 10.1016/j.intimp.2021.108516] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 01/08/2023]
Abstract
Coronavirus disease 2019 (Covid-19) is a worldwide infectious disease caused by severe acute respiratory coronavirus 2 (SARS-CoV-2). In severe SARS-CoV-2 infection, there is severe inflammatory reactions due to neutrophil recruitments and infiltration in the different organs with the formation of neutrophil extracellular traps (NETs), which involved various complications of SARS-CoV-2 infection. Therefore, the objective of the present review was to explore the potential role of NETs in the pathogenesis of SARS-CoV-2 infection and to identify the targeting drugs against NETs in Covid-19 patients. Different enzyme types are involved in the formation of NETs, such as neutrophil elastase (NE), which degrades nuclear protein and release histones, peptidyl arginine deiminase type 4 (PADA4), which releases chromosomal DNA and gasdermin D, which creates pores in the NTs cell membrane that facilitating expulsion of NT contents. Despite of the beneficial effects of NETs in controlling of invading pathogens, sustained formations of NETs during respiratory viral infections are associated with collateral tissue injury. Excessive development of NETs in SARS-CoV-2 infection is linked with the development of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) due to creation of the NETs-IL-1β loop. Also, aberrant NTs activation alone or through NETs formation may augment SARS-CoV-2-induced cytokine storm (CS) and macrophage activation syndrome (MAS) in patients with severe Covid-19. Furthermore, NETs formation in SARS-CoV-2 infection is associated with immuno-thrombosis and the development of ALI/ARDS. Therefore, anti-NETs therapy of natural or synthetic sources may mitigate SARS-CoV-2 infection-induced exaggerated immune response, hyperinflammation, immuno-thrombosis, and other complications.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyiah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyiah University, Baghdad, Iraq
| | | | - Nasser A Hadi Al-Harcan
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Rasheed University College, Bagdad, Iraq
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia; AFNP Med Austria, Wien, Austria.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Al Beheira, Egypt.
| |
Collapse
|
43
|
Liu X, Ouyang L, Chen L, Qiao Y, Ma X, Xu G, Liu X. Hydroxyapatite composited PEEK with 3D porous surface enhances osteoblast differentiation through mediating NO by macrophage. Regen Biomater 2021; 9:rbab076. [PMID: 35480864 PMCID: PMC9039504 DOI: 10.1093/rb/rbab076] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/21/2021] [Accepted: 11/30/2021] [Indexed: 11/14/2022] Open
Abstract
The adverse immune response mediated by macrophages is one of the main factors that are prone to lead poor osseointegration of polyetheretherketone (PEEK) implants in clinic. Hence, endowing PEEK with immunomodulatory ability to avoid the adverse immune response becomes a promising strategy to promote bone repair. In this work, sulfonation and hydrothermal treatment were used to fabricate a 3D porous surface on PEEK and hydroxyapatite (HA) composited PEEK. The HA composited PEEK with 3D porous surface inhibited macrophages polarizing to M1 phenotype and downregulated inducible nitric oxide synthase protein expression, which led to a nitric oxide concentration reduction in culture medium of mouse bone marrow mesenchymal stem cells (mBMSCs) under co-culture condition. The decrease of nitric oxide concentration could help to increase bone formation-related OSX and ALP genes expressions and decrease bone resorption-related MMP-9 and MMP-13 genes expressions via cAMP-PKA-RUNX2 pathway in mBMSCs. In summary, the HA composited PEEK with 3D porous surface has the potential to promote osteogenesis of PEEK through immunomodulation, which provides a promising strategy to improve the bone repair ability of PEEK.
Collapse
Affiliation(s)
- Xingdan Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi Road 1295, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China
| | - Liping Ouyang
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai 200336, China
| | - Lan Chen
- School of Materials Science, and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, Science Avenue 100, Zhengzhou 450001, China
| | - Yuqin Qiao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi Road 1295, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China
| | - Xiaohan Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi Road 1295, Shanghai 200050, China
- Cixi Center of Biomaterials Surface Engineering, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Wenwei Road 345, Ningbo 315300, China
| | - Guohua Xu
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai 200003, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi Road 1295, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China
- Cixi Center of Biomaterials Surface Engineering, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Wenwei Road 345, Ningbo 315300, China
| |
Collapse
|
44
|
Conforti A, Wahlers T, Paunel-Görgülü A. Neutrophil extracellular traps modulate inflammatory markers and uptake of oxidized LDL by human and murine macrophages. PLoS One 2021; 16:e0259894. [PMID: 34797846 PMCID: PMC8604363 DOI: 10.1371/journal.pone.0259894] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/29/2021] [Indexed: 01/23/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are web-like structures, which are released upon neutrophil activation. It has previously been demonstrated that NETs are present in atherosclerotic lesions of both humans and animal models thus playing a decisive role in atherosclerosis. Besides, macrophages have a crucial role in disease progression, whereby classically activated M1 macrophages sustain inflammation and alternatively activated M2 macrophages display anti-inflammatory effects. Although NETs and macrophages were found to colocalize in atherosclerotic lesions, the impact of NETs on macrophage function is not fully understood. In the present study, we aimed to investigate the effect of NETs on human and murine macrophages in respect to the expression of pro-inflammatory cytokines, matrix metalloproteinases (MMPs) and uptake of oxidized LDL (oxLDL) in vitro. Human THP-1 and murine bone marrow-derived macrophages were cultured under M1 (LPS + IFN-γ)- and M2a (IL-4)-polarizing culture conditions and treated with NETs. To mimic intraplaque regions, cells were additionally cultured under hypoxic conditions. NETs significantly increased the expression of IL-1β, TNF-α and IL-6 in THP-M1 macrophages under normoxia but suppressed their expression in murine M1 macrophages under hypoxic conditions. Notably, NETs increased the number of oxLDL-positive M1 and M2 human and murine macrophages under normoxia, but did not influence formation of murine foam cells under hypoxia. However, oxLDL uptake did not strongly correlate with the expression of the LDL receptor CD36. Besides, upregulated MMP-9 expression and secretion by macrophages was detected in the presence of NETs. Again, hypoxic culture conditions dampened NETs effects. These results suggest that NETs may favor foam cell formation and plaque vulnerability, but exert opposite effects in respect to the inflammatory response of human and murine M1 macrophages. Moreover, effects of NETs on macrophages’ phenotype are altered under hypoxia.
Collapse
Affiliation(s)
- Andreas Conforti
- Department of Cardiothoracic Surgery, Heart Center of The University of Cologne, Cologne, Germany
| | - Thorsten Wahlers
- Department of Cardiothoracic Surgery, Heart Center of The University of Cologne, Cologne, Germany
| | - Adnana Paunel-Görgülü
- Department of Cardiothoracic Surgery, Heart Center of The University of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|
45
|
Wu Z, Li P, Tian Y, Ouyang W, Ho JWY, Alam HB, Li Y. Peptidylarginine Deiminase 2 in Host Immunity: Current Insights and Perspectives. Front Immunol 2021; 12:761946. [PMID: 34804050 PMCID: PMC8599989 DOI: 10.3389/fimmu.2021.761946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Abstract
Peptidylarginine deiminases (PADs) are a group of enzymes that catalyze post-translational modifications of proteins by converting arginine residues into citrullines. Among the five members of the PAD family, PAD2 and PAD4 are the most frequently studied because of their abundant expression in immune cells. An increasing number of studies have identified PAD2 as an essential factor in the pathogenesis of many diseases. The successes of preclinical research targeting PAD2 highlights the therapeutic potential of PAD2 inhibition, particularly in sepsis and autoimmune diseases. However, the underlying mechanisms by which PAD2 mediates host immunity remain largely unknown. In this review, we will discuss the role of PAD2 in different types of cell death signaling pathways and the related immune disorders contrasted with functions of PAD4, providing novel therapeutic strategies for PAD2-associated pathology.
Collapse
Affiliation(s)
- Zhenyu Wu
- Department of Surgery, University of Michigan Hospital, Ann Arbor, MI, United States,Department of Infectious Diseases, Xiangya 2 Hospital, Central South University, Changsha, China
| | - Patrick Li
- Department of Surgery, University of Michigan Hospital, Ann Arbor, MI, United States,Department of Internal Medicine, New York University (NYU) Langone Health, New York, NY, United States
| | - Yuzi Tian
- Department of Surgery, University of Michigan Hospital, Ann Arbor, MI, United States,Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, China
| | - Wenlu Ouyang
- Department of Surgery, University of Michigan Hospital, Ann Arbor, MI, United States,Department of Infectious Diseases, Xiangya 2 Hospital, Central South University, Changsha, China
| | - Jessie Wai-Yan Ho
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hasan B. Alam
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Yongqing Li
- Department of Surgery, University of Michigan Hospital, Ann Arbor, MI, United States,*Correspondence: Yongqing Li,
| |
Collapse
|
46
|
Li RL, Fan CH, Gong SY, Kang S. Effect and Mechanism of LRP6 on Cardiac Myocyte Ferroptosis in Myocardial Infarction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8963987. [PMID: 34712388 PMCID: PMC8548150 DOI: 10.1155/2021/8963987] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/24/2021] [Accepted: 09/11/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND This study was aimed at exploring the biological function and molecular mechanism of ferroptosis of LRP6 modulation in cardiomyocytes of myocardial infarction (MI). METHOD We established the ferroptosis model of MI in vivo and in vitro and constructed the modulation network of circRNA-miRNA-LRP6 by bioinformatics analysis; then, we focused on exploring the regulatory relationship of LRP6 and its upstream genes circRNA1615 and miR-152-3p in the RIP experiments and the double luciferase reporter gene assay. Also, we tested the LRP6-mediated autophagy-related ferroptosis in MI. RESULTS Ferroptosis was found in cardiomyocytes of MI, and ferroptosis inhibitor Ferrostatin-1 (Fer-1) could improve the pathological process of MI. LRP6 was involved in the process of ferroptosis in cardiomyocytes, and LRP6 deletion regulated ferroptosis in cardiomyocytes through autophagy. Screening and identification of the upstream gene circRNA1615 would target LRP6. circRNA1615 inhibited ferroptosis in cardiomyocytes, and circRNA1615 could regulate the expression of LRP6 through sponge adsorption of miR-152-3p, prevent LRP6-mediated autophagy-related ferroptosis in cardiomyocytes, and finally control the pathological process of MI. CONCLUSIONS circRNA1615 inhibits ferroptosis via modulation of autophagy by the miRNA152-3p/LRP6 molecular axis in cardiomyocytes of myocardial infarction.
Collapse
Affiliation(s)
- Rui-lin Li
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Jimo Road 150, Shanghai 200120, China
| | - Cheng-hui Fan
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Jimo Road 150, Shanghai 200120, China
| | - Shi-yu Gong
- School of Medicine, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Sheng Kang
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Jimo Road 150, Shanghai 200120, China
| |
Collapse
|
47
|
Akboua H, Eghbalzadeh K, Keser U, Wahlers T, Paunel-Görgülü A. Impaired non-canonical transforming growth factor-β signalling prevents profibrotic phenotypes in cultured peptidylarginine deiminase 4-deficient murine cardiac fibroblasts. J Cell Mol Med 2021; 25:9674-9684. [PMID: 34523218 PMCID: PMC8505821 DOI: 10.1111/jcmm.16915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/24/2021] [Accepted: 08/29/2021] [Indexed: 12/12/2022] Open
Abstract
Transforming growth factor‐β (TGF‐β) becomes rapidly activated in the infarcted heart. Hence, TGF‐β‐mediated persistent activation of cardiac fibroblasts (CFs) and exaggerated fibrotic responses may result in adverse cardiac remodelling and heart failure. Additionally, peptidylarginine deiminase 4 (PAD4) was described to be implicated in organ fibrosis. Here, we investigated the impact of PAD4 on CF function and myofibroblast transdifferentiation in vitro. The expression of fibrosis‐related genes was largely similar in cultured WT and PAD4‐/‐ CFs of passage 3, although collagen III was reduced in PAD4‐/‐ CFs. Exposure to TGF‐β inhibited proliferation and increased contractile activity and migration of WT CFs, but not of PAD4‐/‐ CFs. However, under baseline conditions, PAD4−/− CFs showed comparable functional characteristics as TGF‐β‐stimulated WT CFs. Although the SMAD‐dependent TGF‐β pathway was not disturbed in PAD4‐/‐ CFs, TGF‐β failed to activate protein kinase B (Akt) and signal transducer and activator of transcription 3 (STAT3) in these cells. Similar results were obtained in WT CFs treated with the PAD4 inhibitor Cl‐amidine. Abrogated Akt activation was associated with diminished levels of phosphorylated, inactive glycogen synthase kinase‐3β (GSK‐3β). Consequently, PAD4‐/‐ CFs did not upregulate collagen I and α‐smooth muscle actin (α‐SMA) expression after TGF‐β treatment. Thus, PAD4 is substantially involved in the regulation of non‐canonical TGF‐β signalling and may represent a therapeutic target for the treatment of adverse cardiac remodelling.
Collapse
Affiliation(s)
- Hanane Akboua
- Department of Cardiothoracic Surgery, Heart Center of the University of Cologne, Cologne, Germany
| | - Kaveh Eghbalzadeh
- Department of Cardiothoracic Surgery, Heart Center of the University of Cologne, Cologne, Germany
| | - Ugur Keser
- Department of Cardiothoracic Surgery, Heart Center of the University of Cologne, Cologne, Germany
| | - Thorsten Wahlers
- Department of Cardiothoracic Surgery, Heart Center of the University of Cologne, Cologne, Germany
| | - Adnana Paunel-Görgülü
- Department of Cardiothoracic Surgery, Heart Center of the University of Cologne, Cologne, Germany
| |
Collapse
|
48
|
Peptidylarginine deiminases 4 as a promising target in drug discovery. Eur J Med Chem 2021; 226:113840. [PMID: 34520958 DOI: 10.1016/j.ejmech.2021.113840] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/21/2021] [Accepted: 09/07/2021] [Indexed: 12/23/2022]
Abstract
Peptidylarginine deaminase 4 (PAD4) is a crucial post-translational modifying enzyme catalyzing the conversion of arginine into citrulline residues, and mediating the formation of neutrophil extracellular traps (NETs). PAD4 plays a vital role in the occurrence and development of cardiovascular diseases, autoimmune diseases, and various tumors. Therefore, PAD4 is considered as a promising drug target for disease diagnosis and treatment. More and more efforts are devoted to developing highly efficient and selective PAD4 inhibitors via high-throughput screening, structure-based drug design and structure-activity relationship study. This article outlined the physiological and pathological functions of PAD4, and corresponding representative small molecule inhibitors reported in recent years.
Collapse
|
49
|
The Immune System Throws Its Traps: Cells and Their Extracellular Traps in Disease and Protection. Cells 2021; 10:cells10081891. [PMID: 34440659 PMCID: PMC8391883 DOI: 10.3390/cells10081891] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/21/2022] Open
Abstract
The first formal description of the microbicidal activity of extracellular traps (ETs) containing DNA occurred in neutrophils in 2004. Since then, ETs have been identified in different populations of cells involved in both innate and adaptive immune responses. Much of the knowledge has been obtained from in vitro or ex vivo studies; however, in vivo evaluations in experimental models and human biological materials have corroborated some of the results obtained. Two types of ETs have been described—suicidal and vital ETs, with or without the death of the producer cell. The studies showed that the same cell type may have more than one ETs formation mechanism and that different cells may have similar ETs formation mechanisms. ETs can act by controlling or promoting the mechanisms involved in the development and evolution of various infectious and non-infectious diseases, such as autoimmune, cardiovascular, thrombotic, and neoplastic diseases, among others. This review discusses the presence of ETs in neutrophils, macrophages, mast cells, eosinophils, basophils, plasmacytoid dendritic cells, and recent evidence of the presence of ETs in B lymphocytes, CD4+ T lymphocytes, and CD8+ T lymphocytes. Moreover, due to recently collected information, the effect of ETs on COVID-19 is also discussed.
Collapse
|
50
|
Xie Y, Wang Y, Zhao L, Wang F, Fang J. Identification of potential biomarkers and immune cell infiltration in acute myocardial infarction (AMI) using bioinformatics strategy. Bioengineered 2021; 12:2890-2905. [PMID: 34227921 PMCID: PMC8806781 DOI: 10.1080/21655979.2021.1937906] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Acute myocardial infarction (AMI) was considered a fatal disease resulting in high morbidity and mortality; platelet activation or aggregation plays a critical role in participating in the pathogenesis of AMI. The current study aimed to reveal the underlying mechanisms of platelets in the confrontation of AMI and potential biomarkers that separate AMI from other cardiovascular diseases and healthy people with bioinformatic strategies. Immunity analysis revealed that the neutrophil was significantly decreased in patients with SCAD compared with patients with ST-segment elevation myocardial infarction (STEMI) or healthy controls; monocytes and neutrophils showed potential in distinguishing patients with STEMI from patients with SCAD. Six differentially expressed genes (DEGs) showed great performances in differentiating STEMI patients from SCAD patients with AUC greater than 0.9. Correlation analysis showed that these six DEGs were significantly positively correlated with neutrophils; three genes were negatively correlated with monocytes. Weighted gene co-expression network analysis (WGCNA) found that module ‘royalblue’ had the highest correlation with STEMI; genes in STEMI-related module were enriched in cell–cell interactions, blood vessels’ biological processes, and peroxisome proliferator-activated receptor (PPAR) signaling pathway; four genes (FN1, CD34, LPL, and WWTR1) represented the capability of identifying patients with STEMI from healthy controls and patients with SCAD; two genes (ARG1 and NAMPTL) were considered as novel biomarkers for identifying STEMI from SCAD; FN1 represented the potential as a novel biomarker for STEMI. Our findings indicated that the distribution of neutrophils could be considered as a potential molecular trait for separating patients with STEMI from SCAD.
Collapse
Affiliation(s)
- Yun Xie
- Department of Emergency, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yi Wang
- Department of Emergency, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Linjun Zhao
- Department of Emergency, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fang Wang
- Department of Emergency, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jinyan Fang
- Department of Emergency, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|