1
|
Tang C, Zhang Y. Potential alternatives to αβ-T cells to prevent graft-versus-host disease (GvHD) in allogeneic chimeric antigen receptor (CAR)-based cancer immunotherapy: A comprehensive review. Pathol Res Pract 2024; 262:155518. [PMID: 39146830 DOI: 10.1016/j.prp.2024.155518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/28/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Currently, CAR-T cell therapy relies on an individualized manufacturing process in which patient's own T cells are infused back into patients after being engineered and expanded ex vivo. Despite the astonishing outcomes of autologous CAR-T cell therapy, this approach is endowed with several limitations and drawbacks, such as high cost and time-consuming manufacturing process. Switching the armature of CAR-T cell therapy from autologous settings to allogeneic can overcome several bottlenecks of the current approach. Nevertheless, the use of allogeneic CAR-T cells is limited by the risk of life-threatening GvHD. Thus, in recent years, developing a method to move CAR-T cell therapy to allogeneic settings without the risk of GvHD has become a hot research topic in this field. Since the alloreactivity of αβ T-cell receptor (TCR) accounts for developing GvHD, several efforts have been made to disrupt endogenous TCR of allogeneic CAR-T cells using gene editing tools to prevent GvHD. Nonetheless, the off-target activity of gene editing tools and their associated genotoxicities, as well as the negative consequences of endogenous TCR disruption, are the main concerns of using this approach. As an alternative, CAR αβ-T cells can be replaced with other types of CAR-engineered cells that are capable of recognizing and killing malignant cells through CAR while avoiding the induction of GvHD. These alternatives include T cell subsets with restricted TCR repertoire (γδ-T, iNKT, virus-specific T, double negative T cells, and MAIT cells), killer cells (NK and CIK cells), non-lymphocytic cells (neutrophils and macrophages), stem/progenitor cells, and cell-free extracellular vesicles. In this review, we discuss how these alternatives can move CAR-based immunotherapy to allogeneic settings to overcome the bottlenecks of autologous manner without the risk of GvHD. We comprehensively discuss the pros and cons of these alternatives over the traditional CAR αβ-T cells in light of their preclinical studies and clinical trials.
Collapse
MESH Headings
- Humans
- Graft vs Host Disease/immunology
- Graft vs Host Disease/prevention & control
- Graft vs Host Disease/therapy
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Immunotherapy, Adoptive/methods
- Neoplasms/therapy
- Neoplasms/immunology
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- T-Lymphocytes/immunology
- Animals
- Gene Editing/methods
- Transplantation, Homologous/methods
Collapse
Affiliation(s)
- Chaozhi Tang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China; Department of Neurology, Xinxiang First Peoples Hospital, Xinxiang 453100, China
| | - Yuling Zhang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
2
|
Mak JYW, Rivero RJD, Hoang HN, Lim XY, Deng J, McWilliam HEG, Villadangos JA, McCluskey J, Corbett AJ, Fairlie DP. Potent Immunomodulators Developed from an Unstable Bacterial Metabolite of Vitamin B2 Biosynthesis. Angew Chem Int Ed Engl 2024; 63:e202400632. [PMID: 38679861 DOI: 10.1002/anie.202400632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/01/2024]
Abstract
Bacterial synthesis of vitamin B2 generates a by-product, 5-(2-oxopropylideneamino)-d-ribityl-aminouracil (5-OP-RU), with potent immunological properties in mammals, but it is rapidly degraded in water. This natural product covalently bonds to the key immunological protein MR1 in the endoplasmic reticulum of antigen presenting cells (APCs), enabling MR1 refolding and trafficking to the cell surface, where it interacts with T cell receptors (TCRs) on mucosal associated invariant T lymphocytes (MAIT cells), activating their immunological and antimicrobial properties. Here, we strategically modify this natural product to understand the molecular basis of its recognition by MR1. This culminated in the discovery of new water-stable compounds with extremely powerful and distinctive immunological functions. We report their capacity to bind MR1 inside APCs, triggering its expression on the cell surface (EC50 17 nM), and their potent activation (EC50 56 pM) or inhibition (IC50 80 nM) of interacting MAIT cells. We further derivatize compounds with diazirine-alkyne, biotin, or fluorophore (Cy5 or AF647) labels for detecting, monitoring, and studying cellular MR1. Computer modeling casts new light on the molecular mechanism of activation, revealing that potent activators are first captured in a tyrosine- and serine-lined cleft in MR1 via specific pi-interactions and H-bonds, before more tightly attaching via a covalent bond to Lys43 in MR1. This chemical study advances our molecular understanding of how bacterial metabolites are captured by MR1, influence cell surface expression of MR1, interact with T cells to induce immunity, and offers novel clues for developing new vaccine adjuvants, immunotherapeutics, and anticancer drugs.
Collapse
Affiliation(s)
- Jeffrey Y W Mak
- Centre for Chemistry and Drug Discovery and ARC Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Ryan J D Rivero
- Centre for Chemistry and Drug Discovery and ARC Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Huy N Hoang
- Centre for Chemistry and Drug Discovery and ARC Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Xin Yi Lim
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Jieru Deng
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Hamish E G McWilliam
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Jose A Villadangos
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
- Department of Biochemistry and Pharmacology Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Alexandra J Corbett
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - David P Fairlie
- Centre for Chemistry and Drug Discovery and ARC Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
3
|
Vacchini A, Chancellor A, Yang Q, Colombo R, Spagnuolo J, Berloffa G, Joss D, Øyås O, Lecchi C, De Simone G, Beshirova A, Nosi V, Loureiro JP, Morabito A, De Gregorio C, Pfeffer M, Schaefer V, Prota G, Zippelius A, Stelling J, Häussinger D, Brunelli L, Villalta P, Lepore M, Davoli E, Balbo S, Mori L, De Libero G. Nucleobase adducts bind MR1 and stimulate MR1-restricted T cells. Sci Immunol 2024; 9:eadn0126. [PMID: 38728413 DOI: 10.1126/sciimmunol.adn0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/18/2024] [Indexed: 05/12/2024]
Abstract
MR1T cells are a recently found class of T cells that recognize antigens presented by the major histocompatibility complex-I-related molecule MR1 in the absence of microbial infection. The nature of the self-antigens that stimulate MR1T cells remains unclear, hampering our understanding of their physiological role and therapeutic potential. By combining genetic, pharmacological, and biochemical approaches, we found that carbonyl stress and changes in nucleobase metabolism in target cells promote MR1T cell activation. Stimulatory compounds formed by carbonyl adducts of nucleobases were detected within MR1 molecules produced by tumor cells, and their abundance and antigenicity were enhanced by drugs that induce carbonyl accumulation. Our data reveal carbonyl-nucleobase adducts as MR1T cell antigens. Recognizing cells under carbonyl stress allows MR1T cells to monitor cellular metabolic changes with physiological and therapeutic implications.
Collapse
Affiliation(s)
- Alessandro Vacchini
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Andrew Chancellor
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Qinmei Yang
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Rodrigo Colombo
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Julian Spagnuolo
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Giuliano Berloffa
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Daniel Joss
- Department of Chemistry, University of Basel, Basel 4056, Switzerland
| | - Ove Øyås
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, Basel 4058, Switzerland
| | - Chiara Lecchi
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Giulia De Simone
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano 20156, Italy
| | - Aisha Beshirova
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Vladimir Nosi
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - José Pedro Loureiro
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Aurelia Morabito
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano 20156, Italy
| | - Corinne De Gregorio
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Michael Pfeffer
- Department of Chemistry, University of Basel, Basel 4056, Switzerland
| | - Verena Schaefer
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Gennaro Prota
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Alfred Zippelius
- Cancer Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Jörg Stelling
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, Basel 4058, Switzerland
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, Basel 4056, Switzerland
| | - Laura Brunelli
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano 20156, Italy
| | - Peter Villalta
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Marco Lepore
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Enrico Davoli
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano 20156, Italy
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lucia Mori
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Gennaro De Libero
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| |
Collapse
|
4
|
Cornel AM, van der Sman L, van Dinter JT, Arrabito M, Dunnebach E, van Hoesel M, Kluiver TA, Lopes AP, Dautzenberg NMM, Dekker L, van Rijn JM, van den Beemt DAMH, Buhl JL, du Chatinier A, Barneh F, Lu Y, Lo Nigro L, Krippner-Heidenreich A, Sebestyén Z, Kuball J, Hulleman E, Drost J, van Heesch S, Heidenreich OT, Peng WC, Nierkens S. Targeting pediatric cancers via T-cell recognition of the monomorphic MHC class I-related protein MR1. J Immunother Cancer 2024; 12:e007538. [PMID: 38519054 PMCID: PMC10961533 DOI: 10.1136/jitc-2023-007538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 03/24/2024] Open
Abstract
Human leukocyte antigen (HLA) restriction of conventional T-cell targeting introduces complexity in generating T-cell therapy strategies for patients with cancer with diverse HLA-backgrounds. A subpopulation of atypical, major histocompatibility complex-I related protein 1 (MR1)-restricted T-cells, distinctive from mucosal-associated invariant T-cells (MAITs), was recently identified recognizing currently unidentified MR1-presented cancer-specific metabolites. It is hypothesized that the MC.7.G5 MR1T-clone has potential as a pan-cancer, pan-population T-cell immunotherapy approach. These cells are irresponsive to healthy tissue while conferring T-cell receptor(TCR) dependent, HLA-independent cytotoxicity to a wide range of adult cancers. Studies so far are limited to adult malignancies. Here, we investigated the potential of MR1-targeting cellular therapy strategies in pediatric cancer. Bulk RNA sequencing data of primary pediatric tumors were analyzed to assess MR1 expression. In vitro pediatric tumor models were subsequently screened to evaluate their susceptibility to engineered MC.7.G5 TCR-expressing T-cells. Targeting capacity was correlated with qPCR-based MR1 mRNA and protein overexpression. RNA expression of MR1 in primary pediatric tumors varied widely within and between tumor entities. Notably, embryonal tumors exhibited significantly lower MR1 expression than other pediatric tumors. In line with this, most screened embryonal tumors displayed resistance to MR1T-targeting in vitro MR1T susceptibility was observed particularly in pediatric leukemia and diffuse midline glioma models. This study demonstrates potential of MC.7.G5 MR1T-cell immunotherapy in pediatric leukemias and diffuse midline glioma, while activity against embryonal tumors was limited. The dismal prognosis associated with relapsed/refractory leukemias and high-grade brain tumors highlights the promise to improve survival rates of children with these cancers.
Collapse
Affiliation(s)
- Annelisa M Cornel
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Loutje van der Sman
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Jip T van Dinter
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Marta Arrabito
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
- Center of Pediatric Hematology & Oncology, University of Catania, Catania, Italy
| | - Ester Dunnebach
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | | | - Thomas A Kluiver
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
| | - Ana P Lopes
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
| | | | - Linde Dekker
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Jorik M van Rijn
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | | | - Juliane L Buhl
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Aimee du Chatinier
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Farnaz Barneh
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Yuyan Lu
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Luca Lo Nigro
- Center of Pediatric Hematology & Oncology, University of Catania, Catania, Italy
| | | | - Zsolt Sebestyén
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
| | - Jurgen Kuball
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
- Department of Hematology, UMC Utrecht, Utrecht, The Netherlands
| | - Esther Hulleman
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Jarno Drost
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | | | - Olaf T Heidenreich
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Weng Chuan Peng
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Stefan Nierkens
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| |
Collapse
|
5
|
McWilliam HEG, Villadangos JA. MR1 antigen presentation to MAIT cells and other MR1-restricted T cells. Nat Rev Immunol 2024; 24:178-192. [PMID: 37773272 PMCID: PMC11108705 DOI: 10.1038/s41577-023-00934-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2023] [Indexed: 10/01/2023]
Abstract
MHC antigen presentation plays a fundamental role in adaptive and semi-invariant T cell immunity. Distinct MHC molecules bind antigens that differ in chemical structure, origin and location and present them to specialized T cells. MHC class I-related protein 1 (MR1) presents a range of small molecule antigens to MR1-restricted T (MR1T) lymphocytes. The best studied MR1 ligands are derived from microbial metabolism and are recognized by a major class of MR1T cells known as mucosal-associated invariant T (MAIT) cells. Here, we describe the MR1 antigen presentation pathway: the known types of antigens presented by MR1, the location where MR1-antigen complexes form, the route followed by the complexes to the cell surface, the mechanisms involved in termination of MR1 antigen presentation and the accessory cellular proteins that comprise the MR1 antigen presentation machinery. The current road map of the MR1 antigen presentation pathway reveals potential strategies for therapeutic manipulation of MR1T cell function and provides a foundation for further studies that will lead to a deeper understanding of MR1-mediated immunity.
Collapse
Affiliation(s)
- Hamish E G McWilliam
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia.
| | - Jose A Villadangos
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
6
|
Bubenikova J, Plasil M, Futas J, Stejskalova K, Klumplerova M, Oppelt J, Suchentrunk F, Burger PA, Horin P. Diversity of major histocompatibility complex (MHC) and natural killer cell receptor (NKR) genes and their interactions in domestic horses. HLA 2024; 103:e15387. [PMID: 38358031 DOI: 10.1111/tan.15387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/03/2024] [Accepted: 01/28/2024] [Indexed: 02/16/2024]
Abstract
The immunogenome is the part of the genome that underlies immune mechanisms and evolves under various selective pressures. Two complex regions of the immunogenome, major histocompatibility complex (MHC) and natural killer cell receptor (NKR) genes, play an important role in the response to selective pressures of pathogens. Their importance is expressed by their genetic polymorphism at the molecular level, and their diversity associated with different types of diseases at the population level. Findings of associations between specific combinations of MHC/NKR haplotypes with different diseases in model species suggest that these gene complexes did not evolve independently. No such associations have been described in horses so far. The aim of the study was to detect associations between MHC and NKR gene/microsatellite haplotypes in three horse breed groups (Camargue, African, and Romanian) by statistical methods; chi-square test, Fisher's exact test, Pearson's goodness-of-fit test and logistic regression. Associations were detected for both MHC/NKR genes and microsatellites; the most significant associations were found between the most variable KLRA3 gene and the EQCA-1 or EQCA-2 genes. This finding supports the assumption that the KLRA3 is an important receptor for MHC I and that interactions of these molecules play important roles in the horse immunity and reproduction. Despite some limitations of the study such as low numbers of horses or lack of knowledge of the selected genes functions, the results were consistent across different statistical methods and remained significant even after overconservative Bonferroni corrections. We therefore consider them biologically plausible.
Collapse
Affiliation(s)
- Jana Bubenikova
- Research Group Animal Immunogenomics, CEITEC VETUNI, University of Veterinary Sciences Brno, Brno, Czechia
| | - Martin Plasil
- Research Group Animal Immunogenomics, CEITEC VETUNI, University of Veterinary Sciences Brno, Brno, Czechia
| | - Jan Futas
- Research Group Animal Immunogenomics, CEITEC VETUNI, University of Veterinary Sciences Brno, Brno, Czechia
| | - Karla Stejskalova
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czechia
| | - Marie Klumplerova
- Research Group Animal Immunogenomics, CEITEC VETUNI, University of Veterinary Sciences Brno, Brno, Czechia
| | - Jan Oppelt
- Research Group Animal Immunogenomics, CEITEC VETUNI, University of Veterinary Sciences Brno, Brno, Czechia
| | - Franz Suchentrunk
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Pamela A Burger
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Petr Horin
- Research Group Animal Immunogenomics, CEITEC VETUNI, University of Veterinary Sciences Brno, Brno, Czechia
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czechia
| |
Collapse
|
7
|
Hackstein CP, Klenerman P. MAITs and their mates: "Innate-like" behaviors in conventional and unconventional T cells. Clin Exp Immunol 2023; 213:1-9. [PMID: 37256718 PMCID: PMC10324555 DOI: 10.1093/cei/uxad058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/01/2023] [Accepted: 05/30/2023] [Indexed: 06/02/2023] Open
Abstract
Most CD4 and CD8 T cells are restricted by conventional major histocompatibility complex (MHC) molecules and mount TCR-dependent adaptive immune responses. In contrast, MAIT, iNKT, and certain γδ TCR bearing cells are characterized by their abilities to recognize antigens presented by unconventional antigen-presenting molecules and to mount cytokine-mediated TCR-independent responses in an "innate-like" manner. In addition, several more diverse T-cell subsets have been described that in a similar manner are restricted by unconventional antigen-presenting molecules but mainly depend on their TCRs for activation. Vice versa, innate-like behaviour was reported in defined subpopulations of conventional T cells, particularly in barrier sites, showing that these two features are not necessarily linked. The abilities to recognize antigens presented by unconventional antigen-presenting molecules or to mount TCR-independent responses creates unique niches for these T cells and is linked to wide range of functional capabilities. This is especially exemplified by unconventional and innate-like T cells present at barrier sites where they are involved in pathogen defense, tissue homeostasis as well as in pathologic processes.
Collapse
Affiliation(s)
- Carl-Philipp Hackstein
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Shah S, Al-Omari A, Cook KW, Paston SJ, Durrant LG, Brentville VA. What do cancer-specific T cells 'see'? DISCOVERY IMMUNOLOGY 2022; 2:kyac011. [PMID: 38567060 PMCID: PMC10917189 DOI: 10.1093/discim/kyac011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/18/2022] [Accepted: 12/02/2022] [Indexed: 04/04/2024]
Abstract
Complex cellular interactions between the immune system and cancer can impact tumour development, growth, and progression. T cells play a key role in these interactions; however, the challenge for T cells is to recognize tumour antigens whilst minimizing cross-reactivity with antigens associated with healthy tissue. Some tumour cells, including those associated with viral infections, have clear, tumour-specific antigens that can be targeted by T cells. A high mutational burden can lead to increased numbers of mutational neoantigens that allow very specific immune responses to be generated but also allow escape variants to develop. Other cancer indications and those with low mutational burden are less easily distinguished from normal tissue. Recent studies have suggested that cancer-associated alterations in tumour cell biology including changes in post-translational modification (PTM) patterns may also lead to novel antigens that can be directly recognized by T cells. The PTM-derived antigens provide tumour-specific T-cell responses that both escape central tolerance and avoid the necessity for individualized therapies. PTM-specific CD4 T-cell responses have shown tumour therapy in murine models and highlight the importance of CD4 T cells as well as CD8 T cells in reversing the immunosuppressive tumour microenvironment. Understanding which cancer-specific antigens can be recognized by T cells and the way that immune tolerance and the tumour microenvironment shape immune responses to cancer is vital for the future development of cancer therapies.
Collapse
Affiliation(s)
- Sabaria Shah
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Abdullah Al-Omari
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Katherine W Cook
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Samantha J Paston
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Lindy G Durrant
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Victoria A Brentville
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| |
Collapse
|
9
|
Wang D, Gu W, Chen W, Zhou J, Yu L, Kook Kim B, Zhang X, Seung Kim J. Advanced nanovaccines based on engineering nanomaterials for accurately enhanced cancer immunotherapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Dogan M, Karhan E, Kozhaya L, Placek L, Chen X, Yigit M, Unutmaz D. Engineering Human MAIT Cells with Chimeric Antigen Receptors for Cancer Immunotherapy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1523-1531. [PMID: 36165183 DOI: 10.4049/jimmunol.2100856] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 08/08/2022] [Indexed: 12/12/2022]
Abstract
Engineering immune cells with chimeric Ag receptors (CARs) is a promising technology in cancer immunotherapy. Besides classical cytotoxic CD8+ T cells, innate cell types such as NK cells have also been used to generate CAR-T or CAR-NK cells. In this study, we devised an approach to program a nonclassical cytotoxic T cell subset called mucosal-associated invariant T (MAIT) cells into effective CAR-T cells against B cell lymphoma and breast cancer cells. Accordingly, we expressed anti-CD19 and anti-Her2 CARs in activated primary human MAIT cells and CD8+ T cells, expanded them in vitro, and compared their cytotoxicity against tumor cell targets. We show upon activation through CARs that CAR-MAIT cells exhibit high levels of cytotoxicity toward target cells, comparable to CD8+ CAR-T cells, but interestingly expressed lower levels of IFN-γ than conventional CAR CD8+ T cells. Additionally, in the presence of vitamin B2 metabolite 5-ARU (5-amino-4-d-ribitylaminouracil dihydrochloride), which is a conserved compound that activates MAIT cells through MHC class I-related (MR1) protein, MAIT cells killed MR1-expressing target breast cancer and B cell lymphoma cell lines in a dose-dependent manner. Thus, MAIT cells can be genetically edited as CAR-T cells or mobilized and expanded by MR1 ligands as an off-the-shelf novel approach to cell-based cancer immunotherapy strategies while being comparable to conventional methods in effectivity.
Collapse
Affiliation(s)
- Mikail Dogan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT; and
| | - Ece Karhan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT; and
| | - Lina Kozhaya
- The Jackson Laboratory for Genomic Medicine, Farmington, CT; and
| | - Lindsey Placek
- The Jackson Laboratory for Genomic Medicine, Farmington, CT; and
| | - Xin Chen
- The Jackson Laboratory for Genomic Medicine, Farmington, CT; and
| | - Mesut Yigit
- The Jackson Laboratory for Genomic Medicine, Farmington, CT; and
| | - Derya Unutmaz
- The Jackson Laboratory for Genomic Medicine, Farmington, CT; and .,Department of Immunology, University of Connecticut School of Medicine, Farmington, CT
| |
Collapse
|
11
|
Aramini B, Masciale V, Samarelli AV, Dubini A, Gaudio M, Stella F, Morandi U, Dominici M, De Biasi S, Gibellini L, Cossarizza A. Phenotypic, functional, and metabolic heterogeneity of immune cells infiltrating non–small cell lung cancer. Front Immunol 2022; 13:959114. [PMID: 36032082 PMCID: PMC9399732 DOI: 10.3389/fimmu.2022.959114] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/18/2022] [Indexed: 12/29/2022] Open
Abstract
Lung cancer is the leading cancer in the world, accounting for 1.2 million of new cases annually, being responsible for 17.8% of all cancer deaths. In particular, non–small cell lung cancer (NSCLC) is involved in approximately 85% of all lung cancers with a high lethality probably due to the asymptomatic evolution, leading patients to be diagnosed when the tumor has already spread to other organs. Despite the introduction of new therapies, which have improved the long-term survival of these patients, this disease is still not well cured and under controlled. Over the past two decades, single-cell technologies allowed to deeply profile both the phenotypic and metabolic aspects of the immune cells infiltrating the TME, thus fostering the identification of predictive biomarkers of prognosis and supporting the development of new therapeutic strategies. In this review, we discuss phenotypic and functional characteristics of the main subsets of tumor-infiltrating lymphocytes (TILs) and tumor-infiltrating myeloid cells (TIMs) that contribute to promote or suppress NSCLC development and progression. We also address two emerging aspects of TIL and TIM biology, i.e., their metabolism, which affects their effector functions, proliferation, and differentiation, and their capacity to interact with cancer stem cells.
Collapse
Affiliation(s)
- Beatrice Aramini
- Division of Thoracic Surgery, Department of Experimental, Diagnostic and Specialty Medicine—DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni—L. Pierantoni Hospital, Forlì, Italy
| | - Valentina Masciale
- Division of Oncology and Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Anna Valeria Samarelli
- Division of Oncology and Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Dubini
- Division of Pathology, G.B. Morgagni—L. Pierantoni Hospital, Forlì, Italy
| | - Michele Gaudio
- Division of Pathology, G.B. Morgagni—L. Pierantoni Hospital, Forlì, Italy
| | - Franco Stella
- Division of Thoracic Surgery, Department of Experimental, Diagnostic and Specialty Medicine—DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni—L. Pierantoni Hospital, Forlì, Italy
| | - Uliano Morandi
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Dominici
- Division of Oncology and Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
- National Institute for Cardiovascular Research, Bologna, Italy
- *Correspondence: Andrea Cossarizza,
| |
Collapse
|
12
|
Engineering-Induced Pluripotent Stem Cells for Cancer Immunotherapy. Cancers (Basel) 2022; 14:cancers14092266. [PMID: 35565395 PMCID: PMC9100203 DOI: 10.3390/cancers14092266] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/23/2022] [Accepted: 04/29/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Induced pluripotent stem cells (iPSCs) that can be genetically engineered and differentiated into different types of immune cells, providing an unlimited resource for developing off-the-shelf cell therapies. Here, we present a comprehensive review that describes the current stages of iPSC-based cell therapies, including iPSC-derived T, nature killer (NK), invariant natural killer T (iNKT), gamma delta T (γδ T), mucosal-associated invariant T (MAIT) cells, and macrophages (Mφs). Abstract Cell-based immunotherapy, such as chimeric antigen receptor (CAR) T cell therapy, has revolutionized the treatment of hematological malignancies, especially in patients who are refractory to other therapies. However, there are critical obstacles that hinder the widespread clinical applications of current autologous therapies, such as high cost, challenging large-scale manufacturing, and inaccessibility to the therapy for lymphopenia patients. Therefore, it is in great demand to generate the universal off-the-shelf cell products with significant scalability. Human induced pluripotent stem cells (iPSCs) provide an “unlimited supply” for cell therapy because of their unique self-renewal properties and the capacity to be genetically engineered. iPSCs can be differentiated into different immune cells, such as T cells, natural killer (NK) cells, invariant natural killer T (iNKT) cells, gamma delta T (γδ T), mucosal-associated invariant T (MAIT) cells, and macrophages (Mφs). In this review, we describe iPSC-based allogeneic cell therapy, the different culture methods of generating iPSC-derived immune cells (e.g., iPSC-T, iPSC-NK, iPSC-iNKT, iPSC-γδT, iPSC-MAIT and iPSC-Mφ), as well as the recent advances in iPSC-T and iPSC-NK cell therapies, particularly in combinations with CAR-engineering. We also discuss the current challenges and the future perspectives in this field towards the foreseeable applications of iPSC-based immune therapy.
Collapse
|
13
|
Kulicke CA, De Zan E, Hein Z, Gonzalez-Lopez C, Ghanwat S, Veerapen N, Besra GS, Klenerman P, Christianson JC, Springer S, Nijman SM, Cerundolo V, Salio M. The P5-type ATPase ATP13A1 modulates major histocompatibility complex I-related protein 1 (MR1)-mediated antigen presentation. J Biol Chem 2022; 298:101542. [PMID: 34968463 PMCID: PMC8808182 DOI: 10.1016/j.jbc.2021.101542] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 11/08/2022] Open
Abstract
The monomorphic antigen-presenting molecule major histocompatibility complex-I-related protein 1 (MR1) presents small-molecule metabolites to mucosal-associated invariant T (MAIT) cells. The MR1-MAIT cell axis has been implicated in a variety of infectious and noncommunicable diseases, and recent studies have begun to develop an understanding of the molecular mechanisms underlying this specialized antigen presentation pathway. However, proteins regulating MR1 folding, loading, stability, and surface expression remain to be identified. Here, we performed a gene trap screen to discover novel modulators of MR1 surface expression through insertional mutagenesis of an MR1-overexpressing clone derived from the near-haploid human cell line HAP1 (HAP1.MR1). The most significant positive regulators identified included β2-microglobulin, a known regulator of MR1 surface expression, and ATP13A1, a P5-type ATPase in the endoplasmic reticulum (ER) not previously known to be associated with MR1-mediated antigen presentation. CRISPR/Cas9-mediated knockout of ATP13A1 in both HAP1.MR1 and THP-1 cell lines revealed a profound reduction in MR1 protein levels and a concomitant functional defect specific to MR1-mediated antigen presentation. Collectively, these data are consistent with the ER-resident ATP13A1 being a key posttranscriptional determinant of MR1 surface expression.
Collapse
Affiliation(s)
- Corinna A Kulicke
- MRC Human Immunology Unit, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.
| | - Erica De Zan
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research Ltd and Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Zeynep Hein
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany
| | - Claudia Gonzalez-Lopez
- MRC Human Immunology Unit, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Swapnil Ghanwat
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany
| | - Natacha Veerapen
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Paul Klenerman
- Peter Medawar Building, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom; Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - John C Christianson
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom
| | - Sebastian Springer
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany
| | - Sebastian M Nijman
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research Ltd and Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Mariolina Salio
- MRC Human Immunology Unit, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
14
|
Mak JYW, Liu L, Fairlie DP. Chemical Modulators of Mucosal Associated Invariant T Cells. Acc Chem Res 2021; 54:3462-3475. [PMID: 34415738 DOI: 10.1021/acs.accounts.1c00359] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Over the past decade, we have contributed to the chemistry of microbial natural products and synthetic ligands, related to riboflavin and uracils, that modulate immune cells called mucosal associated invariant T cells (MAIT cells). These highly abundant T lymphocytes were only discovered in 2003 and have become recognized for their importance in mammalian immunology. Unlike other T cells, MAIT cells are not activated by peptide or lipid antigens. In collaboration with immunology and structural biology research groups, we discovered that they are instead activated by unstable nitrogen-containing heterocycles synthesized by bacteria. The most potent naturally occurring activating compound (antigen) is 5-(2-oxopropylideneamino)-d-ribitylaminouracil (5-OP-RU). This compound is an imine (Schiff base) formed through condensation between an intermediate in the biosynthesis of riboflavin (vitamin B2) and a metabolic byproduct of mammalian and microbial glycolysis. Although it is very unstable in water due to intramolecular ring closure or hydrolysis, we were able to develop a non-enzymatic synthesis that yields a pure kinetically stable compound in a nonaqueous solvent. This compound has revolutionized the study of MAIT cell immunology due to its potent activation (EC50 = 2 pM) of MAIT cells and its development into immunological reagents for detecting and characterizing MAIT cells in tissues. MAIT cells are now linked to key physiological processes and disease, including antibacterial defense, tissue repair, regulation of graft-vs-host disease, gastritis, inflammatory bowel diseases, and cancer. 5-OP-RU activates MAIT cells and, like a vaccine, has been shown to protect mice from bacterial infections and cancers. Mechanistic studies on the binding of 5-OP-RU to its dual protein targets, the major histocompatibility complex class I related protein (MR1) and the MAIT cell receptor (MAIT TCR), have involved synthetic chemistry, 2D 1H NMR spectroscopy, mass spectrometry, computer modeling and molecular dynamics simulations, biochemical, cellular, and immunological assays, and protein structural biology. These combined studies have revealed structural influences for 5-OP-RU in solution on protein binding and antigen presentation and potency; informed the development of potent (EC50 = 2 nM) and water stable analogues; led to fluorescent analogues for detecting and tracking binding proteins in and on cells; and enabled discovery of drugs and drug-like molecules that bind MR1 and modulate MAIT cell function. MAIT cells offer new opportunities for chemical synthesis to enhance the stability, potency, selectivity, and bioavailability of small molecule ligands for MR1 or MAIT TCR proteins, and to contribute to the understanding of T cell immunity and the development of prospective new immunomodulating medicines.
Collapse
Affiliation(s)
- Jeffrey Y. W. Mak
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of QueenslandBrisbane, Queensland 4072, Australia
| | - Ligong Liu
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of QueenslandBrisbane, Queensland 4072, Australia
| | - David P. Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of QueenslandBrisbane, Queensland 4072, Australia
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of QueenslandBrisbane, Queensland 4072, Australia
| |
Collapse
|
15
|
de Sousa E, Lérias JR, Beltran A, Paraschoudi G, Condeço C, Kamiki J, António PA, Figueiredo N, Carvalho C, Castillo-Martin M, Wang Z, Ligeiro D, Rao M, Maeurer M. Targeting Neoepitopes to Treat Solid Malignancies: Immunosurgery. Front Immunol 2021; 12:592031. [PMID: 34335558 PMCID: PMC8320363 DOI: 10.3389/fimmu.2021.592031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 05/07/2021] [Indexed: 12/26/2022] Open
Abstract
Successful outcome of immune checkpoint blockade in patients with solid cancers is in part associated with a high tumor mutational burden (TMB) and the recognition of private neoantigens by T-cells. The quality and quantity of target recognition is determined by the repertoire of ‘neoepitope’-specific T-cell receptors (TCRs) in tumor-infiltrating lymphocytes (TIL), or peripheral T-cells. Interferon gamma (IFN-γ), produced by T-cells and other immune cells, is essential for controlling proliferation of transformed cells, induction of apoptosis and enhancing human leukocyte antigen (HLA) expression, thereby increasing immunogenicity of cancer cells. TCR αβ-dependent therapies should account for tumor heterogeneity and availability of the TCR repertoire capable of reacting to neoepitopes and functional HLA pathways. Immunogenic epitopes in the tumor-stroma may also be targeted to achieve tumor-containment by changing the immune-contexture in the tumor microenvironment (TME). Non protein-coding regions of the tumor-cell genome may also contain many aberrantly expressed, non-mutated tumor-associated antigens (TAAs) capable of eliciting productive anti-tumor immune responses. Whole-exome sequencing (WES) and/or RNA sequencing (RNA-Seq) of cancer tissue, combined with several layers of bioinformatic analysis is commonly used to predict possible neoepitopes present in clinical samples. At the ImmunoSurgery Unit of the Champalimaud Centre for the Unknown (CCU), a pipeline combining several tools is used for predicting private mutations from WES and RNA-Seq data followed by the construction of synthetic peptides tailored for immunological response assessment reflecting the patient’s tumor mutations, guided by MHC typing. Subsequent immunoassays allow the detection of differential IFN-γ production patterns associated with (intra-tumoral) spatiotemporal differences in TIL or peripheral T-cells versus TIL. These bioinformatics tools, in addition to histopathological assessment, immunological readouts from functional bioassays and deep T-cell ‘adaptome’ analyses, are expected to advance discovery and development of next-generation personalized precision medicine strategies to improve clinical outcomes in cancer in the context of i) anti-tumor vaccination strategies, ii) gauging mutation-reactive T-cell responses in biological therapies and iii) expansion of tumor-reactive T-cells for the cellular treatment of patients with cancer.
Collapse
Affiliation(s)
- Eric de Sousa
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Joana R Lérias
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Antonio Beltran
- Department of Pathology, Champalimaud Clinical Centre, Lisbon, Portugal
| | | | - Carolina Condeço
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Jéssica Kamiki
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | | - Nuno Figueiredo
- Digestive Unit, Champalimaud Clinical Centre, Lisbon, Portugal
| | - Carlos Carvalho
- Digestive Unit, Champalimaud Clinical Centre, Lisbon, Portugal
| | | | - Zhe Wang
- Jiangsu Industrial Technology Research Institute (JITRI), Applied Adaptome Immunology Institute, Nanjing, China
| | - Dário Ligeiro
- Lisbon Centre for Blood and Transplantation, Instituto Português do Sangue e Transplantação (IPST), Lisbon, Portugal
| | - Martin Rao
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Markus Maeurer
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal.,I Medical Clinic, Johannes Gutenberg University of Mainz, Mainz, Germany
| |
Collapse
|
16
|
Immunophenotypic characterization of TCR γδ T cells and MAIT cells in HIV-infected individuals developing Hodgkin's lymphoma. Infect Agent Cancer 2021; 16:24. [PMID: 33865435 PMCID: PMC8052713 DOI: 10.1186/s13027-021-00365-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Background Despite successful combined antiretroviral therapy (cART), the risk of non-AIDS defining cancers (NADCs) remains higher for HIV-infected individuals than the general population. The reason for this increase is highly disputed. Here, we hypothesized that T-cell receptor (TCR) γδ cells and/or mucosal-associated invariant T (MAIT) cells might be associated with the increased risk of NADCs. γδ T cells and MAIT cells both serve as a link between the adaptive and the innate immune system, and also to exert direct anti-viral and anti-tumor activity. Methods We performed a longitudinal phenotypic characterization of TCR γδ cells and MAIT cells in HIV-infected individuals developing Hodgkin’s lymphoma (HL), the most common type of NADCs. Cryopreserved PBMCs of HIV-infected individuals developing HL, matched HIV-infected controls without (w/o) HL and healthy controls were used for immunophenotyping by polychromatic flow cytometry, including markers for activation, exhaustion and chemokine receptors. Results We identified significant differences in the CD4+ T cell count between HIV-infected individuals developing HL and HIV-infected matched controls within 1 year before cancer diagnosis. We observed substantial differences in the cellular phenotype mainly between healthy controls and HIV infection irrespective of HL. A number of markers tended to be different in Vδ1 and MAIT cells in HIV+HL+ patients vs. HIV+ w/o HL patients; notably, we observed significant differences for the expression of CCR5, CCR6 and CD16 between these two groups of HIV+ patients. Conclusion TCR Vδ1 and MAIT cells in HIV-infected individuals developing HL show subtle phenotypical differences as compared to the ones in HIV-infected controls, which may go along with functional impairment and thereby may be less efficient in detecting and eliminating malignant cells. Further, our results support the potential of longitudinal CD4+ T cell count analysis for the identification of patients at higher risk to develop HL. Supplementary Information The online version contains supplementary material available at 10.1186/s13027-021-00365-4.
Collapse
|
17
|
Drashansky TT, Helm EY, Curkovic N, Cooper J, Cheng P, Chen X, Gautam N, Meng L, Kwiatkowski AJ, Collins WO, Keselowsky BG, Sant'Angelo D, Huo Z, Zhang W, Zhou L, Avram D. BCL11B is positioned upstream of PLZF and RORγt to control thymic development of mucosal-associated invariant T cells and MAIT17 program. iScience 2021; 24:102307. [PMID: 33870128 PMCID: PMC8042176 DOI: 10.1016/j.isci.2021.102307] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/02/2020] [Accepted: 03/10/2021] [Indexed: 12/25/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells recognize microbial riboflavin metabolites presented by MR1 and play role in immune responses to microbial infections and tumors. We report here that absence of the transcription factor (TF) Bcl11b in mice alters predominantly MAIT17 cells in the thymus and further in the lung, both at steady state and following Salmonella infection. Transcriptomics and ChIP-seq analyses show direct control of TCR signaling program and position BCL11B upstream of essential TFs of MAIT17 program, including RORγt, ZBTB16 (PLZF), and MAF. BCL11B binding at key MAIT17 and at TCR signaling program genes in human MAIT cells occurred mostly in regions enriched for H3K27Ac. Unexpectedly, in human MAIT cells, BCL11B also bound at MAIT1 program genes, at putative active enhancers, although this program was not affected in mouse MAIT cells in the absence of Bcl11b. These studies endorse BCL11B as an essential TF for MAIT cells both in mice and humans. BCL11B controls MAIT cell development in mice, predominantly MAIT17 lineage BCL11B sustains MAIT17 and TCR signaling programs at steady state and in infection BCL11B binds at MAIT17 and TCR program genes in human MAIT cells Many BCL11B binding sites at MAIT17 and TCR genes are at putative active enhancers
Collapse
Affiliation(s)
- Theodore T Drashansky
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Eric Y Helm
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Nina Curkovic
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jaimee Cooper
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Pingyan Cheng
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr, Tampa, FL 33612, USA
| | - Xianghong Chen
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr, Tampa, FL 33612, USA
| | - Namrata Gautam
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr, Tampa, FL 33612, USA
| | - Lingsong Meng
- Department of Biostatistics, College of Medicine, College of Public Health & Health Professions, University of Florida, Gainesville, FL 32611, USA
| | - Alexander J Kwiatkowski
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - William O Collins
- Department of Otolaryngology, College of Medicine, University of Florida, Gainesville, FL 32605, USA
| | - Benjamin G Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Derek Sant'Angelo
- Department of Pediatrics, The Child Health Institute of NJ, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - Zhiguang Huo
- Department of Biostatistics, College of Medicine, College of Public Health & Health Professions, University of Florida, Gainesville, FL 32611, USA
| | - Weizhou Zhang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,UF Health Cancer Center, Gainesville, FL 32610, USA
| | - Liang Zhou
- UF Health Cancer Center, Gainesville, FL 32610, USA.,Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Dorina Avram
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr, Tampa, FL 33612, USA.,UF Health Cancer Center, Gainesville, FL 32610, USA
| |
Collapse
|
18
|
Parrot T, Healy K, Boulouis C, Sobkowiak MJ, Leeansyah E, Aleman S, Bertoletti A, Sällberg Chen M, Sandberg JK. Expansion of donor-unrestricted MAIT cells with enhanced cytolytic function suitable for TCR redirection. JCI Insight 2021; 6:140074. [PMID: 33561009 PMCID: PMC8021122 DOI: 10.1172/jci.insight.140074] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Progress in our understanding of MR1-restricted mucosa-associated invariant T (MAIT) cells has raised interest in harnessing these cells for immunotherapy. The innate-like response characteristics, abundance in the blood, donor-unrestricted nature, and tropism for tissues make MAIT cells suitable candidates for adoptive cell transfer therapies. However, reliable methods and tools to utilize MAIT cells in such approaches are lacking. Here, we established methodology for efficient expansion of human MAIT cells in culture with high purity and yield, while preserving their functional response toward their natural ligand and increasing their cytotoxic potential. The cultured MAIT cells retained their effector memory characteristics without signs of terminal differentiation and expressed a more diverse set of chemokine receptors, potentially widening their already broad tissue tropism. To investigate the potential of MAIT cells in a context outside their main role in controlling bacterial infection, we engineered cultured MAIT cells with a new TCR specificity to mediate effective antiviral HLA class I–restricted effector function. In summary, we developed robust and effective methodology for the expansion of human MAIT cells with enhanced cytolytic capacity and for their engineering with a new specificity. These findings form a basis for the development of MAIT cells as a platform for adoptive immunotherapy.
Collapse
Affiliation(s)
| | - Katie Healy
- Division of Clinical Diagnostics and Surgery, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Michał J Sobkowiak
- Division of Clinical Diagnostics and Surgery, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Edwin Leeansyah
- Center for Infection Medicine, Department of Medicine, and.,Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China.,Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore
| | - Soo Aleman
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Antonio Bertoletti
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore
| | - Margaret Sällberg Chen
- Division of Clinical Diagnostics and Surgery, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
19
|
Titov A, Zmievskaya E, Ganeeva I, Valiullina A, Petukhov A, Rakhmatullina A, Miftakhova R, Fainshtein M, Rizvanov A, Bulatov E. Adoptive Immunotherapy beyond CAR T-Cells. Cancers (Basel) 2021; 13:743. [PMID: 33670139 PMCID: PMC7916861 DOI: 10.3390/cancers13040743] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Adoptive cell immunotherapy (ACT) is a vibrant field of cancer treatment that began progressive development in the 1980s. One of the most prominent and promising examples is chimeric antigen receptor (CAR) T-cell immunotherapy for the treatment of B-cell hematologic malignancies. Despite success in the treatment of B-cell lymphomas and leukemia, CAR T-cell therapy remains mostly ineffective for solid tumors. This is due to several reasons, such as the heterogeneity of the cellular composition in solid tumors, the need for directed migration and penetration of CAR T-cells against the pressure gradient in the tumor stroma, and the immunosuppressive microenvironment. To substantially improve the clinical efficacy of ACT against solid tumors, researchers might need to look closer into recent developments in the other branches of adoptive immunotherapy, both traditional and innovative. In this review, we describe the variety of adoptive cell therapies beyond CAR T-cell technology, i.e., exploitation of alternative cell sources with a high therapeutic potential against solid tumors (e.g., CAR M-cells) or aiming to be universal allogeneic (e.g., CAR NK-cells, γδ T-cells), tumor-infiltrating lymphocytes (TILs), and transgenic T-cell receptor (TCR) T-cell immunotherapies. In addition, we discuss the strategies for selection and validation of neoantigens to achieve efficiency and safety. We provide an overview of non-conventional TCRs and CARs, and address the problem of mispairing between the cognate and transgenic TCRs. Finally, we summarize existing and emerging approaches for manufacturing of the therapeutic cell products in traditional, semi-automated and fully automated Point-of-Care (PoC) systems.
Collapse
Affiliation(s)
- Aleksei Titov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.T.); (E.Z.); (I.G.); (A.V.); (A.R.); (R.M.); (A.R.)
- Laboratory of Transplantation Immunology, National Hematology Research Centre, 125167 Moscow, Russia
| | - Ekaterina Zmievskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.T.); (E.Z.); (I.G.); (A.V.); (A.R.); (R.M.); (A.R.)
| | - Irina Ganeeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.T.); (E.Z.); (I.G.); (A.V.); (A.R.); (R.M.); (A.R.)
| | - Aygul Valiullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.T.); (E.Z.); (I.G.); (A.V.); (A.R.); (R.M.); (A.R.)
| | - Alexey Petukhov
- Institute of Hematology, Almazov National Medical Research Center, 197341 Saint Petersburg, Russia;
| | - Aygul Rakhmatullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.T.); (E.Z.); (I.G.); (A.V.); (A.R.); (R.M.); (A.R.)
| | - Regina Miftakhova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.T.); (E.Z.); (I.G.); (A.V.); (A.R.); (R.M.); (A.R.)
| | | | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.T.); (E.Z.); (I.G.); (A.V.); (A.R.); (R.M.); (A.R.)
| | - Emil Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.T.); (E.Z.); (I.G.); (A.V.); (A.R.); (R.M.); (A.R.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
20
|
Theresine M, Patil ND, Zimmer J. Airway Natural Killer Cells and Bacteria in Health and Disease. Front Immunol 2020; 11:585048. [PMID: 33101315 PMCID: PMC7546320 DOI: 10.3389/fimmu.2020.585048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells are innate lymphoid cells at the interface between innate and adaptive immunity and mostly studied for their important roles in viral infections and malignant tumors. They can kill diseased cells and produce cytokines and chemokines, thereby shaping the adaptive immune response. Nowadays, NK cells are considered as a strong weapon for cancer immunotherapy and can for example be transduced to express tumor-specific chimeric antigen receptors or harnessed with therapeutic antibodies such as the so-called NK engagers. Whereas a large body of literature exists about the antiviral and antitumoral properties of NK cells, their potential role in bacterial infections is not that well delineated. Furthermore, NK cells are much more heterogeneous than previously thought and have tissue-characteristic features and phenotypes. This review gives an overview of airway NK cells and their position within the immunological army dressed against bacterial infections in the upper and predominantly the lower respiratory tracts. Whereas it appears that in several infections, NK cells play a non-redundant and protective role, they can likewise act as rather detrimental. The use of mouse models and the difficulty of access to human airway tissues for ethical reasons might partly explain the divergent results. However, new methods are appearing that are likely to reduce the heterogeneity between studies and to give a more coherent picture in this field.
Collapse
Affiliation(s)
- Maud Theresine
- CG I Group, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Neha D Patil
- CG I Group, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Jacques Zimmer
- CG I Group, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
21
|
MR1-Restricted T Cells in Cancer Immunotherapy. Cancers (Basel) 2020; 12:cancers12082145. [PMID: 32756356 PMCID: PMC7464881 DOI: 10.3390/cancers12082145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/20/2020] [Accepted: 07/29/2020] [Indexed: 01/09/2023] Open
Abstract
Major histocompatibility complex class I-related (MR1) was first identified as a cell membrane protein involved in the development and expansion of a unique set of T cells expressing an invariant T-cell receptor (TCR) α-chain. These cells were initially discovered in mucosal tissues, such as the intestinal mucosa, so they are called mucosal-associated invariant T (MAIT) cells. MR1 senses the presence of intermediate metabolites of riboflavin and folic acid synthesis that have been chemically modified by the side-products of glycolysis, glyoxal or methylglyoxal. These modified metabolites form complexes with MR1 and translocate from the endoplasmic reticulum to the plasma membrane where MAIT cells’ TCRs recognize them. Recent publications report that atypical MR1-restricted cytotoxic T cells, differing from MAIT cells in TCR usage, antigen, and transcription factor profile, recognize an as yet unknown cancer-specific metabolite presented by MR1 in cancer cells. This metabolite may represent another class of neoantigens, beyond the neo-peptides arising from altered tumor proteins. In an MR1-dependent manner, these MR1-restricted T cells, while sparing noncancerous cells, kill many cancer cell lines and attenuate cell-line-derived and patient-derived xenograft tumors. As MR1 is monomorphic and expressed in a wide range of cancer tissues, these findings raise the possibility of universal pan-cancer immunotherapies that are dependent on cancer metabolites.
Collapse
|