1
|
Raudstein M, Peñaranda MMD, Kjærner-Semb E, Grove S, Morton HC, Edvardsen RB. Generation of IgM + B cell-deficient Atlantic salmon (Salmo salar) by CRISPR/Cas9-mediated IgM knockout. Sci Rep 2025; 15:3599. [PMID: 39875802 PMCID: PMC11775215 DOI: 10.1038/s41598-025-87658-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025] Open
Abstract
Infectious diseases pose significant challenges to Norwegian Atlantic salmon aquaculture. Vaccines are critical for disease prevention; however, a deeper understanding of the immune system is essential to improve vaccine efficacy. Immunoglobulin M (IgM) is the main antibody involved in the systemic immune response of teleosts, including Atlantic salmon. In this study, we used CRISPR/Cas9 technology to knock out the two IgM genes in Atlantic salmon. High-throughput sequencing revealed an average mutagenesis efficiency of 97% across both loci, with a predominance of frameshift mutations (78%). Gene expression analyses demonstrated significantly reduced membrane-bound IgM mRNA levels in head kidney and spleen tissues. Flow cytometry revealed a 78% reduction in IgM+ B cells in peripheral blood, and Western blot analyses showed decreased IgM protein levels in serum. Notably, an upregulation of IgT mRNA was observed, suggesting a potential compensatory mechanism. This work presents the first application of CRISPR/Cas9 to disrupt an immune-related gene in the F0 generation of Atlantic salmon, and lays the foundation for generating a model completely lacking IgM+ B cells which can be used to study the role of B cells and antibodies. This study has implications for advancing immune research in teleosts and for developing strategies to improve salmon health and welfare in aquaculture.
Collapse
Affiliation(s)
| | | | | | - Søren Grove
- Institute of Marine Research, Bergen, Norway
| | | | | |
Collapse
|
2
|
Jenberie S, Sandve SR, To TH, Kent MP, Rimstad E, Jørgensen JB, Jensen I. Transcriptionally distinct B cell profiles in systemic immune tissues and peritoneal cavity of Atlantic salmon ( Salmo salar) infected with salmonid alphavirus subtype 3. Front Immunol 2024; 15:1504836. [PMID: 39691715 PMCID: PMC11649679 DOI: 10.3389/fimmu.2024.1504836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/12/2024] [Indexed: 12/19/2024] Open
Abstract
Teleost B cells producing neutralizing antibodies contribute to protection against salmonid alphavirus (SAV) infection, the etiological agent of pancreas disease, thereby reducing mortality and disease severity. Our previous studies show differences in B cell responses between the systemic immune tissues (head kidney (HK) and spleen) and the peritoneal cavity (PerC) after intraperitoneal SAV3 infection in Atlantic salmon (Salmo salar) where the response in PerC dominates at the late time points. By employing the same infection model, we aimed to further characterize these B cells. Immunophenotyping of teleost B cells is challenging due to limited availability of markers; however, RNA-seq opens an opportunity to explore differences in transcriptomic responses of these cells. Our analysis identified 334, 259 and 613 differentially expressed genes (DEGs) in Atlantic salmon IgM+IgD+ B cells from HK, spleen, and PerC, respectively, at 6 weeks post SAV3 infection. Of these, only 34 were common to all the three immune sites. Additionally, out of the top 100 genes with the highest fold change in expression, only four genes were common across B cells from the three sites. Functional enrichment analyses of DEGs using KEGG and GO databases demonstrated differences in enriched innate immune signaling and the cytokine-cytokine interaction pathways in B cells across the sites, with varying numbers of genes involved. Overall, these findings show the presence of transcriptionally distinct B cell subsets with innate immune functions in HK, spleen and PerC of SAV3-infected Atlantic salmon. Further, our data provide new insights into the immunoregulatory role of fish B cells through the differential expression of various cytokine ligands and receptors and will be a useful resource for further studies into B cell immune compartments.
Collapse
Affiliation(s)
- Shiferaw Jenberie
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, UiT- the Arctic University of Norway, Tromsø, Norway
| | - Simen Rød Sandve
- Center for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Thu-Hien To
- Center for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Matthew Peter Kent
- Center for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Espen Rimstad
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Jorunn B. Jørgensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, UiT- the Arctic University of Norway, Tromsø, Norway
| | - Ingvill Jensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, UiT- the Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
3
|
Jenberie S, Nordli HR, Strandskog G, Greiner-Tollersrud L, Peñaranda MMD, Jørgensen JB, Jensen I. Virus-specific antibody secreting cells reside in the peritoneal cavity and systemic immune sites of Atlantic salmon (Salmo salar) challenged intraperitoneally with salmonid alphavirus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 157:105193. [PMID: 38729458 DOI: 10.1016/j.dci.2024.105193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
The development and persistence of antibody secreting cells (ASC) after antigenic challenge remain inadequately understood in teleosts. In this study, intraperitoneal (ip) injection of Atlantic salmon (Salmo salar) with salmonid alphavirus (WtSAV3) increased the total ASC response, peaking 3-6 weeks post injection (wpi) locally in the peritoneal cavity (PerC) and in systemic lymphoid tissues, while at 13 wpi the response was only elevated in PerC. At the same time point a specific ASC response was induced by WtSAV3 in PerC and systemic tissues, with the highest frequency in PerC, suggesting a local role. Inactivated SAV (InSAV1) induced comparatively lower ASC responses in all sites, and specific serum antibodies were only induced by WtSAV3 and not by InSAV1. An InSAV1 boost did not increase these responses. Expression of immune marker genes implies a role for PerC adipose tissue in the PerC immune response. Overall, the study suggests the Atlantic salmon PerC as a secondary immune site and an ASC survival niche.
Collapse
Affiliation(s)
- Shiferaw Jenberie
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Henriette Rogstad Nordli
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Guro Strandskog
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Linn Greiner-Tollersrud
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Ma Michelle D Peñaranda
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Jorunn B Jørgensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Ingvill Jensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
4
|
Jenberie S, van der Wal YA, Jensen I, Jørgensen JB. There and back again? A B cell's tale on responses and spatial distribution in teleosts. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109479. [PMID: 38467322 DOI: 10.1016/j.fsi.2024.109479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
Teleost B cells are of special interest due to their evolutionary position and involvement in vaccine-induced adaptive immune responses. While recent progress has revealed uneven distribution of B cell subsets across the various immune sites and that B cells are one of the early responders to infection, substantial knowledge gaps persist regarding their immunophenotypic profile, functional mechanisms, and what factors lead them to occupy different immune niches. This review aims to assess the current understanding of B cell diversity, their spatial distribution in various systemic and peripheral immune sites, how B cell responses initiate, the sites where these responses develop, their trafficking, and the locations where long-term B cell responses take place.
Collapse
Affiliation(s)
- Shiferaw Jenberie
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - the Arctic University of Norway, Tromsø, Norway.
| | | | - Ingvill Jensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - the Arctic University of Norway, Tromsø, Norway
| | - Jorunn B Jørgensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - the Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
5
|
Thorarinsson R, Ramstad A, Wolf JC, Sindre H, Skjerve E, Rimstad E, Evensen Ø, Rodriguez JF. Effect of pancreas disease vaccines on infection levels and virus transmission in Atlantic salmon ( Salmo salar) challenged with salmonid alphavirus, genotype 2. Front Immunol 2024; 15:1342816. [PMID: 38515753 PMCID: PMC10955579 DOI: 10.3389/fimmu.2024.1342816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
Salmonid alphavirus (SAV) causes pancreas disease (PD), which negatively impacts farmed Atlantic salmon. In this study, fish were vaccinated with a DNA-PD vaccine (DNA-PD) and an oil-adjuvanted, inactivated whole virus PD vaccine (Oil-PD). Controls were two non-PD vaccinated groups. Fish were kept in one tank and challenged by cohabitation with SAV genotype 2 in seawater. Protection against infection and mortality was assessed for 84 days (Efficacy study). Nineteen days post challenge (dpc), subgroups of fish from all treatment groups were transferred to separate tanks and cohabited with naïve fish (Transmission study 1) or fish vaccinated with a homologous vaccine (Transmission study 2), to evaluate virus transmission for 26 days (47 dpc). Viremia, heart RT-qPCR and histopathological scoring of key organs affected by PD were used to measure infection levels. RT-droplet digital PCR quantified shedding of SAV into water for transmission studies. The Efficacy study showed that PD associated growth-loss was significantly lower and clearance of SAV2 RNA significantly higher in the PD-DNA group compared to the other groups. The PD-DNA group had milder lesions in the heart and muscle. Cumulative mortality post challenge was low and not different between groups, but the DNA-PD group had delayed time-to-death. In Transmission study 1, the lowest water levels of SAV RNA were measured in the tanks containing the DNA-PD group at 21 and 34 dpc. Despite this, and irrespective of the treatment group, SAV2 was effectively transmitted to the naïve fish during 26-day cohabitation. At 47 dpc, the SAV RNA concentrations in the water were lower in all tanks compared to 34 dpc. In Transmission study 2, none of the DNA-PD immunized cohabitants residing with DNA-PD-vaccinated, pre-challenged fish got infected. In contrast, Oil-PD immunized cohabitants residing with Oil-PD-vaccinated, pre-challenged fish, showed infection levels similar to the naïve cohabitants in Transmission study 1. The results demonstrate that the DNA-PD vaccine may curb the spread of SAV infection as the DNA-PD vaccinated, SAV2 exposed fish, did not spread the infection to cohabiting DNA-PD vaccinated fish. This signifies that herd immunity may be achieved by the DNA-PD vaccine, a valuable tool to control the PD epizootic in farmed Atlantic salmon.
Collapse
Affiliation(s)
| | | | - Jeffrey C. Wolf
- Experimental Pathology Laboratories Inc., Sterling, VA, United States
| | | | - Eystein Skjerve
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Espen Rimstad
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Øystein Evensen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | | |
Collapse
|
6
|
Tartor H, Bernhardt LV, Mohammad SN, Kuiper R, Weli SC. In Situ Detection of Salmonid Alphavirus 3 (SAV3) in Tissues of Atlantic Salmon in a Cohabitation Challenge Model with a Special Focus on the Immune Response to the Virus in the Pseudobranch. Viruses 2023; 15:2450. [PMID: 38140691 PMCID: PMC11080939 DOI: 10.3390/v15122450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Salmonid alphavirus strain 3 is responsible for outbreaks of pancreas disease in salmon and rainbow trout in Norway. Although the extensive amount of research on SAV3 focused mainly on the heart and pancreas (of clinical importance), tropism and pathogenesis studies of the virus in other salmon tissues are limited. Here, we used a combination of RT-qPCR (Q_nsp1 gene) and in situ hybridization (RNAscope®) to demonstrate the tropism of SAV3 in situ in tissues of Atlantic salmon, employing a challenge model (by cohabitation). In addition, as previous results suggested that the pseudobranch may harbor the virus, the change in the expression of different immune genes upon SAV3 infection (RT-qPCR) was focused on the pseudobranch in this study. In situ hybridization detected SAV3 in different tissues of Atlantic salmon during the acute phase of the infection, with the heart ventricle showing the most extensive infection. Furthermore, the detection of the virus in different adipose tissues associated with the internal organs of the salmon suggests a specific affinity of SAV3 to adipocyte components. The inconsistent immune response to SAV3 in the pseudobranch after infection did not mitigate the infection in that tissue and is probably responsible for the persistent low infection at 4 weeks post-challenge. The early detection of SAV3 in the pseudobranch after infection, along with the persistent low infection over the experimental infection course, suggests a pivotal role of the pseudobranch in SAV3 pathogenesis in Atlantic salmon.
Collapse
Affiliation(s)
- Haitham Tartor
- Department of Fish Health, Norwegian Veterinary Institute, 1433 Ås, Norway;
| | | | | | - Raoul Kuiper
- Department of Fish Biosecurity, Norwegian Veterinary Institute, 1433 Ås, Norway; (R.K.); (S.C.W.)
| | - Simon C. Weli
- Department of Fish Biosecurity, Norwegian Veterinary Institute, 1433 Ås, Norway; (R.K.); (S.C.W.)
| |
Collapse
|
7
|
van der Wal YA, Nordli H, Akandwanaho A, Greiner-Tollersrud L, Kool J, Jørgensen JB. CRISPR-Cas- induced IRF3 and MAVS knockouts in a salmonid cell line disrupt PRR signaling and affect viral replication. Front Immunol 2023; 14:1214912. [PMID: 37588594 PMCID: PMC10425769 DOI: 10.3389/fimmu.2023.1214912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/26/2023] [Indexed: 08/18/2023] Open
Abstract
Background Interferon (IFN) responses are critical in the resolution of viral infections and are actively targeted by many viruses. They also play a role in inducing protective responses after vaccination and have been successfully tested as vaccine adjuvants. IFN responses are well conserved and function very similar in teleosts and mammals. Like in mammals, IFN responses in piscine cells are initiated by intracellular detection of the viral infection by different pattern recognition receptors. Upon the recognition of viral components, IFN responses are rapidly induced to combat the infection. However, many viruses may still replicate and be able to inhibit or circumvent the IFN response by different means. Methods By employing CRISPR Cas9 technology, we have disrupted proteins that are central for IFN signaling in the salmonid cell line CHSE-214. We successfully generated KO clones for the mitochondrial antiviral signaling protein MAVS, the transcription factors IRF3 and IRF7-1, as well as a double KO for IRF7-1/3 using an optimized protocol for delivery of CRISPR-Cas ribonucleoproteins through nucleofection. Results We found that MAVS and IRF3 KOs inhibited IFN and IFN-stimulated gene induction after intracellular poly I:C stimulation as determined through gene expression and promoter activation assays. In contrast, the IRF7-1 KO had no clear effect. This shows that MAVS and IRF3 are essential for initiation of intracellular RNA-induced IFN responses in CHSE-214 cells. To elucidate viral interference with IFN induction pathways, the KOs were infected with Salmon alphavirus 3 (SAV3) and infectious pancreatic necrosis virus (IPNV). SAV3 infection in control and IRF7-1 KO cells yielded similar titers and no cytopathic effect, while IRF3 and MAVS KOs presented with severe cytopathic effect and increased titers 6 days after SAV 3 infection. In contrast, IPNV yields were reduced in IRF3 and MAVS KOs, suggesting a dependency on interactions between viral proteins and pattern recognition receptor signaling components during viral replication. Conclusion Aside from more insight in this signaling in salmonids, our results indicate a possible method to increase viral titers in salmonid cells.
Collapse
Affiliation(s)
- Yorick A. van der Wal
- Vaxxinova Research & Development GmbH, Münster, Germany
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Henriette Nordli
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - Linn Greiner-Tollersrud
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Jaap Kool
- Vaxxinova Research & Development GmbH, Münster, Germany
| | - Jorunn B. Jørgensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
8
|
Shi X, Chi H, Sun Y, Tang X, Xing J, Sheng X, Zhan W. The Early Peritoneal Cavity Immune Response to Vibrio Anguillarum Infection and to Inactivated Bacterium in Olive Flounder ( Paralichthys olivaceus). Microorganisms 2022; 10:2175. [PMID: 36363767 PMCID: PMC9693283 DOI: 10.3390/microorganisms10112175] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/25/2022] [Accepted: 11/01/2022] [Indexed: 10/29/2023] Open
Abstract
The peritoneal cavity plays an important role in the immune response, and intraperitoneal administration is an ideal vaccination route in fish. However, immune responses in the peritoneal cavity of teleost fish are still not completely characterized. This study characterized the morphology of peritoneal cavity cells (PerC cells) and their composition in flounder (Paralichthys olivaceus). Flow cytometric analysis of the resident PerC cells revealed two populations varying in granularity and size. One population, approximately 15.43% ± 1.8%, was smaller with a lower granularity, designated as lymphocytes. The other population of the cells, about 78.17% ± 3.52%, was larger with higher granularity and was designated as myeloid cells. The results of cytochemical staining and transmission electron microscopy indicated that peritoneal cavity in flounder normally contains a resident population of leukocytes dominated by granulocytes, macrophages, dendritic cells, and lymphocytes. The percentages of IgM+, CD4+, G-CSFR+, MHCII+, and CD83+ leukocytes among PerC cells determined by flow cytometry were 3.13% ± 0.4%, 2.83% ± 0.53%, 21.12% ± 1.44%, 27.11% ± 3.30%, and 19.64% ± 0.31%, respectively. Further, the changes in IgM+, CD4+, G-CSFR+, MHCII+, and CD83+ leukocytes in flounder after Vibrio anguillarum infection and immunization were compared. The composition changed rapidly after the infection or vaccination treatment and included two stages, a non-specific stage dominated by phagocytes and a specific immune stage dominated by lymphocytes. Due to the virulence effectors of bacteria, the infected group exhibited a more intense and complicated PerC cells immune response than that of the immunization group. Following our previous study, this is the first report on the morphology and composition of PerC cells and the early activation of PerC cells in flounder response to V. anguillarum infection and vaccination.
Collapse
Affiliation(s)
- Xueyan Shi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Yuanyuan Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
9
|
Simón R, Martín-Martín A, Morel E, Díaz-Rosales P, Tafalla C. Functional and Phenotypic Characterization of B Cells in the Teleost Adipose Tissue. Front Immunol 2022; 13:868551. [PMID: 35619704 PMCID: PMC9127059 DOI: 10.3389/fimmu.2022.868551] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
The immune response of the adipose tissue (AT) has been neglected in most animal models until investigations in human and mice linked obesity to chronic inflammation, highlighting the immune nature of this tissue. Despite this, in teleost fish, only a few studies have addressed the immune role of the AT. These studies have mostly focused on reporting transcriptional changes in the AT in response to diverse intraperitoneally delivered stimuli. Although the presence of B cells within the AT was also previously revealed, these cells have never been phenotypically or functionally characterized and this is what we have addressed in the current study. Initially, the B cell populations present in the rainbow trout (Oncorhynchus mykiss) AT were characterized in comparison to B cells from other sources. As occurs in other rainbow trout tissues, IgM+IgD+, IgM+IgD- and IgD+IgM- B cell subsets were identified in the AT. Interestingly, AT IgM+IgD- B cells showed a transcriptional profile that agrees with that of cells that have committed to plasmablasts/plasma cells, being this profile much more pronounced towards a differentiation state than that of blood IgM+IgD- B cells. Accordingly, the IgM-secreting capacity of AT B cells is significantly higher than that of blood B cells. Additionally, AT IgM+IgD+ B cells also showed specific phenotypic traits when compared to their counterparts in other tissues. Finally, we established how these B cell subsets responded when rainbow trout were intraperitoneally injected with a model antigen. Our results demonstrate that the AT hosts plasmablasts/plasma cells that secrete specific IgMs, as happens in the peritoneal cavity and systemic immune tissues. Although the presence of these antigen-specific IgM-secreting cells was more abundant in the peritoneal cavity, these specific differentiated B cells were detected in the AT for long time periods at levels similar to those of spleen and head kidney. Our results provide new evidence regarding the immune role of the teleost AT, indicating that it functions as a secondary lymphoid organ that promotes immunity to peritoneal antigens.
Collapse
Affiliation(s)
- Rocío Simón
- Animal Health Research Center, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Madrid, Spain
| | - Alba Martín-Martín
- Animal Health Research Center, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Madrid, Spain
| | - Esther Morel
- Animal Health Research Center, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Madrid, Spain
| | - Patricia Díaz-Rosales
- Animal Health Research Center, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Madrid, Spain
| | - Carolina Tafalla
- Animal Health Research Center, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Madrid, Spain
| |
Collapse
|
10
|
van der Wal YA, Jenberie S, Nordli H, Greiner-Tollersrud L, Kool J, Jensen I, Jørgensen JB. The importance of the Atlantic salmon peritoneal cavity B cell response: Local IgM secreting cells are predominant upon Piscirickettsia salmonis infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 123:104125. [PMID: 34087290 DOI: 10.1016/j.dci.2021.104125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/01/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
The intraperitoneal route is favored for administration of inactivated and attenuated vaccines in Atlantic salmon. Nevertheless, the immune responses in the teleost peritoneal cavity (PerC) are still incompletely defined. In this study, we investigated the B cell responses after intraperitoneal Piscirickettsia salmonis (P. salmonis) challenge of Atlantic salmon, focusing on the local PerC response versus responses in the lymphatic organs: spleen and head kidney. We observed a major increase of leukocytes, total IgM antibody secreting cells (ASC), and P. salmonis-specific ASC in the PerC at 3- and 6-weeks post infection (wpi). The increase in ASC frequency was more prominent in the spleen and PerC compared to the head kidney during the observed 6 wpi. The serum antibody response included P. salmonis-specific antibodies and non-specific antibodies recognizing the non-related bacterial pathogen Yersinia ruckeri and the model antigen TNP-KLH. Finally, we present evidence that supports a putative role for the adipose tissue in the PerC immune response.
Collapse
Affiliation(s)
- Yorick A van der Wal
- Vaxxinova Research & Development GmbH, Münster, Germany; Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, UiT the Arctic University of Norway, Tromsø, Norway
| | - Shiferaw Jenberie
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, UiT the Arctic University of Norway, Tromsø, Norway
| | - Henriette Nordli
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, UiT the Arctic University of Norway, Tromsø, Norway
| | - Linn Greiner-Tollersrud
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, UiT the Arctic University of Norway, Tromsø, Norway
| | - Jaap Kool
- Vaxxinova Research & Development GmbH, Münster, Germany
| | - Ingvill Jensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, UiT the Arctic University of Norway, Tromsø, Norway
| | - Jorunn B Jørgensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, UiT the Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
11
|
Non-Lethal Sequential Individual Monitoring of Viremia in Relation to DNA Vaccination in Fish-Example Using a Salmon Alphavirus DNA Vaccine in Atlantic Salmon Salmo salar. Vaccines (Basel) 2021; 9:vaccines9020163. [PMID: 33671162 PMCID: PMC7922653 DOI: 10.3390/vaccines9020163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/04/2021] [Accepted: 02/04/2021] [Indexed: 11/26/2022] Open
Abstract
Traditionally, commercial testing for vaccine efficacy has relied on the mass infection of vaccinated and unvaccinated animals and the comparison of mortality prevalence and incidence. For some infection models where disease does not cause mortality this approach to testing vaccine efficacy is not useful. Additionally, in fish experimental studies on vaccine efficacy and immune response the norm is that several individuals are lethally sampled at sequential timepoints, and results are extrapolated to represent the kinetics of immune and disease parameters of an individual fish over the entire experimental infection period. In the present study we developed a new approach to vaccine testing for viremic viruses in fish by following the same individuals over the course of a DNA vaccination and experimental infection through repeated blood collection and analyses. Injectable DNA vaccines are particularly efficient against viral disease in fish. To date, two DNA vaccines have been authorised for use in fish farming, one in Canada against Infectious Haemorrhagic Necrotic virus and more recently one in Europe against Salmon Pancreatic Disease virus (SPDv) subtype 3. In the current study we engineered and used an experimental DNA vaccine against SPDv subtype 1. We measured viremia using a reporter cell line system and demonstrated that the viremia phase was completely extinguished following DNA vaccination. Differences in viremia infection kinetics between fish in the placebo group could be related to subsequent antibody levels in the individual fish, with higher antibody levels at terminal sampling in fish showing earlier viremia peaks. The results indicate that sequential non-lethal sampling can highlight associations between infection traits and immune responses measured at asynchronous timepoints and, can provide biological explanations for variation in data. Similar to results observed for the SPDv subtype 3 DNA vaccine, the SPDv subtype 1 DNA vaccine also induced an interferon type 1 response after vaccination and provided high protection against SPDv under laboratory conditions when fish were challenged at 7 weeks post-vaccination.
Collapse
|