1
|
Kuriakose BB, Zwamel AH, Mutar AA, Uthirapathy S, Bishoyi AK, Naidu KS, Hjazi A, Nakash P, Arya R, Almalki SG. The critical role of NLRP3 in drug resistance of cancers: Focus on the molecular mechanisms and possible therapeutics. Semin Oncol 2025; 52:27-40. [PMID: 40037148 DOI: 10.1016/j.seminoncol.2025.152337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/08/2025] [Accepted: 02/12/2025] [Indexed: 03/06/2025]
Abstract
Nod-like receptor protein 3 (NLRP3) is a member of the leucine-rich repeat-containing protein (NLR) canonical inflammasome family. It regulates the pathophysiology of cancer by facilitating immune responses and apoptotic proteins. Furthermore, it has been observed that chemotherapy activates NLRP3 in human malignancies. The secretion of IL-1β and IL-22 to promote cancer spread may be triggered by NLRP3 activation. Furthermore, earlier studies have exhibited that NLRP3 may cause medication resistance when used in cancer treatments given that cell viability may be regulated by NLRP3 depletion. Additionally, clinical studies have demonstrated correlation between NLRP3 expression, lymphogenesis, and cancer metastasis. Various NLRP3 agonists may cause the EMT process, stimulate IL-1β and Wnt/β-catenin signaling, and alter miRNA function in drug-resistant cells. This review seeks to clarify the possibility involvement of NLRP3-related pathways in the control of cancer cells' resistance to widely used treatment approaches, such as chemotherapy. In the end, an improved perception of the corresponding mechanisms behind NLRP3's tumor-supporting activities will help NLRP3-based treatments advance in the future.
Collapse
Affiliation(s)
- Beena Briget Kuriakose
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King khalid University, Khamis Mushayt, Kingdom of Saudi Arabia
| | - Ahmed Hussein Zwamel
- Department of medical analysis, Medical laboratory technique college, the Islamic University, Najaf, Iraq; Department of medical analysis, Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Department of medical analysis, Medical laboratory technique college, the Islamic University of Babylon, Babylon, Iraq
| | - Ayad Abdulrazzaq Mutar
- Medical Laboratory Techniques department, College of Health and medical technology, Al-maarif University, Anbar, Iraq.
| | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Ashok Kumar Bishoyi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, Gujarat, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, India
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Princse Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Prashant Nakash
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, India
| | - Renu Arya
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, India
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| |
Collapse
|
2
|
Zhang N, Tian X, Sun D, Tse G, Xie B, Zhao Z, Liu T. Clonal hematopoiesis, cardiovascular disease and cancer treatment-induced cardiotoxicity. Semin Cancer Biol 2025; 111:89-114. [PMID: 40023267 DOI: 10.1016/j.semcancer.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 01/05/2025] [Accepted: 02/06/2025] [Indexed: 03/04/2025]
Abstract
Clonal hematopoiesis (CH) arises when a substantial proportion of mature blood cells is derived from a single hematopoietic stem cell lineage. It is considered to be a premalignant state that predisposes individuals to an increased risk of cancers. Recently, emerging evidence has demonstrated a strong association between CH and both the incidence and mortality of cardiovascular diseases (CVD), with the relative risks being comparable to those attributed to traditional cardiovascular risk factors. In addition, CH has been suggested to play a role in CVD and anti-cancer treatment-related cardiotoxicity amongst cancer survivors. Moreover, certain forms of chemotherapy and radiation therapy have been shown to promote the clonal expansion of specific CH-related mutations. Consequently, CH may play a substantial role in the realm of cardio-oncology. In this review, we discuss the association between CH with cancer and CVD, with a special focus on anti-cancer treatment-related cardiotoxicity, discuss possible future research avenues and propose a systematic approach for clinical practice.
Collapse
Affiliation(s)
- Nan Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Xu Tian
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Dongkun Sun
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China; School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong, China
| | - Bingxin Xie
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Zhiqiang Zhao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| |
Collapse
|
3
|
Miyauchi T, Narita S, Saiki Y, Kudo-Asabe Y, Horii A, Fukushige S, Habuchi T, Nanjo H, Goto A. Association between NLRP3 Inflammasome and Tumor-Node-Metastasis Staging in Prostate Cancer: Immunohistochemical Studies of Prostate Needle Biopsy and Radical Prostatectomy Specimens. TOHOKU J EXP MED 2025; 264:203-213. [PMID: 39085121 DOI: 10.1620/tjem.2024.j074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The pathological role of NLRP3 inflammasome in prostate cancer (PCa) remains unclear. This study aimed to elucidate the expression of its major components in PCa by immunohistochemistry and its clinicopathological significance. An immunohistochemical analysis of 184 prostate needle biopsy and 38 radical prostatectomy specimens from PCa revealed the expression status of NLRP3, PYCARD, and caspase-1, which form NLRP3 inflammasome. Furthermore, the association between the expression of these 3 proteins and the clinical parameters at diagnosis and operation was analyzed. In biopsy specimens, the Cochran-Armitage test demonstrated that the proportion of the high expression of NLRP3 (P < 0.001) and PYCARD (P < 0.001) in cancerous tissue tended to increase as the value of the Gleason Grade Group increased, and immunohistochemistry of NLRP3 and PYCARD helped to distinguish cancerous tissue from adjacent noncancerous tissue in some cases. Furthermore, a univariable logistic regression analysis revealed the high expression of NLRP3 to be associated with clinical T3-4 (P = 0.0056) and distant metastasis at diagnosis (P = 0.011), while the high expression of PYCARD was associated with clinical T3-4 (P < 0.001), regional lymph node metastasis (P < 0.001), and distant metastasis at diagnosis (P < 0.001). However, a multivariable logistic regression analysis showed no significant association. In prostatectomy specimens, no significant association existed between the expression of NLRP3 inflammasome and the clinical parameters at operation, partly due to the influence of neoadjuvant chemohormonal or hormone therapy. In conclusion, these results suggest that NLRP3 inflammasome may promote disease progression and metastasis in PCa, therefore immunohistochemistry of NLRP3 and PYCARD could be useful for diagnosing PCa accurately.
Collapse
Affiliation(s)
- Toshiya Miyauchi
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University
- Department of Clinical Pathology, Akita University Hospital
- Department of Molecular Pathology, Graduate School of Medicine, Tohoku University
| | - Shintaro Narita
- Department of Urology, Graduate School of Medicine, Akita University
| | - Yuriko Saiki
- Department of Molecular Pathology, Graduate School of Medicine, Tohoku University
- Office of Medical Education, Graduate School of Medicine, Tohoku University
- Department of Investigative Pathology, Graduate School of Medicine, Tohoku University
| | - Yukitsugu Kudo-Asabe
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University
| | - Akira Horii
- Department of Molecular Pathology, Graduate School of Medicine, Tohoku University
| | - Shinichi Fukushige
- Department of Molecular Pathology, Graduate School of Medicine, Tohoku University
- Department of Metabolism and Diabetes, Graduate School of Medicine, Tohoku University
| | - Tomonori Habuchi
- Department of Urology, Graduate School of Medicine, Akita University
| | - Hiroshi Nanjo
- Department of Clinical Pathology, Akita University Hospital
| | - Akiteru Goto
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University
| |
Collapse
|
4
|
Baspakova A, Zare A, Suleimenova R, Berdygaliev AB, Karimsakova B, Tussupkaliyeva K, Mussin NM, Zhilisbayeva KR, Tanideh N, Tamadon A. An updated systematic review about various effects of microplastics on cancer: A pharmacological and in-silico based analysis. Mol Aspects Med 2025; 101:101336. [PMID: 39756073 DOI: 10.1016/j.mam.2024.101336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/11/2024] [Accepted: 12/26/2024] [Indexed: 01/07/2025]
Abstract
Microplastics (MPs) are known as substantial environmental and health threats because of their pervasive existence and potential function in human diseases. This study is the first research in which a comprehensive analysis of various impacts of MPs on cancer cells is performed through pharmacological and in silico approaches. Moreover, our results demonstrate that MPs have both promotive and suppressive impacts on cancer cells, changing some of the important features of these kinds of cells including cellular viability, migration, metastasis, and apoptosis. Furthermore, the present study displayed that AP-2 complex subunit mu-1 (AP2M1), Asialoglycoprotein receptor 2 (ASGR2), Bax inhibitor-1 (BI-1), and Ferritin Heavy Chain, and pivotal role in the progression of cancers mediated by MPs. Moreover, our in-silico analysis identified Goserelin, Paclitaxel, Raloxifene, Exemestane, Epirubicin, Trametinib, Vemurafenib, Pactitaxel, and Sorafenib as potential anticancer agents for curing MPS-based cancer. Besides, our results demonstrated that MPs can exacerbate the development of tumor cells by affecting some important mechanisms including oxidative stress, immune suppression, and adjusting of critical signaling pathways. Interestingly, some sorts of MPs also displayed suppressive effects on cancer cells in some particular contexts, highlighting their complicated biological roles in different biological interactions. Ultimately the present survey tries to demonstrate the crucial roles of MPs in cancer cells and the different mechanisms that occur in the mentioned cells in order to emphasize performing more studies about clarifying the roles of MPs in carcinogenesis.
Collapse
Affiliation(s)
- Akmaral Baspakova
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Epidemiology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan.
| | - Afshin Zare
- R&D Department, PerciaVista Co., Shiraz, Iran.
| | - Roza Suleimenova
- Department of Public Health and Hygiene, Astana Medical University, Astana, Kazakhstan.
| | - Aidar B Berdygaliev
- Department of Nutrition, Kazakh National Medical University named after S. D. Asfendiyarov, Almaty, Kazakhstan.
| | - Bibigul Karimsakova
- Department of General Medical Practice №1, West Kazakhstan Marat Ospanov Medical University, Aktobe, 030012, Kazakhstan.
| | - Kymbat Tussupkaliyeva
- Department of Epidemiology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan.
| | - Nadiar M Mussin
- Department of Surgery No. 2, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan.
| | - Kulyash R Zhilisbayeva
- Department of Languages, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan.
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Epidemiology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan; Department of Pharmacology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amin Tamadon
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Epidemiology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan; Department of Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan.
| |
Collapse
|
5
|
Niu N, Li K, Wang J, Funes V, Espinoza B, Li P, Wang J, Lyman M, He M, Herbst B, Wichroski M, Novosiadly R, Shoucair S, Mou Y, Zheng L. Chemotherapy in synergy with innate immune agonists enhances T cell priming for checkpoint inhibitor treatment in pancreatic cancer. Biomark Res 2025; 13:21. [PMID: 39871312 PMCID: PMC11773940 DOI: 10.1186/s40364-024-00721-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 12/27/2024] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND The combination of conventional chemotherapy and immune checkpoint inhibitors (ICIs) has been unsuccessful for pancreatic ductal adenocarcinoma (PDAC). Administration of maximum tolerated dose of chemotherapy drugs may have immunosuppressive effects. METHODS We thus tested, by using the preclinical model of PDACs including the genetically engineered mouse KPC spontaneous pancreatic tumor model and the pancreatic KPC tumor orthotopic implant model, the combinations of synthetic innate immune agonists including STING and NLRP3 agonist, respectively, and ICIs with or without chemotherapy. RESULTS We found that innate agonists potentiate the role of chemotherapy in inducing effector T cells and subsequently to prime the tumor microenvironment (TME) better for ICI treatments. Triple combination of chemotherapy, innate agonists, and ICIs is superior to single modalities or double modalities in antitumor efficacies. Adding chemotherapy to innate agonists enhances the infiltration of overall CD8+ T cells and the memory cytotoxic subtype. NLRP3 agonist has a less effect than STING agonist on driving the T cell exhaustion. Adding chemotherapy to innate agonists enhances the infiltration of dendritic cells (DCs) in the tumors and CD86+ mature DCs in tumor draining lymph nodes. RNA sequencing analysis of the pancreatic tumors demonstrates the role of the combination of STING/NLRP3 agonist and chemotherapy, but not either treatment modality alone, in upregulating the T cell activation signaling. The NLRP3 agonist-mediated T cell activation is likely through regulating the nitrogen metabolism pathways. CONCLUSION This study supports the clinical testing of both STING and NLRP3 agonists, respectively, in combination with chemotherapy to sensitize PDAC patients for ICI treatments.
Collapse
Affiliation(s)
- Nan Niu
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310003, China
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Keyu Li
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Junke Wang
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Division of BiliarySurgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Vanessa Funes
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Birginia Espinoza
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Multidisciplinary Gastrointestinal Cancer Laboratories Program, the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Pan Li
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The First-affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianxin Wang
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The First-affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Melissa Lyman
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Mengni He
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Brian Herbst
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Multidisciplinary Gastrointestinal Cancer Laboratories Program, the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | | | | | - Sami Shoucair
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Yiping Mou
- Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Lei Zheng
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Multidisciplinary Gastrointestinal Cancer Laboratories Program, the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Mays Cancer Center, University of Texas Health San Antonio MD Anderson, San Antonio, USA.
| |
Collapse
|
6
|
Xia Q, Zhang J. Interaction Between Autophagy and the Inflammasome in Human Tumors: Implications for the Treatment of Human Cancers. Cell Biochem Funct 2025; 43:e70035. [PMID: 39722223 DOI: 10.1002/cbf.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/10/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
Autophagy is a physiologically regulated cellular process orchestrated by autophagy-related genes (ATGs) that, depending on the tumor type and stage, can either promote or suppress tumor growth and progression. It can also modulate cancer stem cell maintenance and immune responses. Therefore, targeted manipulation of autophagy may inhibit tumor development by overcoming tumor-promoting mechanisms. The inflammasome is another multifunctional bioprocess that induces a form of pro-inflammatory programmed cell death, called pyroptosis. Dysregulation or overactivation of the inflammasome has been implicated in tumor pathogenesis and development. Additionally, autophagy can inhibit the NLRP3 inflammasome by removing inflammatory drivers. Recent research suggests that the NLRP3 inflammasome, in turn, affects autophagy. Understanding the complex interplay between autophagy and inflammasomes could lead to more precise and effective strategies for cancer treatments. In this review, we summarize the impact of autophagy and inflammasome dysregulation on tumor progression or suppression. We then highlight their targeting for cancer treatment as monotherapy or in combination with other therapies. Furthermore, we discuss the interaction between autophagy and tumor-promoting inflammation or the NLRP3 inflammasome. Finally, based on recent findings, we review the potential of this interaction for cancer treatment.
Collapse
Affiliation(s)
- Qing Xia
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingzhou Zhang
- Peking Union Medical College, Graduate School of Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Li L, Xu T, Qi X. Balanced regulation of ROS production and inflammasome activation in preventing early development of colorectal cancer. Immunol Rev 2025; 329:e13417. [PMID: 39523732 DOI: 10.1111/imr.13417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Reactive oxygen species (ROS) production and inflammasome activation are the key components of the innate immune response to microbial infection and sterile insults. ROS are at the intersection of inflammation and immunity during cancer development. Balanced regulation of ROS production and inflammasome activation serves as the central hub of innate immunity, determining whether a cell will survive or undergo cell death. However, the mechanisms underlying this balanced regulation remain unclear. Mitochondria and NADPH oxidases are the two major sources of ROS production. Recently, NCF4, a component of the NADPH oxidase complex that primarily contributes to ROS generation in phagocytes, was reported to balance ROS production and inflammasome activation in macrophages. The phosphorylation and puncta distribution of NCF4 shifts from the membrane-bound NADPH complex to the perinuclear region, promoting ASC speck formation and inflammasome activation, which triggers downstream IL-18-IFN-γ signaling to prevent the progression of colorectal cancer (CRC). Here, we review ROS signaling and inflammasome activation studies in colitis-associated CRC and propose that NCF4 acts as a ROS sensor that balances ROS production and inflammasome activation. In addition, NCF4 is a susceptibility gene for Crohn's disease (CD) and CRC. We discuss the evidence demonstrating NCF4's crucial role in facilitating cell-cell contact between immune cells and intestinal cells, and mediating the paracrine effects of inflammatory cytokines and ROS. This coordination of the signaling network helps create a robust immune microenvironment that effectively prevents epithelial cell mutagenesis and tumorigenesis during the early stage of colitis-associated CRC.
Collapse
Affiliation(s)
- Longjun Li
- Key Laboratory for Experimental Teratology of the Ministry of Education, Advanced Medical Research Institute, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Tao Xu
- Key Laboratory for Experimental Teratology of the Ministry of Education, Advanced Medical Research Institute, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaopeng Qi
- Key Laboratory for Experimental Teratology of the Ministry of Education, Advanced Medical Research Institute, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- State Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
8
|
Namba Y, Ohira M, Imaoka Y, Hamaoka M, Hashimoto M, Onoe T, Takei D, Oishi K, Yamaguchi M, Abe T, Tadokoro T, Fukuhara S, Oshita K, Matsubara K, Honmyo N, Kuroda S, Tahara H, Kobayashi T, Ide K, Ohdan H. Effect of abdominal aortic calcification on long-term outcomes after the first liver resection in very old patients with hepatocellular carcinoma. Ann Gastroenterol Surg 2025; 9:169-177. [PMID: 39759985 PMCID: PMC11693558 DOI: 10.1002/ags3.12838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/14/2024] [Accepted: 06/07/2024] [Indexed: 01/07/2025] Open
Abstract
Aim We previously reported that abdominal aortic calcification is associated with poor overall and recurrence-free survival after hepatectomy for hepatocellular carcinoma (HCC). However, the effect of abdominal aortic calcification on cancer-specific prognosis in very old patients with several comorbidities remains unknown. This multicenter study aimed to evaluate the impact of abdominal aortic calcification on the cumulative recurrence rate and recurrence-free survival in patients with HCC aged >80 years. Methods We retrospectively analyzed the data of 128 patients (aged ≥80 years) who underwent liver resection for hepatocellular carcinoma at seven hospitals belonging to Hiroshima Surgical Study Group of Clinical Oncology between January 2014 and December 2018. Patients were divided into two groups: high and low abdominal aortic calcification groups. The primary endpoints were cumulative recurrence rate and recurrence-free survival. Results Kaplan-Meier survival curve analysis demonstrated that the cumulative recurrence rate in the high abdominal aortic calcification group was significantly higher than that in the low abdominal aortic calcification group, and the high abdominal aortic calcification group had a significantly lower recurrence-free survival rate. In the multivariate analysis, high abdominal aortic calcification (p = 0.03), high des-gamma-carboxyprothrombin score (p = 0.04), and multiple tumors (p < 0.01) were independent predictive factors for recurrent HCC, and high abdominal aortic calcification (p = 0.01) and high des-gamma-carboxyprothrombin (p = 0.01) were independent predictive factors for poor cancer-specific survival. Conclusions Our results indicate that the abdominal aortic calcification score is associated with cumulative recurrence rate and recurrence-free survival in very old patients with HCC.
Collapse
Affiliation(s)
- Yosuke Namba
- Department of Gastroenterological and Transplant Surgery Applied Life Sciences, Institute of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Masahiro Ohira
- Department of Gastroenterological and Transplant Surgery Applied Life Sciences, Institute of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Yuki Imaoka
- Department of Gastroenterological and Transplant Surgery Applied Life Sciences, Institute of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Michinori Hamaoka
- Department of Gastroenterological‐Breast and Transplant SurgeryHiroshima Prefectural HospitalHiroshimaJapan
| | - Masakazu Hashimoto
- Department of Gastroenterological‐Breast and Transplant SurgeryHiroshima Prefectural HospitalHiroshimaJapan
| | - Takashi Onoe
- Department of Surgery, National Hospital OrganizationKure Medical Center and Chugoku Cancer CenterHiroshimaJapan
| | - Daisuke Takei
- Department of Surgery and Endoscopic SurgeryJA Onomichi General HospitalHiroshimaJapan
| | - Koichi Oishi
- Department of SurgeryChugoku Rosai HospitalHiroshimaJapan
| | - Megumi Yamaguchi
- Department of Surgery, Hiroshima City North Medical CenterAsa Citizens HospitalHiroshimaJapan
| | - Tomoyuki Abe
- Department of Surgery and Gastroenterological SurgeryEast Hiroshima Medical HospitalHiroshimaJapan
| | - Takeshi Tadokoro
- Department of Gastroenterological and Transplant Surgery Applied Life Sciences, Institute of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Sotaro Fukuhara
- Department of Gastroenterological and Transplant Surgery Applied Life Sciences, Institute of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Ko Oshita
- Department of Gastroenterological and Transplant Surgery Applied Life Sciences, Institute of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Keiso Matsubara
- Department of Gastroenterological and Transplant Surgery Applied Life Sciences, Institute of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Naruhiko Honmyo
- Department of Gastroenterological and Transplant Surgery Applied Life Sciences, Institute of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Shintaro Kuroda
- Department of Gastroenterological and Transplant Surgery Applied Life Sciences, Institute of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Hiroyuki Tahara
- Department of Gastroenterological and Transplant Surgery Applied Life Sciences, Institute of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Tsuyoshi Kobayashi
- Department of Gastroenterological and Transplant Surgery Applied Life Sciences, Institute of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Kentaro Ide
- Department of Gastroenterological and Transplant Surgery Applied Life Sciences, Institute of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery Applied Life Sciences, Institute of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| |
Collapse
|
9
|
Pazhouhesh Far N, Hajiheidari Varnousafaderani M, Faghihkhorasani F, Etemad S, Abdulwahid AHRR, Bakhtiarinia N, Mousaei A, Dortaj E, Karimi S, Ebrahimi N, Aref AR. Breaking the barriers: Overcoming cancer resistance by targeting the NLRP3 inflammasome. Br J Pharmacol 2025; 182:3-25. [PMID: 39394867 DOI: 10.1111/bph.17352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 10/14/2024] Open
Abstract
Inflammation has a pivotal role in the initiation and progression of various cancers, contributing to crucial processes such as metastasis, angiogenesis, cell proliferation and invasion. Moreover, the release of cytokines mediated by inflammation within the tumour microenvironment (TME) has a crucial role in orchestrating these events. The activation of inflammatory caspases, facilitated by the recruitment of caspase-1, is initiated by the activation of pattern recognition receptors on the immune cell membrane. This activation results in the production of proinflammatory cytokines, including IL-1β and IL-18, and participates in diverse biological processes with significant implications. The NOD-Like Receptor Protein 3 (NLRP3) inflammasome holds a central role in innate immunity and regulates inflammation through releasing IL-1β and IL-18. Moreover, it interacts with various cellular compartments. Recently, the mechanisms underlying NLRP3 inflammasome activation have garnered considerable attention. Disruption in NLRP3 inflammasome activation has been associated with a spectrum of inflammatory diseases, encompassing diabetes, enteritis, neurodegenerative diseases, obesity and tumours. The NLRP3 impact on tumorigenesis varies across different cancer types, with contrasting roles observed. For example, colorectal cancer associated with colitis can be suppressed by NLRP3, whereas gastric and skin cancers may be promoted by its activity. This review provides comprehensive insights into the structure, biological characteristics and mechanisms of the NLRP3 inflammasome, with a specific focus on the relationship between NLRP3 and tumour-related immune responses, and TME. Furthermore, the review explores potential strategies for targeting cancers via NLRP3 inflammasome modulation. This encompasses innovative approaches, including NLRP3-based nanoparticles, gene-targeted therapy and immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Nazanin Pazhouhesh Far
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | | | | | - Sareh Etemad
- Department of Pathology, Faculty of Anatomical Pathology, Ghaem Hospital, University of Medicine, Mashhad, Iran
| | | | | | - Afsaneh Mousaei
- Department of Biology, College of Science, Qaemshahr Branch, Islamic Azad University, Qaem Shahr, Iran
| | - Elahe Dortaj
- Department of Ergonomics, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soroush Karimi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Amir Reza Aref
- Mass General Cancer Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
10
|
Slusny B, Zimmer V, Nasiri E, Lutz V, Huber M, Buchholz M, Gress TM, Roth K, Bauer C. Optimized Spheroid Model of Pancreatic Cancer Demonstrates Influence of Macrophage-T Cell Interaction for Intratumoral T Cell Motility. Cancers (Basel) 2024; 17:51. [PMID: 39796680 PMCID: PMC11718817 DOI: 10.3390/cancers17010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Most spheroid models use size measurements as a primary readout parameter; some models extend analysis to T cell infiltration or perform caspase activation assays. However, to our knowledge, T cell motility analysis is not regularly included as an endpoint in imaging studies on cancer spheroids. METHODS Here, we intend to demonstrate that motility analysis of macrophages and T cells is a valuable functional endpoint for studies on molecular interventions in the tumor microenvironment. In particular, T cell migration analysis represents the final step of effector function, as T cells engage with targets cells upon cytotoxic interaction, which is represented by an arrest within the spheroid volume. Therefore, T cell arrest is a novel readout parameter of T cell effector function in spheroids. RESULTS Here, we demonstrate that incubation of macrophages with nigericin for NLRP3 activation increases T cell velocity, but results in decreased T cellular arrest. This is paralleled by reduced rejection kinetics of pancreatic cancer spheroids in the presence of antigen-dependent T cells and nigericin-treated macrophages. Our model demonstrates consistent changes in T cell motility upon coculturing of T cells and tumors cells with macrophages, including influences of molecular interventions such as NLRP3 activation. CONCLUSIONS Motility analysis using a spheroid model of pancreatic cancer is a more sophisticated alternative to in vitro cytotoxicity assays measuring spheroid size. Ultimately, an optimized spheroid model might replace at least some aspects of animal experiments investigating T cell effector function.
Collapse
Affiliation(s)
- Benedikt Slusny
- Department of Gastroenterology, Endocrinology, Infectious Diseases and Metabolism, University Hospital Marburg, 35043 Marburg, Germany; (B.S.); (E.N.); (M.B.); (T.M.G.)
| | - Vanessa Zimmer
- Department of Gastroenterology, Endocrinology, Infectious Diseases and Metabolism, University Hospital Marburg, 35043 Marburg, Germany; (B.S.); (E.N.); (M.B.); (T.M.G.)
| | - Elena Nasiri
- Department of Gastroenterology, Endocrinology, Infectious Diseases and Metabolism, University Hospital Marburg, 35043 Marburg, Germany; (B.S.); (E.N.); (M.B.); (T.M.G.)
| | - Veronika Lutz
- Institute of Systems Immunology, Center for Tumor Biology and Immunology, Philipps University Marburg, 35043 Marburg, Germany (M.H.)
| | - Magdalena Huber
- Institute of Systems Immunology, Center for Tumor Biology and Immunology, Philipps University Marburg, 35043 Marburg, Germany (M.H.)
| | - Malte Buchholz
- Department of Gastroenterology, Endocrinology, Infectious Diseases and Metabolism, University Hospital Marburg, 35043 Marburg, Germany; (B.S.); (E.N.); (M.B.); (T.M.G.)
| | - Thomas M. Gress
- Department of Gastroenterology, Endocrinology, Infectious Diseases and Metabolism, University Hospital Marburg, 35043 Marburg, Germany; (B.S.); (E.N.); (M.B.); (T.M.G.)
| | - Katrin Roth
- Core Facility Cellular Imaging, Center for Tumor Biology and Immunology, Philipps University Marburg, 35043 Marburg, Germany;
| | - Christian Bauer
- Department of Gastroenterology, Endocrinology, Infectious Diseases and Metabolism, University Hospital Marburg, 35043 Marburg, Germany; (B.S.); (E.N.); (M.B.); (T.M.G.)
- Department of Gastroenterology, DonauIsar Klinikum Deggendorf, MedizinCampus Niederbayern, 94469 Deggendorf, Germany
| |
Collapse
|
11
|
Jalali AM, Mitchell KJ, Pompoco C, Poludasu S, Tran S, Ramana KV. Therapeutic Significance of NLRP3 Inflammasome in Cancer: Friend or Foe? Int J Mol Sci 2024; 25:13689. [PMID: 39769450 PMCID: PMC11728390 DOI: 10.3390/ijms252413689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Besides various infectious and inflammatory complications, recent studies also indicated the significance of NLRP3 inflammasome in cancer progression and therapy. NLRP3-mediated immune response and pyroptosis could be helpful or harmful in the progression of cancer, and also depend on the nature of the tumor microenvironment. The activation of NLRP3 inflammasome could increase immune surveillance and the efficacy of immunotherapy. It can also lead to the removal of tumor cells by the recruitment of phagocytic macrophages, T-lymphocytes, and other immune cells to the tumor site. On the other hand, NLRP3 activation can also be harmful, as chronic inflammation driven by NLRP3 supports tumor progression by creating an environment that facilitates cancer cell proliferation, migration, invasion, and metastasis. The release of pro-inflammatory cytokines such as IL-1β and IL-18 can promote tumor growth and angiogenesis, while sustained inflammation may lead to immune suppression, hindering effective anti-tumor responses. In this review article, we discuss the role of NLRP3 inflammasome-mediated inflammatory response in the pathophysiology of various cancer types; understanding this role is essential for the development of innovative therapeutic strategies for cancer growth and spread.
Collapse
Affiliation(s)
| | | | | | | | | | - Kota V. Ramana
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT 84606, USA
| |
Collapse
|
12
|
Luo J, Zhou Y, Wang M, Zhang J, Jiang E. Inflammasomes: potential therapeutic targets in hematopoietic stem cell transplantation. Cell Commun Signal 2024; 22:596. [PMID: 39695742 DOI: 10.1186/s12964-024-01974-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/30/2024] [Indexed: 12/20/2024] Open
Abstract
The realm of hematopoietic stem cell transplantation (HSCT) has witnessed remarkable advancements in elevating the cure and survival rates for patients with both malignant and non-malignant hematologic diseases. Nevertheless, a considerable number of patients continue to face challenges, including transplant-related complications, infection, graft failure, and mortality. Inflammasomes, the multi-protein complexes of the innate immune system, respond to various danger signals by releasing inflammatory cytokines and even mediating cell death. While moderate activation of inflammasomes is essential for immune defense and homeostasis maintenance, excessive activation precipitates inflammatory damage. The intricate interplay between HSCT and inflammasomes arises from their pivotal roles in immune responses and inflammation. This review examines the molecular architecture and composition of various types of inflammasomes, highlighting their activation and effector mechanisms within the context of the HSCT process and its associated complications. Additionally, we summarize the therapeutic implications of targeting inflammasomes and related factors in HSCT.
Collapse
Affiliation(s)
- Jieya Luo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yunxia Zhou
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Haihe Laboratory of Cell Ecosystem, Tianjin Medical University, Tianjin, 300051, China
| | - Mingyang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Junan Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
13
|
Arrè V, Negro R, Giannelli G. The role of inflammasomes in hepatocellular carcinoma: Mechanisms and therapeutic insights. Ann Hepatol 2024; 30:101772. [PMID: 39701280 DOI: 10.1016/j.aohep.2024.101772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024]
Abstract
Hepatocellular carcinoma is among the most frequent forms of primary liver cancer and develops within a context of chronic inflammation, frequently associated with a multitude of risk factors, including viral infections, metabolic dysfunction-associated fatty liver disease, metabolic dysfunction-associated steatohepatitis and liver fibrosis. The tumor microenvironment is crucial for the progression of HCC, as immune cells, tumor-associated fibroblasts and hepatic stellate cells interact to promote chronic inflammation and tumor spread. Inflammasomes, the multiprotein complexes that launch the innate immune response, emerge as important mediators in the pathogenesis of HCC. Among others, the inflammasome Nucleotide-binding oligomerization domain, Leucine rich Repeat (NLR) and Pyrin (NLRP) 3 (NLRP3), and absent in melanoma 2 (AIM2), exhibit a dual role in HCC background. It has been reported that they can exert oncosuppressive functions by triggering the inflammatory death of cancer cells. Vice versa, chronic activation contributes to the development of a pro-tumorigenic environment, thus supporting tumor growth. In addition, other inflammasomes such as Nucleotide-binding oligomerization domain, Leucine rich Repeat (NLR) and Pyrin (NLRP) 6 and 12 (NLRP6 and NLRP12, respectively) regulate HCC onset and progression, although more experimental evidence is required. This review focuses on the molecular mechanisms underpinning the inflammasome's contribution to the onset, progression and spread of HCC. Moreover, we will explore the potential therapeutic approaches currently under investigation, which aim to improve the efficacy and reduce the side effects of the treatments currently available. Targeting inflammasomes may be a promising therapeutic strategy for the treatment of HCC, offering new opportunities to improve patient prognosis.
Collapse
Affiliation(s)
- Valentina Arrè
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy.
| | - Roberto Negro
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy.
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology, "S. de Bellis", IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy.
| |
Collapse
|
14
|
Scalavino V, Piccinno E, Giannelli G, Serino G. Inflammasomes in Intestinal Disease: Mechanisms of Activation and Therapeutic Strategies. Int J Mol Sci 2024; 25:13058. [PMID: 39684769 DOI: 10.3390/ijms252313058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
NOD-like receptors (NLRs) are a family of cytosolic pattern recognition receptors (PRRs) implicated in the innate immune sensing of pathogens and damage signals. NLRs act as sensors in multi-protein complexes called inflammasomes. Inflammasome activity is necessary for the maintenance of intestinal homeostasis, although their aberrant activation contributes to the pathogenesis of several gastrointestinal diseases. In this review, we summarize the main features of the predominant types of inflammasomes involved in gastrointestinal immune responses and their implications in intestinal disease, including Irritable Bowel Syndrome (IBS), Inflammatory Bowel Disease (IBD), celiac disease, and Colorectal Cancer (CRC). In addition, we report therapeutic discoveries that target the inflammasome pathway, highlighting promising novel therapeutic strategies in the treatment of intestinal diseases. Collectively, our understanding of the mechanisms of intestinal inflammasome activation and their interactions with other immune pathways appear to be not fully elucidated. Moreover, the clinical relevance of the efficacy of inflammasome inhibitors has not been evaluated. Despite these limitations, a greater understanding of the effectiveness, specificity, and reliability of pharmacological and natural inhibitors that target inflammasome components could be an opportunity to develop new therapeutic options for the treatment of intestinal disease.
Collapse
Affiliation(s)
- Viviana Scalavino
- National Institute of Gastroenterology S. De Bellis, IRCCS Research Hospital, Via Turi 27, 70013 Castellana Grotte, BA, Italy
| | - Emanuele Piccinno
- National Institute of Gastroenterology S. De Bellis, IRCCS Research Hospital, Via Turi 27, 70013 Castellana Grotte, BA, Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology S. De Bellis, IRCCS Research Hospital, Via Turi 27, 70013 Castellana Grotte, BA, Italy
| | - Grazia Serino
- National Institute of Gastroenterology S. De Bellis, IRCCS Research Hospital, Via Turi 27, 70013 Castellana Grotte, BA, Italy
| |
Collapse
|
15
|
Jaiswal A, Shrivastav S, Kushwaha HR, Chaturvedi R, Singh RP. Oncogenic potential of SARS-CoV-2-targeting hallmarks of cancer pathways. Cell Commun Signal 2024; 22:447. [PMID: 39327555 PMCID: PMC11426004 DOI: 10.1186/s12964-024-01818-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
The 2019 outbreak of SARS-CoV-2 has caused a major worldwide health crisis with high rates of morbidity and death. Interestingly, it has also been linked to cancer, which begs the issue of whether it plays a role in carcinogenesis. Recent studies have revealed various mechanisms by which SARS-CoV-2 can influence oncogenic pathways, potentially promoting cancer development. The virus encodes several proteins that alter key signaling pathways associated with cancer hallmarks. Unlike classical oncogenic viruses, which transform cells through viral oncogenes or by activating host oncogenes, SARS-CoV-2 appears to promote tumorigenesis by inhibiting tumor suppressor genes and pathways while activating survival, proliferation, and inflammation-associated signaling cascades. Bioinformatic analyses and experimental studies have identified numerous interactions between SARS-CoV-2 proteins and cellular components involved in cancer-related processes. This review explores the intricate relationship between SARS-CoV-2 infection and cancer, focusing on the regulation of key hallmarks driving initiation, promotion and progression of cancer by viral proteins. By elucidating the underlying mechanisms driving cellular transformation, the potential of SARS-CoV-2 as an oncovirus is highlighted. Comprehending these interplays is essential to enhance our understanding of COVID-19 and cancer biology and further formulating strategies to alleviate SARS-CoV-2 influence on cancer consequences.
Collapse
Affiliation(s)
- Aishwarya Jaiswal
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sanah Shrivastav
- SRM Institute of Science and Technology, Delhi-NCR Campus, Ghaziabad, Uttar Pradesh, India
| | - Hemant R Kushwaha
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Rupesh Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Rana P Singh
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India.
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
16
|
Borsoi FT, da Silva GB, Manica D, Bagatini MD, Pastore GM, Arruda HS. Extract of Araçá-Boi and Its Major Phenolic Compound, Trans-Cinnamic Acid, Reduce Viability and Inhibit Migration of Human Metastatic Melanoma Cells. Nutrients 2024; 16:2929. [PMID: 39275245 PMCID: PMC11396791 DOI: 10.3390/nu16172929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Cutaneous melanoma is an aggressive type of skin cancer that is recognized for its high metastatic potential and the challenges it presents in its treatment. There has been increasing interest in plant extracts and their potential applications in melanoma. The present study aimed to investigate the content of individual phenolic compounds in araçá-boi extract, evaluate their antioxidant activity, and explore their effects on cell viability, migration properties, oxidative stress levels, and protein expression in the human metastatic melanoma cell line SK-MEL-28. HPLC-DAD analysis identified 11 phenolic compounds in the araçá-boi extract. Trans-cinnamic acid was the main phenolic compound identified; therefore, it was used alone to verify its contribution to antitumor activities. SK-MEL-28 melanoma cells were treated for 24 h with different concentrations of araçá-boi extract and trans-cinnamic acid (200, 400, 600, 800, and 1600 µg/mL). Both the araçá-boi extract and trans-cinnamic acid reduced cell viability, cell migration, and oxidative stress in melanoma cells. Additionally, they modulate proteins involved in apoptosis and inflammation. These findings suggest the therapeutic potential of araçá-boi extract and its phenolic compounds in the context of melanoma, especially in strategies focused on preventing metastasis. Additional studies, such as the analysis of specific signaling pathways, would be valuable in confirming and expanding these observations.
Collapse
Affiliation(s)
- Felipe Tecchio Borsoi
- Department of Food Science and Nutrition (DEPAN), School of Food Engineering (FEA), University of Campinas (UNICAMP), Monteiro Lobato Street 80, Campinas 13083-862, SP, Brazil
| | - Gilnei Bruno da Silva
- Multicentric Postgraduate Program in Biochemistry and Molecular Biology, State University of Santa Catarina (UDESC), Lages 88520-000, SC, Brazil
| | - Daiane Manica
- Postgraduate Program in Biochemistry, Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, SC, Brazil
| | - Margarete Dulce Bagatini
- Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul (UFFS), Chapecó 89815-899, SC, Brazil
| | - Glaucia Maria Pastore
- Department of Food Science and Nutrition (DEPAN), School of Food Engineering (FEA), University of Campinas (UNICAMP), Monteiro Lobato Street 80, Campinas 13083-862, SP, Brazil
| | - Henrique Silvano Arruda
- Department of Food Science and Nutrition (DEPAN), School of Food Engineering (FEA), University of Campinas (UNICAMP), Monteiro Lobato Street 80, Campinas 13083-862, SP, Brazil
| |
Collapse
|
17
|
Jain T, Chandra A, Mishra SP, Khairnar M, Rajoria S, Maheswari R, Keerthika R, Tiwari S, Agrawal R. Unravelling the Significance of NLRP3 and IL-β1 in Oral Squamous Cell Carcinoma and Potentially Malignant Oral Disorders: A Diagnostic and Prognostic Exploration. Head Neck Pathol 2024; 18:77. [PMID: 39141262 PMCID: PMC11324625 DOI: 10.1007/s12105-024-01685-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Nucleotide-binding domain-like receptor protein 3 (NLRP3), an inflammasome, is reported to be dysregulated or aberrantly expressed in chronic inflammation, leading to a myriad of inflammatory disorders, autoimmune diseases, and cancer. This study aimed to explore the expression and role of NLRP3 protein and the secreted cytokine IL-β1 in oral squamous cell carcinoma (OSCC) and potentially malignant oral disorders (PMOD). MATERIAL & METHODS Tissue NLRP3 expression was quantified using sandwich ELISA in 30 cases each of OSCC, PMOD, and normal oral mucosa. Serum IL-β1 level was also measured by ELISA to determine their correlation. In surgically treated OSCC cases, pathological parameters such as tumor size, depth of invasion (DOI), pTNM stage, and perineural & lymphovascular invasion were assessed and correlated with NLRP3 & IL-β1 levels to investigate their roles in tumor progression, invasion, and metastasis. RESULTS Tissue NLRP3 expression was markedly elevated in OSCC, with significant IL-β1 levels observed in the serum of both OSCC and PMOD cases. Both markers showed a pronounced increase with the severity of dysplasia, indicating a strong association (p = 0.003%). The expression levels of tissue NLRP3 and serum IL-β1 were positively correlated with DOI and tumor size. Furthermore, their elevated levels, alongside higher histological grades, indicate roles in the dedifferentiation and progression of tumor cells. CONCLUSION The findings indicated that increased expression of NLRP3 and IL-β1 in PMOD correlates with higher transformation rates, along with tumor progression and dedifferentiation in OSCC. Consequently, these markers hold promise as valuable targets for prognostic assessment, diagnostics, and therapeutic strategies in OSCC.
Collapse
Affiliation(s)
- Trupti Jain
- Unit of Oral & Maxillofacial Pathology and Oral Microbiology, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Akhilesh Chandra
- Unit of Oral & Maxillofacial Pathology and Oral Microbiology, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Surendra Pratap Mishra
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Mahesh Khairnar
- Unit of Public Health Dentistry, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Shivangni Rajoria
- Unit of Oral & Maxillofacial Pathology and Oral Microbiology, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, 221005, India
| | - R Maheswari
- Unit of Oral & Maxillofacial Pathology and Oral Microbiology, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, 221005, India
| | - R Keerthika
- Unit of Oral & Maxillofacial Pathology and Oral Microbiology, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Shivam Tiwari
- Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Rahul Agrawal
- Unit of Oral & Maxillofacial Pathology and Oral Microbiology, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, 221005, India.
| |
Collapse
|
18
|
Gusakov K, Kalinkovich A, Ashkenazi S, Livshits G. Nature of the Association between Rheumatoid Arthritis and Cervical Cancer and Its Potential Therapeutic Implications. Nutrients 2024; 16:2569. [PMID: 39125448 PMCID: PMC11314534 DOI: 10.3390/nu16152569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
It is now established that patients with rheumatoid arthritis (RA) have an increased risk of developing cervical cancer (CC) or its precursor, cervical intraepithelial neoplasia (CIN). However, the underlying mechanisms of this association have not been elucidated. RA is characterized by unresolved chronic inflammation. It is suggested that human papillomavirus (HPV) infection in RA patients exacerbates inflammation, increasing the risk of CC. The tumor microenvironment in RA patients with CC is also marked by chronic inflammation, which aggravates the manifestations of both conditions. Gut and vaginal dysbiosis are also considered potential mechanisms that contribute to the chronic inflammation and aggravation of RA and CC manifestations. Numerous clinical and pre-clinical studies have demonstrated the beneficial effects of various nutritional approaches to attenuate chronic inflammation, including polyunsaturated fatty acids and their derivatives, specialized pro-resolving mediators (SPMs), probiotics, prebiotics, and certain diets. We believe that successful resolution of chronic inflammation and correction of dysbiosis, in combination with current anti-RA and anti-CC therapies, is a promising therapeutic approach for RA and CC. This approach could also reduce the risk of CC development in HPV-infected RA patients.
Collapse
Affiliation(s)
- Kirill Gusakov
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4077625, Israel; (K.G.); (S.A.)
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv 6905126, Israel;
| | - Shai Ashkenazi
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4077625, Israel; (K.G.); (S.A.)
| | - Gregory Livshits
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4077625, Israel; (K.G.); (S.A.)
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv 6905126, Israel;
| |
Collapse
|
19
|
Dahiya R, Sutariya VB, Gupta SV, Pant K, Ali H, Alhadrawi M, Kaur K, Sharma A, Rajput P, Gupta G, Almujri SS, Chinni SV. Harnessing pyroptosis for lung cancer therapy: The impact of NLRP3 inflammasome activation. Pathol Res Pract 2024; 260:155444. [PMID: 38986361 DOI: 10.1016/j.prp.2024.155444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/22/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024]
Abstract
Lung cancer is still a global health challenge in terms of high incidence, morbidity, and mortality. Recent scientific studies have determined that pyroptosis, a highly inflammatory form of programmed cell death, can be identified as a potential lung cancer therapeutic target. The NLRP3 inflammasome acts as a critical mediator in this process and, upon activation, activates multiprotein complex formation as well as caspase-1 activation. This process, triggered by a release of pro-inflammatory cytokines, results in pyroptotic cell death. Also, the relationship between the NLRP3 inflammasome and lung cancer was justified by its influence on tumour growth or metastasis. The molecular pathways produce progenitive mediators and remake the tissue. Finally, targeting NLRP3 inflammasome for pyroptosis induction and inhibition of its activation appears to be a promising lung cancer treatment approach. This technique makes cancer treatment more promising and personalized. This review explores the role of NLRP3 inflammasome activation and its possibilities in lung cancer treatment.
Collapse
Affiliation(s)
- Rajiv Dahiya
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad & Tobago, West Indies
| | - Vijaykumar B Sutariya
- USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Sheeba Varghese Gupta
- USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Kumud Pant
- Graphic Era (Deemed to be University) Clement Town Dehradun, 248002, India; Graphic Era Hill University Clement Town Dehradun, 248002, India.
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Merwa Alhadrawi
- College of Technical Engineering, The Islamic University, Najaf, Iraq; College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
| | - Kiranjeet Kaur
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab 140307, India
| | - Abhishek Sharma
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Pranchal Rajput
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Punjab
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Asir 61421, Saudi Arabia
| | - Suresh V Chinni
- Department of Biochemistry, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, Jenjarom, Selangor 42610, Malaysia
| |
Collapse
|
20
|
D’Silva NJ, Pandiyan P. Neuroimmune cell interactions and chronic infections in oral cancers. Front Med (Lausanne) 2024; 11:1432398. [PMID: 39050547 PMCID: PMC11266022 DOI: 10.3389/fmed.2024.1432398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Inflammation is a process that is associated with the activation of distal immunosuppressive pathways that have evolved to restore homeostasis and prevent excessive tissue destruction. However, long-term immunosuppression resulting from systemic and local inflammation that may stem from dysbiosis, infections, or aging poses a higher risk for cancers. Cancer incidence and progression dramatically increase with chronic infections including HIV infection. Thus, studies on pro-tumorigenic effects of microbial stimulants from resident microbiota and infections in the context of inflammation are needed and underway. Here, we discuss chronic infections and potential neuro-immune interactions that could establish immunomodulatory programs permissive for tumor growth and progression.
Collapse
Affiliation(s)
- Nisha J. D’Silva
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
- Department of Pathology, Medical School, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Pushpa Pandiyan
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
- Center for AIDS Research, Case Western Reserve University, Cleveland, OH, United States
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
21
|
Vitale A, Caggiano V, Tufan A, Ragab G, Batu ED, Portincasa P, Aragona E, Sota J, Conti G, De Paulis A, Rigante D, Olivieri AN, Şahin A, La Torre F, Lopalco G, Cattalini M, Maggio MC, Insalaco A, Sfikakis PP, Verrecchia E, Yildirim D, Kucuk H, Kardas RC, Laymouna AH, Ghanema M, Saad MA, Sener S, Ercan Emreol H, Ozen S, Jaber N, Khalil M, Di Ciaula A, Gaggiano C, Malizia G, Affronti A, Patroniti S, Romeo M, Sbalchiero J, Della Casa F, Mormile I, Silvaroli S, Gicchino MF, Çelik NÇ, Tarsia M, Karamanakos A, Hernández-Rodríguez J, Parronchi P, Opris-Belinski D, Barone P, Recke A, Costi S, Sfriso P, Giardini HAM, Gentileschi S, Wiesik-Szewczyk E, Vasi I, Loconte R, Jahnz-Różyk K, Martín-Nares E, Torres-Ruiz J, Cauli A, Conforti A, Emmi G, Li Gobbi F, Biasi GR, Terribili R, Ruscitti P, Del Giudice E, Tharwat S, Brucato AL, Ogunjimi B, Hinojosa-Azaola A, Balistreri A, Fabiani C, Frediani B, Cantarini L. Risk for cancer development in familial Mediterranean fever and associated predisposing factors: an ambidirectional cohort study from the international AIDA Network registries. Front Immunol 2024; 15:1397890. [PMID: 38799474 PMCID: PMC11116561 DOI: 10.3389/fimmu.2024.1397890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Objective Inflammation has been associated with an increased risk for cancer development, while innate immune system activation could counteract the risk for malignancies. Familial Mediterranean fever (FMF) is a severe systemic inflammatory condition and also represents the archetype of innate immunity deregulation. Therefore, the aim of this study is to investigate the risk for cancer development in FMF. Methods The risk ratio (RR) for malignancies was separately compared between FMF patients and fibromyalgia subjects, Still's disease patients and Behçet's disease patients. Clinical variables associated with cancer development in FMF patients were searched through binary logistic regression. Results 580 FMF patients and 102 fibromyalgia subjects, 1012 Behçet's disease patients and 497 Still's disease patients were enrolled. The RR for the occurrence of malignant neoplasms was 0.26 (95% Confidence Interval [CI.] 0.10-0.73, p=0.006) in patients with FMF compared to fibromyalgia subjects; the RR for the occurrence of malignant cancer was 0.51 (95% CI. 0.23-1.16, p=0.10) in FMF compared to Still's disease and 0.60 (95% CI. 0.29-1.28, p=0.18) in FMF compared to Behçet's disease. At logistic regression, the risk of occurrence of malignant neoplasms in FMF patients was associated with the age at disease onset (β1 = 0.039, 95% CI. 0.001-0.071, p=0.02), the age at the diagnosis (β1 = 0.048, 95% CI. 0.039-0.085, p=0.006), the age at the enrolment (β1 = 0.05, 95% CI. 0.007-0.068, p=0.01), the number of attacks per year (β1 = 0.011, 95% CI. 0.001- 0.019, p=0.008), the use of biotechnological agents (β1 = 1.77, 95% CI. 0.43-3.19, p=0.009), the use of anti-IL-1 agents (β1 = 2.089, 95% CI. 0.7-3.5, p=0.002). Conclusions The risk for cancer is reduced in Caucasic FMF patients; however, when malignant neoplasms occur, this is more frequent in FMF cases suffering from a severe disease phenotype and presenting a colchicine-resistant disease.
Collapse
Affiliation(s)
- Antonio Vitale
- Department of Medical Sciences, Surgery and Neurosciences, Research Center of Systemic Autoinflammatory Diseases and Behçet’s Disease Clinic, University of Siena, Siena, Italy
- Azienda Ospedaliero-Universitaria Senese [European Reference Network (ERN) for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) Center], Siena, Italy
| | - Valeria Caggiano
- Department of Medical Sciences, Surgery and Neurosciences, Research Center of Systemic Autoinflammatory Diseases and Behçet’s Disease Clinic, University of Siena, Siena, Italy
- Azienda Ospedaliero-Universitaria Senese [European Reference Network (ERN) for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) Center], Siena, Italy
| | - Abdurrahman Tufan
- Gazi University Hospital, Department of Internal Medicine, Division of Rheumatology, Ankara, Türkiye
| | - Gaafar Ragab
- Internal Medicine Department, Rheumatology and Clinical Immunology Unit, Faculty of Medicine, Cairo University, Giza, Egypt
- Faculty of Medicine, Newgiza University, 6th of October City, Giza, Egypt
| | - Ezgi Deniz Batu
- Division of Pediatric Rheumatology, Department of Pediatrics, Hacettepe University School of Medicine, Ankara, Türkiye
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Division of Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Aldo Moro, Bari, Italy
| | - Emma Aragona
- Division of Gastroenterology, Ospedali Riuniti Villa Sofia-Vincenzo Cervello, Palermo, Italy
| | - Jurgen Sota
- Department of Medical Sciences, Surgery and Neurosciences, Research Center of Systemic Autoinflammatory Diseases and Behçet’s Disease Clinic, University of Siena, Siena, Italy
- Azienda Ospedaliero-Universitaria Senese [European Reference Network (ERN) for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) Center], Siena, Italy
| | - Giovanni Conti
- Pediatric Nephrology and Rheumatology Unit, Azienda Ospedaliera Universitaria (AOU), “G. Martino”, Messina, Italy
| | - Amato De Paulis
- Department of Translational Medical Sciences, Section of Clinical Immunology, University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), WAO Center of Excellence, University of Naples Federico II, Naples, Italy
| | - Donato Rigante
- Department of Life Sciences and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Rare Diseases and Periodic Fevers Research Center, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alma Nunzia Olivieri
- Department of Woman, Child and of General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Ali Şahin
- Division of Rheumatology, Department of Internal Medicine, Sivas Cumhuriyet University Medical Faculty, Sivas, Türkiye
| | - Francesco La Torre
- Department of Pediatrics, Pediatric Rheumatology Center, Giovanni XXIII Pediatric Hospital, University of Bari, Bari, Italy
| | - Giuseppe Lopalco
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J) Policlinic Hospital, University of Bari, Bari, Italy
| | - Marco Cattalini
- Pediatrics Clinic, University of Brescia and Spedali Civili of Brescia, [European Reference Network (ERN) for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) Center], Brescia, Italy
| | - Maria Cristina Maggio
- University Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE) “G. D’Alessandro”, University of Palermo, Palermo, Italy
| | - Antonella Insalaco
- Division of Rheumatology, Ospedale Pediatrico Bambino Gesù, IRCCS [European Reference Network (ERN) for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) Center], Rome, Italy
| | - Petros P. Sfikakis
- Joint Academic Rheumatology Program, Medical School, National and Kapodistrian University of Athens, [European Reference Network (ERN) for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) Center], Athens, Greece
| | - Elena Verrecchia
- Rare Diseases and Periodic Fevers Research Center, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Aging, Neurological, Orthopedic and Head and Neck Sciences, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Derya Yildirim
- Gazi University Hospital, Department of Internal Medicine, Division of Rheumatology, Ankara, Türkiye
| | - Hamit Kucuk
- Gazi University Hospital, Department of Internal Medicine, Division of Rheumatology, Ankara, Türkiye
| | - Riza Can Kardas
- Gazi University Hospital, Department of Internal Medicine, Division of Rheumatology, Ankara, Türkiye
| | - Ahmed Hatem Laymouna
- Internal Medicine Department, Rheumatology and Clinical Immunology Unit, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Mahmoud Ghanema
- Internal Medicine Department, Rheumatology and Clinical Immunology Unit, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Moustafa Ali Saad
- Internal Medicine Department, Rheumatology and Clinical Immunology Unit, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Seher Sener
- Division of Pediatric Rheumatology, Department of Pediatrics, Hacettepe University School of Medicine, Ankara, Türkiye
| | - Hulya Ercan Emreol
- Division of Pediatric Rheumatology, Department of Pediatrics, Hacettepe University School of Medicine, Ankara, Türkiye
| | - Seza Ozen
- Division of Pediatric Rheumatology, Department of Pediatrics, Hacettepe University School of Medicine, Ankara, Türkiye
| | - Nour Jaber
- Clinica Medica “A. Murri”, Division of Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Aldo Moro, Bari, Italy
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Division of Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Aldo Moro, Bari, Italy
| | - Agostino Di Ciaula
- Clinica Medica “A. Murri”, Division of Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Aldo Moro, Bari, Italy
| | - Carla Gaggiano
- Department of Medical Sciences, Surgery and Neurosciences, Research Center of Systemic Autoinflammatory Diseases and Behçet’s Disease Clinic, University of Siena, Siena, Italy
- Azienda Ospedaliero-Universitaria Senese [European Reference Network (ERN) for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) Center], Siena, Italy
| | - Giuseppe Malizia
- Division of Gastroenterology, Ospedali Riuniti Villa Sofia-Vincenzo Cervello, Palermo, Italy
| | - Andrea Affronti
- Division of Gastroenterology, Ospedali Riuniti Villa Sofia-Vincenzo Cervello, Palermo, Italy
| | - Serena Patroniti
- Pediatric Nephrology and Rheumatology Unit, Azienda Ospedaliera Universitaria (AOU), “G. Martino”, Messina, Italy
| | - Meri Romeo
- Pediatric Nephrology and Rheumatology Unit, Azienda Ospedaliera Universitaria (AOU), “G. Martino”, Messina, Italy
| | - Jessica Sbalchiero
- Department of Medical Sciences, Surgery and Neurosciences, Research Center of Systemic Autoinflammatory Diseases and Behçet’s Disease Clinic, University of Siena, Siena, Italy
- Azienda Ospedaliero-Universitaria Senese [European Reference Network (ERN) for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) Center], Siena, Italy
| | - Francesca Della Casa
- Department of Translational Medical Sciences, Section of Clinical Immunology, University of Naples Federico II, Naples, Italy
| | - Ilaria Mormile
- Department of Translational Medical Sciences, Section of Clinical Immunology, University of Naples Federico II, Naples, Italy
| | - Sara Silvaroli
- Department of Pediatric Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Maria Francesca Gicchino
- Department of Woman, Child and of General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Neşe Çabuk Çelik
- Division of Rheumatology, Department of Internal Medicine, Sivas Cumhuriyet University Medical Faculty, Sivas, Türkiye
| | - Maria Tarsia
- Azienda Ospedaliero-Universitaria Senese [European Reference Network (ERN) for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) Center], Siena, Italy
- Clinical Pediatrics, Department of Molecular Medicine and Development, University of Siena, Siena, Italy
| | | | - José Hernández-Rodríguez
- Department of Autoimmune Diseases, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic of Barcelona [European Reference Network (ERN) for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) Center], University of Barcelona, Barcelona, Spain
| | - Paola Parronchi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Daniela Opris-Belinski
- Rheumatology and Internal Medicine Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Patrizia Barone
- Pediatric Rheumatology Unit, Department of integrated Maternal-Child and Reproduction Activity AOU “Policlinico-San Marco”, Catania, Italy
| | - Andreas Recke
- Department of Dermatology, Allergology and Venerology, University Hospital Schleswig-Holstein, Lübeck, Germany
- Autoinflammatory and Autoimmune Diseases (RITA) Center, European Reference Network (ERN) for Rare Immunodeficiency, Lübeck, Germany
| | - Stefania Costi
- Department of Clinical Sciences and Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, University of Milan, Milan, Italy
| | - Paolo Sfriso
- Rheumatology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Henrique A. Mayrink Giardini
- Rheumatology Division, Faculdade de Medicina, Hospital das Clínicas, Universidade de São Paulo, São Paulo, Brazil
| | - Stefano Gentileschi
- Department of Medical Sciences, Surgery and Neurosciences, Research Center of Systemic Autoinflammatory Diseases and Behçet’s Disease Clinic, University of Siena, Siena, Italy
- Azienda Ospedaliero-Universitaria Senese [European Reference Network (ERN) for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) Center], Siena, Italy
| | - Ewa Wiesik-Szewczyk
- Department of Internal Medicine, Pneumonology, Allergology and Clinical Immunology, Central Clinical Hospital of the Ministry of National Defense, Military Institute of Medicine, National Research Institute, Warsaw, Poland
| | - Ibrahim Vasi
- Gazi University Hospital, Department of Internal Medicine, Division of Rheumatology, Ankara, Türkiye
| | - Roberta Loconte
- Department of Pediatrics, Pediatric Rheumatology Center, Giovanni XXIII Pediatric Hospital, University of Bari, Bari, Italy
| | - Karina Jahnz-Różyk
- Department of Internal Medicine, Pneumonology, Allergology and Clinical Immunology, Central Clinical Hospital of the Ministry of National Defense, Military Institute of Medicine, National Research Institute, Warsaw, Poland
| | - Eduardo Martín-Nares
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Jiram Torres-Ruiz
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Alberto Cauli
- Rheumatology Unit, Department of Medical Sciences, University and AOU of Cagliari, Cagliari, Italy
| | - Alessandro Conforti
- Ospedale San Paolo di Civitavecchia, U.O. Medicina Generale, ASL Roma 4, Civitavecchia, Rome, Italy
| | - Giacomo Emmi
- Department of Medical, Surgical and Health Sciences, University of Trieste, Italy, and Clinical Medicine and Rheumatology Unit, Cattinara University Hospital, Trieste, Italy
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, VIC, Australia
| | - Francesca Li Gobbi
- Rheumatology Unit, Hospital S. Giovanni di Dio, Azienda USL-Toscana Centro, Florence, Italy
| | - Giovanni Rosario Biasi
- Department of Medical Sciences, Surgery and Neurosciences, Research Center of Systemic Autoinflammatory Diseases and Behçet’s Disease Clinic, University of Siena, Siena, Italy
- Azienda Ospedaliero-Universitaria Senese [European Reference Network (ERN) for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) Center], Siena, Italy
| | - Riccardo Terribili
- Department of Medical Sciences, Surgery and Neurosciences, Research Center of Systemic Autoinflammatory Diseases and Behçet’s Disease Clinic, University of Siena, Siena, Italy
- Azienda Ospedaliero-Universitaria Senese [European Reference Network (ERN) for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) Center], Siena, Italy
| | - Piero Ruscitti
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Emanuela Del Giudice
- Pediatric and Neonatology Unit, Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Latina, Italy
| | - Samar Tharwat
- Rheumatology and Immunology Unit, Internal Medicine Department, Mansoura University, Mansoura, Egypt
- Department of Internal Medicine, Faculty of Medicine, Horus University, New Damietta, Egypt
| | - Antonio Luca Brucato
- Department of Biomedical and Clinical Sciences, Fatebenefratelli Hospital, Università di Milano, Milan, Italy
| | - Benson Ogunjimi
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing, University of Antwerp, Antwerp, Belgium
- Antwerp Center for Translational Immunology and Virology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
- Department of Pediatrics, Antwerp University Hospital, Antwerp, Belgium
- Center for Health Economics Research and Modeling Infectious Diseases, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Andrea Hinojosa-Azaola
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Alberto Balistreri
- Bioengineering and Biomedical Data Science Lab, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Claudia Fabiani
- Azienda Ospedaliero-Universitaria Senese [European Reference Network (ERN) for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) Center], Siena, Italy
- Ophthalmology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Bruno Frediani
- Department of Medical Sciences, Surgery and Neurosciences, Research Center of Systemic Autoinflammatory Diseases and Behçet’s Disease Clinic, University of Siena, Siena, Italy
- Azienda Ospedaliero-Universitaria Senese [European Reference Network (ERN) for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) Center], Siena, Italy
| | - Luca Cantarini
- Department of Medical Sciences, Surgery and Neurosciences, Research Center of Systemic Autoinflammatory Diseases and Behçet’s Disease Clinic, University of Siena, Siena, Italy
- Azienda Ospedaliero-Universitaria Senese [European Reference Network (ERN) for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) Center], Siena, Italy
| |
Collapse
|
22
|
de Jong MME, Fokkema C, Papazian N, Czeti Á, Appelman MK, Vermeulen M, van Heusden T, Hoogenboezem RM, van Beek G, Tahri S, Sanders MA, van de Woestijne PC, Gay F, Moreau P, Büttner-Herold M, Bruns H, van Duin M, Broijl A, Sonneveld P, Cupedo T. An IL-1β-driven neutrophil-stromal cell axis fosters a BAFF-rich protumor microenvironment in individuals with multiple myeloma. Nat Immunol 2024; 25:820-833. [PMID: 38600356 DOI: 10.1038/s41590-024-01808-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 03/11/2024] [Indexed: 04/12/2024]
Abstract
Human bone marrow permanently harbors high numbers of neutrophils, and a tumor-supportive bias of these cells could significantly impact bone marrow-confined malignancies. In individuals with multiple myeloma, the bone marrow is characterized by inflammatory stromal cells with the potential to influence neutrophils. We investigated myeloma-associated alterations in human marrow neutrophils and the impact of stromal inflammation on neutrophil function. Mature neutrophils in myeloma marrow are activated and tumor supportive and transcribe increased levels of IL1B and myeloma cell survival factor TNFSF13B (BAFF). Interactions with inflammatory stromal cells induce neutrophil activation, including BAFF secretion, in a STAT3-dependent manner, and once activated, neutrophils gain the ability to reciprocally induce stromal activation. After first-line myeloid-depleting antimyeloma treatment, human bone marrow retains residual stromal inflammation, and newly formed neutrophils are reactivated. Combined, we identify a neutrophil-stromal cell feed-forward loop driving tumor-supportive inflammation that persists after treatment and warrants novel strategies to target both stromal and immune microenvironments in multiple myeloma.
Collapse
Affiliation(s)
- Madelon M E de Jong
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Cathelijne Fokkema
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Natalie Papazian
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Ágnes Czeti
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Marjolein K Appelman
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Michael Vermeulen
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Teddie van Heusden
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Remco M Hoogenboezem
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Gregory van Beek
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Sabrin Tahri
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Mathijs A Sanders
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | | | - Francesca Gay
- Clinical Trial Unit, Division of Hematology, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, University of Torino, Torino, Italy
| | - Philippe Moreau
- Department of Hematology, Nantes University Hospital Hotel-Dieu, Nantes, France
| | - Maike Büttner-Herold
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich Alexander University Erlangen-Nuremberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Heiko Bruns
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich Alexander University Erlangen-Nuremberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mark van Duin
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Annemiek Broijl
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Pieter Sonneveld
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands.
| | - Tom Cupedo
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands.
| |
Collapse
|
23
|
Sekaran S, Warrier S, Selvaraj V, Ganapathy D, Ramasamy P. NLRP3 Inflammasome: A Potential Therapeutic Target in Head and Neck Cancers. Clin Oncol (R Coll Radiol) 2024; 36:e115-e117. [PMID: 38368227 DOI: 10.1016/j.clon.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/09/2024] [Indexed: 02/19/2024]
Affiliation(s)
- S Sekaran
- Department of Prosthodontics, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - S Warrier
- Department of Biotechnology, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - V Selvaraj
- Department of Biomedical Engineering, Indian Institute of Technology, Chennai, Tamil Nadu, India
| | - D Ganapathy
- Department of Prosthodontics, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - P Ramasamy
- Department of Prosthodontics, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India; Polymer Research Laboratory, Centre for Marine Research and Conservation, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| |
Collapse
|
24
|
Meybodi SM, Ejlalidiz M, Manshadi MR, Raeisi M, Zarin M, Kalhor Z, Saberiyan M, Hamblin MR. Crosstalk between hypoxia-induced pyroptosis and immune escape in cancer: From mechanisms to therapy. Crit Rev Oncol Hematol 2024; 197:104340. [PMID: 38570176 DOI: 10.1016/j.critrevonc.2024.104340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/12/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024] Open
Abstract
Pyroptosis can be triggered through both canonical and non-canonical inflammasome pathways, involving the cleavage of gasdermin (GSDM) protein family members, like GSDMD and GSDME. The impact of pyroptosis on tumors is nuanced, because its role in regulating cancer progression and anti-tumor immunity may vary depending on the tumor type, stage, location, and immune status. However, pyroptosis cannot be simply categorized as promoting or inhibiting tumors based solely on whether it is acute or chronic in nature. The interplay between pyroptosis and cancer is intricate, with some evidence suggesting that chronic pyroptosis may facilitate tumor growth, while the acute induction of pyroptosis could stimulate anti-cancer immune responses. Tumor hypoxia activates hypoxia inducible factor (HIF) signaling to modulate pyroptosis and immune checkpoint expression. Targeting this hypoxia-pyroptosis-immune escape axis could be a promising therapeutic strategy. This review highlights the complex crosstalk between hypoxia, pyroptosis, and immune evasion in the TME.
Collapse
Affiliation(s)
| | - Mahsa Ejlalidiz
- Medical Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadsadegh Rezaeian Manshadi
- Clinical Research Development Center, Imam Hossein Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Raeisi
- Clinical Research Developmental Unit, Hajar Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Maryam Zarin
- Department of Medical Genetics, Semnan University of Medical Sciences, Semnan, Iran
| | - Zahra Kalhor
- Department of Anatomical Sciences, Factulty of Medicine, Kurdistan University of Medical Scidnces, Sanandaj, Iran
| | - Mohammadreza Saberiyan
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran; Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Michael R Hamblin
- Laser Research Centre, University of Johannesburg, Doornfontein, South Africa.
| |
Collapse
|
25
|
Park H, Ko R, Seo J, Ahn GY, Choi SW, Kwon M, Lee SY. Octyl gallate has potent anti-inflammasome activity by directly binding to NLRP3 LRR domain. J Cell Physiol 2024; 239:e31196. [PMID: 38240115 DOI: 10.1002/jcp.31196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 04/12/2024]
Abstract
The NOD-, LRR-, and Pyrin domain-containing protein 3 (NLRP3) inflammasome plays key roles in regulating inflammation. Numerous studies show that the abnormal activation of NLRP3 associates with the initiation and progression of various diseases. Hence, the NLRP3 inflammasome may be a promising therapeutic target for these diseases. Octyl gallate (OG) is a small molecule with antioxidant, antimicrobial, antifungal, and anti-inflammatory activities; however, the mechanism underlying its anti-inflammatory activity is still unclear. Here, we developed a screening system for NLRP3-inflammasome inhibitors. A total of 3287 small molecules were screened for inhibitors of nigericin-induced NLRP3 oligomerization. OG was identified as a novel inhibitor. We show that OG directly targets the LRR domain of NLRP3 and thereby blocks the inflammatory cascade of the NLRP3 inflammasome. This contrasts with the mode-of-action of other direct NLRP3 inhibitors, which all bind to the NACHT domain of NLRP3. Interestingly, OG also inhibits the priming step by downregulating the Raf-MEK1/2-ERK1/2 axis. Thus, OG inhibits the NLRP3 inflammasome by two distinct mechanisms. Importantly, OG injection ameliorated the inflammation in mouse models of foot gout and sepsis. Our study identifies OG as a potential therapeutic agent for NLRP3-associated diseases.
Collapse
Affiliation(s)
- Hana Park
- Department of Life Science, Ewha Womans University, Seoul, South Korea
- The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Ryeojin Ko
- Department of Life Science, Ewha Womans University, Seoul, South Korea
- The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Jeongin Seo
- Department of Life Science, Ewha Womans University, Seoul, South Korea
| | - Guk Young Ahn
- Department of Biotechnology, Biomedical and Chemical Engineering, The Catholic University of Korea, Gyeonggi-do, South Korea
| | - Sung-Wook Choi
- Department of Biotechnology, Biomedical and Chemical Engineering, The Catholic University of Korea, Gyeonggi-do, South Korea
| | - Mijung Kwon
- Department of Life Science, Ewha Womans University, Seoul, South Korea
- The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
- Multitasking Macrophage Research Center, Ewha Womans University, Seoul, South Korea
| | - Soo Young Lee
- Department of Life Science, Ewha Womans University, Seoul, South Korea
- The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
- Multitasking Macrophage Research Center, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
26
|
Tang Y, Zhao F, Zhang X, Niu Y, Liu X, Bu R, Ma Y, Wu G, Li B, Yang H, Wu J. Cistanche phenylethanoid glycosides induce apoptosis and pyroptosis in T-cell lymphoma. Am J Cancer Res 2024; 14:1338-1352. [PMID: 38590417 PMCID: PMC10998756 DOI: 10.62347/gezw9659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
Cistanche deserticola, known for its extensive history in Traditional Chinese Medicine (TCM), is valued for its therapeutic properties. Recent studies have identified its anticancer capabilities, yet the mechanisms underlying these properties remain to be fully elucidated. In this study, we determined that a mixture of four cistanche-derived phenylethanoid glycosides (CPhGs), echinacoside, acteoside, 2-acetylacteoside, and cistanoside A, which are among the main bioactive compounds in C. deserticola, eliminated T-cell lymphoma (TCL) cells by inducing apoptosis and pyroptosis in vitro and attenuated tumor growth in vivo in a xenograft mouse model. At the molecular level, these CPhGs elevated P53 by inhibiting the SIRT2-MDM2/P300 and PI3K/AKT carcinogenic axes and activating PTEN-Bax tumor-suppressing signaling. Moreover, CPhGs activated noncanonical and alternative pathways to trigger pyroptosis. Interestingly, CPhGs did not activate canonical NLRP3-caspase-1 pyroptotic signaling pathway; instead, CPhGs suppressed the inflammasome factor NLRP3 and the maturation of IL-1β. Treatment with a caspase-1/4 inhibitor and silencing of Gasdermin D (GSDMD) or Gasdermin E (GSDME) partially rescued CPhG-induced cell death. Conversely, forced expression of NLRP3 restored cell proliferation. In summary, our results indicate that CPhGs modulate multiple signaling pathways to achieve their anticancer properties and perform dual roles in pyroptosis and NLRP3-driven proliferation. This study offers experimental support for the potential application of CPhGs in the treatment of TCL.
Collapse
Affiliation(s)
- Ying Tang
- School of Life Sciences, Inner Mongolia UniversityHohhot, Inner Mongolia, China
- College of Basic Medicine, Inner Mongolia Medical UniversityHohhot, Inner Mongolia, China
| | - Fangxin Zhao
- School of Life Sciences, Inner Mongolia UniversityHohhot, Inner Mongolia, China
- College of Basic Medicine, Inner Mongolia Medical UniversityHohhot, Inner Mongolia, China
| | - Xuan Zhang
- College of Basic Medicine, Inner Mongolia Medical UniversityHohhot, Inner Mongolia, China
| | - Yan Niu
- College of Basic Medicine, Inner Mongolia Medical UniversityHohhot, Inner Mongolia, China
| | - Xiulan Liu
- College of Basic Medicine, Inner Mongolia Medical UniversityHohhot, Inner Mongolia, China
| | - Renqiqige Bu
- College of Basic Medicine, Inner Mongolia Medical UniversityHohhot, Inner Mongolia, China
| | - Yunlong Ma
- School of Life Sciences, Inner Mongolia Agricultural UniversityHohhot, Inner Mongolia, China
| | - Geyemuri Wu
- College of Basic Medicine, Inner Mongolia Medical UniversityHohhot, Inner Mongolia, China
| | - Beibei Li
- College of Basic Medicine, Inner Mongolia Medical UniversityHohhot, Inner Mongolia, China
| | - Hongxin Yang
- College of Basic Medicine, Inner Mongolia Medical UniversityHohhot, Inner Mongolia, China
| | - Jianqiang Wu
- School of Life Sciences, Inner Mongolia UniversityHohhot, Inner Mongolia, China
- College of Basic Medicine, Inner Mongolia Medical UniversityHohhot, Inner Mongolia, China
| |
Collapse
|
27
|
Stergiou IE, Tsironis C, Papadakos SP, Tsitsilonis OE, Dimopoulos MA, Theocharis S. Unraveling the Role of the NLRP3 Inflammasome in Lymphoma: Implications in Pathogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:2369. [PMID: 38397043 PMCID: PMC10889189 DOI: 10.3390/ijms25042369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Inflammasomes are multimeric protein complexes, sensors of intracellular danger signals, and crucial components of the innate immune system, with the NLRP3 inflammasome being the best characterized among them. The increasing scientific interest in the mechanisms interconnecting inflammation and tumorigenesis has led to the study of the NLRP3 inflammasome in the setting of various neoplasms. Despite a plethora of data regarding solid tumors, NLRP3 inflammasome's implication in the pathogenesis of hematological malignancies only recently gained attention. In this review, we investigate its role in normal lymphopoiesis and lymphomagenesis. Considering that lymphomas comprise a heterogeneous group of hematologic neoplasms, both tumor-promoting and tumor-suppressing properties were attributed to the NLRP3 inflammasome, affecting neoplastic cells and immune cells in the tumor microenvironment. NLRP3 inflammasome-related proteins were associated with disease characteristics, response to treatment, and prognosis. Few studies assess the efficacy of NLRP3 inflammasome therapeutic targeting with encouraging results, though most are still at the preclinical level. Further understanding of the mechanisms regulating NLRP3 inflammasome activation during lymphoma development and progression can contribute to the investigation of novel treatment approaches to cover unmet needs in lymphoma therapeutics.
Collapse
Affiliation(s)
- Ioanna E. Stergiou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.E.S.); (C.T.)
| | - Christos Tsironis
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.E.S.); (C.T.)
| | - Stavros P. Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece;
| | - Ourania E. Tsitsilonis
- Flow Cytometry Unit, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15784 Athens, Greece;
| | - Meletios Athanasios Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, 11528 Athens, Greece;
| | - Stamatios Theocharis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece;
| |
Collapse
|
28
|
Tâlvan CD, Budișan L, Tâlvan ET, Grecu V, Zănoagă O, Mihalache C, Cristea V, Berindan-Neagoe I, Mohor CI. Serum Interleukins 8, 17, and 33 as Potential Biomarkers of Colon Cancer. Cancers (Basel) 2024; 16:745. [PMID: 38398137 PMCID: PMC10886755 DOI: 10.3390/cancers16040745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
This research investigated the serum levels of three interleukins (IL8, IL17A, and IL33) and the possible relationships between them in healthy people and colon cancer patients at different stages. This study involved 82 participants, 42 of whom had colon cancer and 40 were healthy individuals. The cancer patients were classified into four groups according to the TNM staging classification of colon and rectal cancer. Serum levels of the interleukins were measured by the ELISA test. The data were analyzed statistically to compare the demographic characteristics, the interleukin levels across cancer stages, and the correlation between interleukins in both groups. The results showed that women had more early-stage colon cancer diagnoses, while men had more advanced-stage cancer diagnoses. Stage two colon cancer was more common in older people. Younger people, men, and those with early-stage colon cancer had higher levels of interleukins. The levels of IL8 and IL17A were higher in the cancer group, while the level of IL33 was higher in the healthy group. There was a strong correlation between IL8 and IL17A levels in both groups (p = 0.001). IL17A influenced the level of IL33 in the cancer group (p = 0.007). This study suggested that cytokine variation profiles could be useful for detecting colon cancer and predicting its outcome.
Collapse
Affiliation(s)
- Constantin-Dan Tâlvan
- Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.-D.T.); (C.M.); (C.I.M.)
| | - Liviuța Budișan
- Research Center for Functional Genomic, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania; (L.B.); (O.Z.); (V.C.); (I.B.-N.)
| | - Elena-Teodora Tâlvan
- Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.-D.T.); (C.M.); (C.I.M.)
| | - Valentin Grecu
- Faculty of Engineering, “Lucian Blaga” University of Sibiu, 550025 Sibiu, Romania;
| | - Oana Zănoagă
- Research Center for Functional Genomic, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania; (L.B.); (O.Z.); (V.C.); (I.B.-N.)
| | - Cosmin Mihalache
- Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.-D.T.); (C.M.); (C.I.M.)
| | - Victor Cristea
- Research Center for Functional Genomic, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania; (L.B.); (O.Z.); (V.C.); (I.B.-N.)
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomic, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania; (L.B.); (O.Z.); (V.C.); (I.B.-N.)
| | - Călin Ilie Mohor
- Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.-D.T.); (C.M.); (C.I.M.)
| |
Collapse
|
29
|
Samare-Najaf M, Samareh A, Savardashtaki A, Khajehyar N, Tajbakhsh A, Vakili S, Moghadam D, Rastegar S, Mohsenizadeh M, Jahromi BN, Vafadar A, Zarei R. Non-apoptotic cell death programs in cervical cancer with an emphasis on ferroptosis. Crit Rev Oncol Hematol 2024; 194:104249. [PMID: 38145831 DOI: 10.1016/j.critrevonc.2023.104249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023] Open
Abstract
BACKGROUND Cervical cancer, a pernicious gynecological malignancy, causes the mortality of hundreds of thousands of females worldwide. Despite a considerable decline in mortality, the surging incidence rate among younger women has raised serious concerns. Immortality is the most important characteristic of tumor cells, hence the carcinogenesis of cervical cancer cells pivotally requires compromising with cell death mechanisms. METHODS The current study comprehensively reviewed the mechanisms of non-apoptotic cell death programs to provide possible disease management strategies. RESULTS Comprehensive evidence has stated that focusing on necroptosis, pyroptosis, and autophagy for disease management is associated with significant limitations such as insufficient understanding, contradictory functions, dependence on disease stage, and complexity of intracellular pathways. However, ferroptosis represents a predictable role in cervix carcinogenesis, and ferroptosis-related genes demonstrate a remarkable correlation with patient survival and clinical outcomes. CONCLUSION Ferroptosis may be an appropriate option for disease management strategies from predicting prognosis to treatment.
Collapse
Affiliation(s)
- Mohammad Samare-Najaf
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Kerman Regional Blood Transfusion Center, Kerman, Iran.
| | - Ali Samareh
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Nastaran Khajehyar
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Kerman Regional Blood Transfusion Center, Kerman, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Vakili
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Delaram Moghadam
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Rastegar
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Mohsenizadeh
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Kerman Regional Blood Transfusion Center, Kerman, Iran
| | | | - Asma Vafadar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Zarei
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
30
|
Chen S, Xu X, Liu Y, Yao Y, Yang Y, Meng W. Inter-relationships of galectin-3 and NLR family pyrin domain containing 3 inflammasomes with oral lichen planus: a preliminary cross-sectional in vitro study. BMC Oral Health 2024; 24:14. [PMID: 38172822 PMCID: PMC10765663 DOI: 10.1186/s12903-023-03780-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome has been reported to be highly expressed in oral lesions with the potential for malignant development such as oral lichen planus (OLP). And the NLRP3 inflammasome can be activated by galectin-3 (Gal-3) in immune-mediated chronic inflammatory diseases. This study aimed to explore the inter-relationships among Gal-3, NLRP3 inflammasome, and OLP. METHODS A cross-sectional analysis of oral biopsy specimens from 30 patients with Erosive OLP and 30 healthy controls was performed. Immunohistochemical staining was used to evaluate the expression of Gal-3 and NLRP3 inflammasome. Two-sample t-test and Pearson correlation test were applied to analyze the data. RESULTS Erosive OLP patients had significantly higher Gal-3 levels compared with controls (p < 0.0001). A similar pattern emerged for NLRP3 inflammasome. In the overall sample, a positive correlation was observed between Gal-3 and NLRP3 (r = 0.92, p < 0.01). CONCLUSIONS Patients with Erosive OLP lesions showed increased protein expression levels of Gal-3. A positive correlation was observed between Gal-3 and NLRP3 inflammasome.
Collapse
Affiliation(s)
- Siting Chen
- Departments of Oral Medicine, Stomatological Hospital, Southern Medical University NO.366, Jiangnan Road, Guangzhou, Guangdong province, 510280, People's Republic of China
| | - Xiaoheng Xu
- Departments of Oral Medicine, Stomatological Hospital, Southern Medical University NO.366, Jiangnan Road, Guangzhou, Guangdong province, 510280, People's Republic of China
| | - Yang Liu
- Departments of Oral Medicine, Stomatological Hospital, Southern Medical University NO.366, Jiangnan Road, Guangzhou, Guangdong province, 510280, People's Republic of China
| | - Yanmei Yao
- Departments of Oral Medicine, Stomatological Hospital, Southern Medical University NO.366, Jiangnan Road, Guangzhou, Guangdong province, 510280, People's Republic of China
| | - Yinshen Yang
- Departments of Oral Medicine, Stomatological Hospital, Southern Medical University NO.366, Jiangnan Road, Guangzhou, Guangdong province, 510280, People's Republic of China
| | - Wenxia Meng
- Departments of Oral Medicine, Stomatological Hospital, Southern Medical University NO.366, Jiangnan Road, Guangzhou, Guangdong province, 510280, People's Republic of China.
| |
Collapse
|
31
|
Lou S, Wu M, Cui S. Targeting NLRP3 Inflammasome: Structure, Function, and Inhibitors. Curr Med Chem 2024; 31:2021-2051. [PMID: 38310392 DOI: 10.2174/0109298673289984231127062528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 02/05/2024]
Abstract
Inflammasomes are multimeric protein complexes that can detect various physiological stimuli and danger signals. As a result, they perform a crucial function in the innate immune response. The NLRP3 inflammasome, as a vital constituent of the inflammasome family, is significant in defending against pathogen invasion and preserving cellhomeostasis. NLRP3 inflammasome dysregulation is connected to various pathological conditions, including inflammatory diseases, cancer, and cardiovascular and neurodegenerative diseases. This profile makes NLRP3 an applicable target for treating related diseases, and therefore, there are rising NLRP3 inhibitors disclosed for therapy. Herein, we summarized the updated advances in the structure, function, and inhibitors of NLRP3 inflammasome. Moreover, we aimed to provide an overview of the existing products and future directions for drug research and development.
Collapse
Affiliation(s)
- Shengying Lou
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Pharmacy, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Miaolian Wu
- Department of Pharmacy, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| |
Collapse
|
32
|
Bi K, Yang J, Wei X. Alternative splicing variants involved in pyroptosis and cuproptosis contribute to phenotypic remodeling of the tumor microenvironment in cervical cancer. Reprod Sci 2023; 30:3648-3660. [PMID: 37434062 DOI: 10.1007/s43032-023-01284-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/04/2023] [Indexed: 07/13/2023]
Abstract
Cervical cancer (CC) remains a prevalent gynecological malignancy, posing a significant health burden among women worldwide. With the remarkable discoveries of cellular pyroptosis and cuproptosis, there has been a growing focus on exploring the intricate relationship between these two forms of cell death and their impact on tumor progression. In recent years, alternative splicing has emerged as a significant field in cancer research. Thus, the integration of alternative splicing, pyroptosis, and cuproptosis holds immense value in studying their collective impact on the occurrence and progression of cervical cancer. In this study, alternative splicing data of pyroptosis- and cuproptosis-associated genes were integrated with public databases, including TCGA, to establish a prognostic model for cervical cancer based on COX regression modeling. Subsequently, the tumor microenvironment (TME) phenotypes in the high-risk and low-risk patient groups were characterized through a comprehensive bioinformatics analysis. The findings of this study revealed that the low-risk group exhibited a predominant immune-active TME phenotype, while the high-risk group displayed a tumor-favoring metabolic phenotype. These results indicate that the alternative splicing of pyroptosis- and cuproptosis-associated genes plays a pivotal role in remodeling the phenotypic landscape of the cervical cancer TME by modulating immune responses and metabolic pathways. This study provides valuable insights into the interplay between alternative splicing variants involved in pyroptosis and cuproptosis and the TME, contributing to a deeper understanding of cervical cancer pathogenesis and potential therapeutic avenues.
Collapse
Affiliation(s)
- Kewei Bi
- Department of Physiology, College of Basic Medicine, Shenyang Medical College, Shenyang, China
| | - Jialin Yang
- Department of Pathology, College of Basic Medicine, Shenyang Medical College, Shenyang, China
| | - Xuge Wei
- Department of Bioinformatics, Faculty of Biology, College of Basic Medicine, Shenyang Medical College, Shenyang, China.
| |
Collapse
|
33
|
Ramalingam V. NLRP3 inhibitors: Unleashing their therapeutic potential against inflammatory diseases. Biochem Pharmacol 2023; 218:115915. [PMID: 37949323 DOI: 10.1016/j.bcp.2023.115915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
The NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome has been linked to the release of pro-inflammatory cytokines and is essential for innate defence against infection and danger signals. These secreted cytokines improve the inflammatory response caused by tissue damage and associated inflammation. Consequently, the development of NLRP3 inflammasome inhibitors are viable option for the treatment of diverse inflammatory disorders. The significant anti-inflammatory effects of the NLRP3 inhibitors have severe side effects. Hence, the application of NLRP3 inhibitors against inflammatory disease has not yet been understood and most of the developed inhibitors are unsuccessful in clinical trials. The processes behind the NLRP3 complex, priming, and activation are the main emphasis of this review, which also covers therapeutical inhibitors of the NLRP3 inflammasome and potential therapeutic strategies for directing the NLRP3 inflammasome towards clinical development.
Collapse
Affiliation(s)
- Vaikundamoorthy Ramalingam
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
34
|
Zhu QM, Li HX, Ma PQ, Wu LX, Wang TH, Li WB, Zhang L, Yang X, Kong X, Sun YL, Yan T. A potential immunotherapy target for breast cancer: parenchymal and immune-stromal expression of the NLRP3 inflammasome pathway. BMC Cancer 2023; 23:1163. [PMID: 38031068 PMCID: PMC10685553 DOI: 10.1186/s12885-023-11609-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND The NOD-, LRR- and pyrin domain‑containing 3 (NLRP3) inflammasome is a critical component of the innate immune system. It has been known to play an important role in the carcinogenesis and prognosis of breast cancer patients. While the clinical evidence of the relationship between NLRP3 inflammasome activation and long-term survival is still limited, the possible roles of parenchymal or immune-stromal cells of breast cancer tissues in contributing to such carcinogenesis and progression still need to be clarified. This study is an analysis of patients receiving breast cancer surgery in a previous clinical trial. METHODS Immunohistochemistry (IHC) was used to detect the expression levels of NLRP3 inflammasome pathway-related proteins, including NLRP3, caspase-1, apoptosis-associated speck-like protein (ASC), IL-1β, and IL-18, in parenchymal and immune-stromal cells of breast cancer tissues compared to those of adjacent normal tissues, respectively. The relationship between NLRP3 inflammasome expression and clinicopathological characteristics, as well as 5-year survivals were analyzed using the Chi-square test, Kaplan-Meier survival curves, and Cox regression analysis. RESULTS In the parenchymal cells, ASC and IL-18 protein levels were significantly up-regulated in breast cancer tissues compared with adjacent normal tissues (P<0.05). In the immune-stromal cells, all the five NLRP3 inflammasome pathway-related proteins were significantly elevated in breast cancer tissues compared with adjacent normal tissues (P < 0.05). Carcinoma cell embolus was found to significantly correlate with high NLRP3 expression in parenchymal cells of the tumor (x2=4.592, P=0.032), while the expression of caspase-1 was negatively correlated with tumor progression. Histological grades were found to have a positive correlation with IL-18 expression in immune-stromal cells of the tumor (x2=14.808, P=0.001). Kaplan-Meier survival analysis revealed that high IL-18 expression in the immune-stromal cells and the positive carcinoma cell embolus were both associated with poor survival (P < 0.05). The multivariable Cox proportional hazards regression model implied that the high IL-18 expression and positive carcinoma cell embolus were both independent risk factors for unfavorable prognosis. CONCLUSIONS The activation of NLRP3 inflammasome pathways in immune-stromal and tumor parenchymal cells in the innate immune system was not isotropic and the main functions are somewhat different in breast cancer patients. Caspase-1 in parenchymal cells of the tumor was negatively correlated with tumor progression, and upregulation of IL-18 in immune-stromal cells of breast cancer tissues is a promising prognostic biomarker and a potential immunotherapy target. TRIAL REGISTRATION This clinical trial has been registered at the Chictr.org.cn registry system on 21/08/2018 (ChiCTR1800017910).
Collapse
Affiliation(s)
- Qian-Mei Zhu
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Hui-Xian Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Pei-Qing Ma
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lin-Xin Wu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tai-Hang Wang
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wen-Bin Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lin Zhang
- Suzhou Industrial Park Monash Research Institute of Science and Technology, Suzhou, China
- The School of Public Health and Preventive Medicine, Monash University, Victoria, Australia
| | - Xue Yang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yu-Lin Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China.
| | - Tao Yan
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
35
|
Liu W, Peng J, Xiao M, Cai Y, Peng B, Zhang W, Li J, Kang F, Hong Q, Liang Q, Yan Y, Xu Z. The implication of pyroptosis in cancer immunology: Current advances and prospects. Genes Dis 2023; 10:2339-2350. [PMID: 37554215 PMCID: PMC10404888 DOI: 10.1016/j.gendis.2022.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 11/18/2022] Open
Abstract
Pyroptosis is a regulated cell death pathway involved in numerous human diseases, especially malignant tumors. Recent studies have identified multiple pyroptosis-associated signaling molecules, like caspases, gasdermin family and inflammasomes. In addition, increasing in vitro and in vivo studies have shown the significant linkage between pyroptosis and immune regulation of cancers. Pyroptosis-associated biomarkers regulate the infiltration of tumor immune cells, such as CD4+ and CD8+ T cells, thus strengthening the sensitivity to therapeutic strategies. In this review, we explained the relationship between pyroptosis and cancer immunology and focused on the significance of pyroptosis in immune regulation. We also proposed the future application of pyroptosis-associated biomarkers in basic research and clinical practices to address malignant behaviors. Exploration of the underlying mechanisms and biological functions of pyroptosis is critical for immune response and cancer immunotherapy.
Collapse
Affiliation(s)
- Wei Liu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Orthopedic Surgery, The Second Hospital University of South China, Hengyang, Hunan 421001, China
| | - Jinwu Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Pathology, Xiangya Changde Hospital, Changde, Hunan 415000, China
| | - Muzhang Xiao
- Department of Burn and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yuan Cai
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Bi Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wenqin Zhang
- Department of Pathology, Xiangya Changde Hospital, Changde, Hunan 415000, China
| | - Jianbo Li
- Department of Pathology, Xiangya Changde Hospital, Changde, Hunan 415000, China
| | - Fanhua Kang
- Department of Pathology, Xiangya Changde Hospital, Changde, Hunan 415000, China
| | - Qianhui Hong
- Department of Pathology, Xiangya Changde Hospital, Changde, Hunan 415000, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Pathology, Xiangya Changde Hospital, Changde, Hunan 415000, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
36
|
Arrè V, Scialpi R, Centonze M, Giannelli G, Scavo MP, Negro R. The 'speck'-tacular oversight of the NLRP3-pyroptosis pathway on gastrointestinal inflammatory diseases and tumorigenesis. J Biomed Sci 2023; 30:90. [PMID: 37891577 PMCID: PMC10612184 DOI: 10.1186/s12929-023-00983-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023] Open
Abstract
The NLRP3 inflammasome is an intracellular sensor and an essential component of the innate immune system involved in danger recognition. An important hallmark of inflammasome activation is the formation of a single supramolecular punctum, known as a speck, per cell, which is the site where the pro-inflammatory cytokines IL-1β and IL-18 are converted into their bioactive form. Speck also provides the platform for gasdermin D protein activation, whose N-terminus domain perforates the plasma membrane, allowing the release of mature cytokines alongside with a highly inflammatory form of cell death, namely pyroptosis. Although controlled NLRP3 inflammasome-pyroptosis pathway activation preserves mucosal immunity homeostasis and contributes to host defense, a prolonged trigger is deleterious and could lead, in genetically predisposed subjects, to the onset of inflammatory bowel disease, including Crohn's disease and ulcerative colitis, as well as to gastrointestinal cancer. Experimental evidence shows that the NLRP3 inflammasome has both protective and pathogenic abilities. In this review we highlight the impact of the NLRP3-pyroptosis axis on the pathophysiology of the gastrointestinal tract at molecular level, focusing on newly discovered features bearing pro- and anti-inflammatory and neoplastic activity, and on targeted therapies tested in preclinical and clinical trials.
Collapse
Affiliation(s)
- Valentina Arrè
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy
| | - Rosanna Scialpi
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy
| | - Matteo Centonze
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy
| | - Maria Principia Scavo
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy
| | - Roberto Negro
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy.
| |
Collapse
|
37
|
Lu Q, Lao X, Gan J, Du P, Zhou Y, Nong W, Yang Z. Impact of NLRP3 gene polymorphisms (rs10754558 and rs10733113) on HPV infection and cervical cancer in southern Chinese population. Infect Agent Cancer 2023; 18:64. [PMID: 37885032 PMCID: PMC10601328 DOI: 10.1186/s13027-023-00529-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/08/2023] [Indexed: 10/28/2023] Open
Abstract
OBJECTIVE Mutations in the NLRP3gene have previously been linked to certain forms of cancer, but there have not been any specific studies examining the association between NLRP3 polymorphisms and cervical cancer (CC). This study was therefore designed to investigate the effect of NLRP3 gene polymorphisms on HPV infection and cervical cancer in southern Chinese population. METHODS Multiplex PCR and next-generation sequencing approaches were used to assess the NLRP3 rs10754558 and rs10733113 polymorphisms in 404 cervical lesion patients, including 227 diagnosed with CC and 177 diagnosed with cervical intraepithelial neoplasia(CIN), with 419 healthy female controls being included for comparison. Correlations between the rs10754558 and rs10733113 genotypes and alleles in these patients and CC and CIN were then analyzed. RESULTS No correlations were found between NLRP3 rs10754558 and rs10733113 and human papillomavirus(HPV) infection status. Relative to the healthy control group, the NLRP3 rs10754558 GG genotype, CG + GG genotype, and G allele frequencies were significantly increased among patients with cervical lesions (CC and CIN) (OR = 1.815,P = 0.013;OR = 1.383, P = 0.026; OR = 1.284, P = 0.014,respectively), whereas no such differences were observed for rs10733113. A higher cervical lesion risk was detected for patients over the age of 45 exhibiting the rs10754558 GG genotype (OR = 1.848, P = 0.040). Additionally, the risk of CC was elevated in patients with the rs10754558 GG genotype or the G allele relative to patients with the CC genotype or the C allele(OR = 1.830, P = 0.029; OR = 1.281, P = 0.039). The rs10733113 genotypes or alleles were not significantly associated with CC risk (P > 0.05). No association between rs10754558 and rs10733113 genotypes and CC patient clinicopathological features were observed (P > 0.05). Serum NLRP3, IL-1β, and IL-18 levels were significantly elevated in CC patients relative to healthy controls(P < 0.05). Relative to the CC genotype, CC patients harboring the rs10754558 GG genotype exhibited significantly elevated IL-1β and IL-18 levels(P < 0.05). CONCLUSION The rs10754558 polymorphism in the NLRP3 gene may contribute to an elevated risk of CC, although it is not significantly correlated with HPV infection and CC progression.
Collapse
Affiliation(s)
- Qingchun Lu
- Department of Gynecology, Minzu Hospital of Guangxi Zhuang Autonomous Region, Affiliated Minzu Hospital of Guangxi Medical University, Guangxi, China
| | - Xiaoxia Lao
- Department of Clinical Laboratory, Minzu Hospital of Guangxi Zhuang Autonomous Region, Affiliated Minzu Hospital of Guangxi Medical University, Guangxi, China
| | - Jinghua Gan
- Department of Gynecology, Minzu Hospital of Guangxi Zhuang Autonomous Region, Affiliated Minzu Hospital of Guangxi Medical University, Guangxi, China
| | - Ping Du
- Department of Gynecology, Minzu Hospital of Guangxi Zhuang Autonomous Region, Affiliated Minzu Hospital of Guangxi Medical University, Guangxi, China
| | - Yingpei Zhou
- Department of Clinical Laboratory, Minzu Hospital of Guangxi Zhuang Autonomous Region, Affiliated Minzu Hospital of Guangxi Medical University, Guangxi, China
| | - Wenzheng Nong
- Department of Gynecology, Minzu Hospital of Guangxi Zhuang Autonomous Region, Affiliated Minzu Hospital of Guangxi Medical University, Guangxi, China.
| | - Zhige Yang
- Department of Clinical Laboratory, Minzu Hospital of Guangxi Zhuang Autonomous Region, Affiliated Minzu Hospital of Guangxi Medical University, Guangxi, China.
| |
Collapse
|
38
|
Dmytriv TR, Tsiumpala SA, Semchyshyn HM, Storey KB, Lushchak VI. Mitochondrial dysfunction as a possible trigger of neuroinflammation at post-traumatic stress disorder (PTSD). Front Physiol 2023; 14:1222826. [PMID: 37942228 PMCID: PMC10628526 DOI: 10.3389/fphys.2023.1222826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a neuropsychiatric disorder that occurs in approximately 15% of people as a result of some traumatic events. The main symptoms are re-experiencing and avoidance of everything related to this event and hyperarousal. The main component of the pathophysiology of PTSD is an imbalance in the functioning of the hypothalamic-pituitary-adrenal axis (HPA) and development of neuroinflammation. In parallel with this, mitochondrial dysfunction is observed, as in many other diseases. In this review, we focus on the question how mitochondria may be involved in the development of neuroinflammation and its maintaining at PTSD. First, we describe the differences in the operation of the neuro-endocrine system during stress versus PTSD. We then show changes in the activity/expression of mitochondrial proteins in PTSD and how they can affect the levels of hormones involved in PTSD development, as well as how mitochondrial damage/pathogen-associated molecule patterns (DAMPs/PAMPs) trigger development of inflammation. In addition, we examine the possibility of treating PTSD-related inflammation using mitochondria as a target.
Collapse
Affiliation(s)
- Tetiana R. Dmytriv
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Sviatoslav A. Tsiumpala
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Halyna M. Semchyshyn
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Kenneth B. Storey
- Department of Biology, Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Volodymyr I. Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
- Research and Development University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
39
|
Khilwani R, Singh S. Systems Biology and Cytokines Potential Role in Lung Cancer Immunotherapy Targeting Autophagic Axis. Biomedicines 2023; 11:2706. [PMID: 37893079 PMCID: PMC10604646 DOI: 10.3390/biomedicines11102706] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 10/29/2023] Open
Abstract
Lung cancer accounts for the highest number of deaths among men and women worldwide. Although extensive therapies, either alone or in conjunction with some specific drugs, continue to be the principal regimen for evolving lung cancer, significant improvements are still needed to understand the inherent biology behind progressive inflammation and its detection. Unfortunately, despite every advancement in its treatment, lung cancer patients display different growth mechanisms and continue to die at significant rates. Autophagy, which is a physiological defense mechanism, serves to meet the energy demands of nutrient-deprived cancer cells and sustain the tumor cells under stressed conditions. In contrast, autophagy is believed to play a dual role during different stages of tumorigenesis. During early stages, it acts as a tumor suppressor, degrading oncogenic proteins; however, during later stages, autophagy supports tumor cell survival by minimizing stress in the tumor microenvironment. The pivotal role of the IL6-IL17-IL23 signaling axis has been observed to trigger autophagic events in lung cancer patients. Since the obvious roles of autophagy are a result of different immune signaling cascades, systems biology can be an effective tool to understand these interconnections and enhance cancer treatment and immunotherapy. In this review, we focus on how systems biology can be exploited to target autophagic processes that resolve inflammatory responses and contribute to better treatment in carcinogenesis.
Collapse
Affiliation(s)
| | - Shailza Singh
- Systems Medicine Laboratory, National Centre for Cell Science, SPPU Campus, Ganeshkhind Road, Pune 411007, India;
| |
Collapse
|
40
|
Elgohary S, Eissa RA, El Tayebi HM. Thymoquinone, a Novel Multi-Strike Inhibitor of Pro-Tumorigenic Breast Cancer (BC) Markers: CALR, NLRP3 Pathway and sPD-L1 in PBMCs of HR+ and TNBC Patients. Int J Mol Sci 2023; 24:14254. [PMID: 37762557 PMCID: PMC10531892 DOI: 10.3390/ijms241814254] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 09/29/2023] Open
Abstract
Breast cancer (BC) is not only a mass of malignant cells but also a systemic inflammatory disease. BC pro-tumorigenic inflammation has been shown to promote immune evasion and provoke BC progression. The NOD-like receptor (NLR) family pyrin domain-containing protein 3 (NLRP3) inflammasome is activated when pattern recognition receptors (PRRs) sense danger signals such as calreticulin (CALR) from damaged/dying cells, leading to the secretion of interleukin-1β (IL-1β). CALR is a novel BC biological marker, and its high levels are associated with advanced tumors. NLRP3 expression is strongly correlated with an elevated proliferative index Ki67, BC progression, metastasis, and recurrence in patients with hormone receptor-positive (HR+) and triple-negative BC (TNBC). Tumor-associated macrophages (TAMs) secrete high levels of IL-1β promoting endocrine resistance in HR+ BC. Recently, an immunosuppressive soluble form of programmed death ligand 1 (sPD-L1) has been identified as a novel prognostic biomarker in triple-negative breast cancer (TNBC) patients. Interestingly, IL-1β induces sPD-L1 release. BC Patients with elevated IL-1β and sPD-L1 levels show significantly short progression-free survival. For the first time, this study aims to investigate the inhibitory impact of thymoquinone (TQ) on CALR, the NLRP3 pathway and sPD-L1 in HR+ and TNBC. Blood samples were collected from 45 patients with BC. The effect of differing TQ concentrations for different durations on the expression of CALR, NLRP3 complex components and IL-1β as well as the protein levels of sPD-L1 and IL-1β were investigated in the peripheral blood mononuclear cells (PBMCs) and TAMs of TNBC and HR+ BC patients, respectively. The findings showed that TQ significantly downregulated the expression of CALR, NLRP3 components and IL-1β together with the protein levels of secreted IL-1β and sPD-L1. The current findings demonstrated novel immunomodulatory effects of TQ, highlighting its potential role not only as an excellent adjuvant but also as a possible immunotherapeutic agent in HR+ and TNBC patients.
Collapse
Affiliation(s)
- Sawsan Elgohary
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt;
| | - Reda A. Eissa
- Department of Surgery, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt;
| | - Hend M. El Tayebi
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt;
| |
Collapse
|
41
|
Shadab A, Mahjoor M, Abbasi-Kolli M, Afkhami H, Moeinian P, Safdarian AR. Divergent functions of NLRP3 inflammasomes in cancer: a review. Cell Commun Signal 2023; 21:232. [PMID: 37715239 PMCID: PMC10503066 DOI: 10.1186/s12964-023-01235-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/17/2023] [Indexed: 09/17/2023] Open
Abstract
The cancer is a serious health problem, which is The cancer death rate (cancer mortality) is 158.3 per 100,000 men and women per year (based on 2013-2017 deaths). Both clinical and translational studies have demonstrated that chronic inflammation is associated with Cancer progression. However, the precise mechanisms of inflammasome, and the pathways that mediate this phenomenon are not fully characterized. One of the most recently identified signaling pathways, whose activation seems to affect many metabolic disorders, is the "inflammasome" a multiprotein complex composed of NLRP3 (nucleotide-binding domain and leucine-rich repeat protein 3), ASC (apoptosis associated speck-like protein containing a CARD), and procaspase-1. NLRP3 inflammasome activation leads to the processing and secretion of the proinflammatory cytokines interleukin-1β (IL-1β) and IL-18. The goal of this paper is to review new insights on the effects of the NLRP3 inflammasome activation in the complex mechanisms of crosstalk between different organs, for a better understanding of the role of chronic inflammation in cancer pathogenesis. We will provide here a perspective on the current research on NLRP3 inflammasome, which may represent an innovative therapeutic target to reverse the malignancy condition consequences of the inflammation. Video Abstract.
Collapse
Affiliation(s)
- Alireza Shadab
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Iran University of Medical Sciences, Deputy of Health, Tehran, Iran
| | - Mohamad Mahjoor
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abbasi-Kolli
- Iran University of Medical Sciences, Deputy of Health, Tehran, Iran
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Parisa Moeinian
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir-Reza Safdarian
- Immunology Board for Transplantation and Cell-Based Therapeutics (Immuno TACT), Universal Scientific Education and Research Network (USERN) Chicago, Chicago, IL, USA.
- Department of Immunology and Microbiology, Faculty of Veterinary Medicine, Tehran University, Tehran, Iran.
| |
Collapse
|
42
|
Wang G, Liu X, Liu H, Zhang X, Shao Y, Jia X. A novel necroptosis related gene signature and regulatory network for overall survival prediction in lung adenocarcinoma. Sci Rep 2023; 13:15345. [PMID: 37714937 PMCID: PMC10504370 DOI: 10.1038/s41598-023-41998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 09/04/2023] [Indexed: 09/17/2023] Open
Abstract
We downloaded the mRNA expression profiles of patients with LUAD and corresponding clinical data from The Cancer Genome Atlas (TCGA) database and used the Least Absolute Shrinkage and Selection Operator Cox regression model to construct a multigene signature in the TCGA cohort, which was validated with patient data from the GEO cohort. Results showed differences in the expression levels of 120 necroptosis-related genes between normal and tumor tissues. An eight-gene signature (CYLD, FADD, H2AX, RBCK1, PPIA, PPID, VDAC1, and VDAC2) was constructed through univariate Cox regression, and patients were divided into two risk groups. The overall survival of patients in the high-risk group was significantly lower than of the patients in the low-risk group in the TCGA and GEO cohorts, indicating that the signature has a good predictive effect. The time-ROC curves revealed that the signature had a reliable predictive role in both the TCGA and GEO cohorts. Enrichment analysis showed that differential genes in the risk subgroups were associated with tumor immunity and antitumor drug sensitivity. We then constructed an mRNA-miRNA-lncRNA regulatory network, which identified lncRNA AL590666. 2/let-7c-5p/PPIA as a regulatory axis for LUAD. Real-time quantitative PCR (RT-qPCR) was used to validate the expression of the 8-gene signature. In conclusion, necroptosis-related genes are important factors for predicting the prognosis of LUAD and potential therapeutic targets.
Collapse
Affiliation(s)
- Guoyu Wang
- Department of Traditional Chinese Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xue Liu
- Department of Respiration, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huaman Liu
- Department of General Medicine, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinyue Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yumeng Shao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinhua Jia
- Department of Respiration, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
43
|
Samadi M, Kamrani A, Nasiri H, Shomali N, Heris JA, Shahabi P, Ghahremanzadeh K, Mohammadinasab R, Sadeghi M, Sadeghvand S, Shotorbani SS, Akbari M. Cancer immunotherapy focusing on the role of interleukins: A comprehensive and updated study. Pathol Res Pract 2023; 249:154732. [PMID: 37567033 DOI: 10.1016/j.prp.2023.154732] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023]
Abstract
Cytokines bind to specific receptors on target cells to activate intracellular signaling pathways that control diverse cellular functions, such as proliferation, differentiation, migration, and death. They are essential for the growth, activation, and operation of immune cells and the control of immunological reactions to pathogens, cancer cells, and other dangers. Based on their structural and functional properties, cytokines can be roughly categorized into different families, such as the tumor necrosis factor (TNF) family, interleukins, interferons, and chemokines. Leukocytes produce interleukins, a class of cytokines that have essential functions in coordinating and communicating with immune cells. Cancer, inflammation, and autoimmunity are immune-related disorders brought on by dysregulation of cytokine production or signaling. Understanding cytokines' biology to create novel diagnostic, prognostic, and therapeutic methods for various immune-related illnesses is crucial. Different immune cells, including T cells, B cells, macrophages, and dendritic cells, and other cells in the body, including epithelial cells and fibroblasts, generate and secrete interleukins. The present study's main aim is to fully understand interleukins' roles in cancer development and identify new therapeutic targets and strategies for cancer treatment.
Collapse
Affiliation(s)
- Mahmoud Samadi
- Pediatrics Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Kamrani
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Nasiri
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Navid Shomali
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Ahmadian Heris
- Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Shahabi
- Stem Cell and Regenerative Medicine Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Reza Mohammadinasab
- Department of History of Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadreza Sadeghi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahram Sadeghvand
- Pediatrics Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
44
|
Barsoumian HB, He K, Hsu E, Bertolet G, Sezen D, Hu Y, Riad TS, Cortez MA, Welsh JW. NLRP3 agonist enhances radiation-induced immune priming and promotes abscopal responses in anti-PD1 resistant model. Cancer Immunol Immunother 2023; 72:3003-3012. [PMID: 37289257 PMCID: PMC10412467 DOI: 10.1007/s00262-023-03471-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/18/2023] [Indexed: 06/09/2023]
Abstract
Radiotherapy (XRT), a well-known activator of the inflammasome and immune priming, is in part capable of reversing resistance to anti-PD1 treatment. The NLRP3 inflammasome is a pattern recognition receptor which is activated by both exogenous and endogenous stimuli, leading to a downstream inflammatory response. Although NLRP3 is typically recognized for its role in exacerbating XRT-induced tissue damage, the NLRP3 inflammasome can also yield an effective antitumor response when used in proper dosing and sequencing with XRT. However, whether NLRP3 agonist boosts radiation-induced immune priming and promote abscopal responses in anti-PD1 resistant model is still unknown. Therefore, in this study, we paired intratumoral injection of an NLRP3 agonist with XRT to stimulate the immune system in both wild type (344SQ-P) and anti-PD1 resistant (344SQ-R) murine-implanted lung adenocarcinoma models. We found that the combination of XRT + NLPR3 agonist enhanced the control of implanted lung adenocarcinoma primary as well as secondary tumors in a radiological dose-dependent manner, in which 12Gyx3 fractions of stereotactic XRT was better than 5Gyx3, while 1Gyx2 did not improve the NLRP3 effect. Survival and tumor growth data also showed significant abscopal response with the triple therapy (12Gyx3 + NLRP3 agonist + α-PD1) in both 344SQ-P and 344SQ-R aggressively growing models. Multiple pro-inflammatory cytokines (IL-1b, IL-4, IL-12, IL-17, IFN-γ and GM-CSF) were elevated in the serum of mice treated with XRT + NLRP3 or triple therapy. The Nanostring results showed that NLRP3 agonist is capable of increasing antigen presentation, innate function, and T-cell priming. This study can be of particular importance to treat patients with immunologically-cold solid tumors whom are also refractory to prior checkpoint treatments.
Collapse
Affiliation(s)
- Hampartsoum B Barsoumian
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Kewen He
- Department of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| | - Ethan Hsu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Genevieve Bertolet
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Duygu Sezen
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
- Department of Radiation Oncology, Koç University School of Medicine, Istanbul, Turkey
| | - Yun Hu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Thomas S Riad
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Maria Angelica Cortez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - James W Welsh
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
45
|
Nunn AVW, Guy GW, Bell JD. Informing the Cannabis Conjecture: From Life's Beginnings to Mitochondria, Membranes and the Electrome-A Review. Int J Mol Sci 2023; 24:13070. [PMID: 37685877 PMCID: PMC10488084 DOI: 10.3390/ijms241713070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Before the late 1980s, ideas around how the lipophilic phytocannabinoids might be working involved membranes and bioenergetics as these disciplines were "in vogue". However, as interest in genetics and pharmacology grew, interest in mitochondria (and membranes) waned. The discovery of the cognate receptor for tetrahydrocannabinol (THC) led to the classification of the endocannabinoid system (ECS) and the conjecture that phytocannabinoids might be "working" through this system. However, the how and the "why" they might be beneficial, especially for compounds like CBD, remains unclear. Given the centrality of membranes and mitochondria in complex organisms, and their evolutionary heritage from the beginnings of life, revisiting phytocannabinoid action in this light could be enlightening. For example, life can be described as a self-organising and replicating far from equilibrium dissipating system, which is defined by the movement of charge across a membrane. Hence the building evidence, at least in animals, that THC and CBD modulate mitochondrial function could be highly informative. In this paper, we offer a unique perspective to the question, why and how do compounds like CBD potentially work as medicines in so many different conditions? The answer, we suggest, is that they can modulate membrane fluidity in a number of ways and thus dissipation and engender homeostasis, particularly under stress. To understand this, we need to embrace origins of life theories, the role of mitochondria in plants and explanations of disease and ageing from an adaptive thermodynamic perspective, as well as quantum mechanics.
Collapse
Affiliation(s)
- Alistair V. W. Nunn
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK; (G.W.G.); (J.D.B.)
- The Guy Foundation, Beaminster DT8 3HY, UK
| | - Geoffrey W. Guy
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK; (G.W.G.); (J.D.B.)
- The Guy Foundation, Beaminster DT8 3HY, UK
| | - Jimmy D. Bell
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK; (G.W.G.); (J.D.B.)
| |
Collapse
|
46
|
Frankel LR, Addanki S, Ardeljan A, Takab K, Rashid OM. Hemophilus influenzae Infection's Association With Decreased Risk of Breast Cancer. World J Oncol 2023; 14:255-265. [PMID: 37560345 PMCID: PMC10409556 DOI: 10.14740/wjon1617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/19/2023] [Indexed: 08/11/2023] Open
Abstract
Background Hemophilus influenzae (H. influenzae) is a common cause of widespread bacterial infections and has been associated with the stabilization of the microbiome. The microbiome, through modulating systemic inflammation with possible upregulation of the NLRP3 inflammasome, may potentiate the development of breast cancer (BC). The purpose of this study was to therefore evaluate the correlation between previous H. influenzae infection and the incidence of BC. Methods A large national database was used to collect International Classification of Disease Ninth and Tenth Codes to evaluate the incidence of BC between January 2010 and December 2019 in patients with and without H. influenzae history. A retrospective cohort study was performed where these groups of individuals were matched by age range, Charlson Comorbidity Index (CCI), and antibiotic treatment exposure. Significance and relative risk were obtained using standard statistical procedures. Results A total of 13,599 patients were matched by age range and CCI in both the experimental and control groups. BC incidence was 259 (1.905%) in the H. influenzae group compared to 686 (5.044%) in the control group (P < 2.2 × 10-16; odds ratio (OR) = 0.604, 95% confidence interval (CI): 0.553 - 0.660). Matching by antibiotic treatment exposure resulted in two groups of 3,189 patients, in which BC incidence was 98 (3.073 %) in the H. influenzae group compared to 171 (5.362%) in the control group (P < 2.2 × 10-16; OR = 0.584, 95% CI: 0.515 - 0.661). Conclusion The study shows a statistically significant correlation between H. influenzae and a reduced incidence of BC. These results warrant further research regarding H. influenzae's role in upregulating the NLRP3 inflammasome and its potential role in BC prevention and treatment.
Collapse
Affiliation(s)
- Lexi R. Frankel
- Nova Southeastern University, Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, FL, USA
| | - Sunaina Addanki
- Nova Southeastern University, Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, FL, USA
| | - Amalia Ardeljan
- Nova Southeastern University, Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, FL, USA
- Department of Surgery, Michael and Dianne Biennes Comprehensive Cancer Center, Holy Cross Health, Fort Lauderdale, FL, USA
| | - Kazuaki Takab
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, the State University of New York, Buffalo, NY, USA
| | - Omar M. Rashid
- Nova Southeastern University, Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, FL, USA
- Department of Surgery, Michael and Dianne Biennes Comprehensive Cancer Center, Holy Cross Health, Fort Lauderdale, FL, USA
- University of Miami, Leonard Miami School of Medicine, Miami, FL, USA
- Department of Surgical Oncology, Massachusetts General Hospital, Boston, MA, USA
- Department of Surgical Oncology, Broward Health, Fort Lauderdale, FL, USA
- TopLine MD Alliance, Fort Lauderdale, FL, USA
- Department of Surgical Oncology Memorial Health, Pembroke Pines, FL, USA
- Department of Surgical Oncology, Delray Medical Center, Delray, FL, USA
| |
Collapse
|
47
|
DAL Z, ARU B. The role of curcumin on apoptosis and NLRP3 inflammasome-dependent pyroptosis on colorectal cancer in vitro. Turk J Med Sci 2023; 53:883-893. [PMID: 38031951 PMCID: PMC10760590 DOI: 10.55730/1300-0144.5652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 08/18/2023] [Accepted: 03/27/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common cancers worldwide. Many factors such as stress, lifestyle, and dietary habits are known to play a role in the initiation and progression of the disease. Herbal therapeutic agents including curcumin can hold a great potential against cancer treatment; however, their efficacy on CRC is still under investigation. Herein, we evaluated the anticancer mechanism of curcumin on four different CRC cell lines. METHODS Cells were treated with curcumin for 24, 48 and 72 h, and IC50 doses for each cell line were calculated. Mechanistic studies were conducted with the lowest IC50 dose determined for each cell line by evaluating apoptosis and necrosis, cell division, and NLRP3-mediated pyroptosis. RESULTS Curcumin treatment significantly decreased viability while increasing the SubG1 phase in all cell lines tested, indicating apoptosis is the main programmed cell death pathway activated upon curcumin treatment in CRC. In terms of pyroptosis, components of NLRP3 inflammasome were found to be elevated in SW480 and HCT116 cell lines, although to a lesser extent in the latter, and NLRP3 inflammasome activation was not observed in LoVo and HT29 cells. DISCUSSION Our results reveal that while curcumin effectively induces apoptosis, its effects on NLRP3-inflammasome mediated pyroptosis vary. Our results underline the need for further research focusing on the other inflammasome complexes to confirm the differential effects of curcumin on CRC.
Collapse
Affiliation(s)
- Zeynep DAL
- 6th Phase Student, Faculty of Medicine, Yeditepe University, İstanbul,
Turkiye
| | - Başak ARU
- Department of Immunology, Faculty of Medicine, Yeditepe University, İstanbul,
Turkiye
| |
Collapse
|
48
|
Katsi V, Papakonstantinou I, Tsioufis K. Atherosclerosis, Diabetes Mellitus, and Cancer: Common Epidemiology, Shared Mechanisms, and Future Management. Int J Mol Sci 2023; 24:11786. [PMID: 37511551 PMCID: PMC10381022 DOI: 10.3390/ijms241411786] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/03/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The involvement of cardiovascular disease in cancer onset and development represents a contemporary interest in basic science. It has been recognized, from the most recent research, that metabolic syndrome-related conditions, ranging from atherosclerosis to diabetes, elicit many pathways regulating lipid metabolism and lipid signaling that are also linked to the same framework of multiple potential mechanisms for inducing cancer. Otherwise, dyslipidemia and endothelial cell dysfunction in atherosclerosis may present common or even interdependent changes, similar to oncogenic molecules elevated in many forms of cancer. However, whether endothelial cell dysfunction in atherosclerotic disease provides signals that promote the pre-clinical onset and proliferation of malignant cells is an issue that requires further understanding, even though more questions are presented with every answer. Here, we highlight the molecular mechanisms that point to a causal link between lipid metabolism and glucose homeostasis in metabolic syndrome-related atherosclerotic disease with the development of cancer. The knowledge of these breakthrough mechanisms may pave the way for the application of new therapeutic targets and for implementing interventions in clinical practice.
Collapse
Affiliation(s)
- Vasiliki Katsi
- Department of Cardiology, Hippokration Hospital, 11527 Athens, Greece
| | | | - Konstantinos Tsioufis
- Department of Cardiology, Hippokration Hospital, 11527 Athens, Greece
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
49
|
Chew ZH, Cui J, Sachaphibulkij K, Tan I, Kar S, Koh KK, Singh K, Lim HM, Lee SC, Kumar AP, Gasser S, Lim LHK. Macrophage IL-1β contributes to tumorigenesis through paracrine AIM2 inflammasome activation in the tumor microenvironment. Front Immunol 2023; 14:1211730. [PMID: 37449203 PMCID: PMC10338081 DOI: 10.3389/fimmu.2023.1211730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
Intracellular recognition of self and non-self -nucleic acids can result in the initiation of effective pro-inflammatory and anti-tumorigenic responses. We hypothesized that macrophages can be activated by tumor-derived nucleic acids to induce inflammasome activation in the tumor microenvironment. We show that tumor conditioned media (CM) can induce IL-1β production, indicative of inflammasome activation in primed macrophages. This could be partially dependent on caspase 1/11, AIM2 and NLRP3. IL-1β enhances tumor cell proliferation, migration and invasion while coculture of tumor cells with macrophages enhances the proliferation of tumor cells, which is AIM2 and caspase 1/11 dependent. Furthermore, we have identified that DNA-RNA hybrids could be the nucleic acid form which activates AIM2 inflammasome at a higher sensitivity as compared to dsDNA. Taken together, the tumor-secretome stimulates an innate immune pathway in macrophages which promotes paracrine cancer growth and may be a key tumorigenic pathway in cancer. Broader understanding on the mechanisms of nucleic acid recognition and interaction with innate immune signaling pathway will help us to better appreciate its potential application in diagnostic and therapeutic benefit in cancer.
Collapse
Affiliation(s)
- Zhi Huan Chew
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Jianzhou Cui
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Karishma Sachaphibulkij
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Isabelle Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Shreya Kar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kai Kiat Koh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Kritika Singh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Hong Meng Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Soo Chin Lee
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Haematology-Oncology, National University Hospital, Singapore, Singapore
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Haematology-Oncology, National University Hospital, Singapore, Singapore
| | - Stephan Gasser
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Roche Pharma Research and Early Development, Roche Innovation Center, Roche Glycart AG, Schlieren, Switzerland
| | - Lina H. K. Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
50
|
Chen Z, Ge L, Xu S, Li Q, Zhou L. A novel defined pyroptosis-related gene signature predicts prognosis and correlates with the tumour immune microenvironment in lung adenocarcinoma. Sci Rep 2023; 13:9921. [PMID: 37337018 DOI: 10.1038/s41598-023-36720-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/08/2023] [Indexed: 06/21/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is one of the most common causes of cancer-related death. The role of pyroptosis in LUAD remains unclear. Our study aimed to identify a prognostic signature of pyroptosis-related genes (PRGs) and explore the connection of PRGs with the tumour microenvironment in LUAD. Gene expression and clinical information were obtained from The Cancer Genome Atlas database. Consensus clustering was applied to classify LUAD patients. The least absolute shrinkage and selection operator Cox and multivariate Cox regression models were used to generate a PRG-related prognostic signature. The correlations between PRGs and tumour-infiltrating immune cells or the tumour mutational burden were analysed by Spearman's correlation analysis. In this study, 44 PRGs significantly differed in expression between LUAD and normal tissues. Based on these genes, patients were clustered into three clusters with significantly different distributions of tumour-infiltrating immune cells and immune checkpoint regulators. A total of four PRGs (NLRP1, HMGB1, CYCS, and BAK1) were used to construct a prognostic model. Significant correlations were observed between these prognostic PRGs and immune cell infiltration or the tumour mutational burden. Predictive nomogram results showed that BAK1 could be an independent prognostic biomarker in LUAD. Additionally, the expression level of BAK1 was validated in two independent Gene Expression Omnibus cohorts. Our identified prognostic PRG signature may provide insight for future studies targeting pyroptosis and the tumour microenvironment in LUAD. Future studies are needed to verify our current findings.
Collapse
Affiliation(s)
- Zi Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Linyang Ge
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shuanglan Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qin Li
- Guangzhou Municipal Research Institute of Clinical Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China.
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA.
| | - Linfu Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
- Institute of Integrative Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|