1
|
Vrellaku B, Sethw Hassan I, Howitt R, Webster CP, Harriss E, McBlane F, Betts C, Schettini J, Lion M, Mindur JE, Duerr M, Shaw PJ, Kirby J, Azzouz M, Servais L. A systematic review of immunosuppressive protocols used in AAV gene therapy for monogenic disorders. Mol Ther 2024; 32:3220-3259. [PMID: 39044426 PMCID: PMC11489562 DOI: 10.1016/j.ymthe.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/24/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024] Open
Abstract
The emergence of adeno-associated virus (AAV)-based gene therapy has brought hope to patients with severe monogenic disorders. However, immune responses to AAV vectors and transgene products present challenges that require effective immunosuppressive strategies. This systematic review focuses on the immunosuppressive protocols used in 38 clinical trials and 35 real-world studies, considering a range of monogenic diseases, AAV serotypes, and administration routes. The review underscores the need for a deeper understanding of immunosuppressive regimens to enhance the safety and effectiveness of AAV-based gene therapy. Characterizing the immunological responses associated with various gene therapy treatments is crucial for optimizing treatment protocols and ensuring the safety and efficacy of forthcoming gene therapy interventions. Further research and understanding of the impact of immunosuppression on disease, therapy, and route of administration will contribute to the development of more effective and safer gene therapy approaches in the future.
Collapse
Affiliation(s)
- Besarte Vrellaku
- Department of Paediatrics, MDUK Oxford Neuromuscular Centre & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Ilda Sethw Hassan
- Sheffield Institute for Translational Neuroscience, Division of Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | | | - Christopher P Webster
- Sheffield Institute for Translational Neuroscience, Division of Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Eli Harriss
- Bodleian Health Care Libraries, University of Oxford, Oxford, UK
| | | | - Corinne Betts
- Department of Paediatrics, MDUK Oxford Neuromuscular Centre & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Jorge Schettini
- Department of Paediatrics, MDUK Oxford Neuromuscular Centre & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Mattia Lion
- Takeda Pharmaceuticals USA, Inc, Cambridge, MA, USA
| | | | - Michael Duerr
- Bayer Aktiengesellschaft, CGT&Rare Diseases, Leverkusen, Deutschland
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, Division of Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Janine Kirby
- Sheffield Institute for Translational Neuroscience, Division of Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Mimoun Azzouz
- Sheffield Institute for Translational Neuroscience, Division of Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, UK; Gene Therapy Innovation & Manufacturing Centre (GTIMC), University of Sheffield, Sheffield, UK.
| | - Laurent Servais
- Department of Paediatrics, MDUK Oxford Neuromuscular Centre & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK; Division of Child Neurology, Department of Paediatrics, Centre de Référence des Maladies Neuromusculaires, University Hospital Liège and University of Liège, Liège, Belgium.
| |
Collapse
|
2
|
Zheng Q, Lin K, Zhang N, Shi Q, Wu Y, Chen Y. Anti-mCD20 in combination with α-mCXCL13 monoclonal antibody inhibits anti-FVIII antibody development in hemophilia A mice. Int Immunopharmacol 2024; 139:112735. [PMID: 39067397 DOI: 10.1016/j.intimp.2024.112735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Anti-factor VIII (FVIII) antibody development poses a significant challenge in hemophilia A (HA) patients receiving FVIII protein replacement therapy. There is an urgent need for novel therapeutic strategies to inhibit the production of anti-FVIII inhibitory antibodies (inhibitors) in HA. This study aimed to investigate a combination monoclonal antibody (mAb) therapy targeting CXCL13 and CD20 on the development of anti-FVIII antibodies in a HA murine model, along with the underlying mechanisms involved. Specifically, mAbs targeting mouse CD20 (18B12) with an IgG2a backbone and mouse CXCL13 (2C4) with an IgG1 backbone were synthesized. HA mice with FVIII inhibitors were established, and the results revealed that the combination therapy of anti-mCD20 with α-mCXCL13 significantly suppressed anti-FVIII antibody development and induced FVIII tolerance. Furthermore, this combination therapy led to a marked reduction of peripheral and splenic follicular helper T cells and an enhancement of regulatory T cell induction, along with sustained depletion of bone marrow and splenic plasma cells in HA mice with preexisting FVIII immunity. Thus, the concurrence of blockage of CD20 and neutralization of CXCL13 hold promise as a therapeutic strategy for HA patients with inhibitors.
Collapse
Affiliation(s)
- Qiaoyun Zheng
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Kehan Lin
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Na Zhang
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Qizhen Shi
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA; Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - Yong Wu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China.
| | - Yingyu Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Medical Technology and Engineering College of Fujian Medical University, Fuzhou, Fujian, China; Key Laboratory of Clinical Laboratory Technology for Precision Medicine (Fujian Medical University), Fujian Province University, Fuzhou, China.
| |
Collapse
|
3
|
Rana J, Herzog RW, Muñoz-Melero M, Yamada K, Kumar SR, Lam AK, Markusic DM, Duan D, Terhorst C, Byrne BJ, Corti M, Biswas M. B cell focused transient immune suppression protocol for efficient AAV readministration to the liver. Mol Ther Methods Clin Dev 2024; 32:101216. [PMID: 38440160 PMCID: PMC10911854 DOI: 10.1016/j.omtm.2024.101216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/18/2024] [Indexed: 03/06/2024]
Abstract
Adeno-associated virus (AAV) vectors are used for correcting multiple genetic disorders. Although the goal is to achieve lifelong correction with a single vector administration, the ability to redose would enable the extension of therapy in cases in which initial gene transfer is insufficient to achieve a lasting cure, episomal vector forms are lost in growing organs of pediatric patients, or transgene expression is diminished over time. However, AAV typically induces potent and long-lasting neutralizing antibodies (NAbs) against capsid that prevents re-administration. To prevent NAb formation in hepatic AAV8 gene transfer, we developed a transient B cell-targeting protocol using a combination of monoclonal Ab therapy against CD20 (for B cell depletion) and BAFF (to slow B cell repopulation). Initiation of immunosuppression before (rather than at the time of) vector administration and prolonged anti-BAFF treatment prevented immune responses against the transgene product and abrogated prolonged IgM formation. As a result, vector re-administration after immune reconstitution was highly effective. Interestingly, re-administration before the immune system had fully recovered achieved further elevated levels of transgene expression. Finally, this immunosuppression protocol reduced Ig-mediated AAV uptake by immune cell types with implications to reduce the risk of immunotoxicities in human gene therapy with AAV.
Collapse
Affiliation(s)
- Jyoti Rana
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Roland W. Herzog
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Maite Muñoz-Melero
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Kentaro Yamada
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Sandeep R.P. Kumar
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Anh K. Lam
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - David M. Markusic
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Barry J. Byrne
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32607, USA
| | - Manuela Corti
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32607, USA
| | - Moanaro Biswas
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| |
Collapse
|
4
|
Valentino LA, Ozelo MC, Herzog RW, Key NS, Pishko AM, Ragni MV, Samelson-Jones BJ, Lillicrap D. A review of the rationale for gene therapy for hemophilia A with inhibitors: one-shot tolerance and treatment? J Thromb Haemost 2023; 21:3033-3044. [PMID: 37225021 DOI: 10.1016/j.jtha.2023.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/09/2023] [Accepted: 05/14/2023] [Indexed: 05/26/2023]
Abstract
The therapeutic landscape for people living with hemophilia A (PwHA) has changed dramatically in recent years, but many clinical challenges remain, including the development of inhibitory antibodies directed against factor VIII (FVIII) that occur in approximately 30% of people with severe hemophilia A. Emicizumab, an FVIII mimetic bispecific monoclonal antibody, provides safe and effective bleeding prophylaxis for many PwHA, but clinicians still explore therapeutic strategies that result in immunologic tolerance to FVIII to enable effective treatment with FVIII for problematic bleeding events. This immune tolerance induction (ITI) to FVIII is typically accomplished through repeated long-term exposure to FVIII using a variety of protocols. Meanwhile, gene therapy has recently emerged as a novel ITI option that provides an intrinsic, consistent source of FVIII. As gene therapy and other therapies now expand therapeutic options for PwHA, we review the persistent unmet medical needs with respect to FVIII inhibitors and effective ITI in PwHA, the immunology of FVIII tolerization, the latest research on tolerization strategies, and the role of liver-directed gene therapy to mediate FVIII ITI.
Collapse
Affiliation(s)
- Leonard A Valentino
- National Hemophilia Foundation, New York, New York, USA; Rush University, Chicago, Illinois, USA.
| | | | - Roland W Herzog
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nigel S Key
- University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | | | | | | | | |
Collapse
|
5
|
Mulcrone PL, Lam AK, Frabutt D, Zhang J, Chrzanowski M, Herzog RW, Xiao W. Chemical modification of AAV9 capsid with N-ethyl maleimide alters vector tissue tropism. Sci Rep 2023; 13:8436. [PMID: 37231038 PMCID: PMC10212940 DOI: 10.1038/s41598-023-35547-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023] Open
Abstract
Although more adeno-associated virus AAV-based drugs enter the clinic, vector tissue tropism remains an unresolved challenge that limits its full potential despite that the tissue tropism of naturally occurring AAV serotypes can be altered by genetic engineering capsid vie DNA shuffling, or molecular evolution. To further expand the tropism and thus potential applications of AAV vectors, we utilized an alternative approach that employs chemical modifications to covalently link small molecules to reactive exposed Lysine residues of AAV capsids. We demonstrated that AAV9 capsid modified with N-ethyl Maleimide (NEM) increased its tropism more towards murine bone marrow (osteoblast lineage) while decreased transduction of liver tissue compared to the unmodified capsid. In the bone marrow, AAV9-NEM transduced Cd31, Cd34, and Cd90 expressing cells at a higher percentage than unmodified AAV9. Moreover, AAV9-NEM localized strongly in vivo to cells lining the calcified trabecular bone and transduced primary murine osteoblasts in culture, while WT AAV9 transduced undifferentiated bone marrow stromal cells as well as osteoblasts. Our approach could provide a promising platform for expanding clinical AAV development to treat bone pathologies such as cancer and osteoporosis. Thus, chemical engineering the AAV capsid holds great potential for development of future generations of AAV vectors.
Collapse
Affiliation(s)
- Patrick L Mulcrone
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Anh K Lam
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Dylan Frabutt
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Junping Zhang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Matthew Chrzanowski
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Roland W Herzog
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Weidong Xiao
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
6
|
Ewaisha R, Anderson KS. Immunogenicity of CRISPR therapeutics-Critical considerations for clinical translation. Front Bioeng Biotechnol 2023; 11:1138596. [PMID: 36873375 PMCID: PMC9978118 DOI: 10.3389/fbioe.2023.1138596] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
CRISPR offers new hope for many patients and promises to transform the way we think of future therapies. Ensuring safety of CRISPR therapeutics is a top priority for clinical translation and specific recommendations have been recently released by the FDA. Rapid progress in the preclinical and clinical development of CRISPR therapeutics leverages years of experience with gene therapy successes and failures. Adverse events due to immunogenicity have been a major setback that has impacted the field of gene therapy. As several in vivo CRISPR clinical trials make progress, the challenge of immunogenicity remains a significant roadblock to the clinical availability and utility of CRISPR therapeutics. In this review, we examine what is currently known about the immunogenicity of CRISPR therapeutics and discuss several considerations to mitigate immunogenicity for the design of safe and clinically translatable CRISPR therapeutics.
Collapse
Affiliation(s)
- Radwa Ewaisha
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Microbiology and Immunology, School of Pharmacy, Newgiza University, Newgiza, Egypt
| | - Karen S. Anderson
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
7
|
Luo L, Zheng Q, Chen Z, Huang M, Fu L, Hu J, Shi Q, Chen Y. Hemophilia a patients with inhibitors: Mechanistic insights and novel therapeutic implications. Front Immunol 2022; 13:1019275. [PMID: 36569839 PMCID: PMC9774473 DOI: 10.3389/fimmu.2022.1019275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/09/2022] [Indexed: 12/14/2022] Open
Abstract
The development of coagulation factor VIII (FVIII) inhibitory antibodies is a serious complication in hemophilia A (HA) patients after FVIII replacement therapy. Inhibitors render regular prophylaxis ineffective and increase the risk of morbidity and mortality. Immune tolerance induction (ITI) regimens have become the only clinically proven therapy for eradicating these inhibitors. However, this is a lengthy and costly strategy. For HA patients with high titer inhibitors, bypassing or new hemostatic agents must be used in clinical prophylaxis due to the ineffective ITI regimens. Since multiple genetic and environmental factors are involved in the pathogenesis of inhibitor generation, understanding the mechanisms by which inhibitors develop could help identify critical targets that can be exploited to prevent or eradicate inhibitors. In this review, we provide a comprehensive overview of the recent advances related to mechanistic insights into anti-FVIII antibody development and discuss novel therapeutic approaches for HA patients with inhibitors.
Collapse
Affiliation(s)
- Liping Luo
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Qiaoyun Zheng
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Zhenyu Chen
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Medical Technology and Engineering College of Fujian Medical University, Fuzhou, Fujian, China
| | - Meijuan Huang
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Lin Fu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jianda Hu
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Qizhen Shi
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Blood Research Institute, Versiti, Milwaukee, WI, United States
- Children’s Research Institute, Children’s Wisconsin, Milwaukee, WI, United States
- Midwest Athletes Against Childhood Cancer (MACC) Fund Research Center, Milwaukee, WI, United States
| | - Yingyu Chen
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| |
Collapse
|
8
|
Li X, Wei X, Lin J, Ou L. A versatile toolkit for overcoming AAV immunity. Front Immunol 2022; 13:991832. [PMID: 36119036 PMCID: PMC9479010 DOI: 10.3389/fimmu.2022.991832] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/17/2022] [Indexed: 12/12/2022] Open
Abstract
Recombinant adeno-associated virus (AAV) is a promising delivery vehicle for in vivo gene therapy and has been widely used in >200 clinical trials globally. There are already several approved gene therapy products, e.g., Luxturna and Zolgensma, highlighting the remarkable potential of AAV delivery. In the past, AAV has been seen as a relatively non-immunogenic vector associated with low risk of toxicity. However, an increasing number of recent studies indicate that immune responses against AAV and transgene products could be the bottleneck of AAV gene therapy. In clinical studies, pre-existing antibodies against AAV capsids exclude many patients from receiving the treatment as there is high prevalence of antibodies among humans. Moreover, immune response could lead to loss of efficacy over time and severe toxicity, manifested as liver enzyme elevations, kidney injury, and thrombocytopenia, resulting in deaths of non-human primates and patients. Therefore, extensive efforts have been attempted to address these issues, including capsid engineering, plasmapheresis, IgG proteases, CpG depletion, empty capsid decoy, exosome encapsulation, capsid variant switch, induction of regulatory T cells, and immunosuppressants. This review will discuss these methods in detail and highlight important milestones along the way.
Collapse
Affiliation(s)
- Xuefeng Li
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Shenzhen Luohu People’s Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xiaoli Wei
- Guangzhou Dezheng Biotechnology Co., Ltd., Guangzhou, China
| | - Jinduan Lin
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Li Ou
- Genemagic Biosciences, Philadelphia, PA, United States
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
- *Correspondence: Li Ou,
| |
Collapse
|
9
|
Gross DA, Tedesco N, Leborgne C, Ronzitti G. Overcoming the Challenges Imposed by Humoral Immunity to AAV Vectors to Achieve Safe and Efficient Gene Transfer in Seropositive Patients. Front Immunol 2022; 13:857276. [PMID: 35464422 PMCID: PMC9022790 DOI: 10.3389/fimmu.2022.857276] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/16/2022] [Indexed: 11/23/2022] Open
Abstract
One of the major goals of in vivo gene transfer is to achieve long-term expression of therapeutic transgenes in terminally differentiated cells. The extensive clinical experience and the recent approval of Luxturna® (Spark Therapeutics, now Roche) and Zolgensma® (AveXis, now Novartis) place vectors derived from adeno-associated viruses (AAV) among the best options for gene transfer in multiple tissues. Despite these successes, limitations remain to the application of this therapeutic modality in a wider population. AAV was originally identified as a promising virus to derive gene therapy vectors because, despite infecting humans, it was not associated with any evident disease. Thee large proportion of AAV infections in the human population is now revealing as a limitation because after exposure to wild-type AAV, anti-AAV antibodies develops and may neutralize the vectors derived from the virus. Injection of AAV in humans is generally well-tolerated although the immune system can activate after the recognition of AAV vectors capsid and genome. The formation of high-titer neutralizing antibodies to AAV after the first injection precludes vector re-administration. Thus, both pre-existing and post-treatment humoral responses to AAV vectors greatly limit a wider application of this gene transfer modality. Different methods were suggested to overcome this limitation. The extensive preclinical data available and the large clinical experience in the control of AAV vectors immunogenicity are key to clinical translation and to demonstrate the safety and efficacy of these methods and ultimately bring a curative treatment to patients.
Collapse
Affiliation(s)
- David-Alexandre Gross
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| | - Novella Tedesco
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| | - Christian Leborgne
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| | - Giuseppe Ronzitti
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| |
Collapse
|
10
|
Xiang Z, Kuranda K, Quinn W, Chekaoui A, Ambrose R, Hasanpourghadi M, Novikov M, Newman D, Cole C, Zhou X, Mingozzi F, Ertl HCJ. The effect of rapamycin and ibrutinib on antibody responses to adeno-associated virus vector-mediated gene transfer. Hum Gene Ther 2022; 33:614-624. [PMID: 35229644 DOI: 10.1089/hum.2021.258] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Adeno-associated virus (AAV) vector-mediated gene transfer is lessening the impact of monogenetic disorders. Human AAV gene therapy recipients commonly mount immune responses to AAV or the encoded therapeutic protein, which requires transient immunosuppression. Most efforts to date have focused on blunting AAV capsid-specific T cell responses, which have been implicated in elimination of AAV transduced cells. Here we explore the use of immunosuppressants, rapamycin given alone or in combination with ibrutinib to inhibit AAV vector- or transgene product-specific antibody responses. Our results show that rapamycin or ibrutinib given alone reduce primary antibody responses against AAV capsid but the combination of rapamycin and ibrutinib is more effective, blunts recall responses, and reduces numbers of circulating antibody-secreting plasma cells. The drugs fail to lower B cell memory formation or to reduce the inhibitory effects of pre-existing AAV capsid-specific antibodies on transduction efficiency.
Collapse
Affiliation(s)
- ZhiQuan Xiang
- Wistar Institute, 36586, Vaccine & Immunotherapy Center, Philadelphia, Pennsylvania, United States;
| | - Klaudia Kuranda
- Spark Therapeutics Inc, 538392, Philadelphia, Pennsylvania, United States;
| | - William Quinn
- Spark Therapeutics Inc, 538392, Philadelphia, Pennsylvania, United States;
| | - Arezki Chekaoui
- Wistar Institute, 36586, Vaccine & Immunotherapy Center, Philadelphia, Pennsylvania, United States;
| | - Robert Ambrose
- Wistar Institute, 36586, Philadelphia, Pennsylvania, United States;
| | - Mohadeseh Hasanpourghadi
- Wistar Institute, 36586, Vaccine & Immunotherapy Center, Philadelphia, Pennsylvania, United States;
| | - Mikhail Novikov
- Wistar Institute, 36586, Vaccine & Immunotherapy Center, Philadelphia, Pennsylvania, United States.,YTY Industry Sdn Bhd, R&D Department, Perak, Malaysia;
| | - Dakota Newman
- Wistar Institute, 36586, Vaccine & Immunotherapy Center, Philadelphia, Pennsylvania, United States;
| | - Christina Cole
- Wistar Institute, 36586, Vaccine & Immunotherapy Center, Philadelphia, Pennsylvania, United States;
| | - Xiangyang Zhou
- Wistar Institute, 36586, Vaccine & Immunotherapy Center, Philadelphia, Pennsylvania, United States;
| | - Federico Mingozzi
- Spark Therapeutics Inc, 538392, Philadelphia, Pennsylvania, United States.,Spark Therapeutics Inc, 538392, Philadelphia, Pennsylvania, United States;
| | - Hildegund C J Ertl
- Wistar Institute of Anatomy and Biology, 36586, Vaccine & Immunotherapy Center, 3601 Spruce St, Philadelphia, Pennsylvania, United States, 19104-4205;
| |
Collapse
|
11
|
Shao W, Sun J, Chen X, Dobbins A, Merricks EP, Samulski RJ, Nichols TC, Li C. Chimeric Mice Engrafted With Canine Hepatocytes Exhibits Similar AAV Transduction Efficiency to Hemophilia B Dog. Front Pharmacol 2022; 13:815317. [PMID: 35173619 PMCID: PMC8841897 DOI: 10.3389/fphar.2022.815317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Adeno-associated virus (AAV) mediated gene therapy has been successfully applied in clinical trials, including hemophilia. Novel AAV vectors have been developed with enhanced transduction and specific tissue tropism. Considering the difference in efficacy of AAV transduction between animal models and patients, the chimeric xenograft mouse model with human hepatocytes has unique advantages of studying AAV transduction efficiency in human hepatocytes. However, it is unclear whether the results in humanized mice can predict AAV transduction efficiency in human hepatocytes. To address this issue, we studied the AAV transduction efficacy in canine hepatocytes in both canine hepatocyte xenografted mice and real dogs. After administration of AAV vectors from different serotypes into canine hepatocyte xenograft mice, AAV8 induced the best canine hepatocyte transduction followed by AAV9, then AAV3, 7, 5 and 2. After administration of AAV/cFIX (cFIX-opt-R338L) vectors in hemophilia B dogs, consistent with the result in chimeric mice, AAV8 induced the highest cFIX protein expression and function, followed by AAV9 and then AAV2. These results suggest that mice xenografted with hepatocytes from different species could be used to predict the AAV liver transduction in real species and highlight this potential platform to explore novel AAV variants for future clinical applications.
Collapse
Affiliation(s)
- Wenwei Shao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.,Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Junjiang Sun
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Xiaojing Chen
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Amanda Dobbins
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Elizabeth P Merricks
- Department of Pathology and Laboratory Medicine and The Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - R Jude Samulski
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Timothy C Nichols
- Department of Pathology and Laboratory Medicine and The Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Chengwen Li
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
12
|
Mulcrone PL, Zhang J, Pride PM, Lam AK, Frabutt DA, Ball-Kell SM, Xiao W. Genomic Designs of rAAVs Contribute to Pathological Changes in the Livers and Spleens of Mice. ADVANCES IN CELL AND GENE THERAPY 2022; 2022:6807904. [PMID: 36507314 PMCID: PMC9730939 DOI: 10.1155/2022/6807904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Recombinant AAV (rAAV) gene therapy is being investigated as an effective therapy for several diseases including hemophilia B. Reports of liver tumor development in certain mouse models due to AAV treatment and genomic integration of the rAAV vector has raised concerns about the long-term safety and efficacy of this gene therapy. To investigate whether rAAV treatment causes cancer, we utilized two mouse models, inbred C57BL/6 and hemophilia B Balb/C mice (HemB), to test if injecting a high dose of various rAAV8 vectors containing or lacking hFIX transgene, a Poly-A sequence, or the CB or TTR promoter triggered liver fibrosis and/or cancer development over the course of the 6.5-month study. We observed no liver tumors in either mouse cohort regardless of rAAV treatment through ultrasound imaging, gross anatomical assessment at sacrifice, and histology. We did, however, detect differences in collagen deposition in C57BL/6 livers and HemB spleens of rAAV-injected mice. Pathology reports of the HemB mice revealed many pathological phenomena, including fibrosis and inflammation in the livers and spleens across different AAV-injected HemB mice. Mice from both cohorts injected with the TTR-hFIX vector demonstrated minimal adverse events. While not tumorigenic, high dose of rAAVs, especially those with incomplete genomes, can influence liver and spleen health negatively that could be problematic for cementing AAVs as a broad therapeutic option in the clinic.
Collapse
Affiliation(s)
- Patrick L. Mulcrone
- Herman B Wells Center for Pediatric Research, Indiana University, USA
- Department of Pediatrics, Indiana University, USA
| | - Junping Zhang
- Herman B Wells Center for Pediatric Research, Indiana University, USA
- Department of Pediatrics, Indiana University, USA
| | - P. Melanie Pride
- Herman B Wells Center for Pediatric Research, Indiana University, USA
| | - Anh K. Lam
- Herman B Wells Center for Pediatric Research, Indiana University, USA
- Department of Pediatrics, Indiana University, USA
| | - Dylan A. Frabutt
- Herman B Wells Center for Pediatric Research, Indiana University, USA
- Department of Microbiology & Immunology, Indiana University, Indianapolis, IN, USA
| | | | - Weidong Xiao
- Herman B Wells Center for Pediatric Research, Indiana University, USA
| |
Collapse
|
13
|
Kumar SR, Xie J, Hu S, Ko J, Huang Q, Brown HC, Srivastava A, Markusic DM, Doering CB, Spencer HT, Srivastava A, Gao G, Herzog RW. Coagulation factor IX gene transfer to non-human primates using engineered AAV3 capsid and hepatic optimized expression cassette. Mol Ther Methods Clin Dev 2021; 23:98-107. [PMID: 34631930 PMCID: PMC8476648 DOI: 10.1016/j.omtm.2021.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/10/2021] [Indexed: 11/17/2022]
Abstract
Hepatic gene transfer with adeno-associated viral (AAV) vectors shows much promise for the treatment of the X-linked bleeding disorder hemophilia B in multiple clinical trials. In an effort to further innovate this approach and to introduce alternative vector designs with potentially superior features into clinical development, we recently built a vector platform based on AAV serotype 3 because of its superior tropism for human hepatocytes. A vector genome with serotype-matched inverted terminal repeats expressing hyperactive human coagulation factor IX (FIX)-Padua was designed for clinical use that is optimized for translation using hepatocyte-specific codon-usage bias and is depleted of immune stimulatory CpG motifs. Here, this vector genome was packaged into AAV3 (T492V + S663V) capsid for hepatic gene transfer in non-human primates. FIX activity within or near the normal range was obtained at a low vector dose of 5 × 1011 vector genomes/kg. Pre-existing neutralizing antibodies, however, completely or partially blocked hepatic gene transfer at that dose. No CD8+ T cell response against capsid was observed. Antibodies against the human FIX transgene product formed at a 10-fold higher vector dose, albeit hepatic gene transfer was remarkably consistent, and sustained FIX activity in the normal range was nonetheless achieved in two of three animals for the 3-month duration of the study. These results support the use of this vector at low vector doses for gene therapy of hemophilia B in humans.
Collapse
Affiliation(s)
- Sandeep R.P. Kumar
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, USA
| | - Jun Xie
- Horae Gene Therapy Center, Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Shilang Hu
- Horae Gene Therapy Center, Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jihye Ko
- Horae Gene Therapy Center, Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Qifeng Huang
- Horae Gene Therapy Center, Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Alok Srivastava
- Department of Haematology, Christian Medical College and Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Vellore, Tamil Nadu, India
| | - David M. Markusic
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, USA
| | - Christopher B. Doering
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, USA
| | - H. Trent Spencer
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Arun Srivastava
- Division of Cellular and Molecular Therapy, Departments of Pediatrics and Molecular Genetics and Microbiology, Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Guangping Gao
- Horae Gene Therapy Center, Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA
| | - Roland W. Herzog
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, USA
| |
Collapse
|
14
|
Rapti K, Grimm D. Adeno-Associated Viruses (AAV) and Host Immunity - A Race Between the Hare and the Hedgehog. Front Immunol 2021; 12:753467. [PMID: 34777364 PMCID: PMC8586419 DOI: 10.3389/fimmu.2021.753467] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Adeno-associated viruses (AAV) have emerged as the lead vector in clinical trials and form the basis for several approved gene therapies for human diseases, mainly owing to their ability to sustain robust and long-term in vivo transgene expression, their amenability to genetic engineering of cargo and capsid, as well as their moderate toxicity and immunogenicity. Still, recent reports of fatalities in a clinical trial for a neuromuscular disease, although linked to an exceptionally high vector dose, have raised new caution about the safety of recombinant AAVs. Moreover, concerns linger about the presence of pre-existing anti-AAV antibodies in the human population, which precludes a significant percentage of patients from receiving, and benefitting from, AAV gene therapies. These concerns are exacerbated by observations of cellular immune responses and other adverse events, including detrimental off-target transgene expression in dorsal root ganglia. Here, we provide an update on our knowledge of the immunological and molecular race between AAV (the “hedgehog”) and its human host (the “hare”), together with a compendium of state-of-the-art technologies which provide an advantage to AAV and which, thus, promise safer and more broadly applicable AAV gene therapies in the future.
Collapse
Affiliation(s)
- Kleopatra Rapti
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Heidelberg, Germany.,BioQuant Center, BQ0030, University of Heidelberg, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Heidelberg, Germany.,BioQuant Center, BQ0030, University of Heidelberg, Heidelberg, Germany.,German Center for Infection Research Deutsches Zentrum für Infektionsforschung (DZIF) and German Center for Cardiovascular Research Deutsches Zentrum für Herz-Kreislauf-Erkrankungen (DZHK), Partner Site Heidelberg, Heidelberg, Germany
| |
Collapse
|
15
|
Okaygoun D, Oliveira DD, Soman S, Williams R. Advances in the management of haemophilia: emerging treatments and their mechanisms. J Biomed Sci 2021; 28:64. [PMID: 34521404 PMCID: PMC8442442 DOI: 10.1186/s12929-021-00760-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/08/2021] [Indexed: 11/10/2022] Open
Abstract
Mainstay haemophilia treatment, namely intravenous factor replacement, poses several clinical challenges including frequent injections due to the short half-life of recombinant factors, intravenous administration (which is particularly challenging in those with difficult venous access), and the risk of inhibitor development. These impact negatively upon quality of life and treatment compliance, highlighting the need for improved therapies. Several novel pharmacological therapies developed for haemophilia aim to rebalance the clotting cascade and potentially circumvent the aforementioned challenges. These therapies utilise a range of different mechanisms, namely: the extension of the circulating half-life of standard recombinant factors; the mimicking of factor VIII cofactor activity; rebalancing of coagulation through targeting of natural anticoagulants such as antithrombin and tissue factor pathway inhibitor; and inducing the production of endogenous factors with gene therapy. These therapies carry the potential of revolutionising haemophilia treatment by alleviating the current challenges presented by mainstay factor replacement. This review will provide an overview of the key trial findings related to novel therapies based on the mechanisms described above.
Collapse
Affiliation(s)
- Dide Okaygoun
- Imperial College London: Faculty of Medicine, Imperial College Road, London, SW7 2DD, UK
| | - Danielle D Oliveira
- Imperial College London: Faculty of Medicine, Imperial College Road, London, SW7 2DD, UK.
| | - Sooriya Soman
- Imperial College London: Faculty of Medicine, Imperial College Road, London, SW7 2DD, UK
| | - Riccardo Williams
- Imperial College London: Faculty of Medicine, Imperial College Road, London, SW7 2DD, UK
| |
Collapse
|
16
|
Chu WS, Ng J. Immunomodulation in Administration of rAAV: Preclinical and Clinical Adjuvant Pharmacotherapies. Front Immunol 2021; 12:658038. [PMID: 33868303 PMCID: PMC8049138 DOI: 10.3389/fimmu.2021.658038] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/05/2021] [Indexed: 12/26/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) has attracted a significant research focus for delivering genetic therapies to target cells. This non-enveloped virus has been trialed in many clinical-stage therapeutic strategies but important obstacle in clinical translation is the activation of both innate and adaptive immune response to the protein capsid, vector genome and transgene product. In addition, the normal population has pre-existing neutralizing antibodies against wild-type AAV, and cross-reactivity is observed between different rAAV serotypes. While extent of response can be influenced by dosing, administration route and target organ(s), these pose concerns over reduction or complete loss of efficacy, options for re-administration, and other unwanted immunological sequalae such as local tissue damage. To reduce said immunological risks, patients are excluded if they harbor anti-AAV antibodies or have received gene therapy previously. Studies have incorporated immunomodulating or suppressive regimens to block cellular and humoral immune responses such as systemic corticosteroids pre- and post-administration of Luxturna® and Zolgensma®, the two rAAV products with licensed regulatory approval in Europe and the United States. In this review, we will introduce the current pharmacological strategies to immunosuppress or immunomodulate the host immune response to rAAV gene therapy.
Collapse
Affiliation(s)
- Wing Sum Chu
- Pharmacy Department, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Joanne Ng
- Gene Transfer Technology Group, Department of Maternal and Fetal Medicine, EGA Institute for Women's Health, University College London, London, United Kingdom
| |
Collapse
|