1
|
Martin KE, Hammer Q, Perica K, Sadelain M, Malmberg KJ. Engineering immune-evasive allogeneic cellular immunotherapies. Nat Rev Immunol 2024; 24:680-693. [PMID: 38658708 DOI: 10.1038/s41577-024-01022-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2024] [Indexed: 04/26/2024]
Abstract
Allogeneic cellular immunotherapies hold a great promise for cancer treatment owing to their potential cost-effectiveness, scalability and on-demand availability. However, immune rejection of adoptively transferred allogeneic T and natural killer (NK) cells is a substantial obstacle to achieving clinical responses that are comparable to responses obtained with current autologous chimeric antigen receptor T cell therapies. In this Perspective, we discuss strategies to confer cell-intrinsic, immune-evasive properties to allogeneic T cells and NK cells in order to prevent or delay their immune rejection, thereby widening the therapeutic window. We discuss how common viral and cancer immune escape mechanisms can serve as a blueprint for improving the persistence of off-the-shelf allogeneic cell therapies. The prospects of harnessing genome editing and synthetic biology to design cell-based precision immunotherapies extend beyond programming target specificities and require careful consideration of innate and adaptive responses in the recipient that may curtail the biodistribution, in vivo expansion and persistence of cellular therapeutics.
Collapse
Affiliation(s)
- Karen E Martin
- Precision Immunotherapy Alliance, The University of Oslo, Oslo, Norway
- Department of Cancer Immunology, Institute for Cancer Research Oslo, Oslo University Hospital, Oslo, Norway
| | - Quirin Hammer
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Karlo Perica
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cell Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karl-Johan Malmberg
- Precision Immunotherapy Alliance, The University of Oslo, Oslo, Norway.
- Department of Cancer Immunology, Institute for Cancer Research Oslo, Oslo University Hospital, Oslo, Norway.
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
2
|
Chen B, Deng Y, Ren X, Zhao J, Jiang C. CRISPR/Cas9 screening: unraveling cancer immunotherapy's 'Rosetta Stone'. Trends Mol Med 2024; 30:736-749. [PMID: 38763850 DOI: 10.1016/j.molmed.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/10/2024] [Accepted: 04/19/2024] [Indexed: 05/21/2024]
Abstract
Clustered regularly interspaced palindromic repeats (CRISPR)-based technology, a powerful toolset for the unbiased functional genomic screening of biological processes, has facilitated several scientific breakthroughs in the biomedical field. Cancer immunotherapy has advanced the treatment of numerous malignancies that previously had restricted treatment options or unfavorable outcomes. In the realm of cancer immunotherapy, the application of CRISPR/CRISPR-associated protein 9 (Cas9)-based genetic perturbation screening has enabled the identification of genes, biomarkers, and signaling pathways that govern various cancer immunoreactivities, as well as the development of effective immunotherapeutic targets. In this review, we summarize the advances in CRISPR/Cas9-based screening for cancer immunotherapy and outline the immunotherapeutic targets identified via CRISPR screening based on cancer-type classification.
Collapse
Affiliation(s)
- Baoxiang Chen
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3G 0B1, Canada
| | - Yanrong Deng
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xianghai Ren
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Jianhong Zhao
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Congqing Jiang
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
3
|
Hofman T, Ng SW, Garcés-Lázaro I, Heigwer F, Boutros M, Cerwenka A. IFNγ mediates the resistance of tumor cells to distinct NK cell subsets. J Immunother Cancer 2024; 12:e009410. [PMID: 38955423 PMCID: PMC11218003 DOI: 10.1136/jitc-2024-009410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Immune checkpoint blockade targeting the adaptive immune system has revolutionized the treatment of cancer. Despite impressive clinical benefits observed, patient subgroups remain non-responsive underscoring the necessity for combinational therapies harnessing additional immune cells. Natural killer (NK) cells are emerging tools for cancer therapy. However, only subpopulations of NK cells that are differentially controlled by inhibitory receptors exert reactivity against particular cancer types. How to leverage the complete anti-tumor potential of all NK cell subsets without favoring the emergence of NK cell-resistant tumor cells remains unresolved. METHODS We performed a genome-wide CRISPR/Cas9 knockout resistance screen in melanoma cells in co-cultures with human primary NK cells. We comprehensively evaluated factors regulating tumor resistance and susceptibility by focusing on NK cell subsets in an allogenic setting. Moreover, we tested therapeutic blocking antibodies currently used in clinical trials. RESULTS Melanoma cells deficient in antigen-presenting or the IFNγ-signaling pathways were depleted in remaining NK cell-co-cultured melanoma cells and displayed enhanced sensitivity to NK cells. Treatment with IFNγ induced potent resistance of melanoma cells to resting, IL-2-cultured and ADCC-activated NK cells that depended on B2M required for the expression of both classical and non-classical MHC-I. IFNγ-induced expression of HLA-E mediated the resistance of melanoma cells to the NKG2A+ KIR- and partially to the NKG2A+ KIR+ NK cell subset. The expression of classical MHC-I by itself was sufficient for the inhibition of the NKG2A- KIR+, but not the NKG2A+ KIR+ NK cell subset. Treatment of NK cells with monalizumab, an NKG2A blocking mAb, enhanced the reactivity of a corresponding subset of NK cells. The combination of monalizumab with lirilumab, blocking KIR2 receptors, together with DX9, blocking KIR3DL1, was required to restore cytotoxicity of all NK cell subsets against IFNγ-induced resistant tumor cells in melanoma and tumors of different origins. CONCLUSION Our data reveal that in the context of NK cells, IFNγ induces the resistance of tumor cells by the upregulation of classical and non-classical MHC-I. Moreover, we reveal insights into NK cell subset reactivity and propose a therapeutic strategy involving combinational monalizumab/lirilumab/DX9 treatment to fully restore the antitumor response across NK cell subsets.
Collapse
Affiliation(s)
- Tomáš Hofman
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Siu Wang Ng
- Signalling and Functional Genomics, German Cancer Research Centre, Heidelberg, Germany
| | - Irene Garcés-Lázaro
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Florian Heigwer
- Signalling and Functional Genomics, German Cancer Research Centre, Heidelberg, Germany
- Department of Life Sciences and Engineering, University of Applied Sciences Bingen, Bingen am Rhein, Germany
| | - Michael Boutros
- Signalling and Functional Genomics, German Cancer Research Centre, Heidelberg, Germany
| | - Adelheid Cerwenka
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
4
|
Li Y, Wu X, Sheng C, Liu H, Liu H, Tang Y, Liu C, Ding Q, Xie B, Xiao X, Zheng R, Yu Q, Guo Z, Ma J, Wang J, Gao J, Tian M, Wang W, Zhou J, Jiang L, Gu M, Shi S, Paull M, Yang G, Yang W, Landau S, Bao X, Hu X, Liu XS, Xiao T. IGSF8 is an innate immune checkpoint and cancer immunotherapy target. Cell 2024; 187:2703-2716.e23. [PMID: 38657602 DOI: 10.1016/j.cell.2024.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/18/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
Antigen presentation defects in tumors are prevalent mechanisms of adaptive immune evasion and resistance to cancer immunotherapy, whereas how tumors evade innate immunity is less clear. Using CRISPR screens, we discovered that IGSF8 expressed on tumors suppresses NK cell function by interacting with human KIR3DL2 and mouse Klra9 receptors on NK cells. IGSF8 is normally expressed in neuronal tissues and is not required for cell survival in vitro or in vivo. It is overexpressed and associated with low antigen presentation, low immune infiltration, and worse clinical outcomes in many tumors. An antibody that blocks IGSF8-NK receptor interaction enhances NK cell killing of malignant cells in vitro and upregulates antigen presentation, NK cell-mediated cytotoxicity, and T cell signaling in vivo. In syngeneic tumor models, anti-IGSF8 alone, or in combination with anti-PD1, inhibits tumor growth. Our results indicate that IGSF8 is an innate immune checkpoint that could be exploited as a therapeutic target.
Collapse
Affiliation(s)
- Yulong Li
- Shanghai Xunbaihui Biotechnology Co., Ltd., 3rd floor of Building 4, No. 3728, Jinke Road, Pudong New Area, Shanghai, 201203, China
| | - Xiangyang Wu
- Shanghai Xunbaihui Biotechnology Co., Ltd., 3rd floor of Building 4, No. 3728, Jinke Road, Pudong New Area, Shanghai, 201203, China
| | - Caibin Sheng
- GV20 Therapeutics LLC, 237 Putnam Avenue, Cambridge, MA 02139, USA
| | - Hailing Liu
- Shanghai Xunbaihui Biotechnology Co., Ltd., 3rd floor of Building 4, No. 3728, Jinke Road, Pudong New Area, Shanghai, 201203, China
| | - Huizhu Liu
- Shanghai Xunbaihui Biotechnology Co., Ltd., 3rd floor of Building 4, No. 3728, Jinke Road, Pudong New Area, Shanghai, 201203, China
| | - Yixuan Tang
- Shanghai Xunbaihui Biotechnology Co., Ltd., 3rd floor of Building 4, No. 3728, Jinke Road, Pudong New Area, Shanghai, 201203, China
| | - Chao Liu
- Shanghai Xunbaihui Biotechnology Co., Ltd., 3rd floor of Building 4, No. 3728, Jinke Road, Pudong New Area, Shanghai, 201203, China
| | - Qingyang Ding
- Shanghai Xunbaihui Biotechnology Co., Ltd., 3rd floor of Building 4, No. 3728, Jinke Road, Pudong New Area, Shanghai, 201203, China
| | - Bin Xie
- Shanghai Xunbaihui Biotechnology Co., Ltd., 3rd floor of Building 4, No. 3728, Jinke Road, Pudong New Area, Shanghai, 201203, China
| | - Xi Xiao
- Shanghai Xunbaihui Biotechnology Co., Ltd., 3rd floor of Building 4, No. 3728, Jinke Road, Pudong New Area, Shanghai, 201203, China
| | - Rongbin Zheng
- Shanghai Xunbaihui Biotechnology Co., Ltd., 3rd floor of Building 4, No. 3728, Jinke Road, Pudong New Area, Shanghai, 201203, China
| | - Quan Yu
- Shanghai Xunbaihui Biotechnology Co., Ltd., 3rd floor of Building 4, No. 3728, Jinke Road, Pudong New Area, Shanghai, 201203, China
| | - Zengdan Guo
- Shanghai Xunbaihui Biotechnology Co., Ltd., 3rd floor of Building 4, No. 3728, Jinke Road, Pudong New Area, Shanghai, 201203, China
| | - Jian Ma
- Shanghai Xunbaihui Biotechnology Co., Ltd., 3rd floor of Building 4, No. 3728, Jinke Road, Pudong New Area, Shanghai, 201203, China
| | - Jin Wang
- Shanghai Xunbaihui Biotechnology Co., Ltd., 3rd floor of Building 4, No. 3728, Jinke Road, Pudong New Area, Shanghai, 201203, China
| | - Jinghong Gao
- Shanghai Xunbaihui Biotechnology Co., Ltd., 3rd floor of Building 4, No. 3728, Jinke Road, Pudong New Area, Shanghai, 201203, China
| | - Mei Tian
- Shanghai Xunbaihui Biotechnology Co., Ltd., 3rd floor of Building 4, No. 3728, Jinke Road, Pudong New Area, Shanghai, 201203, China
| | - Wei Wang
- Shanghai Xunbaihui Biotechnology Co., Ltd., 3rd floor of Building 4, No. 3728, Jinke Road, Pudong New Area, Shanghai, 201203, China
| | - Jia Zhou
- Shanghai Xunbaihui Biotechnology Co., Ltd., 3rd floor of Building 4, No. 3728, Jinke Road, Pudong New Area, Shanghai, 201203, China
| | - Li Jiang
- Shanghai Xunbaihui Biotechnology Co., Ltd., 3rd floor of Building 4, No. 3728, Jinke Road, Pudong New Area, Shanghai, 201203, China
| | - Mengmeng Gu
- Shanghai Xunbaihui Biotechnology Co., Ltd., 3rd floor of Building 4, No. 3728, Jinke Road, Pudong New Area, Shanghai, 201203, China
| | - Sailing Shi
- Shanghai Xunbaihui Biotechnology Co., Ltd., 3rd floor of Building 4, No. 3728, Jinke Road, Pudong New Area, Shanghai, 201203, China
| | - Michael Paull
- GV20 Therapeutics LLC, 237 Putnam Avenue, Cambridge, MA 02139, USA
| | - Guanhua Yang
- Shanghai Xunbaihui Biotechnology Co., Ltd., 3rd floor of Building 4, No. 3728, Jinke Road, Pudong New Area, Shanghai, 201203, China
| | - Wei Yang
- GV20 Therapeutics LLC, 237 Putnam Avenue, Cambridge, MA 02139, USA
| | - Steve Landau
- GV20 Therapeutics LLC, 237 Putnam Avenue, Cambridge, MA 02139, USA
| | - Xingfeng Bao
- GV20 Therapeutics LLC, 237 Putnam Avenue, Cambridge, MA 02139, USA
| | - Xihao Hu
- GV20 Therapeutics LLC, 237 Putnam Avenue, Cambridge, MA 02139, USA.
| | - X Shirley Liu
- GV20 Therapeutics LLC, 237 Putnam Avenue, Cambridge, MA 02139, USA.
| | - Tengfei Xiao
- Shanghai Xunbaihui Biotechnology Co., Ltd., 3rd floor of Building 4, No. 3728, Jinke Road, Pudong New Area, Shanghai, 201203, China.
| |
Collapse
|
5
|
Lin T, Liu D, Guan Z, Zhao X, Li S, Wang X, Hou R, Zheng J, Cao J, Shi M. CRISPR screens in mechanism and target discovery for AML. Heliyon 2024; 10:e29382. [PMID: 38660246 PMCID: PMC11040068 DOI: 10.1016/j.heliyon.2024.e29382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 03/20/2024] [Accepted: 04/07/2024] [Indexed: 04/26/2024] Open
Abstract
CRISPR-based screens have discovered novel functional genes involving in diverse tumor biology and elucidated the mechanisms of the cancer pathological states. Recently, with its randomness and unbiasedness, CRISPR screens have been used to discover effector genes with previously unknown roles for AML. Those novel targets are related to AML survival resembled cellular pathways mediating epigenetics, synthetic lethality, transcriptional regulation, mitochondrial and energy metabolism. Other genes that are crucial for pharmaceutical targeting and drug resistance have also been identified. With the rapid development of novel strategies, such as barcodes and multiplexed mosaic CRISPR perturbation, more potential therapeutic targets and mechanism in AML will be discovered. In this review, we present an overview of recent progresses in the development of CRISPR-based screens for the mechanism and target identification in AML and discuss the challenges and possible solutions in this rapidly growing field.
Collapse
Affiliation(s)
- Tian Lin
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Dan Liu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Zhangchun Guan
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Xuan Zhao
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Sijin Li
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Xu Wang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Rui Hou
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu, 221002, China
- College of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Jiang Cao
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu, 221002, China
| | - Ming Shi
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| |
Collapse
|
6
|
Zhuang X, Woods J, Ji Y, Scheich S, Mo F, Rajagopalan S, Coulibaly ZA, Voss M, Urlaub H, Staudt LM, Pan KT, Long EO. Functional genomics identifies N-acetyllactosamine extension of complex N-glycans as a mechanism to evade lysis by natural killer cells. Cell Rep 2024; 43:114105. [PMID: 38619967 PMCID: PMC11170631 DOI: 10.1016/j.celrep.2024.114105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 12/31/2023] [Accepted: 03/28/2024] [Indexed: 04/17/2024] Open
Abstract
Natural killer (NK) cells are primary defenders against cancer precursors, but cancer cells can persist by evading immune surveillance. To investigate the genetic mechanisms underlying this evasion, we perform a genome-wide CRISPR screen using B lymphoblastoid cells. SPPL3, a peptidase that cleaves glycosyltransferases in the Golgi, emerges as a top hit facilitating evasion from NK cytotoxicity. SPPL3-deleted cells accumulate glycosyltransferases and complex N-glycans, disrupting not only binding of ligands to NK receptors but also binding of rituximab, a CD20 antibody approved for treating B cell cancers. Notably, inhibiting N-glycan maturation restores receptor binding and sensitivity to NK cells. A secondary CRISPR screen in SPPL3-deficient cells identifies B3GNT2, a transferase-mediating poly-LacNAc extension, as crucial for resistance. Mass spectrometry confirms enrichment of N-glycans bearing poly-LacNAc upon SPPL3 loss. Collectively, our study shows the essential role of SPPL3 and poly-LacNAc in cancer immune evasion, suggesting a promising target for cancer treatment.
Collapse
Affiliation(s)
- Xiaoxuan Zhuang
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA; Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - James Woods
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Yanlong Ji
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany; Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Sebastian Scheich
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Fei Mo
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sumati Rajagopalan
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Zana A Coulibaly
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthias Voss
- Institute of Biochemistry, Kiel University, 24118 Kiel, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany; Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Louis M Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kuan-Ting Pan
- Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Eric O Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| |
Collapse
|
7
|
Kristenson L, Badami C, Ljungberg A, Islamagic E, Tian Y, Xie G, Hussein BA, Pesce S, Tang KW, Thorén FB. Deletion of the TMEM30A gene enables leukemic cell evasion of NK cell cytotoxicity. Proc Natl Acad Sci U S A 2024; 121:e2316447121. [PMID: 38557174 PMCID: PMC11009675 DOI: 10.1073/pnas.2316447121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/15/2024] [Indexed: 04/04/2024] Open
Abstract
Natural killer (NK) cell immunotherapy has gained attention as a promising strategy for treatment of various malignancies. In this study, we used a genome-wide CRISPR screen to identify genes that provide protection or susceptibility to NK cell cytotoxicity. The screen confirmed the role of several genes in NK cell regulation, such as genes involved in interferon-γ signaling and antigen presentation, as well as genes encoding the NK cell receptor ligands B7-H6 and CD58. Notably, the gene TMEM30A, encoding CDC50A-beta-subunit of the flippase shuttling phospholipids in the plasma membrane, emerged as crucial for NK cell killing. Accordingly, a broad range of TMEM30A knock-out (KO) leukemia and lymphoma cells displayed increased surface levels of phosphatidylserine (PtdSer). TMEM30A KO cells triggered less NK cell degranulation, cytokine production and displayed lower susceptibility to NK cell cytotoxicity. Blockade of PtdSer or the inhibitory receptor TIM-3, restored the NK cell ability to eliminate TMEM30A-mutated cells. The key role of the TIM-3 - PtdSer interaction for NK cell regulation was further substantiated by disruption of the receptor gene in primary NK cells, which significantly reduced the impact of elevated PtdSer in TMEM30A KO leukemic cells. Our study underscores the potential significance of agents targeting the interaction between PtdSer and TIM-3 in the realm of cancer immunotherapy.
Collapse
Affiliation(s)
- Linnea Kristenson
- Tumor Immunology (TIMM) Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg413 90, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg413 90, Sweden
| | - Chiara Badami
- Tumor Immunology (TIMM) Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg413 90, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg413 90, Sweden
| | - Angelica Ljungberg
- Tumor Immunology (TIMM) Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg413 90, Sweden
| | - Erna Islamagic
- Tumor Immunology (TIMM) Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg413 90, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg413 90, Sweden
| | - Yarong Tian
- Tumor Immunology (TIMM) Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg413 90, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg413 46, Sweden
| | - Guojiang Xie
- Tumor Immunology (TIMM) Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg413 90, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg413 46, Sweden
| | - Brwa Ali Hussein
- Tumor Immunology (TIMM) Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg413 90, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg413 90, Sweden
| | - Silvia Pesce
- Tumor Immunology (TIMM) Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg413 90, Sweden
- Dipartimento di Medicina Sperimentale, Università di Genova, Genoa16132, Italy
| | - Ka-Wei Tang
- Tumor Immunology (TIMM) Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg413 90, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg413 46, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg413 46, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg413 90, Sweden
| | - Fredrik B. Thorén
- Tumor Immunology (TIMM) Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg413 90, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg413 90, Sweden
| |
Collapse
|
8
|
Djajawi TM, Wichmann J, Vervoort SJ, Kearney CJ. Tumor immune evasion: insights from CRISPR screens and future directions. FEBS J 2024; 291:1386-1399. [PMID: 37971319 DOI: 10.1111/febs.17003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/02/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Despite the clinical success of cancer immunotherapies including immune checkpoint blockade and adoptive cellular therapies across a variety of cancer types, many patients do not respond or ultimately relapse; however, the molecular underpinnings of this are not fully understood. Thus, a system-level understating of the routes to tumor immune evasion is required to inform the design of the next generation of immunotherapy approaches. CRISPR screening approaches have proved extremely powerful in identifying genes that promote tumor immune evasion or sensitize tumor cells to destruction by the immune system. These large-scale efforts have brought to light decades worth of fundamental immunology and have uncovered the key immune-evasion pathways subverted in cancers in an acquired manner in patients receiving immune-modulatory therapies. The comprehensive discovery of the main pathways involved in immune evasion has spurred the development and application of novel immune therapies to target this process. Although successful, conventional CRISPR screening approaches are hampered by a number of limitations, which obfuscate a complete understanding of the precise molecular regulation of immune evasion in cancer. Here, we provide a perspective on screening approaches to interrogate tumor-lymphocyte interactions and their limitations, and discuss further development of technologies to improve such approaches and discovery capability.
Collapse
Affiliation(s)
- Tirta Mario Djajawi
- Olivia Newton-John Cancer Research Institute, Heidelberg, Vic., Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Vic., Australia
| | - Johannes Wichmann
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
| | - Stephin J Vervoort
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
| | - Conor J Kearney
- Olivia Newton-John Cancer Research Institute, Heidelberg, Vic., Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Vic., Australia
| |
Collapse
|
9
|
Li YR, Lyu Z, Tian Y, Fang Y, Zhu Y, Chen Y, Yang L. Advancements in CRISPR screens for the development of cancer immunotherapy strategies. Mol Ther Oncolytics 2023; 31:100733. [PMID: 37876793 PMCID: PMC10591018 DOI: 10.1016/j.omto.2023.100733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023] Open
Abstract
CRISPR screen technology enables systematic and scalable interrogation of gene function by using the CRISPR-Cas9 system to perturb gene expression. In the field of cancer immunotherapy, this technology has empowered the discovery of genes, biomarkers, and pathways that regulate tumor development and progression, immune reactivity, and the effectiveness of immunotherapeutic interventions. By conducting large-scale genetic screens, researchers have successfully identified novel targets to impede tumor growth, enhance anti-tumor immune responses, and surmount immunosuppression within the tumor microenvironment (TME). Here, we present an overview of CRISPR screens conducted in tumor cells for the purpose of identifying novel therapeutic targets. We also explore the application of CRISPR screens in immune cells to propel the advancement of cell-based therapies, encompassing T cells, natural killer cells, dendritic cells, and macrophages. Furthermore, we outline the crucial components necessary for the successful implementation of immune-specific CRISPR screens and explore potential directions for future research.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zibai Lyu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yanxin Tian
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ying Fang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yichen Zhu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yuning Chen
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
10
|
Yi J, Lin P, Li Q, Zhang A, Kong X. A new strategy for treating colorectal cancer: Regulating the influence of intestinal flora and oncolytic virus on interferon. Mol Ther Oncolytics 2023; 30:254-274. [PMID: 37701850 PMCID: PMC10493895 DOI: 10.1016/j.omto.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Colorectal cancer (CRC) has the third highest incidence and the second highest mortality in the world, which seriously affects human health, while current treatments methods for CRC, including systemic therapy, preoperative radiotherapy, and surgical local excision, still have poor survival rates for patients with metastatic disease, making it critical to develop new strategies for treating CRC. In this article, we found that the gut microbiota can modulate the signaling pathways of cancer cells through direct contact with tumor cells, generate inflammatory responses and oxidative stress through interactions between the innate and adaptive immune systems, and produce diverse metabolic combinations to trigger specific immune responses and promote the initiation of systemic type I interferon (IFN-I) and anti-viral immunity. In addition, oncolytic virus-mediated immunotherapy for regulating oncolytic virus can directly lyse tumor cells, induce the immune activity of the body, interact with interferon, inhibit the anti-viral effect of IFN-I, and enhance the anti-tumor effect of IFN-II. Interferon plays an important role in the anti-tumor process. We put forward that exploring the effects of intestinal flora and oncolytic virus on interferon to treat CRC is a promising therapeutic option.
Collapse
Affiliation(s)
- Jia Yi
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Peizhe Lin
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qingbo Li
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ao Zhang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xianbin Kong
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
11
|
Jiang D, Zhang J, Mao Z, Shi J, Ma P. Driving natural killer cell-based cancer immunotherapy for cancer treatment: An arduous journey to promising ground. Biomed Pharmacother 2023; 165:115004. [PMID: 37352703 DOI: 10.1016/j.biopha.2023.115004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/25/2023] Open
Abstract
Immunotherapy represents one of the most effective strategies for cancer treatment. Recently, progress has been made in using natural killer (NK) cells for cancer therapy. NK cells can directly kill tumor cells without pre-sensitization and thus show promise in clinical applications, distinct from the use of T cells. Whereas, research and development on NK cell-based immunotherapy is still in its infancy, and enhancing the therapeutic effects of NK cells remains a key problem to be solved. An incompletely understanding of the mechanisms of action of NK cells, immune resistance in the tumor microenvironment, and obstacles associated with the delivery of therapeutic agents in vivo, represent three mountains that need to be scaled. Here, we firstly describe the mechanisms underlying the development, activity, and maturation of NK cells, and the formation of NK‑cell immunological synapses. Secondly, we discuss strategies for NK cell-based immunotherapy strategies, including adoptive transfer of NK cell therapy and treatment with cytokines, monoclonal antibodies, and immune checkpoint inhibitors targeting NK cells. Finally, we review the use of nanotechnology to overcome immune resistance, including enhancing the anti-tumor efficiency of chimeric antigen receptor-NK, cytokines and immunosuppressive-pathways inhibitors, promoting NK cell homing and developing NK cell-based nano-engagers.
Collapse
Affiliation(s)
- Dandan Jiang
- Department of Pharmacy, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Jingya Zhang
- Patent Examination Cooperation (Henan) Center of the Patent office, China National Intellectual Property Administration, Henan 450046, China
| | - Zhenkun Mao
- Department of Pharmacy, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China.
| | - Peizhi Ma
- Department of Pharmacy, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450003, China.
| |
Collapse
|
12
|
Hussein BA, Kristenson L, Pesce S, Wöhr A, Tian Y, Hallner A, Brune M, Hellstrand K, Tang KW, Bernson E, Thorén FB. NKG2A gene variant predicts outcome of immunotherapy in AML and modulates the repertoire and function of NK cells. J Immunother Cancer 2023; 11:e007202. [PMID: 37648262 PMCID: PMC10471874 DOI: 10.1136/jitc-2023-007202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND The natural killer (NK) complex (NKC) harbors multiple genes such as KLRC1 (encoding NKG2A) and KLRK1 (encoding NKG2D) that are central to regulation of NK cell function. We aimed at determining to what extent NKC haplotypes impact on NK cell repertoire and function, and whether such gene variants impact on outcome of IL-2-based immunotherapy in acute myeloid leukemia (AML). METHODS Genotype status of NKG2D rs1049174 and NKG2A rs1983526 was determined using the TaqMan-Allelic discrimination approach. To dissect the impact of single nucloetide polymorphim (SNP) on NK cell function, we engineered the K562 cell line with CRISPR to be killed in a highly NKG2D-dependent fashion. NK cells were assayed for degranulation, intracellular cytokine production and cytotoxicity using flow cytometry. RESULTS In AML patients receiving immunotherapy, the NKG2A gene variant, rs1983526, was associated with superior leukemia-free survival and overall survival. We observed that superior NK degranulation from individuals with the high-cytotoxicity NKG2D variant was explained by presence of a larger, highly responsive NKG2A+ subset. Notably, NK cells from donors homozygous for a favorable allele encoding NKG2A mounted stronger cytokine responses when challenged with leukemic cells, and NK cells from AML patients with this genotype displayed higher accumulation of granzyme B during histamine dihydrochloride/IL-2 immunotherapy. Additionally, among AML patients, the NKG2A SNP defined a subset of patients with HLA-B-21 TT with a strikingly favorable outcome. CONCLUSIONS The study results imply that a dimorphism in the NKG2A gene is associated with enhanced NK cell effector function and improved outcome of IL-2-based immunotherapy in AML.
Collapse
Affiliation(s)
- Brwa Ali Hussein
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Linnea Kristenson
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Silvia Pesce
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
- Dipartimento di Medicina Sperimentale, Università di Genova, Genoa, Italy
| | - Anne Wöhr
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Yarong Tian
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Alexander Hallner
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Mats Brune
- Department of Hematology, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Kristoffer Hellstrand
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Ka-Wei Tang
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Elin Bernson
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, University of Gothenburg,Gothenburg, Gothenburg, Sweden
| | - Fredrik B Thorén
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
13
|
Kaulfuss M, Mietz J, Fabri A, Vom Berg J, Münz C, Chijioke O. The NK cell checkpoint NKG2A maintains expansion capacity of human NK cells. Sci Rep 2023; 13:10555. [PMID: 37386090 PMCID: PMC10310841 DOI: 10.1038/s41598-023-37779-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/27/2023] [Indexed: 07/01/2023] Open
Abstract
Human natural killer (NK) cells are cytotoxic effector cells that are increasingly harnessed in cancer immunotherapy. NKG2A/CD94 is an inhibitory receptor on NK cells that has established regulatory functions in the direct interaction with target cells when engaged with its ligand, the non-classical HLA class I molecule HLA-E. Here, we confirmed NKG2A as a checkpoint molecule in primary human NK cells and identified a novel role for NKG2A in maintaining NK cell expansion capacity by dampening both proliferative activity and excessive activation-induced cell death. Maintenance of NK cell expansion capacity might contribute to the preferential accumulation of human NKG2A+ NK cells after hematopoietic cell transplantation and enrichment of functionally impaired NK cells in human cancers. Functional silencing of NKG2A for cancer immunotherapy is highly attractive but will need to consider that this might also lead to a reduced survival by driving activation-induced cell death in targeted NK cells.
Collapse
Affiliation(s)
- Meike Kaulfuss
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zürich, Zurich, Switzerland
| | - Juliane Mietz
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zürich, Zurich, Switzerland
| | - Astrid Fabri
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zürich, Zurich, Switzerland
- Institute of Immunity & Transplantation, University College London Division of Infection & Immunity, London, UK
| | - Johannes Vom Berg
- Institute of Laboratory Animal Science, University of Zürich, Schlieren, Switzerland
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zurich, Switzerland
| | - Obinna Chijioke
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zürich, Zurich, Switzerland.
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
14
|
Vredevoogd DW, Peeper DS. Heterogeneity in functional genetic screens: friend or foe? Front Immunol 2023; 14:1162706. [PMID: 37398651 PMCID: PMC10312307 DOI: 10.3389/fimmu.2023.1162706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Functional genetic screens to uncover tumor-intrinsic nodes of immune resistance have uncovered numerous mechanisms by which tumors evade our immune system. However, due to technical limitations, tumor heterogeneity is imperfectly captured with many of these analyses. Here, we provide an overview of the nature and sources of heterogeneity that are relevant for tumor-immune interactions. We argue that this heterogeneity may actually contribute to the discovery of novel mechanisms of immune evasion, given a sufficiently large and heterogeneous set of input data. Taking advantage of tumor cell heterogeneity, we provide proof-of-concept analyses of mechanisms of TNF resistance. Thus, consideration of tumor heterogeneity is imperative to increase our understanding of immune resistance mechanisms.
Collapse
|
15
|
Xu L, Gao X, Xing J, Guo Z. Identification of a necroptosis-related gene signature as a novel prognostic biomarker of cholangiocarcinoma. Front Immunol 2023; 14:1118816. [PMID: 36936916 PMCID: PMC10017743 DOI: 10.3389/fimmu.2023.1118816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Background Cholangiocarcinoma (CHOL) is the most prevalent type of malignancy and the second most common form of primary liver cancer, resulting in high rates of morbidity and mortality. Necroptosis is a type of regulated cell death that appears to be involved in the regulation of several aspects of cancer biology, including tumorigenesis, metastasis, and cancer immunity. This study aimed to construct a necroptosis-related gene (NRG) signature to investigate the prognosis of CHOL patients using an integrated bioinformatics analysis. Methods CHOL patient data were acquired from the Gene Expression Omnibus (GEO) (GSE89748, GSE107943) and The Cancer Genome Atlas (TCGA) databases, with NRGs data from the necroptosis pathway in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Univariate and multivariate regression analyses were performed to establish the NRG signatures. Kaplan-Meier (KM) curves were used to evaluate the prognosis of patients with CHOL. Functional enrichment analysis was performed to identify key NRG-associated biological signaling pathways. We also applied integrative multi-omics analysis to the high- and low-risk score groups. Spearman's rank correlation was used to clarify the relationship between the NRG signature and immune infiltration. Results 65 differentially expressed (DE) NRGs were screened, five of which were selected to establish the prognostic signature of NRGS based on multivariate Cox regression analysis. We observed that low-risk patients survived significantly longer than high-risk patients. We found that patients with high-risk scores experienced higher immune cell infiltration, drug resistance, and more somatic mutations than patients with low-risk scores. We further found that sensitivities to GW843682X, mitomycin C, rapamycin, and S-trityl-L-cysteine were significantly higher in the low-risk group than in the high-risk group. Finally, we validated the expression of five NRGs in CHOL tissues using the TCGA database, HPA database and our clinical data. Conclusion These findings demonstrate that the five-NRG prognostic signature for CHOL patients is reasonably accurate and valid, and it may prove to be of considerable value for the treatment and prognosis of CHOL patients in the future.
Collapse
Affiliation(s)
- Lixia Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xueping Gao
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan, Chongqing, China
| | - Jiyuan Xing
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhixian Guo
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Zhixian Guo,
| |
Collapse
|
16
|
Dai J, Zhou P, Li S, Qiu HJ. New Insights into the Crosstalk among the Interferon and Inflammatory Signaling Pathways in Response to Viral Infections: Defense or Homeostasis. Viruses 2022; 14:v14122798. [PMID: 36560803 PMCID: PMC9783938 DOI: 10.3390/v14122798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Innate immunity plays critical roles in eliminating viral infections, healing an injury, and restoring tissue homeostasis. The signaling pathways of innate immunity, including interferons (IFNs), nuclear factor kappa B (NF-κB), and inflammasome responses, are activated upon viral infections. Crosstalk and interplay among signaling pathways are involved in the complex regulation of antiviral activity and homeostasis. To date, accumulating evidence has demonstrated that NF-κB or inflammasome signaling exhibits regulatory effects on IFN signaling. In addition, several adaptors participate in the crosstalk between IFNs and the inflammatory response. Furthermore, the key adaptors in innate immune signaling pathways or the downstream cytokines can modulate the activation of other signaling pathways, leading to excessive inflammatory responses or insufficient antiviral effects, which further results in tissue injury. This review focuses on the crosstalk between IFN and inflammatory signaling to regulate defense and homeostasis. A deeper understanding of the functional aspects of the crosstalk of innate immunity facilitates the development of targeted treatments for imbalanced homeostasis.
Collapse
Affiliation(s)
- Jingwen Dai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Pingping Zhou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Department of Immunology, School of Basic Medicine, Harbin Medical University, Harbin 150081, China
| | - Su Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Correspondence: (S.L.); (H.-J.Q.)
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Correspondence: (S.L.); (H.-J.Q.)
| |
Collapse
|
17
|
Shi H, Doench JG, Chi H. CRISPR screens for functional interrogation of immunity. Nat Rev Immunol 2022:10.1038/s41577-022-00802-4. [DOI: 10.1038/s41577-022-00802-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2022] [Indexed: 12/13/2022]
|
18
|
Shemesh A, Su Y, Calabrese DR, Chen D, Arakawa-Hoyt J, Roybal KT, Heath JR, Greenland JR, Lanier LL. Diminished cell proliferation promotes natural killer cell adaptive-like phenotype by limiting FcεRIγ expression. J Exp Med 2022; 219:e20220551. [PMID: 36066491 PMCID: PMC9448639 DOI: 10.1084/jem.20220551] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/14/2022] [Accepted: 08/05/2022] [Indexed: 12/20/2022] Open
Abstract
Human adaptive-like natural killer (NK) cells express low levels of FcεRIγ (FcRγ-/low) and are reported to accumulate during COVID-19 infection; however, the mechanism underlying and regulating FcRγ expression in NK cells has yet to be fully defined. We observed lower FcRγ protein expression in NK cell subsets from lung transplant patients during rapamycin treatment, suggesting a link with reduced mTOR activity. Further, FcRγ-/low NK cell subsets from healthy donors displayed reduced mTOR activity. We discovered that FcRγ upregulation is dependent on cell proliferation progression mediated by IL-2, IL-15, or IL-12, is sensitive to mTOR suppression, and is inhibited by TGFβ or IFNα. Accordingly, the accumulation of adaptive-like FcRγ-/low NK cells in COVID-19 patients corresponded to increased TGFβ and IFNα levels and disease severity. Our results show that an adaptive-like NK cell phenotype is induced by diminished cell proliferation and has an early prognostic value for increased TGFβ and IFNα levels in COVID-19 infection associated with disease severity.
Collapse
Affiliation(s)
- Avishai Shemesh
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA
| | - Yapeng Su
- Institute for Systems Biology, Seattle, WA
| | - Daniel R. Calabrese
- Department of Medicine, University of California, San Francisco, CA
- Medical Service, Veterans Affairs Health Care System, San Francisco, CA
| | - Daniel Chen
- Institute for Systems Biology, Seattle, WA
- Department of Microbiology, University of Washington, Seattle, WA
- Department of Informatics, University of Washington, Seattle, WA
| | - Janice Arakawa-Hoyt
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
| | - Kole T. Roybal
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Chan Zuckerberg Biohub, San Francisco, CA
- Gladstone University of California, San Francisco Institute for Genetic Immunology, San Francisco, CA
- University of California, San Francisco Cell Design Institute, San Francisco, CA
| | - James R. Heath
- Institute for Systems Biology, Seattle, WA
- Department of Bioengineering, University of Washington, Seattle, WA
| | - John R. Greenland
- Department of Medicine, University of California, San Francisco, CA
- Medical Service, Veterans Affairs Health Care System, San Francisco, CA
| | - Lewis L. Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
19
|
Li X, Jiang P, Li R, Wu B, Zhao K, Li S, Cai J. Analysis of cuproptosis in hepatocellular carcinoma using multi-omics reveals a comprehensive HCC landscape and the immune patterns of cuproptosis. Front Oncol 2022; 12:1009036. [PMID: 36408192 PMCID: PMC9666696 DOI: 10.3389/fonc.2022.1009036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/10/2022] [Indexed: 09/29/2023] Open
Abstract
Cuproptosis represents a novel copper-dependent regulated cell death, distinct from other known cell death processes. In this report, a comprehensive analysis of cuproptosis in hepatocellular carcinoma (HCC) was conducted using multi-omics including genomics, bulk RNA-seq, single cell RNA-seq and proteomics. ATP7A, PDHA1 and DLST comprised the top 3 mutation genes in The Cancer Genome Atlas (TCGA)-LIHC; 9 cuproptosis-related genes showed significant, independent prognostic values. Cuproptosis-related hepatocytes were identified and their function were evaluated in single cell assays. Based on cuproptosis-related gene expressions, two immune patterns were found, with the cuproptosis-C1 subtype identified as a cytotoxic immune pattern, while the cuproptosis-C2 subtype was identified as a regulatory immune pattern. Cuproptosis-C2 was associated with a number of pathways involving tumorigenesis. A prognosis model based on differentially expressed genes (DEGs) of cuproptosis patterns was constructed and validated. We established a cuproptosis index (CPI) and further performed an analysis of its clinical relevance. High CPI values were associated with increased levels of alpha-fetoprotein (AFP) and advanced tumor stages. Taken together, this comprehensive analysis provides important, new insights into cuproptosis mechanisms associated with human HCC.
Collapse
Affiliation(s)
- Xinqiang Li
- Organ Transplantation Center, Affiliated Hospital of Qingdao University, Qingdao, China
- Institute of Organ Donation and Transplantation, Medical College of Qingdao University, Qingdao, China
| | - Peng Jiang
- Organ Transplantation Center, Affiliated Hospital of Qingdao University, Qingdao, China
- Institute of Organ Donation and Transplantation, Medical College of Qingdao University, Qingdao, China
| | - Ruixia Li
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Bin Wu
- Organ Transplantation Center, Affiliated Hospital of Qingdao University, Qingdao, China
- Institute of Organ Donation and Transplantation, Medical College of Qingdao University, Qingdao, China
| | - Kai Zhao
- Organ Transplantation Center, Affiliated Hospital of Qingdao University, Qingdao, China
- Institute of Organ Donation and Transplantation, Medical College of Qingdao University, Qingdao, China
| | - Shipeng Li
- The Second Clinical Medical College, Capital Medical University, Beijing, China
| | - Jinzhen Cai
- Organ Transplantation Center, Affiliated Hospital of Qingdao University, Qingdao, China
- Institute of Organ Donation and Transplantation, Medical College of Qingdao University, Qingdao, China
| |
Collapse
|
20
|
Ding H, Wang G, Yu Z, Sun H, Wang L. Role of interferon-gamma (IFN-γ) and IFN-γ receptor 1/2 (IFNγR1/2) in regulation of immunity, infection, and cancer development: IFN-γ-dependent or independent pathway. Biomed Pharmacother 2022; 155:113683. [PMID: 36095965 DOI: 10.1016/j.biopha.2022.113683] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/27/2022] [Accepted: 09/07/2022] [Indexed: 11/02/2022] Open
Abstract
IFN-γ, a soluble cytokine being produced by T lymphocytes, macrophages, mucosal epithelial cells, or natural killer cells, is able to bind to the IFN-γ receptor (IFNγR) and in turn activate the Janus kinase (JAK)-signal transducer and transcription protein (STAT) pathway and induce expression of IFN-γ-stimulated genes. IFN-γ is critical for innate and adaptive immunity and aberrant IFN-γ expression and functions have been associated with different human diseases. However, the IFN-γ/IFNγR signaling could be a double-edged sword in cancer development because the tissue microenvironments could determine its anti- or pro-tumorigenic activities. The IFNγR protein consists of two IFNγR1 and IFNγR2 chains, subunits of which play different roles under certain conditions. This review assessed IFNγR polymorphisms, expression and functions in development and progression of various human diseases in an IFN-γ-dependent or independent manner. This review also discussed tumor microenvironment, microbial infection, and vital molecules in the IFN-γ upstream signaling that might regulate IFNγR expression, drug resistance, and druggable strategy, to provide evidence for further application of IFNγR.
Collapse
Affiliation(s)
- Huihui Ding
- School of Pharmacy, Shandong First Medical University, Jinan, Shandong, China.
| | - Gongfu Wang
- Center for Drug Evaluation, China Food and Drug Administration (CFDA), Beijing, China.
| | - Zhen Yu
- Department of Pharmacy, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Huimin Sun
- School of Pharmacy, Shandong First Medical University, Jinan, Shandong, China.
| | - Lu Wang
- School of Pharmacy, Shandong First Medical University, Jinan, Shandong, China; Department of Pharmacy, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
21
|
Abstract
Over the past decade, CRISPR has become as much a verb as it is an acronym, transforming biomedical research and providing entirely new approaches for dissecting all facets of cell biology. In cancer research, CRISPR and related tools have offered a window into previously intractable problems in our understanding of cancer genetics, the noncoding genome and tumour heterogeneity, and provided new insights into therapeutic vulnerabilities. Here, we review the progress made in the development of CRISPR systems as a tool to study cancer, and the emerging adaptation of these technologies to improve diagnosis and treatment.
Collapse
Affiliation(s)
- Alyna Katti
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Graduate School of Medical Science, Weill Cornell Medicine, New York, NY, USA
| | - Bianca J Diaz
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Graduate School of Medical Science, Weill Cornell Medicine, New York, NY, USA
| | - Christina M Caragine
- Department of Biology, New York University, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Neville E Sanjana
- Department of Biology, New York University, New York, NY, USA.
- New York Genome Center, New York, NY, USA.
| | - Lukas E Dow
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
22
|
Xu Q, Cao D, Fang B, Yan S, Hu Y, Guo T. Immune-related gene signature predicts clinical outcomes and immunotherapy response in acute myeloid leukemia. Cancer Med 2022; 11:3364-3380. [PMID: 35355427 PMCID: PMC9468431 DOI: 10.1002/cam4.4687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 12/05/2022] Open
Abstract
Background The immune response in the bone marrow microenvironment has implications for progression and prognosis in acute myeloid leukemia (AML). However, few immune‐related biomarkers for AML prognosis and immunotherapy response have been identified. We aimed to establish a predictive gene signature and to explore the determinants of prognosis in AML. Methods Immune‐related genes with clinical significance were screened by a weighted gene co‐expression network analysis. Seven immune‐related genes were used to establish a gene signature by a multivariate Cox regression analysis. Based on the signature, low‐ and high‐risk groups were compared with respect to the immune microenvironment, immune checkpoints, pathway activities, and mutation frequencies. The tumor immune dysfunction and exclusion (TIDE) method was used to predict the response to immune checkpoint blockade (ICB) therapy. The Connectivity Map database was used to explore small‐molecule drugs expected to treat high‐risk populations. Results A seven‐gene prognostic signature was used to classify patients into high‐ and low‐risk groups. Prognosis was poorer for patients in the former than in the latter. The high‐risk group displayed higher levels of immune checkpoint molecules (LAG3, PD‐1, CTLA4, PD‐L2, and PD‐L1), immune cell infiltration (dendritic cells, T helper 1, and gamma delta T), and somatic mutations (NPM1 and RUNX1). Moreover, hematopoietic stem cell/leukemia stem cell pathways were enriched in the high‐risk phenotype. Compared with that in the low‐risk group, the lower TIDE score for the high‐risk group implied that this group is more likely to benefit from ICB therapy. Finally, some drugs (FLT3 inhibitors and BCL inhibitors) targeting the expression profiles associated with the high‐risk group were generated using Connectivity Map. Conclusion The newly developed immune‐related gene signature is an effective biomarker for predicting prognosis in AML and provides a basis, from an immunological perspective, for the development of comprehensive therapeutic strategies.
Collapse
Affiliation(s)
- Qiang Xu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, China
| | - Dedong Cao
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bin Fang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Siqi Yan
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Guo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Dong MB, Tang K, Zhou X, Zhou JJ, Chen S. Tumor immunology CRISPR screening: present, past, and future. Trends Cancer 2022; 8:210-225. [PMID: 34920978 PMCID: PMC8854335 DOI: 10.1016/j.trecan.2021.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 02/08/2023]
Abstract
Recent advances in immunotherapy have fundamentally changed the landscape of cancer treatment by leveraging the specificity and selectivity of the adaptive immune system to kill cancer cells. These successes have ushered in a new wave of research aimed at understanding immune recognition with the hope of developing newer immunotherapies. The advent of clustered regularly interspaced short palindromic repeats (CRISPR) technologies and advancement of multiomics modalities have greatly accelerated the discovery process. Here, we review the current literature surrounding CRISPR screens within the context of tumor immunology, provide essential components needed to conduct immune-specific CRISPR screens, and present avenues for future research.
Collapse
Affiliation(s)
- Matthew B. Dong
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA,System Biology Institute, Yale University, West Haven, CT, USA,Center for Cancer Systems Biology, Yale University, West Haven, CT, USA,Immunobiology Program, Yale University, New Haven, CT, USA,Department of Immunobiology, Yale University, New Haven, CT, USA,M.D.-Ph.D. Program, Yale University, West Haven, CT, USA
| | - Kaiyuan Tang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA,System Biology Institute, Yale University, West Haven, CT, USA,Center for Cancer Systems Biology, Yale University, West Haven, CT, USA,Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
| | - Xiaoyu Zhou
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA,System Biology Institute, Yale University, West Haven, CT, USA,Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Jingjia J. Zhou
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA,System Biology Institute, Yale University, West Haven, CT, USA,Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA; System Biology Institute, Yale University, West Haven, CT, USA; Center for Cancer Systems Biology, Yale University, West Haven, CT, USA; Immunobiology Program, Yale University, New Haven, CT, USA; M.D.-Ph.D. Program, Yale University, West Haven, CT, USA; Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA; Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA; Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA; Yale Center for Biomedical Data Science, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
24
|
Zhuang X, Long EO. CRISPR Screen to Identify Factors that Render Tumor Cells Sensitive or Resistant to Killing by NK Cells. Methods Mol Biol 2022; 2463:269-288. [PMID: 35344181 DOI: 10.1007/978-1-0716-2160-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Natural killer (NK) cells are an important component of the cancer immune surveillance system. They are regulated by germline-encoded receptors that activate and inhibit their effector function, such as secretion of cytokines and direct lysis of tumor cells and virus-infected cells. Without the need to be primed by prior exposure to tumor antigen, NK cells can detect ligands expressed on tumor cells and selectively kill these cells. NK cells are under strict control by inhibitory receptors that bind to HLA class I on target cells and block early activation signals, thus preventing lysis of target cells. The sensitivity to lysis by NK cells is therefore determined to a large extent by the expression of HLA class I molecules on tumor cells. In addition to receptor-ligand interactions that occur at NK-target cell synapses, many other factors determine the sensitivity of tumor cells to lysis by NK. Intrinsic properties of tumor cells, such as their metabolism and signaling networks establish a threshold above which they will succumb to the death pathways triggered by NK cell attack. Here we provide a protocol for a genome-wide CRISPR screen in tumor cells to identify factors that regulate their sensitivity to primary human NK cells. Tumor cells first transduced for expression of Cas9 are then transduced with a guide RNA (gRNA) library and co-cultured with NK cells. Deep sequencing of the library generated from the genome of tumor cells that survived the selection by NK cells and analysis of the distribution of guide RNAs is performed to identify genes that promote either sensitivity or resistance to NK-mediated killing. The contribution of individual genes to tumor sensitivity can be validated by knockouts using individual gRNAs. The techniques and workflow described here could be applied to primary tumors from cancer patients and reveal tumor-specific points of vulnerability that could be exploited for cancer immunotherapy, such as checkpoint blockade or expression of chimeric antigen receptors specifically designed to activate NK cell cytotoxicity.
Collapse
Affiliation(s)
- Xiaoxuan Zhuang
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Eric O Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
25
|
Du W, Frankel TL, Green M, Zou W. IFNγ signaling integrity in colorectal cancer immunity and immunotherapy. Cell Mol Immunol 2022; 19:23-32. [PMID: 34385592 PMCID: PMC8752802 DOI: 10.1038/s41423-021-00735-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023] Open
Abstract
The majority of colorectal cancer patients are not responsive to immune checkpoint blockade (ICB). The interferon gamma (IFNγ) signaling pathway drives spontaneous and ICB-induced antitumor immunity. In this review, we summarize recent advances in the epigenetic, genetic, and functional integrity of the IFNγ signaling pathway in the colorectal cancer microenvironment and its immunological relevance in the therapeutic efficacy of and resistance to ICB. Moreover, we discuss how to target IFNγ signaling to inform novel clinical trials to treat patients with colorectal cancer.
Collapse
Affiliation(s)
- Wan Du
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Timothy L Frankel
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Michael Green
- Center of Excellence for Cancer Immunology and Immunotherapy, Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Department of Radiation Oncology, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Veterans Affairs Ann Arbor Healthcare System, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Graduate Programs in Immunology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Weiping Zou
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA.
- Center of Excellence for Cancer Immunology and Immunotherapy, Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA.
- Graduate Programs in Immunology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
- Tumor Biology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
26
|
Vredevoogd D, Apriamashvili G, Peeper D. The (re)discovery of tumor-intrinsic determinants of immune sensitivity by functional genetic screens. IMMUNO-ONCOLOGY TECHNOLOGY 2021; 11:100043. [PMID: 35756970 PMCID: PMC9216628 DOI: 10.1016/j.iotech.2021.100043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Functional genetic screens by CRISPR-Cas9 allow for the unbiased discovery of proteins causally involved in complex biological processes. In recent years, this approach has been used by multiple laboratories to uncover a range of tumor cell regulators determining immune sensitivity. In this review, we provide an overview of genetic screens carried out both in vitro and in vivo. By comparative analysis we highlight commonly identified proteins and pathways that are key in establishing tumor-intrinsic immune susceptibility. Together, these screens demonstrated the importance of the antigen presentation, interferon-γ, tumor necrosis factor and autophagy pathways in governing sensitivity of tumor cells to immune attack. Moreover, they underline the complex interplay between tumor cells and their microenvironment, providing both fundamental and clinically relevant insights into the mechanisms of tumor immune resistance.
Collapse
Affiliation(s)
| | | | - D.S. Peeper
- Netherlands Cancer Institute, Oncode Institute, Division of Molecular Oncology and Immunology, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Abstract
The CRISPR/Cas9 genome editing system has been one of the greatest scientific discoveries in the last decade. The highly efficient and precise editing ability of this technology is of great therapeutic value and benefits the basic sciences as an advantageous research tool. In recent years, forward genetic screens using CRISPR technology have been widely adopted, with genome-wide or pathway-focused screens leading to important and novel discoveries. CRISPR screens have been used primarily in cancer biology, virology, and basic cell biology, but they have rarely been applied to diabetes research. A potential reason for this is that diabetes-related research can be more complicated, often involving cross talk between multiple organs or cell types. Nevertheless, many questions can still be reduced to the study of a single cell type if assays are carefully designed. Here we review the application of CRISPR screen technology and provide perspective on how it can be used in diabetes research.
Collapse
Affiliation(s)
- Peng Yi
- Section for Islet Cell and Regenerative Biology, and CRISPR Screen Core Laboratory, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Noelle Morrow
- Section for Islet Cell and Regenerative Biology, and CRISPR Screen Core Laboratory, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| |
Collapse
|
28
|
Sheffer M, Lowry E, Beelen N, Borah M, Amara SNA, Mader CC, Roth JA, Tsherniak A, Freeman SS, Dashevsky O, Gandolfi S, Bender S, Bryan JG, Zhu C, Wang L, Tariq I, Kamath GM, Simoes RDM, Dhimolea E, Yu C, Hu Y, Dufva O, Giannakis M, Syrgkanis V, Fraenkel E, Golub T, Romee R, Mustjoki S, Culhane AC, Wieten L, Mitsiades CS. Genome-scale screens identify factors regulating tumor cell responses to natural killer cells. Nat Genet 2021; 53:1196-1206. [PMID: 34253920 DOI: 10.1038/s41588-021-00889-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/18/2021] [Indexed: 12/26/2022]
Abstract
To systematically define molecular features in human tumor cells that determine their degree of sensitivity to human allogeneic natural killer (NK) cells, we quantified the NK cell responsiveness of hundreds of molecularly annotated 'DNA-barcoded' solid tumor cell lines in multiplexed format and applied genome-scale CRISPR-based gene-editing screens in several solid tumor cell lines, to functionally interrogate which genes in tumor cells regulate the response to NK cells. In these orthogonal studies, NK cell-sensitive tumor cells tend to exhibit 'mesenchymal-like' transcriptional programs; high transcriptional signature for chromatin remodeling complexes; high levels of B7-H6 (NCR3LG1); and low levels of HLA-E/antigen presentation genes. Importantly, transcriptional signatures of NK cell-sensitive tumor cells correlate with immune checkpoint inhibitor (ICI) resistance in clinical samples. This study provides a comprehensive map of mechanisms regulating tumor cell responses to NK cells, with implications for future biomarker-driven applications of NK cell immunotherapies.
Collapse
MESH Headings
- Allogeneic Cells/physiology
- Animals
- B7 Antigens/genetics
- Cell Line, Tumor
- Chromatin Assembly and Disassembly/physiology
- Cytotoxicity Tests, Immunologic/methods
- Cytotoxicity, Immunologic/genetics
- Cytotoxicity, Immunologic/physiology
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Genome, Human
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/immunology
- Humans
- Immune Checkpoint Inhibitors/pharmacology
- Killer Cells, Natural/physiology
- Mice, Inbred NOD
- Xenograft Model Antitumor Assays
- HLA-E Antigens
- Mice
Collapse
Affiliation(s)
- Michal Sheffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.
- Ludwig Center, Harvard Medical School, Boston, MA, USA.
| | - Emily Lowry
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nicky Beelen
- Department of Transplantation Immunology, Maastricht University Medical Center+, Maastricht, the Netherlands
- School for Oncology and Developmental Biology, Maastricht University Medical Center+ GROW, Maastricht, the Netherlands
| | - Minasri Borah
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Chris C Mader
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Jennifer A Roth
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Aviad Tsherniak
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Samuel S Freeman
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Olga Dashevsky
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Ludwig Center, Harvard Medical School, Boston, MA, USA
| | - Sara Gandolfi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Ludwig Center, Harvard Medical School, Boston, MA, USA
| | - Samantha Bender
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Jordan G Bryan
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Cong Zhu
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Li Wang
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Ifrah Tariq
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Ricardo De Matos Simoes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Ludwig Center, Harvard Medical School, Boston, MA, USA
| | - Eugen Dhimolea
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Ludwig Center, Harvard Medical School, Boston, MA, USA
| | - Channing Yu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Yiguo Hu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Sichuan University, Chengdu, China
| | - Olli Dufva
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | | | - Ernest Fraenkel
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Todd Golub
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Rizwan Romee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Aedin C Culhane
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Lotte Wieten
- Department of Transplantation Immunology, Maastricht University Medical Center+, Maastricht, the Netherlands
- School for Oncology and Developmental Biology, Maastricht University Medical Center+ GROW, Maastricht, the Netherlands
| | - Constantine S Mitsiades
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.
- Ludwig Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
29
|
Shklovskaya E, Rizos H. MHC Class I Deficiency in Solid Tumors and Therapeutic Strategies to Overcome It. Int J Mol Sci 2021; 22:ijms22136741. [PMID: 34201655 PMCID: PMC8268865 DOI: 10.3390/ijms22136741] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022] Open
Abstract
It is now well accepted that the immune system can control cancer growth. However, tumors escape immune-mediated control through multiple mechanisms and the downregulation or loss of major histocompatibility class (MHC)-I molecules is a common immune escape mechanism in many cancers. MHC-I molecules present antigenic peptides to cytotoxic T cells, and MHC-I loss can render tumor cells invisible to the immune system. In this review, we examine the dysregulation of MHC-I expression in cancer, explore the nature of MHC-I-bound antigenic peptides recognized by immune cells, and discuss therapeutic strategies that can be used to overcome MHC-I deficiency in solid tumors, with a focus on the role of natural killer (NK) cells and CD4 T cells.
Collapse
|
30
|
Basu-Shrivastava M, Kozoriz A, Desagher S, Lassot I. To Ubiquitinate or Not to Ubiquitinate: TRIM17 in Cell Life and Death. Cells 2021; 10:1235. [PMID: 34069831 PMCID: PMC8157266 DOI: 10.3390/cells10051235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/17/2022] Open
Abstract
TRIM17 is a member of the TRIM family, a large class of RING-containing E3 ubiquitin-ligases. It is expressed at low levels in adult tissues, except in testis and in some brain regions. However, it can be highly induced in stress conditions which makes it a putative stress sensor required for the triggering of key cellular responses. As most TRIM members, TRIM17 can act as an E3 ubiquitin-ligase and promote the degradation by the proteasome of substrates such as the antiapoptotic protein MCL1. Intriguingly, TRIM17 can also prevent the ubiquitination of other proteins and stabilize them, by binding to other TRIM proteins and inhibiting their E3 ubiquitin-ligase activity. This duality of action confers several pivotal roles to TRIM17 in crucial cellular processes such as apoptosis, autophagy or cell division, but also in pathological conditions as diverse as Parkinson's disease or cancer. Here, in addition to recent data that endorse this duality, we review what is currently known from public databases and the literature about TRIM17 gene regulation and expression, TRIM17 protein structure and interactions, as well as its involvement in cell physiology and human disorders.
Collapse
Affiliation(s)
| | - Alina Kozoriz
- Institut de Génétique Moléculaire de Montpellier, University Montpellier, CNRS, Montpellier, France
| | - Solange Desagher
- Institut de Génétique Moléculaire de Montpellier, University Montpellier, CNRS, Montpellier, France
| | - Iréna Lassot
- Institut de Génétique Moléculaire de Montpellier, University Montpellier, CNRS, Montpellier, France
| |
Collapse
|
31
|
Buquicchio FA, Satpathy AT. Interrogating immune cells and cancer with CRISPR-Cas9. Trends Immunol 2021; 42:432-446. [PMID: 33812776 DOI: 10.1016/j.it.2021.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/19/2022]
Abstract
CRISPR-Cas9 technologies have transformed the study of genetic pathways governing cellular differentiation and function. Recent advances have adapted these methods to immune cells, which has accelerated the pace of functional genomics in immunology and enabled new avenues for the design of cellular immunotherapies for cancer. In this review, we summarize recent developments in CRISPR-Cas9 technology and discuss how they have been leveraged to discover and manipulate novel genetic regulators of the immune system. We envision that these results will provide a valuable resource to aid in the design, implementation, and interpretation of CRISPR-Cas9-based screens in immunology and immuno-oncology.
Collapse
Affiliation(s)
- Frank A Buquicchio
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ansuman T Satpathy
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
| |
Collapse
|
32
|
Fenton SE, Saleiro D, Platanias LC. Type I and II Interferons in the Anti-Tumor Immune Response. Cancers (Basel) 2021; 13:1037. [PMID: 33801234 PMCID: PMC7957896 DOI: 10.3390/cancers13051037] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
The interferons (IFNs) are essential components of the immune response against infections and malignancies. IFNs are potent promoters of the anti-tumor response, but there is also evidence that feedback mechanisms regulated by IFNs negatively control immune responses to avoid hyper-activation and limit inflammation. This balance of responses plays an important role in cancer surveillance, immunoediting and response to anticancer therapeutic approaches. Here we review the roles of both type I and type II IFNs on the control of the immune response against malignancies in the context of effects on both malignant cells and cells of the immune system in the tumor microenvironment.
Collapse
Affiliation(s)
- Sarah E. Fenton
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA; (S.E.F.); (D.S.)
- Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Diana Saleiro
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA; (S.E.F.); (D.S.)
- Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Leonidas C. Platanias
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA; (S.E.F.); (D.S.)
- Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
33
|
Potts MA, McDonald JA, Sutherland KD, Herold MJ. Critical cancer vulnerabilities identified by unbiased CRISPR/Cas9 screens inform on efficient cancer Immunotherapy. Eur J Immunol 2020; 50:1871-1884. [PMID: 33202035 DOI: 10.1002/eji.202048712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/21/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022]
Abstract
The mutational landscape of human cancers is highly complex. While next generation sequencing aims to comprehensively catalogue somatic alterations in tumor cells, it fails to delineate driver from passenger mutations. Functional genomic approaches, particularly CRISPR/Cas9, enable both gene discovery, and annotation of gene function. Indeed, recent CRISPR/Cas9 technologies have flourished with the development of more sophisticated and versatile platforms capable of gene knockouts to high throughput genome wide editing of a single nucleotide base. With new platforms constantly emerging, it can be challenging to navigate what CRISPR tools are available and how they can be effectively applied to understand cancer biology. This review provides an overview of current and emerging CRISPR technologies and their power to model cancer and identify novel treatments. Specifically, how CRISPR screening approaches have been exploited to enhance immunotherapies through the identification of tumor intrinsic and extrinsic mechanisms to escape immune recognition will be discussed.
Collapse
Affiliation(s)
- Margaret A Potts
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Jackson A McDonald
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Kate D Sutherland
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Marco J Herold
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
34
|
Menasche BL, Davis EM, Wang S, Ouyang Y, Li S, Yu H, Shen J. PBRM1 and the glycosylphosphatidylinositol biosynthetic pathway promote tumor killing mediated by MHC-unrestricted cytotoxic lymphocytes. SCIENCE ADVANCES 2020; 6:eabc3243. [PMID: 33246952 PMCID: PMC7695474 DOI: 10.1126/sciadv.abc3243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 10/14/2020] [Indexed: 06/12/2023]
Abstract
Major histocompatibility complex (MHC)-unrestricted cytotoxic lymphocytes (CLs) such as natural killer (NK) cells can detect and destroy tumor and virus-infected cells resistant to T cell-mediated killing. Here, we performed genome-wide genetic screens to identify tumor-intrinsic genes regulating killing by MHC-unrestricted CLs. A group of genes identified in our screens encode enzymes for the biosynthesis of the glycosylphosphatidylinositol (GPI) anchor, which is not involved in tumor response to T cell-mediated cytotoxicity. Another gene identified in the screens was PBRM1, which encodes a subunit of the PBAF form of the SWI/SNF chromatin-remodeling complex. PBRM1 mutations in tumor cells cause resistance to MHC-unrestricted killing, in contrast to their sensitizing effects on T cell-mediated killing. PBRM1 and the GPI biosynthetic pathway regulate the ligands of NK cell receptors in tumor cells and promote cytolytic granule secretion in CLs. The regulators identified in this work represent potential targets for cancer immunotherapy.
Collapse
Affiliation(s)
- Bridget L Menasche
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Eric M Davis
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Shifeng Wang
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- Department of Chinese Medicine Information Science, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yan Ouyang
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Suzhao Li
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Haijia Yu
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jingshi Shen
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
35
|
Khalaf K, Janowicz K, Dyszkiewicz-Konwińska M, Hutchings G, Dompe C, Moncrieff L, Jankowski M, Machnik M, Oleksiewicz U, Kocherova I, Petitte J, Mozdziak P, Shibli JA, Iżycki D, Józkowiak M, Piotrowska-Kempisty H, Skowroński MT, Antosik P, Kempisty B. CRISPR/Cas9 in Cancer Immunotherapy: Animal Models and Human Clinical Trials. Genes (Basel) 2020; 11:E921. [PMID: 32796761 PMCID: PMC7463827 DOI: 10.3390/genes11080921] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/29/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
Even though chemotherapy and immunotherapy emerged to limit continual and unregulated proliferation of cancer cells, currently available therapeutic agents are associated with high toxicity levels and low success rates. Additionally, ongoing multi-targeted therapies are limited only for few carcinogenesis pathways, due to continually emerging and evolving mutations of proto-oncogenes and tumor-suppressive genes. CRISPR/Cas9, as a specific gene-editing tool, is used to correct causative mutations with minimal toxicity, but is also employed as an adjuvant to immunotherapy to achieve a more robust immunological response. Some of the most critical limitations of the CRISPR/Cas9 technology include off-target mutations, resulting in nonspecific restrictions of DNA upstream of the Protospacer Adjacent Motifs (PAM), ethical agreements, and the lack of a scientific consensus aiming at risk evaluation. Currently, CRISPR/Cas9 is tested on animal models to enhance genome editing specificity and induce a stronger anti-tumor response. Moreover, ongoing clinical trials use the CRISPR/Cas9 system in immune cells to modify genomes in a target-specific manner. Recently, error-free in vitro systems have been engineered to overcome limitations of this gene-editing system. The aim of the article is to present the knowledge concerning the use of CRISPR Cas9 technique in targeting treatment-resistant cancers. Additionally, the use of CRISPR/Cas9 is aided as an emerging supplementation of immunotherapy, currently used in experimental oncology. Demonstrating further, applications and advances of the CRISPR/Cas9 technique are presented in animal models and human clinical trials. Concluding, an overview of the limitations of the gene-editing tool is proffered.
Collapse
Affiliation(s)
- Khalil Khalaf
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (K.K.); (K.J.); (M.D.-K.); (G.H.); (M.J.); (I.K.)
| | - Krzysztof Janowicz
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (K.K.); (K.J.); (M.D.-K.); (G.H.); (M.J.); (I.K.)
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (C.D.); (L.M.)
| | - Marta Dyszkiewicz-Konwińska
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (K.K.); (K.J.); (M.D.-K.); (G.H.); (M.J.); (I.K.)
- Department of Biomaterials and Experimental Dentistry, Poznan University of Medical Sciences, 60-812 Poznań, Poland
| | - Greg Hutchings
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (K.K.); (K.J.); (M.D.-K.); (G.H.); (M.J.); (I.K.)
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (C.D.); (L.M.)
| | - Claudia Dompe
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (C.D.); (L.M.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznań, Poland
| | - Lisa Moncrieff
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (C.D.); (L.M.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznań, Poland
| | - Maurycy Jankowski
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (K.K.); (K.J.); (M.D.-K.); (G.H.); (M.J.); (I.K.)
| | - Marta Machnik
- Department of Cancer Immunology, Poznan University of Medical Sciences, 60-408 Poznan, Poland; (M.M.); (U.O.); (D.I.)
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Urszula Oleksiewicz
- Department of Cancer Immunology, Poznan University of Medical Sciences, 60-408 Poznan, Poland; (M.M.); (U.O.); (D.I.)
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Ievgeniia Kocherova
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (K.K.); (K.J.); (M.D.-K.); (G.H.); (M.J.); (I.K.)
| | - Jim Petitte
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA;
| | - Jamil A. Shibli
- Department of Periodontology and Oral Implantology, Dental Research Division, University of Guarulhos, Guarulhos 07023-070, Brazil;
| | - Dariusz Iżycki
- Department of Cancer Immunology, Poznan University of Medical Sciences, 60-408 Poznan, Poland; (M.M.); (U.O.); (D.I.)
| | - Małgorzata Józkowiak
- Department of Toxicology, Poznan University of Medical Sciences, 61-631 Poznań, Poland; (M.J.); (H.P.-K.)
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 61-631 Poznań, Poland; (M.J.); (H.P.-K.)
| | - Mariusz T. Skowroński
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland;
| | - Paweł Antosik
- Department of Veterinary Surgery, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland;
| | - Bartosz Kempisty
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (K.K.); (K.J.); (M.D.-K.); (G.H.); (M.J.); (I.K.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznań, Poland
- Department of Veterinary Surgery, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland;
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 601 77 Brno, Czech Republic
| |
Collapse
|
36
|
Abstract
Immunotherapy with checkpoint blockade induces rapid and durable immune control of cancer in some patients and has driven a monumental shift in cancer treatment. Neoantigen-specific CD8+ T cells are at the forefront of current immunotherapy strategies, and the majority of drug discovery and clinical trials revolve around further harnessing these immune effectors. Yet the immune system contains a diverse range of antitumour effector cells, and these must function in a coordinated and synergistic manner to overcome the immune-evasion mechanisms used by tumours and achieve complete control with tumour eradication. A key antitumour effector is the natural killer (NK) cells, cytotoxic innate lymphocytes present at high frequency in the circulatory system and identified by their exquisite ability to spontaneously detect and lyse transformed or stressed cells. Emerging data show a role for intratumoural NK cells in driving immunotherapy response and, accordingly, there have been renewed efforts to further elucidate and target the pathways controlling NK cell antitumour function. In this Review, we discuss recent clinical evidence that NK cells are a key immune constituent in the protective antitumour immune response and highlight the major stages of the cancer-NK cell immunity cycle. We also perform a new analysis of publicly available transcriptomic data to provide an overview of the prognostic value of NK cell gene expression in 25 tumour types. Furthermore, we discuss how the role of NK cells evolves with tumour progression, presenting new opportunities to target NK cell function to enhance cancer immunotherapy response rates across a more diverse range of cancers.
Collapse
Affiliation(s)
- Nicholas D Huntington
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
- oNKo-Innate Pty Ltd, Moonee Ponds, Victoria, Australia.
| | - Joseph Cursons
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
- oNKo-Innate Pty Ltd, Moonee Ponds, Victoria, Australia.
| | - Jai Rautela
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- oNKo-Innate Pty Ltd, Moonee Ponds, Victoria, Australia
| |
Collapse
|
37
|
Mohammadinejad R, Dehshahri A, Sassan H, Behnam B, Ashrafizadeh M, Samareh Gholami A, Pardakhty A, Mandegary A. Preparation of carbon dot as a potential CRISPR/Cas9 plasmid delivery system for lung cancer cells. MINERVA BIOTECNOL 2020. [DOI: 10.23736/s1120-4826.20.02618-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|