1
|
Pharoun J, Berro J, Sobh J, Abou-Younes MM, Nasr L, Majed A, Khalil A, Joseph, Stephan, Faour WH. Mesenchymal stem cells biological and biotechnological advances: Implications for clinical applications. Eur J Pharmacol 2024; 977:176719. [PMID: 38849038 DOI: 10.1016/j.ejphar.2024.176719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are multipotent stem cells that are able to differentiate into multiple lineages including bone, cartilage, muscle and fat. They hold immunomodulatory properties and therapeutic ability to treat multiple diseases, including autoimmune and chronic degenerative diseases. In this article, we reviewed the different biological properties, applications and clinical trials of MSCs. Also, we discussed the basics of manufacturing conditions, quality control, and challenges facing MSCs in the clinical setting. METHODS Extensive review of the literature was conducted through the databases PubMed, Google Scholar, and Cochrane. Papers published since 2015 and covering the clinical applications and research of MSC therapy were considered. Furthermore, older papers were considered when referring to pioneering studies in the field. RESULTS The most widely studied stem cells in cell therapy and tissue repair are bone marrow-derived mesenchymal stem cells. Adipose tissue-derived stem cells became more common and to a lesser extent other stem cell sources e.g., foreskin derived MSCs. MSCs therapy were also studied in the setting of COVID-19 infections, ischemic strokes, autoimmune diseases, tumor development and graft rejection. Multiple obstacles, still face the standardization and optimization of MSC therapy such as the survival and the immunophenotype and the efficiency of transplanted cells. MSCs used in clinical settings displayed heterogeneity in their function despite their extraction from healthy donors and expression of similar surface markers. CONCLUSION Mesenchymal stem cells offer a rising therapeutic promise in various diseases. However, their potential use in clinical applications requires further investigation.
Collapse
Affiliation(s)
- Jana Pharoun
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36
| | - Jana Berro
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36
| | - Jeanine Sobh
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36
| | | | - Leah Nasr
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36
| | - Ali Majed
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36
| | - Alia Khalil
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36
| | - Joseph
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36
| | - Stephan
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36
| | - Wissam H Faour
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36.
| |
Collapse
|
2
|
Chin SP, Marzuki M, Tai L, Mohamed Shahrehan NA, Ricky C, Fanty A, Salleh A, Low CT, Then KY, Hoe SLL, Cheong SK. Dynamic tracking of human umbilical cord mesenchymal stem cells (hUC-MSCs) following intravenous administration in mice model. Regen Ther 2024; 25:273-283. [PMID: 38314402 PMCID: PMC10834363 DOI: 10.1016/j.reth.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/07/2024] [Accepted: 01/18/2024] [Indexed: 02/06/2024] Open
Abstract
Introduction In the past decades, human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) have sparked interest in cellular therapy due to their immunomodulatory properties. Nevertheless, the fate of hUC-MSCs in the body remains poorly understood. This study aimed to investigate the biodistribution, homing and clearance of systemically administered hUC-MSCs in healthy BALB/c mice model. Methods hUC-MSCs were labelled with GFP-Luc2 protein, followed by characterisation with flow cytometry. Upon intravenous infusion of transduced hUC-MSCs into the healthy BALB/c mice, the cells were dynamically monitored through the bioluminescent imaging (BLI) approach. Results Transduction of hUC-MSCs with GFP-Luc2 not only preserved the characteristics of MSCs, but also allowed live monitoring of transduced cells in the mice model. Upon systemic administration, BLI showed that transduced hUC-MSCs first localised predominantly in the lungs of healthy BALB/c mice and mainly remained in the lungs for up to 3 days before eventually cleared from the body. At terminal sacrifice, plasma chemistry biomarkers remained unchanged except for C-peptide levels, which were significantly reduced in the hUC-MSCs group. Histopathological findings further revealed that hUC-MSCs infusion did not cause any adverse effects and toxicity to lung, liver and heart tissues. Conclusions Collectively, systemically administrated hUC-MSCs was safe and demonstrated dynamic homing capacity before eventually disappearing from the body.
Collapse
Affiliation(s)
- Sze-Piaw Chin
- Cytopeutics Sdn Bhd, Cyberjaya, Selangor, Malaysia
- M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sungai Long, Selangor, Malaysia
| | - Marini Marzuki
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, NIH, Setia Alam, Selangor, Malaysia
| | - Lihui Tai
- Cytopeutics Sdn Bhd, Cyberjaya, Selangor, Malaysia
| | | | - Christine Ricky
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, NIH, Setia Alam, Selangor, Malaysia
| | - Audrey Fanty
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, NIH, Setia Alam, Selangor, Malaysia
| | - Annas Salleh
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Chui Thean Low
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, NIH, Setia Alam, Selangor, Malaysia
| | | | - Susan Ling Ling Hoe
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, NIH, Setia Alam, Selangor, Malaysia
| | - Soon Keng Cheong
- M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sungai Long, Selangor, Malaysia
| |
Collapse
|
3
|
Zeiser R, Ringden O, Sadeghi B, Gonen-Yaacovi G, Segurado OG. Novel therapies for graft versus host disease with a focus on cell therapies. Front Immunol 2023; 14:1241068. [PMID: 37868964 PMCID: PMC10585098 DOI: 10.3389/fimmu.2023.1241068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/11/2023] [Indexed: 10/24/2023] Open
Abstract
Graft versus host disease (GVHD) can occur at any period post allogeneic hematopoietic stem cell transplantation as a common clinical complication contributing to significant morbidity and mortality. Acute GVHD develops in approximately 30-50% of patients receiving transplants from matched related donors. High doses of steroids are used as first-line treatment, but are unsuccessful in around 40% of patients, resulting in the diagnosis of steroid-refractory acute GVHD. Consensus has yet to develop for the management of steroid-refractory acute GVHD, and prognosis at six months has been estimated at around 50%. Thus, it is critical to find effective treatments that increase survival of steroid-refractory acute GVHD. This article describes the currently known characteristics, pathophysiology, and treatments for GVHD, with a special focus on recent advances in cell therapies. In particular, a novel cell therapy using decidua stromal cells (DSCs) was recently shown to have promising results for acute GVHD, with improved effectiveness over previous treatments including mesenchymal stromal cells. At the Karolinska Institute, severe acute GVHD patients treated with placenta-derived DSCs supplemented with either 5% albumin or 10% AB plasma displayed a one-year survival rate of 76% and 47% respectively. Furthermore, patients with steroid-refractory acute GVHD, displayed survival rates of 73% with albumin and 31% with AB plasma-supplemented DSCs, compared to the 20% survival rate in the mesenchymal stromal cell control group. Adverse events and deaths were found to be attributed only to complications of hematopoietic stem cell transplant and GVHD, not to the study intervention. ASC Therapeutics, Inc, in collaboration with the Karolinska Institute, will soon initiate a phase 2 multicenter, open-label study to further assess the efficacy and safety of intravenous DSC treatment in sixty patients with Grade II-IV steroid-refractory acute GVHD. This novel cell therapy represents a promising treatment to combat the poor prognosis that steroid-refractory acute GVHD patients currently face.
Collapse
Affiliation(s)
- Robert Zeiser
- Department of Medicine at the University of Freiburg, Freiburg, Germany
| | - Olle Ringden
- Department of Clinical Sciences, Karolinska Institute, Stockholm, Sweden
| | - Behnam Sadeghi
- Department of Clinical Sciences, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
4
|
Sadeghi B, Ringdén O, Gustafsson B, Castegren M. Mesenchymal stromal cells as treatment for acute respiratory distress syndrome. Case Reports following hematopoietic cell transplantation and a review. Front Immunol 2022; 13:963445. [PMID: 36426365 PMCID: PMC9680556 DOI: 10.3389/fimmu.2022.963445] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening lung disease. It may occur during the pancytopenia phase following allogeneic hematopoietic cell transplantation (HCT). ARDS is rare following HCT. Mesenchymal stromal cells (MSCs) have strong anti-inflammatory effect and first home to the lung following intravenous infusion. MSCs are safe to infuse and have almost no side effects. During the Covid-19 pandemic many patients died from ARDS. Subsequently MSCs were evaluated as a therapy for Covid-19 induced ARDS. We report three patients, who were treated with MSCs for ARDS following HCT. Two were treated with MSCs derived from the bone marrow (BM). The third patient was treated with MSCs obtained from the placenta, so-called decidua stromal cells (DSCs). In the first patient, the pulmonary infiltrates cleared after infusion of BM-MSCs, but he died from multiorgan failure. The second patient treated with BM-MSCs died of aspergillus infection. The patient treated with DSCs had a dramatic response and survived. He is alive after 7 years with a Karnofsky score of 100%. We also reviewed experimental and clinical studies using MSCs or DSCs for ARDS. Several positive reports are using MSCs for sepsis and ARDS in experimental animals. In man, two prospective randomized placebo-controlled studies used adipose and BM-MSCs, respectively. No difference in outcome was seen compared to placebo. Some pilot studies used MSCs for Covid-19 ARDS. Positive results were achieved using umbilical cord and DSCs however, optimal source of MSCs remains to be elucidated using randomized trials.
Collapse
Affiliation(s)
- Behnam Sadeghi
- Translational Cell Therapy Research (TCR), Division of Paediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- *Correspondence: Behnam Sadeghi,
| | - Olle Ringdén
- Translational Cell Therapy Research (TCR), Division of Paediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Britt Gustafsson
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Markus Castegren
- Center for Clinical Research, Sörmland, Uppsala University, Uppsala, Sweden
- Department of Anesthesiology and Intensive Care, CLINTEC, Karolinska Institutet, Stockholm, Sweden
- Section of Infectious Diseases, Department of Medical Science, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Nachmias B, Zimran E, Avni B. Mesenchymal stroma/stem cells: Haematologists' friend or foe? Br J Haematol 2022; 199:175-189. [PMID: 35667616 PMCID: PMC9796884 DOI: 10.1111/bjh.18292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 01/07/2023]
Abstract
Mesenchymal stromal cells (MSCs) are non-haematopoietic cells found in fetal and adult organs, that play important roles in tissue repair, inflammation and immune modulation. MSCs residing in the bone marrow interact closely with haematopoietic cells and comprise an important component of the microenvironment supporting haematopoiesis, in both health and disease states. Since their identification in 1970, basic scientific and preclinical research efforts have shed light on the role of MSCs in the regulation of haematopoiesis and evoked interest in their clinical application in haematopoietic stem cell transplantation (HSCT) and malignant haematology. Over the last two decades, these research efforts have led to numerous clinical trials, which have established the safety of MSC therapy; however, the optimal mode of administration and the benefit remain inconclusive. In this paper, we will review the clinical experience with use of MSCs in HSCT for enhancement of engraftment, prevention and treatment of graft-versus-host disease and haemorrhagic cystitis. Then, we will discuss the contradictory evidence regarding tumour-promoting versus tumour-suppressing effects of MSCs in haematological malignancies, which may have relevance for future clinical applications.
Collapse
Affiliation(s)
- Boaz Nachmias
- Division of Hematology and Bone Marrow Transplantation & Cancer ImmunotherapyHadassah Medical Center and Hebrew UniversityJerusalemIsrael
| | - Eran Zimran
- Division of Hematology and Bone Marrow Transplantation & Cancer ImmunotherapyHadassah Medical Center and Hebrew UniversityJerusalemIsrael
| | - Batia Avni
- Division of Hematology and Bone Marrow Transplantation & Cancer ImmunotherapyHadassah Medical Center and Hebrew UniversityJerusalemIsrael
| |
Collapse
|
6
|
Jin S, Wu C, Chen M, Sun D, Zhang H. The pathological and therapeutic roles of mesenchymal stem cells in preeclampsia. Front Med (Lausanne) 2022; 9:923334. [PMID: 35966876 PMCID: PMC9370554 DOI: 10.3389/fmed.2022.923334] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have made progress in the treatment of ischemic and inflammatory diseases. Preeclampsia (PE) is characterized by placenta ischemic and inflammatory injury. Our paper summarized the new role of MSCs in PE pathology and its potency in PE therapy and analyzed its current limitations. Intravenously administered MSCs dominantly distributed in perinatal tissues. There may be additional advantages to using MSCs-based therapies for reproductive disorders. It will provide new ideas for future research in this field.
Collapse
Affiliation(s)
- Sanshan Jin
- Hubei University of Chinese Medicine, Wuhan, China
- Department of Traditional Chinese Medicine, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Canrong Wu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ming Chen
- Department of Rehabilitation Physiotherapy, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Dongyan Sun
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Hua Zhang
- Hubei University of Chinese Medicine, Wuhan, China
- Department of Traditional Chinese Medicine, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
- *Correspondence: Hua Zhang,
| |
Collapse
|
7
|
Pirsalehi A, Soleimani M, Hajifathali A, Sadeghi B, Farhadihosseinabadi B, Akhlaghi SS, Roshandel E. Decidual stromal cell therapy for generalized lymphadenopathy as a special clinical manifestation of COVID‐19 infection: A case report. Clin Case Rep 2022; 10:e05851. [PMID: 35600010 PMCID: PMC9109646 DOI: 10.1002/ccr3.5851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 12/31/2022] Open
Abstract
We are going through the greatest global health crisis of the last decades, the coronavirus disease 2019 (COVID‐19) pandemic. It may cause morbidity and mortality in some cases, and there is no therapeutic approach with reproducible and favorable outcomes. As clinical manifestations differ from patient to patient, any report regarding clinical symptoms has been beneficial for early detection and treatment. Due to the immunomodulatory effect of mesenchymal stem cells (MSCs), MSCs‐based therapy has been approved to be one of the therapeutic strategies for COVID‐19 management. For the first time in the literature, we reported generalized lymphadenopathy with fever and no sign of respiratory distress in a 16‐year‐old patient with confirmed COVID‐19 infection as the main clinical signs. We also introduce decidual stromal cells as a potential immunomodulatory treatment for COVID‐19–infected patients.
Collapse
Affiliation(s)
- Ali Pirsalehi
- Department of Internal Medicine School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Masoud Soleimani
- Hematopoietic Stem Cell Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Abbas Hajifathali
- Hematopoietic Stem Cell Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Behnam Sadeghi
- Translational Cell Therapy Research (TCR) Department of Clinical Science, Intervention and Technology CLINTEC Karolinska Instituted Huddinge Sweden
| | | | - Sedigheh Sadat Akhlaghi
- Department of Internal Medicine School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Elham Roshandel
- Hematopoietic Stem Cell Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
8
|
Raman N, Imran SAM, Ahmad Amin Noordin KB, Zaman WSWK, Nordin F. Mechanotransduction in Mesenchymal Stem Cells (MSCs) Differentiation: A Review. Int J Mol Sci 2022; 23:4580. [PMID: 35562971 PMCID: PMC9105508 DOI: 10.3390/ijms23094580] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 02/04/2023] Open
Abstract
Mechanotransduction is the process by which physical force is converted into a biochemical signal that is used in development and physiology; meanwhile, it is intended for the ability of cells to sense and respond to mechanical forces by activating intracellular signals transduction pathways and the relative phenotypic adaptation. It encompasses the role of mechanical stimuli for developmental, morphological characteristics, and biological processes in different organs; the response of cells to mechanically induced force is now also emerging as a major determinant of disease. Due to fluid shear stress caused by blood flowing tangentially across the lumen surface, cells of the cardiovascular system are typically exposed to a variety of mechanotransduction. In the body, tissues are continuously exposed to physical forces ranging from compression to strain, which is caused by fluid pressure and compressive forces. Only lately, though, has the importance of how forces shape stem cell differentiation into lineage-committed cells and how mechanical forces can cause or exacerbate disease besides organizing cells into tissues been acknowledged. Mesenchymal stem cells (MSCs) are potent mediators of cardiac repair which can secret a large array of soluble factors that have been shown to play a huge role in tissue repair. Differentiation of MSCs is required to regulate mechanical factors such as fluid shear stress, mechanical strain, and the rigidity of the extracellular matrix through various signaling pathways for their use in regenerative medicine. In the present review, we highlighted mechanical influences on the differentiation of MSCs and the general factors involved in MSCs differentiation. The purpose of this study is to demonstrate the progress that has been achieved in understanding how MSCs perceive and react to their mechanical environment, as well as to highlight areas where more research has been performed in previous studies to fill in the gaps.
Collapse
Affiliation(s)
- Narmadaa Raman
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (N.R.); (S.A.M.I.)
- Department of Microbiology, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
| | - Siti A. M. Imran
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (N.R.); (S.A.M.I.)
| | | | | | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (N.R.); (S.A.M.I.)
| |
Collapse
|
9
|
Ringdén O, Moll G, Gustafsson B, Sadeghi B. Mesenchymal Stromal Cells for Enhancing Hematopoietic Engraftment and Treatment of Graft-Versus-Host Disease, Hemorrhages and Acute Respiratory Distress Syndrome. Front Immunol 2022; 13:839844. [PMID: 35371003 PMCID: PMC8973075 DOI: 10.3389/fimmu.2022.839844] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/17/2022] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) possess profound immunomodulatory and regenerative properties that are of clinical use in numerous clinical indications with unmet medical need. Common sources of MSCs include among others, bone marrow (BM), fat, umbilical cord, and placenta-derived decidua stromal cells (DSCs). We here summarize our more than 20-years of scientific experience in the clinical use of MSCs and DSCs in different clinical settings. BM-MSCs were first explored to enhance the engraftment of autografts in hematopoietic cell transplantation (HCT) and osteogenesis imperfecta around 30 years ago. In 2004, our group reported the first anti-inflammatory use of BM-MSCs in a child with grade IV acute graft-versus-host disease (GvHD). Subsequent studies have shown that MSCs appear to be more effective in acute than chronic GvHD. Today BM-MSC-therapy is registered for acute GvHD in Japan and for GvHD in children in Canada and New Zeeland. MSCs first home to the lung following intravenous injection and exert strong local and systemic immunomodulatory effects on the host immune system. Thus, they were studied for ameliorating the cytokine storm in acute respiratory distress syndrome (ARDS). Both, MSCs and DSCs were used to treat SARS-CoV-2 coronavirus-induced disease 2019 (COVID-19)-induced ARDS. In addition, they were also used for other novel indications, such as pneumomediastinum, colon perforation, and radiculomyelopathy. MSC and DSCs trigger coagulation and were thus explored to stop hemorrhages. DSCs appear to be more effective for acute GvHD, ARDS, and hemorrhages, but randomized studies are needed to prove superiority. Stromal cell infusion is safe, well tolerated, and only gives rise to a slight fever in a limited number of patients, but no major side effects have been reported in multiple safety studies and metaanalysis. In this review we summarize current evidence from in vitro studies, animal models, and importantly our clinical experience, to support stromal cell therapy in multiple clinical indications. This encloses MSC's effects on the immune system, coagulation, and their safety and efficacy, which are discussed in relation to prominent clinical trials within the field.
Collapse
Affiliation(s)
- Olle Ringdén
- Translational Cell Therapy Research Group, Department of Clinical Sciences, Intervention and Technology (CLNTEC), Division of Pediatrics, Karolinska Institutet, Stockholm, Sweden
| | - Guido Moll
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT) and Berlin-Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, All Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Britt Gustafsson
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Behnam Sadeghi
- Translational Cell Therapy Research Group, Department of Clinical Sciences, Intervention and Technology (CLNTEC), Division of Pediatrics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Najar M, Melki R, Khalife F, Lagneaux L, Bouhtit F, Moussa Agha D, Fahmi H, Lewalle P, Fayyad-Kazan M, Merimi M. Therapeutic Mesenchymal Stem/Stromal Cells: Value, Challenges and Optimization. Front Cell Dev Biol 2022; 9:716853. [PMID: 35096805 PMCID: PMC8795900 DOI: 10.3389/fcell.2021.716853] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
Cellular therapy aims to replace damaged resident cells by restoring cellular and molecular environments suitable for tissue repair and regeneration. Among several candidates, mesenchymal stem/stromal cells (MSCs) represent a critical component of stromal niches known to be involved in tissue homeostasis. In vitro, MSCs appear as fibroblast-like plastic adherent cells regardless of the tissue source. The therapeutic value of MSCs is being explored in several conditions, including immunological, inflammatory and degenerative diseases, as well as cancer. An improved understanding of their origin and function would facilitate their clinical use. The stemness of MSCs is still debated and requires further study. Several terms have been used to designate MSCs, although consensual nomenclature has yet to be determined. The presence of distinct markers may facilitate the identification and isolation of specific subpopulations of MSCs. Regarding their therapeutic properties, the mechanisms underlying their immune and trophic effects imply the secretion of various mediators rather than direct cellular contact. These mediators can be packaged in extracellular vesicles, thus paving the way to exploit therapeutic cell-free products derived from MSCs. Of importance, the function of MSCs and their secretome are significantly sensitive to their environment. Several features, such as culture conditions, delivery method, therapeutic dose and the immunobiology of MSCs, may influence their clinical outcomes. In this review, we will summarize recent findings related to MSC properties. We will also discuss the main preclinical and clinical challenges that may influence the therapeutic value of MSCs and discuss some optimization strategies.
Collapse
Affiliation(s)
- Mehdi Najar
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Rahma Melki
- Genetics and Immune-Cell Therapy Unit, LBBES Laboratory, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| | - Ferial Khalife
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Hadath, Lebanon
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Fatima Bouhtit
- Genetics and Immune-Cell Therapy Unit, LBBES Laboratory, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco.,Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Douaa Moussa Agha
- Genetics and Immune-Cell Therapy Unit, LBBES Laboratory, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco.,Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Hassan Fahmi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Philippe Lewalle
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Mohammad Fayyad-Kazan
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Hadath, Lebanon.,Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, Lebanon
| | - Makram Merimi
- Genetics and Immune-Cell Therapy Unit, LBBES Laboratory, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco.,Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| |
Collapse
|
11
|
Moll G, Ankrum JA, Olson SD, Nolta JA. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:2-13. [PMID: 35641163 PMCID: PMC8895495 DOI: 10.1093/stcltm/szab005] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/27/2021] [Indexed: 11/22/2022] Open
Abstract
The number of mesenchymal stromal/stem cell (MSC) therapeutics and types of clinical applications have greatly diversified during the past decade, including rapid growth of poorly regulated “Stem Cell Clinics” offering diverse “Unproven Stem Cell Interventions.” This product diversification necessitates a critical evaluation of the reliance on the 2006 MSC minimal criteria to not only define MSC identity but characterize MSC suitability for intravascular administration. While high-quality MSC therapeutics have been safely administered intravascularly in well-controlled clinical trials, repeated case reports of mild-to-more-severe adverse events have been reported. These are most commonly related to thromboembolic complications upon infusion of highly procoagulant tissue factor (TF/CD142)-expressing MSC products. As TF/CD142 expression varies widely depending on the source and manufacturing process of the MSC product, additional clinical cell product characterization and guidelines are needed to ensure the safe use of MSC products. To minimize risk to patients receiving MSC therapy, we here propose to supplement the minimal criteria used for characterization of MSCs, to include criteria that assess the suitability of MSC products for intravascular use. If cell products are intended for intravascular delivery, which is true for half of all clinical applications involving MSCs, the effects of MSC on coagulation and hemocompatibility should be assessed and expression of TF/CD142 should be included as a phenotypic safety marker. This adjunct criterion will ensure both the identity of the MSCs as well as the safety of the MSCs has been vetted prior to intravascular delivery of MSC products.
Collapse
Affiliation(s)
- Guido Moll
- BIH Center for Regenerative Therapies (BCRT) and Berlin Brandenburg School of Regenerative Therapies (BSRT), Berlin Institute of Health (BIH) at the Charité—Universitätsmedizin Berlin, corporate member of Freie Universität zu Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Corresponding author: Guido Moll, PhD, BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany.
| | - James A Ankrum
- Roy J. Carver Department of Biomedical Engineering and Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, USA
| | - Scott D Olson
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Jan A Nolta
- Director of the Stem Cell Program, University of California Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
12
|
Friberger I, Jussing E, Han J, Goos JACM, Siikanen J, Kaipe H, Lambert M, Harris RA, Samén E, Carlsten M, Holmin S, Tran TA. Optimisation of the Synthesis and Cell Labelling Conditions for [ 89Zr]Zr-oxine and [ 89Zr]Zr-DFO-NCS: a Direct In Vitro Comparison in Cell Types with Distinct Therapeutic Applications. Mol Imaging Biol 2021; 23:952-962. [PMID: 34231103 PMCID: PMC8578071 DOI: 10.1007/s11307-021-01622-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/29/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022]
Abstract
BACKGROUND There is a need to better characterise cell-based therapies in preclinical models to help facilitate their translation to humans. Long-term high-resolution tracking of the cells in vivo is often impossible due to unreliable methods. Radiolabelling of cells has the advantage of being able to reveal cellular kinetics in vivo over time. This study aimed to optimise the synthesis of the radiotracers [89Zr]Zr-oxine (8-hydroxyquinoline) and [89Zr]Zr-DFO-NCS (p-SCN-Bn-Deferoxamine) and to perform a direct comparison of the cell labelling efficiency using these radiotracers. PROCEDURES Several parameters, such as buffers, pH, labelling time and temperature, were investigated to optimise the synthesis of [89Zr]Zr-oxine and [89Zr]Zr-DFO-NCS in order to reach a radiochemical conversion (RCC) of >95 % without purification. Radio-instant thin-layer chromatography (iTLC) and radio high-performance liquid chromatography (radio-HPLC) were used to determine the RCC. Cells were labelled with [89Zr]Zr-oxine or [89Zr]Zr-DFO-NCS. The cellular retention of 89Zr and the labelling impact was determined by analysing the cellular functions, such as viability, proliferation, phagocytotic ability and phenotypic immunostaining. RESULTS The optimised synthesis of [89Zr]Zr-oxine and [89Zr]Zr-DFO-NCS resulted in straightforward protocols not requiring additional purification. [89Zr]Zr-oxine and [89Zr]Zr-DFO-NCS were synthesised with an average RCC of 98.4 % (n = 16) and 98.0 % (n = 13), respectively. Cell labelling efficiencies were 63.9 % (n = 35) and 70.2 % (n = 30), respectively. 89Zr labelling neither significantly affected the cell viability (cell viability loss was in the range of 1-8 % compared to its corresponding non-labelled cells, P value > 0.05) nor the cells' proliferation rate. The phenotype of human decidual stromal cells (hDSC) and phagocytic function of rat bone-marrow-derived macrophages (rMac) was somewhat affected by radiolabelling. CONCLUSIONS Our study demonstrates that [89Zr]Zr-oxine and [89Zr]Zr-DFO-NCS are equally effective in cell labelling. However, [89Zr]Zr-oxine was superior to [89Zr]Zr-DFO-NCS with regard to long-term stability, cellular retention, minimal variation between cell types and cell labelling efficiency.
Collapse
Affiliation(s)
- Ida Friberger
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Emma Jussing
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Radiopharmacy, Karolinska University Hospital, Stockholm, Sweden
| | - Jinming Han
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Centre for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Jeroen A C M Goos
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Radiopharmacy, Karolinska University Hospital, Stockholm, Sweden
| | - Jonathan Siikanen
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Helen Kaipe
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Mélanie Lambert
- Department of Medicine in Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Robert A Harris
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Centre for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Erik Samén
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Radiopharmacy, Karolinska University Hospital, Stockholm, Sweden
| | - Mattias Carlsten
- Department of Medicine in Huddinge, Karolinska Institutet, Stockholm, Sweden
- Center for Cell Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Stockholm, Sweden
| | - Staffan Holmin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Thuy A Tran
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.
- Department of Radiopharmacy, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
13
|
Laner-Plamberger S, Oeller M, Rohde E, Schallmoser K, Strunk D. Heparin and Derivatives for Advanced Cell Therapies. Int J Mol Sci 2021; 22:12041. [PMID: 34769471 PMCID: PMC8584295 DOI: 10.3390/ijms222112041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 12/27/2022] Open
Abstract
Heparin and its derivatives are saving thousands of human lives annually, by successfully preventing and treating thromboembolic events. Although the mode of action during anticoagulation is well studied, their influence on cell behavior is not fully understood as is the risk of bleeding and other side effects. New applications in regenerative medicine have evolved supporting production of cell-based therapeutics or as a substrate for creating functionalized matrices in biotechnology. The currently resurgent interest in heparins is related to the expected combined anti-inflammatory, anti-thrombotic and anti-viral action against COVID-19. Based on a concise summary of key biochemical and clinical data, this review summarizes the impact for manufacturing and application of cell therapeutics and highlights the need for discriminating the different heparins.
Collapse
Affiliation(s)
- Sandra Laner-Plamberger
- Department of Transfusion Medicine, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (S.L.-P.); (M.O.); (E.R.)
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria;
| | - Michaela Oeller
- Department of Transfusion Medicine, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (S.L.-P.); (M.O.); (E.R.)
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria;
| | - Eva Rohde
- Department of Transfusion Medicine, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (S.L.-P.); (M.O.); (E.R.)
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria;
| | - Katharina Schallmoser
- Department of Transfusion Medicine, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (S.L.-P.); (M.O.); (E.R.)
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria;
| | - Dirk Strunk
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria;
- Cell Therapy Institute, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
14
|
Sadeghi B, Roshandel E, Pirsalehi A, Kazemi S, Sankanian G, Majidi M, Salimi M, Aghdami N, Sadrosadat H, Samadi Kochaksaraei S, Alaeddini F, Ringden O, Hajifathali A. Conquering the cytokine storm in COVID-19-induced ARDS using placenta-derived decidua stromal cells. J Cell Mol Med 2021; 25:10554-10564. [PMID: 34632708 PMCID: PMC8581334 DOI: 10.1111/jcmm.16986] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 01/08/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is the most common cause of death in COVID‐19 patients. The cytokine storm is the main driver of the severity and magnitude of ARDS. Placenta‐derived decidua stromal cells (DSCs) have a stronger immunosuppressive effect than other sources of mesenchymal stromal cells. Safety and efficacy study included 10 patients with a median age of 50 (range 14–68) years with COVID‐19‐induced ARDS. DSCs were administered 1–2 times at a dose of 1 × 106/kg. End points were safety and efficacy by survival, oxygenation and effects on levels of cytokines. Oxygenation levels increased from a median of 80.5% (range 69–88) to 95% (range 78–99) (p = 0.012), and pulmonary infiltrates disappeared in all patients. Levels of IL‐6 decreased from a median of 69.3 (range 35.0–253.4) to 11 (range 4.0–38.3) pg/ml (p = 0.018), and CRP decreased from 69 (range 5–169) to 6 (range 2–31) mg/ml (p = 0.028). Two patients died, one of a myocardial infarction and the other of multiple organ failure, diagnosed before the DSC therapy. The other patients recovered and left the intensive care unit (ICU) within a median of 6 (range 3–12) days. DSC therapy is safe and capable of improving oxygenation, decreasing inflammatory cytokine level and clearing pulmonary infiltrates in patients with COVID‐19.
Collapse
Affiliation(s)
- Behnam Sadeghi
- Translational Cell Therapy Research (TCR), Department of Clinical Science, Intervention and Technology, CLINTEC, Karolinska Institutet, Huddinge, Sweden
| | - Elham Roshandel
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Pirsalehi
- Department of Internal Medicine, School of Medicine, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepide Kazemi
- Translational Cell Therapy Research (TCR), Department of Clinical Science, Intervention and Technology, CLINTEC, Karolinska Institutet, Huddinge, Sweden.,Advanced Therapy Medicinal Product (ATMP), Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Ghazaleh Sankanian
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Majidi
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Salimi
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasser Aghdami
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Infectious Diseases and Tropical Medicines, Tehran University of Medical Sciences, Tehran, Iran
| | - Hoda Sadrosadat
- Advanced Therapy Medicinal Product (ATMP), Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Sarvenaz Samadi Kochaksaraei
- Translational Cell Therapy Research (TCR), Department of Clinical Science, Intervention and Technology, CLINTEC, Karolinska Institutet, Huddinge, Sweden.,Advanced Therapy Medicinal Product (ATMP), Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Farshid Alaeddini
- Research Center for Health Management in Mass Gathering, Red Crescent Society of the Islamic Republic of Iran, Tehran, Iran
| | - Olle Ringden
- Translational Cell Therapy Research (TCR), Department of Clinical Science, Intervention and Technology, CLINTEC, Karolinska Institutet, Huddinge, Sweden
| | - Abbas Hajifathali
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Pethe P, Kale V. Placenta: A gold mine for translational research and regenerative medicine. Reprod Biol 2021; 21:100508. [PMID: 33930790 DOI: 10.1016/j.repbio.2021.100508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 02/06/2023]
Abstract
Stem cell therapy has gained much impetus in regenerative medicine due to some of the encouraging results obtained in the laboratory as well as in translational/clinical studies. Although stem cells are of various types and their therapeutic potential has been documented in several studies, mesenchymal stromal/stem cells (MSCs) have an edge, as in addition to being multipotent, these cells are easy to obtain and expand, pose fewer ethical issues, and possess immense regenerative potential when used in a scientifically correct manner. Currently, MSCs are being sourced from various tissues such as bone marrow, cord, cord blood, adipose tissue, dental tissue, etc., and, quite often, the choice depends on the availability of the source. One such rich source of tissue suitable for obtaining good quality MSCs in large numbers is the placenta obtained in a full-term delivery leading to a healthy child's birth. Several studies have demonstrated the regenerative potential of human placenta-derived MSCs (hPMSC), and most show that these MSCs possess comparable, in some instances, even better, therapeutic potential as that shown by human bone marrow-derived (hBMSC) or human umbilical cord-derived (hUC-MSC) MSCs. The placenta can be easily sourced from the OB/GYN department of any hospital, and if its derivatives such as hPMSC or their EVs are produced under GMP conditions, it could serve as a gold mine for translational/clinical research. Here, we have reviewed recent studies revealing the therapeutic potential of hPMSC and their extracellular vesicles (EVs) published over the past three years.
Collapse
Affiliation(s)
- Prasad Pethe
- Symbiosis Centre for Stem Cell Research, Symbiosis International University, Pune, 412115, India
| | - Vaijayanti Kale
- Symbiosis Centre for Stem Cell Research, Symbiosis International University, Pune, 412115, India.
| |
Collapse
|
16
|
Mesenchymal stromal cells in hematopoietic cell transplantation. Blood Adv 2021; 4:5877-5887. [PMID: 33232479 DOI: 10.1182/bloodadvances.2020002646] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are widely recognized to possess potent immunomodulatory activity, as well as to stimulate repair and regeneration of diseased or damaged tissue. These fundamental properties suggest important applications in hematopoietic cell transplantation. Although the mechanisms of therapeutic activity in vivo are yet to be fully elucidated, MSCs seem to suppress lymphocytes by paracrine mechanisms, including secreted mediators and metabolic modulators. Most recently, host macrophage engulfment of apoptotic MSCs has emerged as an important contributor to the immune suppressive microenvironment. Although bone marrow-derived MSCs are the most commonly studied, the tissue source of MSCs may be a critical determinant of immunomodulatory function. The key application of MSC therapy in hematopoietic cell transplantation is to prevent or treat graft-versus-host disease (GVHD). The pathogenesis of GVHD reveals multiple potential targets. Moreover, the recently proposed concept of tissue tolerance suggests a new possible mechanism of MSC therapy for GVHD. Beyond GVHD, MSCs may facilitate hematopoietic stem cell engraftment, which could gain greater importance with increasing use of haploidentical transplantation. Despite many challenges and much doubt, commercial MSC products for pediatric steroid-refractory GVHD have been licensed in Japan, conditionally licensed in Canada and New Zealand, and have been recommended for approval by an FDA Advisory Committee in the United States. Here, we review key historical data in the context of the most salient recent findings to present the current state of MSCs as adjunct cell therapy in hematopoietic cell transplantation.
Collapse
|
17
|
Transcriptional Regulation of Thrombin-Induced Endothelial VEGF Induction and Proangiogenic Response. Cells 2021; 10:cells10040910. [PMID: 33920990 PMCID: PMC8071415 DOI: 10.3390/cells10040910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 01/08/2023] Open
Abstract
Thrombin, the ligand of the protease-activated receptor 1 (PAR1), is a well-known stimulator of proangiogenic responses in vascular endothelial cells (ECs), which are mediated through the induction of vascular endothelial growth factor (VEGF). However, the transcriptional events underlying this thrombin-induced VEGF induction and angiogenic response are less well understood at present. As reported here, we conducted detailed promotor activation and signal transduction pathway studies in human microvascular ECs, to decipher the transcription factors and the intracellular signaling events underlying the thrombin and PAR-1-induced endothelial VEGF induction. We found that c-FOS is a key transcription factor controlling thrombin-induced EC VEGF synthesis and angiogenesis. Upon the binding and internalization of its G-protein-coupled PAR-1 receptor, thrombin triggers ERK1/2 signaling and activation of the nuclear AP-1/c-FOS transcription factor complex, which then leads to VEGF transcription, extracellular secretion, and concomitant proangiogenic responses of ECs. In conclusion, exposure of human microvascular ECs to thrombin triggers signaling through the PAR-1–ERK1/2–AP-1/c-FOS axis to control VEGF gene transcription and VEGF-induced angiogenesis. These observations offer a greater understanding of endothelial responses to thromboinflammation, which may help to interpret the results of clinical trials tackling the conditions associated with endothelial injury and thrombosis.
Collapse
|
18
|
O'Rourke B, Nguyen S, Tilles AW, Bynum JA, Cap AP, Parekkadan B, Barcia RN. Mesenchymal stromal cell delivery via an ex vivo bioreactor preclinical test system attenuates clot formation for intravascular application. Stem Cells Transl Med 2021; 10:883-894. [PMID: 33527780 PMCID: PMC8133341 DOI: 10.1002/sctm.20-0454] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
While mesenchymal stromal cells are an appealing therapeutic option for a range of clinical applications, their potential to induce clotting when used systemically remains a safety concern, particularly in hypercoagulable conditions, such as in patients with severe COVID‐19, trauma, or cancers. Here, we tested a novel preclinical approach aimed at improving the safety of mesenchymal stromal cell (MSC) systemic administration by use of a bioreactor. In this system, MSCs are seeded on the exterior of a hollow‐fiber filter, sequestering them behind a hemocompatible semipermeable membrane with defined pore‐size and permeability to allow for a molecularly defined cross talk between the therapeutic cells and the whole blood environment, including blood cells and signaling molecules. The potential for these bioreactor MSCs to induce clots in coagulable plasma was compared against directly injected “free” MSCs, a model of systemic administration. Our results showed that restricting MSCs exposure to plasma via a bioreactor extends the time necessary for clot formation to occur when compared with “free” MSCs. Measurement of cell surface data indicates the presence of known clot inducing factors, namely tissue factor and phosphatidylserine. Results also showed that recovering cells and flushing the bioreactor prior to use further prolonged clot formation time. Furthermore, application of this technology in two in vivo models did not require additional heparin in fully anticoagulated experimental animals to maintain target activated clotting time levels relative to heparin anticoagulated controls. Taken together the clinical use of bioreactor housed MSCs could offer a novel method to control systemic MSC exposure and prolong clot formation time.
Collapse
Affiliation(s)
- Brian O'Rourke
- Sentien Biotechnologies, Inc, Lexington, Massachusetts, USA
| | - Sunny Nguyen
- Sentien Biotechnologies, Inc, Lexington, Massachusetts, USA
| | - Arno W Tilles
- Sentien Biotechnologies, Inc, Lexington, Massachusetts, USA
| | - James A Bynum
- Blood and Coagulation Research Program, US Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - Andrew P Cap
- Blood and Coagulation Research Program, US Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - Biju Parekkadan
- Sentien Biotechnologies, Inc, Lexington, Massachusetts, USA.,Department of Surgery, Center for Surgery, Innovation, and Bioengineering, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.,Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Rita N Barcia
- Sentien Biotechnologies, Inc, Lexington, Massachusetts, USA
| |
Collapse
|
19
|
Helissey C, Cavallero S, Brossard C, Dusaud M, Chargari C, François S. Chronic Inflammation and Radiation-Induced Cystitis: Molecular Background and Therapeutic Perspectives. Cells 2020; 10:E21. [PMID: 33374374 PMCID: PMC7823735 DOI: 10.3390/cells10010021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/10/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
Radiation cystitis is a potential complication following the therapeutic irradiation of pelvic cancers. Its clinical management remains unclear, and few preclinical data are available on its underlying pathophysiology. The therapeutic strategy is difficult to establish because few prospective and randomized trials are available. In this review, we report on the clinical presentation and pathophysiology of radiation cystitis. Then we discuss potential therapeutic approaches, with a focus on the immunopathological processes underlying the onset of radiation cystitis, including the fibrotic process. Potential therapeutic avenues for therapeutic modulation will be highlighted, with a focus on the interaction between mesenchymal stromal cells and macrophages for the prevention and treatment of radiation cystitis.
Collapse
Affiliation(s)
- Carole Helissey
- Department of Radiation Biological Effects, French Armed Forces Biomedical Research Institute, 91220 Brétigny-sur-Orge, France; (C.H.); (S.C.); (C.C.)
- Clinical Unit Research, HIA Bégin, 94160 Saint-Mandé, France
| | - Sophie Cavallero
- Department of Radiation Biological Effects, French Armed Forces Biomedical Research Institute, 91220 Brétigny-sur-Orge, France; (C.H.); (S.C.); (C.C.)
| | - Clément Brossard
- Radiobiology of Medical Exposure Laboratory (LRMed), Institute for Radiological Protection and Nuclear Safety (IRSN), 92260 Fontenay-aux-Roses, France;
| | - Marie Dusaud
- Department of Urology, HIA Bégin, 94160 Saint-Mand, France;
| | - Cyrus Chargari
- Department of Radiation Biological Effects, French Armed Forces Biomedical Research Institute, 91220 Brétigny-sur-Orge, France; (C.H.); (S.C.); (C.C.)
- Gustave Roussy Comprehensive Cancer Center, Department of Radiation Oncology, 94805 Villejuif, France
- French Military Health Academy, Ecole du Val-de-Grâce (EVDG), 75005 Paris, France
| | - Sabine François
- Department of Radiation Biological Effects, French Armed Forces Biomedical Research Institute, 91220 Brétigny-sur-Orge, France; (C.H.); (S.C.); (C.C.)
| |
Collapse
|
20
|
Introna M, Golay J. Tolerance to Bone Marrow Transplantation: Do Mesenchymal Stromal Cells Still Have a Future for Acute or Chronic GvHD? Front Immunol 2020; 11:609063. [PMID: 33362797 PMCID: PMC7759493 DOI: 10.3389/fimmu.2020.609063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/12/2020] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal Stromal Cells (MSCs) are fibroblast-like cells of mesodermal origin present in many tissues and which have the potential to differentiate to osteoblasts, adipocytes and chondroblasts. They also have a clear immunosuppressive and tissue regeneration potential. Indeed, the initial classification of MSCs as pluripotent stem cells, has turned into their identification as stromal progenitors. Due to the relatively simple procedures available to expand in vitro large numbers of GMP grade MSCs from a variety of different tissues, many clinical trials have tested their therapeutic potential in vivo. One pathological condition where MSCs have been quite extensively tested is steroid resistant (SR) graft versus host disease (GvHD), a devastating condition that may occur in acute or chronic form following allogeneic hematopoietic stem cell transplantation. The clinical and experimental results obtained have outlined a possible efficacy of MSCs, but unfortunately statistical significance in clinical studies has only rarely been reached and effects have been relatively limited in most cases. Nonetheless, the extremely complex pathogenetic mechanisms at the basis of GvHD, the fact that studies have been conducted often in patients who had been previously treated with multiple lines of therapy, the variable MSC doses and schedules administered in different trials, the lack of validated potency assays and clear biomarkers, the difference in MSC sources and production methods may have been major factors for this lack of clear efficacy in vivo. The heterogeneity of MSCs and their different stromal differentiation potential and biological activity may be better understood through more refined single cell sequencing and proteomic studies, where either an “anti-inflammatory” or a more “immunosuppressive” profile can be identified. We summarize the pathogenic mechanisms of acute and chronic GvHD and the role for MSCs. We suggest that systematic controlled clinical trials still need to be conducted in the most promising clinical settings, using better characterized cells and measuring efficacy with specific biomarkers, before strong conclusions can be drawn about the therapeutic potential of these cells in this context. The same analysis should be applied to other inflammatory, immune or degenerative diseases where MSCs may have a therapeutic potential.
Collapse
Affiliation(s)
- Martino Introna
- Center of Cellular Therapy "G. Lanzani", Division of Haematology, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Josée Golay
- Center of Cellular Therapy "G. Lanzani", Division of Haematology, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy.,Fondazione per la Ricerca Ospedale Maggiore, Bergamo, Italy
| |
Collapse
|