1
|
Cui F, Liu R, Wang L, He J, Xu Y. Identification and validation of differentially expressed genes in allergic asthma pathogenesis using whole-transcriptome sequencing. Front Med (Lausanne) 2025; 12:1545095. [PMID: 40309741 PMCID: PMC12041010 DOI: 10.3389/fmed.2025.1545095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 03/21/2025] [Indexed: 05/02/2025] Open
Abstract
Objective This study aims to systematically identify differential gene expression profiles in patients with allergic asthma through whole-transcriptome sequencing and validate the role of these genes in asthma pathogenesis, thereby uncovering potential molecular mechanisms. Methods This study recruited a cohort of 80 individuals diagnosed with allergic asthma and 40 healthy controls. RNA was extracted from both peripheral blood and airway samples, and sequencing was performed using the Illumina NovaSeq 6000 platform. Potential differential genes were confirmed through three independent techniques to validate the findings: quantitative reverse transcription polymerase chain reaction (qRT-PCR), immunohistochemistry, and Western blot analysis. Differential gene expression was analyzed using DESeq2 software, providing a rigorous statistical framework for RNA-Seq data interpretation. Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were employed to elucidate the biological significance of the differentially expressed genes, offering insights into the molecular mechanisms underlying allergic asthma. Results Differential expression analysis identified multiple genes with significant differences between the patient and control groups. Inflammatory-related genes such as IL1B, CCL17, and MUC5AC were significantly upregulated in the patient group (p < 0.05), while regulatory immune factors such as FOXP3 and IFNG showed significantly higher expression in the control group (p < 0.05). Functional enrichment analysis indicated that the differential genes were mainly enriched in immune response, T-cell activation, and MAPK signaling pathways. Experimental validation demonstrated consistency between transcriptomic data and RNA and protein expression levels, further supporting the involvement of these genes in asthma. Conclusion Differential gene expression profiles play a crucial role in the pathogenesis of asthma. This study provides important evidence for understanding the molecular mechanisms of asthma and developing novel targeted therapeutic strategies.
Collapse
Affiliation(s)
- Fang Cui
- Department of Laboratory Medicine, Yanan University Affiliated Hospital, Yan'an, Shaanxi, China
| | - Rui Liu
- Department of Laboratory Medicine, Yanan University Affiliated Hospital, Yan'an, Shaanxi, China
| | - Li Wang
- Department of Laboratory Medicine, Yanan University Affiliated Hospital, Yan'an, Shaanxi, China
| | - Jing He
- Department of Respiratory and Critical Care Medicine, Yanan University Affiliated Hospital, Yan'an, Shaanxi, China
| | - Yanxia Xu
- Department of Respiratory and Critical Care Medicine, Yanan University Affiliated Hospital, Yan'an, Shaanxi, China
| |
Collapse
|
2
|
Martin-Gonzalez E, Perez-Garcia J, Herrera-Luis E, Martin-Almeida M, Kebede-Merid S, Hernandez-Pacheco N, Lorenzo-Diaz F, González-Pérez R, Sardón O, Hernández-Pérez JM, Poza-Guedes P, Sánchez-Machín I, Mederos-Luis E, Corcuera P, López-Fernández L, Román-Bernal B, Toncheva AA, Harner S, Wolff C, Brandstetter S, Abdel-Aziz MI, Hashimoto S, Vijverberg SJH, Kraneveld AD, Potočnik U, Kabesch M, Maitland-van der Zee AH, Villar J, Melén E, Pino-Yanes M. Epigenome-Wide Association Study of Asthma Exacerbations in Europeans. Allergy 2025; 80:1086-1099. [PMID: 39907155 DOI: 10.1111/all.16490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/03/2024] [Accepted: 01/01/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND Asthma exacerbations (AEs) represent the major contributor to the global asthma burden. Although genetic and environmental factors have been associated with AEs, the role of epigenetics remains uncovered. OBJECTIVE This study aimed to identify whole blood DNA methylation (DNAm) markers associated with AEs in Europeans. METHODS DNAm was assessed in 406 blood samples from Spanish individuals using the Infinium MethylationEPIC microarray (Illumina). An epigenome-wide association study was conducted to test the association of DNAm with AEs at differentially methylated positions, regions, and epigenetic modules. CpGs suggestively associated with AEs (false discovery rate [FDR] < 0.1) were followed up for replication in 222 European individuals, and the genome-wide significance (p < 9 × 10-8) was declared after meta-analyzing the discovery and replication samples. Additional assessment was performed using nasal tissue DNAm data from 155 Spanish individuals. The effects of genetic variation on DNAm were assessed through cis-methylation quantitative trait loci (meQTL) analysis. Enrichment analyses of previous EWAS signals were conducted. RESULTS Four CpGs were associated with AEs, and two were replicated and reached genomic significance in the meta-analysis (annotated to ZBTB16 and BAIAP2). Of those, CpG cg25345365 (ZBTB16) was cross-tissue validated in nasal epithelium (p= 0.003) and associated with five independent meQTLs (FDR < 0.05). Additionally, four differentially methylated regions and one module were significantly associated with AEs. Enrichment analyses revealed an overrepresentation of prior epigenetic associations with prenatal and environmental exposures, immune-mediated diseases, and mortality. CONCLUSIONS DNAm in whole blood and nasal samples may contribute to AEs in Europeans, capturing genetic and environmental risk factors.
Collapse
Affiliation(s)
- Elena Martin-Gonzalez
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), La Laguna, Spain
| | - Javier Perez-Garcia
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), La Laguna, Spain
| | - Esther Herrera-Luis
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Mario Martin-Almeida
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), La Laguna, Spain
| | - Simon Kebede-Merid
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Natalia Hernandez-Pacheco
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Fabian Lorenzo-Diaz
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), La Laguna, Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), La Laguna, Spain
| | - Ruperto González-Pérez
- Allergy Department, Hospital Universitario de Canarias, La Laguna, Spain
- Severe Asthma Unit, Allergy Department, Hospital Universitario de Canarias, La Laguna, Spain
| | - Olaia Sardón
- Division of Pediatric Respiratory Medicine, Hospital Universitario Donostia, San Sebastián, Spain
- Department of Pediatrics, University of the Basque Country (UPV/EHU), San Sebastián, Spain
| | - José M Hernández-Pérez
- Department of Respiratory Medicine, Hospital Universitario de N.S de Candelaria, Santa Cruz de Tenerife, Spain
- Respiratory Medicine, Hospital Universitario de La Palma, Santa Cruz de Tenerife, Spain
| | - Paloma Poza-Guedes
- Allergy Department, Hospital Universitario de Canarias, La Laguna, Spain
- Severe Asthma Unit, Allergy Department, Hospital Universitario de Canarias, La Laguna, Spain
| | | | - Elena Mederos-Luis
- Allergy Department, Hospital Universitario de Canarias, La Laguna, Spain
| | - Paula Corcuera
- Division of Pediatric Respiratory Medicine, Hospital Universitario Donostia, San Sebastián, Spain
| | - Leyre López-Fernández
- Division of Pediatric Respiratory Medicine, Hospital Universitario Donostia, San Sebastián, Spain
| | | | - Antoaneta A Toncheva
- University Children's Hospital Regensburg (KUNO), Hospital St. Hedwig of the Order of St. John, University of Regensburg, Regensburg, Germany
| | - Susanne Harner
- University Children's Hospital Regensburg (KUNO), Hospital St. Hedwig of the Order of St. John, University of Regensburg, Regensburg, Germany
| | - Christine Wolff
- University Children's Hospital Regensburg (KUNO), Hospital St. Hedwig of the Order of St. John, University of Regensburg, Regensburg, Germany
| | - Susanne Brandstetter
- University Children's Hospital Regensburg (KUNO), Hospital St. Hedwig of the Order of St. John, University of Regensburg, Regensburg, Germany
| | - Mahmoud Ibrahim Abdel-Aziz
- Pulmonary Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Clinical Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Simone Hashimoto
- Pulmonary Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, the Netherlands
- Pediatric Pulmonology, Emma's Childrens Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Susanne J H Vijverberg
- Pulmonary Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Uroš Potočnik
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia
- Department for Science and Research, University Medical Centre Maribor, Maribor, Slovenia
| | - Michael Kabesch
- Department of Pediatric Pneumology and Allergy, University Children's Hospital Regensburg (KUNO), Regensburg, Germany
- Research and Development Campus Regensburg (WECARE) at the Hospital St. Hedwig of the Order of St. John, Regensburg, Germany
| | - Anke H Maitland-van der Zee
- Pulmonary Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, the Netherlands
- Pediatric Pulmonology, Emma's Childrens Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jesús Villar
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Research Unit, Hospital Universitario Dr. Negrín, Fundación Canaria Instituto de Investigación Sanitaria de Canarias, Las Palmas de Gran Canaria, Spain
- Faculty of Health Sciences, Universidad del Atlántico Medio, Las Palmas, Spain
- Li Ka Shing Knowledge Institute at St Michael's Hospital, Toronto, Canada
| | - Erik Melén
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), La Laguna, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain
| |
Collapse
|
3
|
Hong S, Wang H, Qiao L. The Role of miR-144 in Inflammatory Diseases: A Review. Immun Inflamm Dis 2025; 13:e70172. [PMID: 40067024 PMCID: PMC11894823 DOI: 10.1002/iid3.70172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 02/08/2025] [Accepted: 02/27/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND Inflammation, often caused by various stimuli, is a common response to tissue homeostasis disruptions and is considered a key driver of many pathological conditions. MicroRNA-144 (miR-144) has emerged as a critical regulator in inflammatory diseases, with its dysregulation implicated in various pathological conditions. Understanding its role and mechanisms is essential for developing therapeutic strategies. OBJECTIVE This article aimed to evaluate the role of miR-144 in inflammatory diseases through a literature review. METHODS Electronic databases including PubMed, Web of Science, Springer Link, China Knowledge Resource Integrated Database, and Wanfang Data were searched for relevant literature. The following keywords were used and combined differently according to the rules of the databases: "miR-144," "inflammation," "inflammatory," and "immune response." Studies investigating miR-144 in the context of inflammation were included. Data were extracted to assess miR-144's expression patterns and its association with disease severity and outcomes. RESULTS miR-144 was found to be differentially expressed in a range of inflammatory diseases, including sepsis, infectious diseases, respiratory diseases, cardiovascular diseases, digestive diseases, neuropsychiatric diseases, arthritis, and pregnancy complications. The expression patterns varied depending on the disease, with both upregulation and downregulation observed. miR-144 was implicated in the modulation of inflammatory responses through direct and indirect targeting of key proteins and pathways. The review also highlighted the potential of miR-144 as a diagnostic and prognostic biomarker. CONCLUSION miR-144 plays a significant role in the pathogenesis of inflammatory diseases and holds promise as a biomarker. Its expression patterns and regulatory mechanisms offer insights into disease processes and may guide future therapeutic strategies. However, further clinical studies are needed to validate miR-144's utility as a biomarker and to explore its therapeutic potential in a clinical setting.
Collapse
Affiliation(s)
- Shukun Hong
- Department of Intensive Care UnitShengli Oilfield Central HospitalDongyingShandongChina
- Clinical Research Center of Dongying Critical Care MedicineDongyingShandongChina
| | - Hongye Wang
- Department of Obstetrics and GynecologyShengli Oilfield Central HospitalDongyingShandongChina
| | - Lujun Qiao
- Department of Intensive Care UnitShengli Oilfield Central HospitalDongyingShandongChina
- Clinical Research Center of Dongying Critical Care MedicineDongyingShandongChina
| |
Collapse
|
4
|
González D, Infante A, López L, Ceschin D, Fernández-Sanchez MJ, Cañas A, Zafra-Mejía C, Rojas A. Airborne fine particulate matter exposure induces transcriptomic alterations resembling asthmatic signatures: insights from integrated omics analysis. ENVIRONMENTAL EPIGENETICS 2025; 11:dvae026. [PMID: 39850030 PMCID: PMC11753294 DOI: 10.1093/eep/dvae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/20/2024] [Accepted: 12/30/2024] [Indexed: 01/25/2025]
Abstract
Fine particulate matter (PM2.5), an atmospheric pollutant that settles deep in the respiratory tract, is highly harmful to human health. Despite its well-known impact on lung function and its ability to exacerbate asthma, the molecular basis of this effect is not fully understood. This integrated transcriptomic and epigenomic data analysis from publicly available datasets aimed to determine the impact of PM2.5 exposure and its association with asthma in human airway epithelial cells. Differential gene expression and binding analyses identified 349 common differentially expressed genes and genes associated with differentially enriched H3K27ac regions in both conditions. Co-expression network analysis revealed three preserved modules (Protein Folding, Cell Migration, and Hypoxia Response) significantly correlated with PM2.5 exposure and preserved in asthma networks. Pathways dysregulated in both conditions included epithelial function, hypoxia response, interleukin-17 and TNF signaling, and immune/inflammatory processes. Hub genes like TGFB2, EFNA5, and PFKFB3 were implicated in airway remodeling, cell migration, and hypoxia-induced glycolysis. These findings elucidate common altered expression patterns and processes between PM2.5 exposure and asthma, helping to understand their molecular connection. This provides guidance for future research to utilize them as potential biomarkers or therapeutic targets and generates evidence supporting the need for implementing effective air quality management strategies.
Collapse
Affiliation(s)
- Daniel González
- Institute of Human Genetics, School of Medicine, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Alexis Infante
- School of Engineering, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Liliana López
- Department of Statistics, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Danilo Ceschin
- Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Córdoba X5016KEJ, Argentina
- Centro de Investigación en Medicina Traslacional “Severo R. Amuchástegui” (CIMETSA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5016KEJ, Argentina
| | - María José Fernández-Sanchez
- School of Medicine, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
- Pulmonary Unit, Hospital Universitario San Ignacio, Bogotá 110231, Colombia
| | - Alejandra Cañas
- School of Medicine, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
- Pulmonary Unit, Hospital Universitario San Ignacio, Bogotá 110231, Colombia
| | - Carlos Zafra-Mejía
- Grupo de Investigación en Ingeniería Ambiental (GIIAUD), Facultad del Medio Ambiente y Recursos Naturales, Universidad Distrital Francisco José de Caldas, Bogotá 110321, Colombia
| | - Adriana Rojas
- Institute of Human Genetics, School of Medicine, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
- Department of Genetics, University of Córdoba, Córdoba 14071, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba 14004, Spain
- Reina Sofía University Hospital, Córdoba 14004, Spain
| |
Collapse
|
5
|
Du L, Zhang X, Wu C, Zhou R, Chen L, Gui R, Wang W, An M, Wang X. Association of food folate with asthma in US children and adolescents: a cross-sectional study. J Asthma 2024; 61:1706-1714. [PMID: 39012758 DOI: 10.1080/02770903.2024.2380509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/21/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Asthma is a chronic inflammatory disease. Currently, contradictory findings exist regarding the association between food folate and asthma. Therefore, we hypothesize a positive correlation between food folate and asthma. PURPOSE To investigate the possible relationship between food folate intake and the development of asthma in children and adolescents in the United States. METHODS Data from the U.S. National Health and Nutrition Examination Survey (NHANES) from 2009 to 2018 were analyzed cross-sectionally by covariate adjustment using multivariate logistic regression, restricted triple spline curves, threshold effects, and stratified analyses. RESULTS There were 8,821 participants, of whom 1,697 (19.2%) self-reported having received a diagnosis of asthma from a physician or other health professional. After accounting for potential confounders, the adjusted odds ratios (ORs) for asthma in the second (T2, 111-178 µg/day) and third (T3, >178 µg/day) groups were 1.15 (1-1.33) and 1.23 (1.04-1.46), respectively, compared with the group with the lowest food folate intake (T1, <111 µg/day). In addition, the association between food folate intake and asthma showed an inverse L-shaped curve (non-linear relationship, p = 0.003), and stratified analysis further validated the robustness of the results. The OR of asthma in subjects with food folate intake less than 263.9 µg/day was 1.002 (1.001-1.004). CONCLUSION In children and adolescents in the United States, there is a non-linear association (inverted "L" shape) between food folate intake and asthma, with an inflection point at 263.9 micrograms per day.
Collapse
Affiliation(s)
- Linjun Du
- The Third People's Hospital of Liaocheng City, Shandong Province, China
| | - Xiaolan Zhang
- The Third People's Hospital of Liaocheng City, Shandong Province, China
| | - Cuiqing Wu
- Maternal and Child Health Center, Chiping District, Liaocheng City, Shandong Province, China
| | | | - Lifang Chen
- The Third People's Hospital of Liaocheng City, Shandong Province, China
| | - Ruping Gui
- Maternal and Child Health Center, Chiping District, Liaocheng City, Shandong Province, China
| | - Wei Wang
- Tai'an Maternal and Child Health Hospital, Shandong Province, China
| | - Mouzhen An
- Tai'an Maternal and Child Health Hospital, Shandong Province, China
| | - Xia Wang
- Maternal and Child Health Center, Chiping District, Liaocheng City, Shandong Province, China
| |
Collapse
|
6
|
Liao Y, Cavalcante RG, Waller JB, Deng F, Scruggs AM, Huang YJ, Atasoy U, Chen Y, Huang SK. Differences in the DNA methylome of T cells in adults with asthma of varying severity. Clin Epigenetics 2024; 16:139. [PMID: 39380119 PMCID: PMC11459694 DOI: 10.1186/s13148-024-01750-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND DNA methylation plays a critical role in asthma development, but differences in DNA methylation among adults with varying asthma severity are less well-defined. OBJECTIVE To examine how DNA methylomic patterns differ among adults with asthma based on asthma severity and airway inflammation. METHODS Peripheral blood T cells from 35 adults with asthma in Beijing, China, were serially collected over time (130 samples total) and analyzed for global DNA methylation using the Illumina MethylationEPIC Array. Differential methylation was compared among subjects with varying airway inflammation and severity, as measured by fraction of exhaled nitric oxide, forced expiratory volume in one second (FEV1), and Asthma Control Test (ACT) scores. RESULTS Significant differences in DNA methylation were noted among subjects with different degrees of airway inflammation and asthma severity. These differences in DNA methylation were annotated to genes that were enriched in pathways related to asthma or T cell function and included gene ontology categories related to MHC class II assembly, T cell activation, interleukin (IL)-1, and IL-12. Genes related to P450 drug metabolism, glutathione metabolism, and developmental pathways were also differentially methylated in comparisons between subjects with high vs low FEV1 and ACT. Notable genes that were differentially methylated based on asthma severity included RUNX3, several members of the HLA family, AGT, PTPRC, PTPRJ, and several genes downstream of the JAK2 and TNF signaling pathway. CONCLUSION These findings demonstrate how adults with asthma of varying severity possess differences in peripheral blood T cell DNA methylation that contribute to differences in clinical indices of asthma.
Collapse
Affiliation(s)
- Yixuan Liao
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, No.49, Huayuan North Road, Haidian District, Beijing, 100191, China
- Department of Pulmonary and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Raymond G Cavalcante
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan B Waller
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 6301 MSRB III, 1150 W Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Anne M Scruggs
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 6301 MSRB III, 1150 W Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Yvonne J Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 6301 MSRB III, 1150 W Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Ulus Atasoy
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Yahong Chen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, No.49, Huayuan North Road, Haidian District, Beijing, 100191, China.
| | - Steven K Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 6301 MSRB III, 1150 W Medical Center Dr., Ann Arbor, MI, 48109, USA.
| |
Collapse
|
7
|
Connor MG, Hamon MA. Advances in regulation of homeostasis through chromatin modifications by airway commensals. Curr Opin Microbiol 2024; 80:102505. [PMID: 38936013 DOI: 10.1016/j.mib.2024.102505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024]
Abstract
Commensal bacteria are residents of the human airway where they interact with both colonizing pathogens and host respiratory epithelial cells of this mucosal surface. It is here that commensals exert their influence through host signaling cascades, host transcriptional responses and host immunity, all of which are rooted in chromatin remodeling and histone modifications. Recent studies show that airway commensals impact host chromatin, but compared the what is known for gut commensals, the field remains in its infancy. The mechanisms by which airway commensals regulate respiratory health and homeostasis through chromatin modifications is of increasing interest, specifically since their displacement precedes the increased potential for respiratory disease. Herein we will discuss recent advances and intriguing avenues of future work aimed at deciphering how airway commensals protect and influence respiratory health.
Collapse
Affiliation(s)
- Michael G Connor
- Institut Pasteur, Université de Paris Cité, Unité Chromatine et Infection, F-75015 Paris, France.
| | - Melanie A Hamon
- Institut Pasteur, Université de Paris Cité, Unité Chromatine et Infection, F-75015 Paris, France.
| |
Collapse
|
8
|
Potaczek DP, Bazan-Socha S, Wypasek E, Wygrecka M, Garn H. Recent Developments in the Role of Histone Acetylation in Asthma. Int Arch Allergy Immunol 2024; 185:641-651. [PMID: 38522416 DOI: 10.1159/000536460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/22/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND Epigenetic modifications are known to mediate both beneficial and unfavorable effects of environmental exposures on the development and clinical course of asthma. On the molecular level, epigenetic mechanisms participate in multiple aspects of the emerging and ongoing asthma pathology. SUMMARY Studies performed in the last several years expand our knowledge on the role of histone acetylation, a classical epigenetic mark, in the regulation of (patho)physiological processes of diverse cells playing a central role in asthma, including those belonging to the immune system (e.g., CD4+ T cells, macrophages) and lung structure (e.g., airway epithelial cells, pulmonary fibroblasts). Those studies demonstrate a number of specific histone acetylation-associated mechanisms and pathways underlying pathological processes characteristic for asthma, as well as report their modification modalities. KEY MESSAGES Dietary modulation of histone acetylation levels in the immune system might protect against the development of asthma and other allergies. Interfering with the enzymes controlling the histone acetylation status of structural lung and (local) immune cells might provide future therapeutic options for asthmatics. Despite some methodological obstacles, analysis of the histone acetylation levels might improve asthma diagnostics.
Collapse
Affiliation(s)
- Daniel P Potaczek
- Translational Inflammation Research Division and Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University of Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Marburg, Germany
- Center for Infection and Genomics of the Lung (CIGL), Member of the Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- Bioscientia MVZ Labor Mittelhessen GmbH, Giessen, Germany
| | - Stanisława Bazan-Socha
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Ewa Wypasek
- Krakow Center for Medical Research and Technology, John Paul II Hospital, Krakow, Poland
- Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, Krakow, Poland
| | - Małgorzata Wygrecka
- Center for Infection and Genomics of the Lung (CIGL), Member of the Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- Institute of Lung Health, Member of the German Center for Lung Research (DZL), Giessen, Germany
- CSL Behring Innovation GmbH, Marburg, Germany
| | - Holger Garn
- Translational Inflammation Research Division and Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University of Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Marburg, Germany
| |
Collapse
|
9
|
Miron RJ, Estrin NE, Sculean A, Zhang Y. Understanding exosomes: Part 2-Emerging leaders in regenerative medicine. Periodontol 2000 2024; 94:257-414. [PMID: 38591622 DOI: 10.1111/prd.12561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with the ability to communicate with other tissues and cell types over long distances. Their use in regenerative medicine has gained tremendous momentum recently due to their ability to be utilized as therapeutic options for a wide array of diseases/conditions. Over 5000 publications are currently being published yearly on this topic, and this number is only expected to dramatically increase as novel therapeutic strategies continue to be developed. Today exosomes have been applied in numerous contexts including neurodegenerative disorders (Alzheimer's disease, central nervous system, depression, multiple sclerosis, Parkinson's disease, post-traumatic stress disorders, traumatic brain injury, peripheral nerve injury), damaged organs (heart, kidney, liver, stroke, myocardial infarctions, myocardial infarctions, ovaries), degenerative processes (atherosclerosis, diabetes, hematology disorders, musculoskeletal degeneration, osteoradionecrosis, respiratory disease), infectious diseases (COVID-19, hepatitis), regenerative procedures (antiaging, bone regeneration, cartilage/joint regeneration, osteoarthritis, cutaneous wounds, dental regeneration, dermatology/skin regeneration, erectile dysfunction, hair regrowth, intervertebral disc repair, spinal cord injury, vascular regeneration), and cancer therapy (breast, colorectal, gastric cancer and osteosarcomas), immune function (allergy, autoimmune disorders, immune regulation, inflammatory diseases, lupus, rheumatoid arthritis). This scoping review is a first of its kind aimed at summarizing the extensive regenerative potential of exosomes over a broad range of diseases and disorders.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Nathan E Estrin
- Advanced PRF Education, Venice, Florida, USA
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
10
|
Soccio P, Moriondo G, Lacedonia D, Tondo P, Pescatore D, Quarato CMI, Carone M, Foschino Barbaro MP, Scioscia G. MiRNA and Exosomal miRNA as New Biomarkers Useful to Phenotyping Severe Asthma. Biomolecules 2023; 13:1542. [PMID: 37892224 PMCID: PMC10605226 DOI: 10.3390/biom13101542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Severe asthma (SA) is a chronic inflammatory disease of the airways. Due to the extreme heterogeneity of symptoms, new biomarkers are currently needed. MiRNAs are non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. In biological fluids, miRNAs are contained within exosomes, vesicles capable of giving miRNAs considerable stability and resistance to degradation by RNAses. The main function attributed to the exosomes is intercellular communication. The goal of our study was to analyze intracellular and exosomal miRNAs in order to demonstrate their potential use as non-invasive biomarkers of asthma by showing, in particular, their role in SA. We detected miRNAs by qRT-PCR in both serum and serum-derived-exosomes of asthmatic patients and healthy controls. The levels of almost all analyzed intracellular miRNAs (miR-21, miR-223, and let-7a) were greater in asthmatic patients vs. healthy control, except for miR-223. In detail, miR-21 was greater in SA, while let-7a increased in mild-to-moderate asthma. On the other hand, in exosomes, all analyzed miRNAs were higher in SA. This study identified a series of miRNAs involved in SA, highlighting their potential role in asthma development and progression. These results need validation on a larger cohort.
Collapse
Affiliation(s)
- Piera Soccio
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.M.); (D.L.); (P.T.); (D.P.); (M.P.F.B.); (G.S.)
| | - Giorgia Moriondo
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.M.); (D.L.); (P.T.); (D.P.); (M.P.F.B.); (G.S.)
| | - Donato Lacedonia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.M.); (D.L.); (P.T.); (D.P.); (M.P.F.B.); (G.S.)
- Institute of Respiratory Diseases, Policlinico of Foggia, 71122 Foggia, Italy;
| | - Pasquale Tondo
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.M.); (D.L.); (P.T.); (D.P.); (M.P.F.B.); (G.S.)
| | - Dalila Pescatore
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.M.); (D.L.); (P.T.); (D.P.); (M.P.F.B.); (G.S.)
- Institute of Respiratory Diseases, Policlinico of Foggia, 71122 Foggia, Italy;
| | | | - Mauro Carone
- UOC Pulmonology and Pulmonary Rehabilitation, Istituti Clinici Scientifici Maugeri IRCCS—Bari, 70124 Bari, Italy;
| | - Maria Pia Foschino Barbaro
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.M.); (D.L.); (P.T.); (D.P.); (M.P.F.B.); (G.S.)
- Institute of Respiratory Diseases, Policlinico of Foggia, 71122 Foggia, Italy;
| | - Giulia Scioscia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.M.); (D.L.); (P.T.); (D.P.); (M.P.F.B.); (G.S.)
- Institute of Respiratory Diseases, Policlinico of Foggia, 71122 Foggia, Italy;
| |
Collapse
|
11
|
Gao Y, Chen L, Li J, Wen Z. A prognosis prediction chromatin regulator signature for patients with severe asthma. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2023; 19:43. [PMID: 37245015 DOI: 10.1186/s13223-023-00796-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/16/2023] [Indexed: 05/29/2023]
Abstract
Severe asthma imposes a physical and economic burden on both patients and society. As chromatin regulators (CRs) influence the progression of multiple diseases through epigenetic mechanisms, we aimed to study the role of CRs in patients with severe asthma. Transcriptome data (GSE143303) from 47 patients with severe asthma and 13 healthy participants was downloaded from the Gene Expression Omnibus database. Enrichment analysis was performed to investigate the functions of differentially expressed CRs between the groups. We identified 80 differentially expressed CRs; they were mainly enriched in histone modification, chromatin organization, and lysine degradation. A protein-protein interaction network was then constructed. The analyzed immune scores were different between sick and healthy individuals. Thus, CRs with a high correlation in the immune analysis, SMARCC1, SETD2, KMT2B, and CHD8, were used to construct a nomogram model. Finally, using online prediction tools, we determined that lanatoside C, cefepime, and methapyrilene may be potentially effective drugs in the treatment of severe asthma. The nomogram constructed using the four CRs, SMARCC1, SETD2, KMT2B, and CHD8, may be a useful tool for predicting the prognosis of patients with severe asthma. This study provided new insights into the role of CRs in severe asthma.
Collapse
Affiliation(s)
- Yaning Gao
- Beijing Jingmei Group General Hospital, Beijing, China.
| | - Liang Chen
- Beijing Jingmei Group General Hospital, Beijing, China
| | - Jian Li
- Beijing Jingmei Group General Hospital, Beijing, China
| | - Zhengjun Wen
- Beijing Jingmei Group General Hospital, Beijing, China
| |
Collapse
|
12
|
Chen C, Liu C, Zhang K, Xue W. The role of gut microbiota and its metabolites short-chain fatty acids in food allergy. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
13
|
Hu J, Sang J, Hao F, Liu L. Association between vitamin A and asthma: A meta-analysis with trial sequential analysis. Front Pharmacol 2023; 14:1100002. [PMID: 36794278 PMCID: PMC9922757 DOI: 10.3389/fphar.2023.1100002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/18/2023] [Indexed: 02/01/2023] Open
Abstract
Objective: To explore the association between vitamin A (vit A) status and risk of asthma. Methods: PubMed, Web of Science, Embase and the Cochrane Library were electronically searched to identify related studies that reported the association between vit A status and asthma. All databases were searched from inception to November 2022. Two reviewers independently screened literature, extracted data, and assessed risk bias of included studies. Meta-analysis was performed on R software Version 4.1.2 and STATA Version 12.0. Results: A total of 19 observational studies were included. A pooled analysis showed that the serum vit A concentrations in patients with asthma was lower than that in healthy controls (standard mean difference (SMD)= -2.479, 95% confidence interval (CI): -3.719, -.239, 95% prediction interval (PI): -7.510, 2.552), and relatively higher vit A intake in pregnancy was associated with an increased risk of asthma at age 7 years (risk ratio (RR)= 1.181, 95% CI: 1.048, 1.331). No significant correlation was observed between serum vit A levels or vit A intake and the risk of asthma. Conclusion: Our meta-analysis confirms that serum vit A levels are lower in patients with asthma than in healthy controls. Relatively higher vit A intake during pregnancy is associated with an increased risk of asthma at age 7 years. There is no significant correlation between vit A intake and asthma risk in children, nor between serum vit A levels and asthma risk. The effect of vit A may depend on age or developmental stage, diet and genetics. Therefore, further studies are needed to explore the association of vit A and asthma. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/CRD42022358930, identifier CRD42022358930.
Collapse
Affiliation(s)
- Jun Hu
- College of Acupuncture-Moxibustion and Tuina, College of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiajia Sang
- Department of Tuina, Affiliated Hospital of Nanjing University of Chinese Medicine/Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Feng Hao
- College of Acupuncture-Moxibustion and Tuina, College of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Liu
- Central Laboratory, Affiliated Hospital of Nanjing University of Chinese Medicine/Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| |
Collapse
|
14
|
Kaur S, Mishra J, Sehrawat A, Bhatti GK, Navik U, Reddy PH, Bhatti JS. Epigenetic Regulators of Inflammatory Gene Expression. TARGETING EPIGENETICS IN INFLAMMATORY LUNG DISEASES 2023:57-88. [DOI: https:/doi.org/10.1007/978-981-99-4780-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
|
15
|
Long noncoding RNA HOXA-AS2 ameliorates chronic intermittent hypoxia-induced lung inflammation by regulating miR-17-5p/tipe2 axis. Allergol Immunopathol (Madr) 2023; 51:36-44. [PMID: 36916086 DOI: 10.15586/aei.v51i2.701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/27/2022] [Indexed: 03/08/2023]
Abstract
PURPOSE The purpose is to confirm whether long noncoding RNA HOXA-AS2 relieves chronic intermittent hypoxia (CIH)-induced lung inflammation. METHODS Male Sprague Dawley rats were used to establisha CIH rat model. Hematoxylin and Eosin staining was used on the lung tissue injury to determine the successful construction of CIH animal model. Arterial partial pressure of oxygen (PaO2) and carbon dioxide (PaCO2) were measured. HOXA-AS2 was overexpressed to evaluate its role in the progression and development of CIH. T cell differentiation and cytokine production were determined using flow cytometry. Cell apoptosis was determined using terminal deoxynucleotidyl transferase dUTP nick end labelling assay kit. The target of HOXA-AS2 and miR-17-5p was predicted by the Encyclopedia of RNA Interactomes (ENCORI) and confirmed using luciferase assay. RESULTS HOXA-AS2 was downregulated in CIH rat models. Lung tissue injury was observed in CIH rats, and the injury was attenuated by the overexpression of HOXA-AS2. PaO2 was reduced and PaCO2 was induced in CIH rats, which was reversed by the overexpression of HOXA-AS2. The overexpression of HOXA-AS2 inhibited CIH-induced cell apoptosis. It also reversed alterations in the levels of interferon gamma (IFNγ), interleukin (IL)-2, IL-6, IL-1β, tumor necrosis factor alpha (TNF-α), and transforming growth factor beta1 (TGF-β1) in rats caused by CIH. The overexpression of HOXA-AS2 prevented the induction in CD4+ IFN-γ+ T cells and reduction in CD4+TGF-β1+ T cells. The overexpression of HOXA-AS2 upregulated tumor necrosis factor-alpha-induced protein 8-like 2 (tipe2) key regulator through directly targeting miR-17-5p. Further experiments proved that tipe2 was the direct target of miR-17-5p. CONCLUSION This study manifested that HOXA-AS2 acted as an anti-inflammatory regulator and protected lung tissue injury from CIH in the rat model; this was mediated by upregulation of tipe2 through directly targeting miR-17-5p. HOXA-AS2 upregulated the expression of tipe2, providing new understanding and therapeutic target for CIH.
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW The study of microRNA in asthma has revealed a vibrant new level of gene regulation underlying asthma pathology. Several miRNAs have been shown to be important in asthma, influencing various biological mechanisms which lead to asthma pathology and symptoms. In addition, miRNAs have been proposed as biomarkers of asthma affection status, asthma severity, and asthma treatment response. We review all recent asthma-miRNA work, while also presenting comprehensive tables of all miRNA results related to asthma. RECENT FINDINGS We here reviewed 63 recent studies published reporting asthma and miRNA research, and an additional 14 reviews of the same. We summarized the information for both adult and childhood asthma, as well as research on miRNAs in asthma-COPD overlap syndrome (ACOs), and virus-induced asthma exacerbations. We attempted to present a comprehensive collection of recently published asthma-associated miRNAs as well as tables of all published asthma-related miRNA results.
Collapse
Affiliation(s)
- Rinku Sharma
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anshul Tiwari
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael J McGeachie
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Johnson RK, Manke J, Campbell M, Armstrong M, Boorgula MP, Pinheiro G, Santana CVN, Mathias RA, Barnes KC, Cruz A, Reisdorph N, Figueiredo CA. Lipid mediators are detectable in the nasal epithelium and differ by asthma status in female subjects. J Allergy Clin Immunol 2022; 150:965-971.e8. [PMID: 35304161 PMCID: PMC9475490 DOI: 10.1016/j.jaci.2022.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/13/2022] [Accepted: 02/24/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Lipid mediators, bioactive products of polyunsaturated fatty acid metabolism, contribute to inflammation initiation and resolution in allergic diseases; however, their presence in lung-related biosamples has not been fully described. OBJECTIVE We aimed to quantify lipid mediators in the nasal airway epithelium and characterize preliminary associations with asthma. METHODS Using liquid chromatography-mass spectrometry, we conducted a pilot study to quantify 56 lipid mediators from nasal epithelial samples collected from 11 female participants of an outpatient asthma clinic and community controls (aged 30-55 years). We examined the presence of each compound using descriptive statistics to test whether lipid mediators could distinguish subjects with asthma (n = 8) from control subjects (n = 3) using linear regression and partial least squares discriminant analysis. RESULTS Fifteen lipid mediators were detectable in all samples, including resolvin (Rv) D5 (RvD5), with the highest median concentrations (in pg/μg protein) of 13-HODE (126.481), 15-HETE (32.869), and 13-OxoODE (13.251). From linear regression adjusted for age, prostaglandin E2 (PGE2) had a trend (P < .1) for higher concentrations in patients with severe asthma compared to controls (mean difference, 0.95; 95% confidence interval, -0.04 to 1.95). Asthma patients had higher scores on principal component 3 compared to controls (mean difference, 2.42; 95% confidence interval, 0.89 to 3.96), which represented lower levels of proresolving 15-HEPE, 19,20-DiHDPA, RvD5, 14-HDHA, 17-HDHA, and 13-HOTrE. Most of these compounds were best at discriminating asthma cases from controls in partial least squares discriminant analysis. CONCLUSION Lipid mediators are detectable in the nasal epithelium, and their levels distinguish asthma cases from controls.
Collapse
Affiliation(s)
- Randi K Johnson
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colo.
| | - Jonathan Manke
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colo
| | - Monica Campbell
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colo
| | - Michael Armstrong
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colo
| | - Meher Preethi Boorgula
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colo
| | - Gabriela Pinheiro
- Federal University of Bahia and Fundação Program for Control of Asthma in Bahia (ProAR), Salvador, Brazil
| | - Cinthia Vila Nova Santana
- Federal University of Bahia and Fundação Program for Control of Asthma in Bahia (ProAR), Salvador, Brazil
| | - Rasika A Mathias
- Department of Medicine, Division of Allergy & Clinical Immunology, Johns Hopkins University, Baltimore, Md
| | - Kathleen C Barnes
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colo
| | - Alvaro Cruz
- Federal University of Bahia and Fundação Program for Control of Asthma in Bahia (ProAR), Salvador, Brazil
| | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colo
| | - Camila A Figueiredo
- Federal University of Bahia and Fundação Program for Control of Asthma in Bahia (ProAR), Salvador, Brazil; Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| |
Collapse
|
18
|
Wu GR, Zhou M, Wang Y, Zhou Q, Zhang L, He L, Zhang S, Yu Q, Xu Y, Zhao J, Xiong W, Wang CY. Blockade of Mbd2 by siRNA-loaded liposomes protects mice against OVA-induced allergic airway inflammation via repressing M2 macrophage production. Front Immunol 2022; 13:930103. [PMID: 36090987 PMCID: PMC9453648 DOI: 10.3389/fimmu.2022.930103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTo address the role of methyl-CpG-binding domain 2 (MBD2) in the pathogenesis of asthma and its potential as a target for the asthmatic therapy.MethodsStudies were conducted in asthmatic patients and macrophage-specific Mbd2 knockout mice to dissect the role of MBD2 in asthma pathogenesis. Additionally, RNAi-based therapy with Mbd2 siRNA-loaded liposomes was conducted in an ovalbumin (OVA)-induced allergic airway inflammation mouse model.ResultsAsthmatic patients and mice challenged with OVA exhibited upregulated MBD2 expression in macrophages, especially in alternatively activated (M2) macrophages. In particular, macrophage-specific knockout of Mbd2 protected mice from OVA-induced allergic airway inflammation and suppressed the M2 program. Notably, intratracheal administration of liposomes carrying Mbd2 siRNA decreased the expression of Mbd2 and prevented OVA-induced allergic airway inflammation in mice, as indicated by the attenuated airway inflammation and mucus production.ConclusionsThe above data indicate that Mbd2 implicates in the pathogenesis of asthma predominantly by regulating the polarization of M2 macrophages, which supports that Mbd2 could be a viable target for treatment of asthma in clinical settings.
Collapse
Affiliation(s)
- Guo-Rao Wu
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Min Zhou
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Yi Wang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Qing Zhou
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Lei Zhang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Long He
- Department of Clinical Laboratory, Shanghai East Hospital; School of Medicine, Tongji University, Shanghai, China
| | - Shu Zhang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Qilin Yu
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Yongjian Xu
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Weining Xiong
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
- Department of Respiratory and Critical Care Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Cong-Yi Wang, ; Weining Xiong,
| | - Cong-Yi Wang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
- *Correspondence: Cong-Yi Wang, ; Weining Xiong,
| |
Collapse
|
19
|
Hernandez-Pacheco N, Kere M, Melén E. Gene-environment interactions in childhood asthma revisited; expanding the interaction concept. Pediatr Allergy Immunol 2022; 33:e13780. [PMID: 35616899 PMCID: PMC9325482 DOI: 10.1111/pai.13780] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 01/04/2023]
Abstract
Investigation of gene-environment interactions (GxE) may provide important insights into the gene regulatory framework in response to environmental factors of relevance for childhood asthma. Over the years, different methodological strategies have been applied, more recently using genome-wide approaches. The best example to date is the major asthma locus on the 17q12-21 chromosome region, viral infections, and airway epithelium processes where recent studies have shed much light on mechanisms in childhood asthma. However, there are challenges with the traditional single variant-single exposure interaction models, as they do not encompass the complexity and cumulative effects of multiple exposures or multiple genetic variants. As such, we need to redefine our traditional GxE thinking, and we propose in this review to expand the GxE concept by also evaluating other omics layers, such as epigenetics, transcriptomics, metabolomics, and proteomics. In addition, host factors such as age, gender, and other exposures are very likely to influence GxE effects and need firmly to be considered in future studies.
Collapse
Affiliation(s)
- Natalia Hernandez-Pacheco
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden.,CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Maura Kere
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Erik Melén
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden.,Sachs' Children's Hospital, South General Hospital, Stockholm, Sweden
| |
Collapse
|
20
|
Noureddine N, Chalubinski M, Wawrzyniak P. The Role of Defective Epithelial Barriers in Allergic Lung Disease and Asthma Development. J Asthma Allergy 2022; 15:487-504. [PMID: 35463205 PMCID: PMC9030405 DOI: 10.2147/jaa.s324080] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/06/2022] [Indexed: 12/15/2022] Open
Abstract
The respiratory epithelium constitutes the physical barrier between the human body and the environment, thus providing functional and immunological protection. It is often exposed to allergens, microbial substances, pathogens, pollutants, and environmental toxins, which lead to dysregulation of the epithelial barrier and result in the chronic inflammation seen in allergic diseases and asthma. This epithelial barrier dysfunction results from the disturbed tight junction formation, which are multi-protein subunits that promote cell-cell adhesion and barrier integrity. The increasing interest and evidence of the role of impaired epithelial barrier function in allergy and asthma highlight the need for innovative approaches that can provide new knowledge in this area. Here, we review and discuss the current role and mechanism of epithelial barrier dysfunction in developing allergic diseases and the effect of current allergy therapies on epithelial barrier restoration.
Collapse
Affiliation(s)
- Nazek Noureddine
- Division of Clinical Chemistry and Biochemistry, University Children’s Hospital Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Maciej Chalubinski
- Department of Immunology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Paulina Wawrzyniak
- Division of Clinical Chemistry and Biochemistry, University Children’s Hospital Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
de Fays C, Carlier FM, Gohy S, Pilette C. Secretory Immunoglobulin A Immunity in Chronic Obstructive Respiratory Diseases. Cells 2022; 11:1324. [PMID: 35456002 PMCID: PMC9027823 DOI: 10.3390/cells11081324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD), asthma and cystic fibrosis (CF) are distinct respiratory diseases that share features such as the obstruction of small airways and disease flare-ups that are called exacerbations and are often caused by infections. Along the airway epithelium, immunoglobulin (Ig) A contributes to first line mucosal protection against inhaled particles and pathogens. Dimeric IgA produced by mucosal plasma cells is transported towards the apical pole of airway epithelial cells by the polymeric Ig receptor (pIgR), where it is released as secretory IgA. Secretory IgA mediates immune exclusion and promotes the clearance of pathogens from the airway surface by inhibiting their adherence to the epithelium. In this review, we summarize the current knowledge regarding alterations of the IgA/pIgR system observed in those major obstructive airway diseases and discuss their implication for disease pathogenesis.
Collapse
Affiliation(s)
- Charlotte de Fays
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium; (C.d.F.); (F.M.C.); (S.G.)
| | - François M. Carlier
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium; (C.d.F.); (F.M.C.); (S.G.)
- Department of Pneumology, CHU UCL Namur, Site Mont-Godinne, 5530 Yvoir, Belgium
- Lung Transplant Centre, CHU UCL Namur, Site Mont-Godinne, 5530 Yvoir, Belgium
| | - Sophie Gohy
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium; (C.d.F.); (F.M.C.); (S.G.)
- Department of Pneumology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
- Cystic Fibrosis Reference Centre, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Charles Pilette
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium; (C.d.F.); (F.M.C.); (S.G.)
- Department of Pneumology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| |
Collapse
|
22
|
Tiwari A, Hobbs BD, Li J, Kho AT, Amr S, Celedón JC, Weiss ST, Hersh CP, Tantisira KG, McGeachie MJ. Blood miRNAs Are Linked to Frequent Asthma Exacerbations in Childhood Asthma and Adult COPD. Noncoding RNA 2022; 8:ncrna8020027. [PMID: 35447890 PMCID: PMC9030787 DOI: 10.3390/ncrna8020027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs have been independently associated with asthma and COPD; however, it is unclear if microRNA associations will overlap when evaluating retrospective acute exacerbations. Objective: We hypothesized that peripheral blood microRNAs would be associated with retrospective acute asthma exacerbations in a pediatric asthma cohort and that such associations may also be relevant to acute COPD exacerbations. Methods: We conducted small-RNA sequencing on 374 whole-blood samples from children with asthma ages 6-14 years who participated in the Genetics of Asthma in Costa Rica Study (GACRS) and 450 current and former adult smokers with and without COPD who participated in the COPDGene study. Measurements and Main Results: After QC, we had 351 samples and 649 microRNAs for Differential Expression (DE) analysis between the frequent (n = 183) and no or infrequent exacerbation (n = 168) groups in GACRS. Fifteen upregulated miRs had odds ratios (OR) between 1.22 and 1.59 for a doubling of miR counts, while five downregulated miRs had ORs between 0.57 and 0.8. These were assessed for generalization in COPDGene, where three of the upregulated miRs (miR-532-3p, miR-296-5p, and miR-766-3p) and two of the downregulated miRs (miR-7-5p and miR-451b) replicated. Pathway enrichment analysis showed MAPK and PI3K-Akt signaling pathways were strongly enriched for target genes of DE miRNAs and miRNAs generalizing to COPD exacerbations, as well as infection response pathways to various pathogens. Conclusion: miRs (451b; 7-5p; 532-3p; 296-5p and 766-3p) associated with both childhood asthma and adult COPD exacerbations may play a vital role in airflow obstruction and exacerbations and point to shared genomic regulatory machinery underlying exacerbations in both diseases.
Collapse
Affiliation(s)
- Anshul Tiwari
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (A.T.); (B.D.H.); (J.L.); (A.T.K.); (S.T.W.); (C.P.H.)
| | - Brian D. Hobbs
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (A.T.); (B.D.H.); (J.L.); (A.T.K.); (S.T.W.); (C.P.H.)
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jiang Li
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (A.T.); (B.D.H.); (J.L.); (A.T.K.); (S.T.W.); (C.P.H.)
| | - Alvin T. Kho
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (A.T.); (B.D.H.); (J.L.); (A.T.K.); (S.T.W.); (C.P.H.)
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Samir Amr
- Translational Genomics Core, Mass General Brigham Personalized Medicine, Cambridge, MA 02139, USA;
| | - Juan C. Celedón
- Division of Pediatric Pulmonary Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA;
| | - Scott T. Weiss
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (A.T.); (B.D.H.); (J.L.); (A.T.K.); (S.T.W.); (C.P.H.)
| | - Craig P. Hersh
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (A.T.); (B.D.H.); (J.L.); (A.T.K.); (S.T.W.); (C.P.H.)
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Kelan G. Tantisira
- Division of Pediatric Respiratory Medicine, Rady Children’s Hospital, University of California, San Diego, CA 92123, USA;
| | - Michael J. McGeachie
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (A.T.); (B.D.H.); (J.L.); (A.T.K.); (S.T.W.); (C.P.H.)
- Correspondence: ; Tel.: +617-525-2272; Fax: 617-731-1541
| |
Collapse
|
23
|
Asthma and Allergy: Unravelling a Tangled Relationship with a Focus on New Biomarkers and Treatment. Int J Mol Sci 2022; 23:ijms23073881. [PMID: 35409241 PMCID: PMC8999577 DOI: 10.3390/ijms23073881] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 12/19/2022] Open
Abstract
Asthma is a major driver of health care costs across ages. Despite widely disseminated asthma-treatment guidelines and a growing variety of effective therapeutic options, most patients still experience symptoms and/or refractoriness to standard of care treatments. As a result, most patients undergo a further intensification of therapy to optimize symptom control with a subsequent increased risk of side effects. Raising awareness about the relevance of evaluating aeroallergen sensitizations in asthmatic patients is a key step in better informing clinical practice while new molecular tools, such as the component resolved diagnosis, may be of help in refining the relationship between sensitization and therapeutic recommendations. In addition, patient care should benefit from reliable, easy-to-measure and clinically accessible biomarkers that are able to predict outcome and disease monitoring. To attain a personalized asthma management and to guide adequate treatment decisions, it is of paramount importance to expand clinicians' knowledge about the tangled relationship between asthma and allergy from a molecular perspective. Our review explores the relevance of allergen testing along the asthma patient's journey, with a special focus on recurrent wheezing children. Here, we also discuss the unresolved issues regarding currently available biomarkers and summarize the evidence supporting the eosinophil-derived neurotoxin as promising biomarker.
Collapse
|
24
|
Chakraborty A, Mastalerz M, Ansari M, Schiller HB, Staab-Weijnitz CA. Emerging Roles of Airway Epithelial Cells in Idiopathic Pulmonary Fibrosis. Cells 2022; 11:cells11061050. [PMID: 35326501 PMCID: PMC8947093 DOI: 10.3390/cells11061050] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal disease with incompletely understood aetiology and limited treatment options. Traditionally, IPF was believed to be mainly caused by repetitive injuries to the alveolar epithelium. Several recent lines of evidence, however, suggest that IPF equally involves an aberrant airway epithelial response, which contributes significantly to disease development and progression. In this review, based on recent clinical, high-resolution imaging, genetic, and single-cell RNA sequencing data, we summarize alterations in airway structure, function, and cell type composition in IPF. We furthermore give a comprehensive overview on the genetic and mechanistic evidence pointing towards an essential role of airway epithelial cells in IPF pathogenesis and describe potentially implicated aberrant epithelial signalling pathways and regulation mechanisms in this context. The collected evidence argues for the investigation of possible therapeutic avenues targeting these processes, which thus represent important future directions of research.
Collapse
|
25
|
Side-Directed Release of Differential Extracellular Vesicle-associated microRNA Profiles from Bronchial Epithelial Cells of Healthy and Asthmatic Subjects. Biomedicines 2022; 10:biomedicines10030622. [PMID: 35327424 PMCID: PMC8945885 DOI: 10.3390/biomedicines10030622] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are released by virtually all cells and may serve as intercellular communication structures by transmitting molecules such as proteins, lipids, and nucleic acids between cells. MicroRNAs (miRNAs) are an abundant class of vesicular RNA playing a pivotal role in regulating intracellular processes. In this work, we aimed to characterize vesicular miRNA profiles released in a side-directed manner by bronchial epithelial cells from healthy and asthmatic subjects using an air−liquid interface cell culture model. EVs were isolated from a culture medium collected from either the basolateral or apical cell side of the epithelial cell cultures and characterized by nano-flow cytometry (NanoFCM) and bead-based flow cytometry. EV-associated RNA profiles were assessed by small RNA sequencing and subsequent bioinformatic analyses. Furthermore, miRNA-associated functions and targets were predicted and miRNA network analyses were performed. EVs were released at higher numbers to the apical cell side of the epithelial cells and were considerably smaller in the apical compared to the basolateral compartment. EVs from both compartments showed a differential tetraspanins surface marker expression. Furthermore, 236 miRNAs were differentially expressed depending on the EV secretion side, regardless of the disease phenotype. On the apical cell side, 32 miRNAs were significantly altered in asthmatic versus healthy conditions, while on the basolateral cell side, 23 differentially expressed miRNAs could be detected. Downstream KEGG pathway analysis predicted mTOR and MAPK signaling pathways as potential downstream targets of apically secreted miRNAs. In contrast, miRNAs specifically detected at the basolateral side were associated with processes of T and B cell receptor signaling. The study proves a compartmentalized packaging of EVs by bronchial epithelial cells supposedly associated with site-specific functions of cargo miRNAs, which are considerably affected by disease conditions such as asthma.
Collapse
|
26
|
Guo Y, Yuan X, Hong L, Wang Q, Liu S, Li Z, Huang L, Jiang S, Shi J. Promotor Hypomethylation Mediated Upregulation of miR-23b-3p Targets PTEN to Promote Bronchial Epithelial-Mesenchymal Transition in Chronic Asthma. Front Immunol 2022; 12:771216. [PMID: 35058921 PMCID: PMC8765721 DOI: 10.3389/fimmu.2021.771216] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/13/2021] [Indexed: 01/20/2023] Open
Abstract
Chronic asthma is characterized by airway inflammation and irreversible airway remodeling. Epithelial-mesenchymal transition (EMT) is a typical pathological change of airway remodeling. Our previous research demonstrated miR-23b inhibited airway smooth muscle proliferation while the function of miR-23b-3p has not been reported yet. Besides, miRNA is regulated by many factors, including DNA methylation. The function of miR-23b-3p and whether it is regulated by DNA methylation are worth exploring. Balb/c mice were given OVA sensitization to develop the asthmatic model. Expression of miR-23b-3p and EMT markers were measured by RT-qPCR, WB and immunohistochemistry (IHC). DNA methylation was detected by methylation-specific PCR (MSP) and the MassARRAY System. Asthmatic mice and TGF-β1-stimulated bronchial epithelial cells (BEAS-2B) showed EMT with increased miR-23b-3p. Overexpression of miR-23b-3p promoted EMT and migration, while inhibition of miR-23b-3p reversed these transitions. DNA methyltransferases were decreased in asthmatic mice. MSP and MassARRAY System detected the promotor of miR-23b showed DNA hypomethylation. DNA methyltransferase inhibitor 5’-AZA-CdZ increased the expression of miR-23b-3p. Meanwhile, PTEN was identified as a target gene of miR-23b-3p. Our results indicated that promotor hypomethylation mediated upregulation of miR-23b-3p targets PTEN to promote EMT in chronic asthma. miR-23b-3p and DNA methylation might be potential therapeutic targets for irreversible airway remodeling.
Collapse
Affiliation(s)
- Yimin Guo
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, China.,Department of Respiratory Medicine, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Xiaoqing Yuan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Luna Hong
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, China
| | - Qiujie Wang
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, China
| | - Shanying Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhaolin Li
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, China
| | - Linjie Huang
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, China
| | - Shanping Jiang
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, China
| | - Jianting Shi
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
27
|
Wang CJ, Cheng SL, Kuo SH. Asthma and COVID-19 Associations: Focus on IgE-Related Immune Pathology. Life (Basel) 2022; 12:life12020153. [PMID: 35207441 PMCID: PMC8874771 DOI: 10.3390/life12020153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 12/15/2022] Open
Abstract
Management of patients with asthma during the coronavirus disease 2019 (COVID-19) pandemic is a concern, especially since asthma predisposes patients to respiratory problems. Interestingly, asthma characterized by type 2 inflammation, also known as T-helper type 2-high endotype, displays a cellular and molecular profile that may confer protective effects against COVID-19. The results of experimental and clinical studies have established the actions of immunoglobulin E (IgE) in inducing airway hyperreactivity and weakening an interferon-mediated antiviral response following respiratory viral infection. Robust evidence supports the beneficial effect of the anti-IgE biologic treatment omalizumab on reducing respiratory virus-induced asthma exacerbations and reducing the frequency, duration, and severity of respiratory viral illness in patients with asthma. Indeed, accumulating reports of patients with severe asthma treated with omalizumab during the pandemic have reassuringly shown that continuing omalizumab treatment during COVID-19 is safe, and in fact may help prevent the severe course of COVID-19. Accordingly, guidance issued by the Global Initiative for Asthma recommends that all patients with asthma continue taking their prescribed asthma medications, including biologic therapy, during the COVID-19 pandemic. The impact of biologic treatments on patients with asthma and COVID-19 will be better understood as more evidence emerges.
Collapse
Affiliation(s)
- Chung-Jen Wang
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City 22056, Taiwan; (C.-J.W.); (S.-L.C.)
| | - Shih-Lung Cheng
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City 22056, Taiwan; (C.-J.W.); (S.-L.C.)
- Department of Chemical Engineering and Materials Science, Yuab Ze University, Taoyuan City 32003, Taiwan
| | - Sow-Hsong Kuo
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City 22056, Taiwan; (C.-J.W.); (S.-L.C.)
- Correspondence:
| |
Collapse
|
28
|
Wang C, Wang J, Zheng X, Zhang J, Zhang J, Qiao G, Liu H, Zhao H, Bai J, Zhang H, Zhang Z. Epigenetic regulation is involved in traffic-related PM 2.5 aggravating allergic airway inflammation in rats. Clin Immunol 2021; 234:108914. [PMID: 34954131 DOI: 10.1016/j.clim.2021.108914] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/27/2021] [Accepted: 12/20/2021] [Indexed: 11/29/2022]
Abstract
Increasing fine particulate matter (PM2.5) and epigenetic modifications are closely associated with the pathogenesis of asthma, but the definite mechanism remains unclear. The traffic-related PM2.5 exposure aggravated pulmonary inflammation and changed the methylation level of interferon gamma (Ifng) and interleukin (Il)4 genes, and then altered levels of affiliated cytokines of IFN-γ and IL-4 in rats with allergic airway inflammation. It also increased the level of miR146a and decreased the level of miR31. In addition, transcription factors of nuclear factor kappa B (NF-κB) and signal transducer and activator of transcription 6 (Stat6) rose; forkhead box P3 (Foxp3) and signal transducer and activator of transcription 4 (Stat4) lowered. The traffic-related PM2.5 altered epigenetic modifications in allergic airway inflammation of rats leading to inflammation exacerbation through impaired regulatory T (Treg) cells function and T-helper type 1 (Th1)/Th2 cells imbalance, which provided a new target for the treatment and control of asthma.
Collapse
Affiliation(s)
- Caihong Wang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Jing Wang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Xin Zheng
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Jiaqi Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Jingwei Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Guoguo Qiao
- Teaching Experiment Center, School of Public Health, Shanxi Medical University, China
| | - Haifang Liu
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Huichao Zhao
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Jianying Bai
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Hongmei Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Zhihong Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China.
| |
Collapse
|
29
|
Fang L, Roth M. Airway Wall Remodeling in Childhood Asthma-A Personalized Perspective from Cell Type-Specific Biology. J Pers Med 2021; 11:jpm11111229. [PMID: 34834581 PMCID: PMC8625708 DOI: 10.3390/jpm11111229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/16/2022] Open
Abstract
Airway wall remodeling is a pathology occurring in chronic inflammatory lung diseases including asthma, chronic obstructive pulmonary disease, and fibrosis. In 2017, the American Thoracic Society released a research statement highlighting the gaps in knowledge and understanding of airway wall remodeling. The four major challenges addressed in this statement were: (i) the lack of consensus to define “airway wall remodeling” in different diseases, (ii) methodologic limitations and inappropriate models, (iii) the lack of anti-remodeling therapies, and (iv) the difficulty to define endpoints and outcomes in relevant studies. This review focuses on the importance of cell-cell interaction, especially the bronchial epithelium, in asthma-associated airway wall remodeling. The pathology of “airway wall remodeling” summarizes all structural changes of the airway wall without differentiating between different pheno- or endo-types of asthma. Indicators of airway wall remodeling have been reported in childhood asthma in the absence of any sign of inflammation; thus, the initiation event remains unknown. Recent studies have implied that the interaction between the epithelium with immune cells and sub-epithelial mesenchymal cells is modified in asthma by a yet unknown epigenetic mechanism during early childhood.
Collapse
|
30
|
Wardzyńska A, Pawełczyk M, Rywaniak J, Makowska JS, Jamroz-Brzeska J, Kowalski ML, Chałubiński M. MicroRNA expression profile in peripheral blood mononuclear cells of asthmatic patients and healthy individuals: The effect of age and ex vivo rhinovirus exposure. Clin Exp Allergy 2021; 52:461-464. [PMID: 34773319 DOI: 10.1111/cea.14045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022]
Affiliation(s)
| | | | - Joanna Rywaniak
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Joanna S Makowska
- Department of Rheumatology, Medical University of Lodz, Lodz, Poland
| | | | - Marek L Kowalski
- Department of Immunology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Maciej Chałubiński
- Department of Immunology and Allergy, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
31
|
Zhang MZ, Chu SS, Xia YK, Wang DD, Wang X. Environmental exposure during pregnancy and the risk of childhood allergic diseases. World J Pediatr 2021; 17:467-475. [PMID: 34476758 DOI: 10.1007/s12519-021-00448-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/19/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND Allergic diseases are one of the most common and important diseases that can exert hazardous effects on children's health. The prevalence of allergic diseases in childhood is gradually increasing all over the world in recent decades. Known causes of these diseases include anomalous immune responses and allergic inflammatory reactions, but the causes of allergic diseases in childhood are complex. DATA SOURCES PubMed, Cochrane Library, Embase and Web of Science were searched for articles focusing on environmental exposure during pregnancy and the risk of childhood allergic diseases, including asthma and atopic dermatitis, and the possible underlying mechanism. RESULTS In terms of environmental factors, allergic diseases in childhood are closely related to environmental chemical exposure during pregnancy, including bisphenols, phthalates acid esters, perfluorochemicals, polybrominated diphenyl ethers, and polychlorinated biphenyls. However, allergic diseases in childhood are also closely associated with maternal dietary nutrition, maternal intake of drugs, such as acetylsalicylic acid (aspirin), paracetamol and antibiotics, and maternal lifestyle. CONCLUSIONS Several harmful environmental factors during pregnancy can result in the interruption of the function of helper T cells (Th1/Th2), cytokines and immunoglobulins and may activate allergic reactions, which can lead to allergic diseases during childhood.
Collapse
Affiliation(s)
- Ming-Zhi Zhang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Shan-Shan Chu
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Rd, Nanjing, 210008, China
| | - Yan-Kai Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Dan-Dan Wang
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Rd, Nanjing, 210008, China
| | - Xu Wang
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Rd, Nanjing, 210008, China.
| |
Collapse
|
32
|
Liu C, Huang XL, Liang JP, Zhong X, Wei ZF, Dai LX, Wang J. Serum‑derived exosomes from house dust mite‑sensitized guinea pigs contribute to inflammation in BEAS‑2B cells via the TLR4‑NF‑κB pathway. Mol Med Rep 2021; 24:747. [PMID: 34458929 PMCID: PMC8436231 DOI: 10.3892/mmr.2021.12387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/21/2021] [Indexed: 11/22/2022] Open
Abstract
Airway epithelial cells, which are the first physical defense barrier against allergens, play a pivotal role in immunity, airway inflammation and airway remodeling. The damage and dysfunction of these cells trigger the development of airway inflammatory diseases. Exosomes, which exist in various bodily fluids, mediate cell-cell communication and participate in the immune response process. The present study aimed to investigate whether serum exosomes play a pro-inflammatory role in bronchial epithelial cells (BEAS-2B cells) and, if so, explore the underlying molecular mechanisms. A guinea pig model of House dust mite (HDM)-induced asthma was established by sensitizing the rodents with HDM and PBS, and serum-derived exosomes were harvested. It was found that serum-derived exosomes from HDM-sensitized guinea pigs displayed higher levels of exosomal markers than those from controls. Additionally, western blot analysis and reverse transcription-quantitative PCR indicated that serum-derived exosomes from HDM-sensitized guinea pigs carried heat shock protein 70 and triggered an inflammatory response in BEAS-2B cells via the toll-like receptor 4 (TLR4)-NF-κB pathway. However, TAK-242, an inhibitor of the expression of TLR4, blocked the activation of the TLR4-NF-κB pathway. These findings provided a novel mechanism for exosome-mediated inflammatory responses and a new perspective for the intervention of inflammatory airway disorders.
Collapse
Affiliation(s)
- Chao Liu
- Department of Respiratory Disease, Zhongshan People's Hospital, Zhongshan, Guangdong 528403, P.R. China
| | - Xiao-Lin Huang
- Dental Implant and Restoration Centre, Zhongshan People's Hospital, Zhongshan, Guangdong 528403, P.R. China
| | - Jian-Ping Liang
- Department of Respiratory Disease, Zhongshan People's Hospital, Zhongshan, Guangdong 528403, P.R. China
| | - Xu Zhong
- The Second Department of Respiratory Disease, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zi-Feng Wei
- The Second Department of Respiratory Disease, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Li-Xue Dai
- The Second Department of Respiratory Disease, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jun Wang
- The Second Department of Respiratory Disease, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
33
|
Hernandez-Pacheco N, Gorenjak M, Li J, Repnik K, Vijverberg SJ, Berce V, Jorgensen A, Karimi L, Schieck M, Samedy-Bates LA, Tavendale R, Villar J, Mukhopadhyay S, Pirmohamed M, Verhamme KMC, Kabesch M, Hawcutt DB, Turner S, Palmer CN, Tantisira KG, Burchard EG, Maitland-van der Zee AH, Flores C, Potočnik U, Pino-Yanes M. Identification of ROBO2 as a Potential Locus Associated with Inhaled Corticosteroid Response in Childhood Asthma. J Pers Med 2021; 11:jpm11080733. [PMID: 34442380 PMCID: PMC8399629 DOI: 10.3390/jpm11080733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022] Open
Abstract
Inhaled corticosteroids (ICS) are the most common asthma controller medication. An important contribution of genetic factors in ICS response has been evidenced. Here, we aimed to identify novel genetic markers involved in ICS response in asthma. A genome-wide association study (GWAS) of the change in lung function after 6 weeks of ICS treatment was performed in 166 asthma patients from the SLOVENIA study. Patients with an improvement in lung function ≥8% were considered as ICS responders. Suggestively associated variants (p-value ≤ 5 × 10−6) were evaluated in an independent study (n = 175). Validation of the association with asthma exacerbations despite ICS use was attempted in European (n = 2681) and admixed (n = 1347) populations. Variants previously associated with ICS response were also assessed for replication. As a result, the SNP rs1166980 from the ROBO2 gene was suggestively associated with the change in lung function (OR for G allele: 7.01, 95% CI: 3.29–14.93, p = 4.61 × 10−7), although this was not validated in CAMP. ROBO2 showed gene-level evidence of replication with asthma exacerbations despite ICS use in Europeans (minimum p-value = 1.44 × 10−5), but not in admixed individuals. The association of PDE10A-T with ICS response described by a previous study was validated. This study suggests that ROBO2 could be a potential novel locus for ICS response in Europeans.
Collapse
Affiliation(s)
- Natalia Hernandez-Pacheco
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Carretera General del Rosario 145, 38010 Santa Cruz de Tenerife, Spain;
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez s/n, Faculty of Science, Apartado 456, 38200 San Cristóbal de La Laguna, Spain;
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Avenida de Monforte de Lemos, 5, 28029 Madrid, Spain;
- Correspondence: (N.H.-P.); (U.P.); Tel.: +46-0702983315 (N.H.-P.); +386-22345854 (U.P.)
| | - Mario Gorenjak
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (M.G.); (K.R.); (V.B.)
| | - Jiang Li
- The Channing Division of Network Medicine, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115, USA; (J.L.); (K.G.T.)
| | - Katja Repnik
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (M.G.); (K.R.); (V.B.)
- Laboratory for Biochemistry, Molecular Biology, and Genomics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Susanne J. Vijverberg
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (S.J.V.); (A.H.M.-v.d.Z.)
- Division of Pharmacoepidemiology and Clinical Pharmacology, Faculty of Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
- Department of Pediatric Respiratory Medicine and Allergy, Emma’s Children Hospital, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Vojko Berce
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (M.G.); (K.R.); (V.B.)
- Department of Pediatrics, University Medical Centre Maribor, Ljubljanska Ulica 5, 2000 Maribor, Slovenia
| | - Andrea Jorgensen
- Department of Biostatistics, University of Liverpool, Crown Street, Liverpool L69 3BX, UK;
| | - Leila Karimi
- Department of Medical Informatics, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (L.K.); (K.M.C.V.)
| | - Maximilian Schieck
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO), Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (M.S.); (M.K.)
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Lesly-Anne Samedy-Bates
- Department of Medicine, University of California, San Francisco, CA 94143, USA; (L.-A.S.-B.); (E.G.B.)
- Department of Bioengineering and Therapeutic Sciences, University of California, 533 Parnassus Ave, San Francisco, CA 94143, USA
| | - Roger Tavendale
- Population Pharmacogenetics Group, Biomedical Research Institute, Ninewells Hospital, and Medical School, University of Dundee, Dundee DD1 9SY, UK; (R.T.); (S.M.); (C.N.P.)
| | - Jesús Villar
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Avenida de Monforte de Lemos, 5, 28029 Madrid, Spain;
- Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario Dr. Negrín, Calle Barranco de la Ballena s/n, 35019 Las Palmas de Gran Canaria, Spain
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael’s Hospital, 30 Bond St, Toronto, ON M5B 1W8, Canada
| | - Somnath Mukhopadhyay
- Population Pharmacogenetics Group, Biomedical Research Institute, Ninewells Hospital, and Medical School, University of Dundee, Dundee DD1 9SY, UK; (R.T.); (S.M.); (C.N.P.)
- Academic Department of Paediatrics, Brighton and Sussex Medical School, Royal Alexandra Children’s Hospital, 94 N-S Rd, Falmer, Brighton BN2 5BE, UK
| | - Munir Pirmohamed
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, 200 London Rd, Liverpool L3 9TA, UK;
| | - Katia M. C. Verhamme
- Department of Medical Informatics, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (L.K.); (K.M.C.V.)
| | - Michael Kabesch
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO), Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (M.S.); (M.K.)
| | - Daniel B. Hawcutt
- Department of Women’s and Children’s Health, University of Liverpool, Liverpool L69 3BX, UK;
- Alder Hey Children’s Hospital, E Prescot Rd, Liverpool L14 5AB, UK
| | - Steve Turner
- Child Health, University of Aberdeen, King’s College, Aberdeen AB24 3FX, UK;
| | - Colin N. Palmer
- Population Pharmacogenetics Group, Biomedical Research Institute, Ninewells Hospital, and Medical School, University of Dundee, Dundee DD1 9SY, UK; (R.T.); (S.M.); (C.N.P.)
| | - Kelan G. Tantisira
- The Channing Division of Network Medicine, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115, USA; (J.L.); (K.G.T.)
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, and Harvard Medical School, 75 Francis St, Boston, MA 02115, USA
| | - Esteban G. Burchard
- Department of Medicine, University of California, San Francisco, CA 94143, USA; (L.-A.S.-B.); (E.G.B.)
- Department of Bioengineering and Therapeutic Sciences, University of California, 533 Parnassus Ave, San Francisco, CA 94143, USA
| | - Anke H. Maitland-van der Zee
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (S.J.V.); (A.H.M.-v.d.Z.)
- Division of Pharmacoepidemiology and Clinical Pharmacology, Faculty of Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
- Department of Pediatric Respiratory Medicine and Allergy, Emma’s Children Hospital, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Carlos Flores
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Carretera General del Rosario 145, 38010 Santa Cruz de Tenerife, Spain;
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Avenida de Monforte de Lemos, 5, 28029 Madrid, Spain;
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Polígono Industrial de Granadilla, 38600 Granadilla, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Faculty of Health Sciences, Apartado 456, 38200 San Cristóbal de La Laguna, Spain
| | - Uroš Potočnik
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (M.G.); (K.R.); (V.B.)
- Laboratory for Biochemistry, Molecular Biology, and Genomics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Correspondence: (N.H.-P.); (U.P.); Tel.: +46-0702983315 (N.H.-P.); +386-22345854 (U.P.)
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez s/n, Faculty of Science, Apartado 456, 38200 San Cristóbal de La Laguna, Spain;
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Avenida de Monforte de Lemos, 5, 28029 Madrid, Spain;
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Faculty of Health Sciences, Apartado 456, 38200 San Cristóbal de La Laguna, Spain
| |
Collapse
|
34
|
Luschnig P, Kienzl M, Roula D, Pilic J, Atallah R, Heinemann A, Sturm EM. The JAK1/2 inhibitor baricitinib suppresses eosinophil effector function and restricts allergen-induced airway eosinophilia. Biochem Pharmacol 2021; 192:114690. [PMID: 34274356 DOI: 10.1016/j.bcp.2021.114690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Eosinophilic asthma is increasingly recognized as one of the most severe and difficult-to-treat asthma subtypes. The JAK/STAT pathway is the principal signaling mechanism for a variety of cytokines and growth factors involved in asthma. However, the direct effect of JAK inhibitors on eosinophil effector function has not been addressed thus far. OBJECTIVE Here we compared the effects of the JAK1/2 inhibitor baricitinib and the JAK3 inhibitor tofacitinib on eosinophil effector function in vitro and in vivo. METHODS Differentiation of murine bone marrow-derived eosinophils. Migratory responsiveness, respiratory burst, phagocytosis and apoptosis of human peripheral blood eosinophils were assessed in vitro. In vivo effects were investigated in a mouse model of acute house dust mite-induced airway inflammation in BALB/c mice. RESULTS Baricitinib more potently induced apoptosis and inhibited eosinophil chemotaxis and respiratory burst, while baricitinib and tofacitinib similarly affected eosinophil differentiation and phagocytosis. Of the JAK inhibitors, oral application of baricitinib more potently prevented lung eosinophilia in mice following allergen challenge. However, both JAK inhibitors neither affected airway resistance nor compliance. CONCLUSION Our data suggest that the JAK1/2 inhibitor baricitinib is even more potent than the JAK3 inhibitor tofacitinib in suppressing eosinophil effector function. Thus, targeting the JAK1/2 pathway represents a promising therapeutic strategy for eosinophilic inflammation as observed in severe eosinophilic asthma.
Collapse
Affiliation(s)
- Petra Luschnig
- Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Melanie Kienzl
- Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria; BioTechMed, Graz, Austria
| | - David Roula
- Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Johannes Pilic
- Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria; Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Reham Atallah
- Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Eva M Sturm
- Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
35
|
Kaur D, Chachi L, Gomez E, Sylvius N, Brightling CE. Interleukin-18, IL-18 binding protein and IL-18 receptor expression in asthma: a hypothesis showing IL-18 promotes epithelial cell differentiation. Clin Transl Immunology 2021; 10:e1301. [PMID: 34194747 PMCID: PMC8234286 DOI: 10.1002/cti2.1301] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/26/2021] [Accepted: 05/29/2021] [Indexed: 01/15/2023] Open
Abstract
Objective In asthma, genome‐wide association studies have shown that interleukin‐18 (IL‐18) receptor 1 gene (IL‐18R1) and sputum IL‐18 are increased during exacerbations. However, the role of the IL‐18 axis in bronchial epithelial function is unclear. To investigate IL‐18, IL‐18 binding protein (BP) and IL‐18R expression in bronchial biopsies and sputum samples from patients with asthma, and to determine its functional role using in vitro bronchial epithelial cells. Methods The expression of IL‐18, IL‐18BP and IL‐18Rα was examined in subjects with asthma and healthy controls in bronchial biopsies by immunohistochemistry and IL‐18 and IL‐18BP release in sputum. In epithelial cells, the mRNA and protein expression of IL‐18, IL‐18BP, IL‐18Rα and IL‐18Rβ was assessed by qPCR, flow cytometry, Western blotting and immunofluorescence respectively. IL‐18 function in epithelial cells was examined by intracellular calcium, wound repair, synthetic activation and epithelial differentiation changes. Results In biopsies from subjects with asthma, the IL‐18 expression was not different in the lamina propria compared with controls but was decreased in the epithelium. In contrast, the IL‐18BP was decreased in the lamina propria in asthma and was absent in the bronchial epithelium. IL‐18 was released in sputum with IL‐18BP elevated in patients with asthma. The IL‐18Rα expression was not different between health and disease. In vitro, IL‐18‐stimulated bronchial epithelial cells increased intracellular calcium, wound repair, metabolic activity, morphological changes and epithelial cellular differentiation. Conclusion In asthma, the dynamic interaction between IL‐18, its cognate receptor and natural inhibitor is complex, with differences between airway compartments. Upregulation of IL‐18 can promote epithelial activation and cellular differentiation.
Collapse
Affiliation(s)
- Davinder Kaur
- Department of Respiratory Sciences Institute for Lung Health NIHR Biomedical Research Centre University of Leicester Leicester LE1 7RH UK
| | - Latifa Chachi
- Department of Respiratory Sciences Institute for Lung Health NIHR Biomedical Research Centre University of Leicester Leicester LE1 7RH UK
| | - Edith Gomez
- Department of Respiratory Sciences Institute for Lung Health NIHR Biomedical Research Centre University of Leicester Leicester LE1 7RH UK
| | - Nicolas Sylvius
- Genomic Core Facility Department of Genetics University of Leicester Adrian Building, University Road, G23 Leicester LE1 7RH UK
| | - Christopher E Brightling
- Department of Respiratory Sciences Institute for Lung Health NIHR Biomedical Research Centre University of Leicester Leicester LE1 7RH UK
| |
Collapse
|
36
|
Migliore L, Nicolì V, Stoccoro A. Gender Specific Differences in Disease Susceptibility: The Role of Epigenetics. Biomedicines 2021; 9:652. [PMID: 34200989 PMCID: PMC8228628 DOI: 10.3390/biomedicines9060652] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 01/08/2023] Open
Abstract
Many complex traits or diseases, such as infectious and autoimmune diseases, cancer, xenobiotics exposure, neurodevelopmental and neurodegenerative diseases, as well as the outcome of vaccination, show a differential susceptibility between males and females. In general, the female immune system responds more efficiently to pathogens. However, this can lead to over-reactive immune responses, which may explain the higher presence of autoimmune diseases in women, but also potentially the more adverse effects of vaccination in females compared with in males. Many clinical and epidemiological studies reported, for the SARS-CoV-2 infection, a gender-biased differential response; however, the majority of reports dealt with a comparable morbidity, with males, however, showing higher COVID-19 adverse outcomes. Although gender differences in immune responses have been studied predominantly within the context of sex hormone effects, some other mechanisms have been invoked: cellular mosaicism, skewed X chromosome inactivation, genes escaping X chromosome inactivation, and miRNAs encoded on the X chromosome. The hormonal hypothesis as well as other mechanisms will be examined and discussed in the light of the most recent epigenetic findings in the field, as the concept that epigenetics is the unifying mechanism in explaining gender-specific differences is increasingly emerging.
Collapse
Affiliation(s)
- Lucia Migliore
- Department of Translational Research and of New Surgical and Medical Technologies, Medical School, University of Pisa, 56126 Pisa, Italy; (V.N.); (A.S.)
- Department of Laboratory Medicine, Azienda Ospedaliero Universitaria Pisana, 56124 Pisa, Italy
| | - Vanessa Nicolì
- Department of Translational Research and of New Surgical and Medical Technologies, Medical School, University of Pisa, 56126 Pisa, Italy; (V.N.); (A.S.)
| | - Andrea Stoccoro
- Department of Translational Research and of New Surgical and Medical Technologies, Medical School, University of Pisa, 56126 Pisa, Italy; (V.N.); (A.S.)
| |
Collapse
|
37
|
Ren X, Wang R, Yu XT, Cai B, Guo F. Regulation of histone H3 lysine 9 methylation in inflammation. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1931477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Xin Ren
- Department of Burn, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Rong Wang
- Department of Burn, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Xiao-ting Yu
- Department of Burn, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Bo Cai
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Fei Guo
- Department of Burn, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
38
|
Yao L, Tang Y, Chen J, Li J, Wang H, Lu M, Gao L, Liu F, Chang P, Liu X, Tang H. Impaired airway epithelial barrier integrity was mediated by PI3Kδ in a mouse model of lipopolysaccharide-induced acute lung injury. Int Immunopharmacol 2021; 95:107570. [PMID: 33773208 DOI: 10.1016/j.intimp.2021.107570] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 01/03/2023]
Abstract
Cell-cell junctions are critical for the maintenance of cellular as well as tissue polarity and integrity. Dysfunction of airway epithelial barrier has been shown to be involved in the pathogenesis of acute lung injury (ALI). Yet the role of phosphatidylinositol 3-kinase delta (PI3Kδ) in dysregulation of airway epithelial barrier integrity in ALI has not been addressed. Mice were subjected to intratracheal instillation of lipopolysaccharide (LPS) to generate a ALI model. Two pharmacological inhibitors of PI3Kδ, IC87114 and AMG319, were respectively given to the mice. Expression of p110δ and its downstream substrate phospho-AKT (Ser473) was increased in LPS-exposed lungs. These increases were inhibited by IC87114 or AMG319. LPS led to pronounced lung injury that was accompanied by significant airway neutrophil recruitment and bronchial epithelial morphological alterations 72 h after exposure. We also found compromised expression of adherens junction protein E-cadherin and tight junction protein claudin-2 in the airway epithelial cells. Treatment with either IC87114 or AMG319 not only attenuated LPS-induced edema, lung injury and neutrophilc inflammation, reduced total protein concentration and IL-6, TNF-α secretion in BALF, but also restored epithelial E-cadherin and claudin-2 expression. In summary, our results showed that LPS can induce a delayed effect on airway epithelial barrier integrity that is mediated by PI3Kδ in a mouse model of ALI.
Collapse
Affiliation(s)
- Lihong Yao
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Ying Tang
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Junjie Chen
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiahui Li
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hua Wang
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Mei Lu
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lijuan Gao
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Fang Liu
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ping Chang
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xingxing Liu
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Haixiong Tang
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
39
|
Extracellular Vesicles and Asthma-More Than Just a Co-Existence. Int J Mol Sci 2021; 22:ijms22094984. [PMID: 34067156 PMCID: PMC8124625 DOI: 10.3390/ijms22094984] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/22/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) are membranous structures, which are secreted by almost every cell type analyzed so far. In addition to their importance for cell-cell communication under physiological conditions, EVs are also released during pathogenesis and mechanistically contribute to this process. Here we summarize their functional relevance in asthma, one of the most common chronic non-communicable diseases. Asthma is a complex persistent inflammatory disorder of the airways characterized by reversible airflow obstruction and, from a long-term perspective, airway remodeling. Overall, mechanistic studies summarized here indicate the importance of different subtypes of EVs and their variable cargoes in the functioning of the pathways underlying asthma, and show some interesting potential for the development of future therapeutic interventions. Association studies in turn demonstrate a good diagnostic potential of EVs in asthma.
Collapse
|
40
|
Mato-Basalo R, Morente-López M, Arntz OJ, van de Loo FAJ, Fafián-Labora J, Arufe MC. Therapeutic Potential for Regulation of the Nuclear Factor Kappa-B Transcription Factor p65 to Prevent Cellular Senescence and Activation of Pro-Inflammatory in Mesenchymal Stem Cells. Int J Mol Sci 2021; 22:3367. [PMID: 33805981 PMCID: PMC8038109 DOI: 10.3390/ijms22073367] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 02/05/2023] Open
Abstract
Mesenchymal stem cells have an important potential in the treatment of age-related diseases. In the last years, small extracellular vesicles derived from these stem cells have been proposed as cell-free therapies. Cellular senescence and proinflammatory activation are involved in the loss of therapeutic capacity and in the phenomenon called inflamm-aging. The regulators of these two biological processes in mesenchymal stem cells are not well-known. In this study, we found that p65 is activated during cellular senescence and inflammatory activation in human umbilical cord-derived mesenchymal stem cell. To demonstrate the central role of p65 in these two processes, we used small-molecular inhibitors of p65, such as JSH-23, MG-132 and curcumin. We found that the inhibition of p65 prevents the cellular senescence phenotype in human umbilical cord-derived mesenchymal stem cells. Besides, p65 inhibition produced the inactivation of proinflammatory molecules as components of a senescence-associated secretory phenotype (SASP) (interleukin-6 and interleukin-8 (IL-6 and IL-8)). Additionally, we found that the inhibition of p65 prevents the transmission of paracrine senescence between mesenchymal stem cells and the proinflammatory message through small extracellular vesicles. Our work highlights the important role of p65 and its inhibition to restore the loss of functionality of small extracellular vesicles from senescent mesenchymal stem cells and their inflamm-aging signature.
Collapse
Affiliation(s)
- Rocío Mato-Basalo
- Grupo de Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Ciencias Biomédicas y Medicina, Universdidade da Coruña, 15006 A Coruña, Spain; (R.M.-B.); (M.M.-L.)
| | - Miriam Morente-López
- Grupo de Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Ciencias Biomédicas y Medicina, Universdidade da Coruña, 15006 A Coruña, Spain; (R.M.-B.); (M.M.-L.)
| | - Onno J Arntz
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (O.J.A.); (F.A.J.v.d.L.)
| | - Fons A. J. van de Loo
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (O.J.A.); (F.A.J.v.d.L.)
| | - Juan Fafián-Labora
- Grupo de Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Ciencias Biomédicas y Medicina, Universdidade da Coruña, 15006 A Coruña, Spain; (R.M.-B.); (M.M.-L.)
| | - María C. Arufe
- Grupo de Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Ciencias Biomédicas y Medicina, Universdidade da Coruña, 15006 A Coruña, Spain; (R.M.-B.); (M.M.-L.)
| |
Collapse
|
41
|
Garn H, Potaczek DP, Pfefferle PI. The Hygiene Hypothesis and New Perspectives-Current Challenges Meeting an Old Postulate. Front Immunol 2021; 12:637087. [PMID: 33815389 PMCID: PMC8012489 DOI: 10.3389/fimmu.2021.637087] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/04/2021] [Indexed: 01/11/2023] Open
Abstract
During its 30 years history, the Hygiene Hypothesis has shown itself to be adaptable whenever it has been challenged by new scientific developments and this is a still a continuously ongoing process. In this regard, the mini review aims to discuss some selected new developments in relation to their impact on further fine-tuning and expansion of the Hygiene Hypothesis. This will include the role of recently discovered classes of innate and adaptive immune cells that challenges the old Th1/Th2 paradigm, the applicability of the Hygiene Hypothesis to newly identified allergy/asthma phenotypes with diverse underlying pathomechanistic endotypes, and the increasing knowledge derived from epigenetic studies that leads to better understanding of mechanisms involved in the translation of environmental impacts on biological systems. Further, we discuss in brief the expansion of the Hygiene Hypothesis to other disease areas like psychiatric disorders and cancer and conclude that the continuously developing Hygiene Hypothesis may provide a more generalized explanation for health burden in highly industrialized countries also relation to global changes.
Collapse
Affiliation(s)
- Holger Garn
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Biochemical Pharmacological Center (BPC), Philipps University of Marburg, Marburg, Germany.,German Center for Lung Research (DZL), Marburg, Germany
| | - Daniel Piotr Potaczek
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Biochemical Pharmacological Center (BPC), Philipps University of Marburg, Marburg, Germany
| | - Petra Ina Pfefferle
- German Center for Lung Research (DZL), Marburg, Germany.,Comprehensive Biobank Marburg (CBBMR), Medical Faculty, Philipps University of Marburg, Marburg, Germany.,German Biobank Alliance (GBA), Marburg, Germany
| |
Collapse
|
42
|
Wang J, Yin J, Peng H, Liu A. MicroRNA-29 mediates anti-inflammatory effects and alleviation of allergic responses and symptoms in mice with allergic rhinitis. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2021; 17:24. [PMID: 33676551 PMCID: PMC7936503 DOI: 10.1186/s13223-021-00527-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/11/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND To investigate the role of microRNA-29 (miR-29) in mice with allergic rhinitis (AR) and its underlying mechanism. METHODS AR model was established in BALB/c mice by intraperitoneal sensitization and intranasal challenge with ovalbumin (OVA). miRNA expression was examined in the nasal mucosa tissues of mice and patients with AR, and miRNA-29 was found to be downregulated. To unveil the role of miRNA-29 in AR, it was overexpressed in the nasal mucosa of AR mice by intranasal administration of miRNA-29 agomir. The symptoms of nasal rubbing and sneezing were recorded and evaluated. miR-29 expression, OVA-specific immunoglobulin E (IgE) concentration, pro-inflammatory cytokines levels, eosinophils number, and cleaved caspase-3 and CD276 expression were examined in nasal mucosa tissues and nasal lavage fluid (NALF) by qRT-PCR, ELISA, hematoxylin and eosin staining, western blotting, or immunohistochemistry, respectively. TUNEL assay was used to analyze nasal mucosa cells apoptosis. RESULTS Decreased expression of miR-29 was observed in AR, the symptoms of which were alleviated by overexpressing miR-29. In addition, overexpression of miR-29 markedly reduced the concentration of OVA-specific IgE, the levels of IL-4, IL-6, IL-10, and IFN-γ, the pathological alterations and eosinophils infiltration in the nasal mucosa. Furthermore, restoration of miR-29 expression reduced nasal mucosa cell apoptosis. Moreover, overexpression of miR-29 significantly attenuated CD276 mRNA and protein levels in nasal mucosa cells. CONCLUSION MiR-29 mediated antiallergic effects in OVA-induced AR mice by decreasing inflammatory response, probably through targeting CD276. MiRNA-29 may serve as a potential novel therapeutic target for the treatment of AR.
Collapse
Affiliation(s)
- Jia Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Shijitan Hospital, Capital Medical University, No. 10 Yangfangdian Railway Hospital Road, Haidian District, Beijing, 100038, China
| | - Jinshu Yin
- Department of Otolaryngology Head and Neck Surgery, Beijing Shijitan Hospital, Capital Medical University, No. 10 Yangfangdian Railway Hospital Road, Haidian District, Beijing, 100038, China.
| | - Hong Peng
- Department of Otolaryngology Head and Neck Surgery, Beijing Shijitan Hospital, Capital Medical University, No. 10 Yangfangdian Railway Hospital Road, Haidian District, Beijing, 100038, China
| | - Aizhu Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Shijitan Hospital, Capital Medical University, No. 10 Yangfangdian Railway Hospital Road, Haidian District, Beijing, 100038, China
| |
Collapse
|
43
|
Fiuza BSD, Fonseca HF, Meirelles PM, Marques CR, da Silva TM, Figueiredo CA. Understanding Asthma and Allergies by the Lens of Biodiversity and Epigenetic Changes. Front Immunol 2021; 12:623737. [PMID: 33732246 PMCID: PMC7957070 DOI: 10.3389/fimmu.2021.623737] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Exposure to different organisms (bacteria, mold, virus, protozoan, helminths, among others) can induce epigenetic changes affecting the modulation of immune responses and consequently increasing the susceptibility to inflammatory diseases. Epigenomic regulatory features are highly affected during embryonic development and are responsible for the expression or repression of different genes associated with cell development and targeting/conducting immune responses. The well-known, "window of opportunity" that includes maternal and post-natal environmental exposures, which include maternal infections, microbiota, diet, drugs, and pollutant exposures are of fundamental importance to immune modulation and these events are almost always accompanied by epigenetic changes. Recently, it has been shown that these alterations could be involved in both risk and protection of allergic diseases through mechanisms, such as DNA methylation and histone modifications, which can enhance Th2 responses and maintain memory Th2 cells or decrease Treg cells differentiation. In addition, epigenetic changes may differ according to the microbial agent involved and may even influence different asthma or allergy phenotypes. In this review, we discuss how exposure to different organisms, including bacteria, viruses, and helminths can lead to epigenetic modulations and how this correlates with allergic diseases considering different genetic backgrounds of several ancestral populations.
Collapse
Affiliation(s)
| | | | - Pedro Milet Meirelles
- Instituto de Biologia, Universidade Federal da Bahia, Salvador, Brazil
- Instituto Nacional de Ciência e Tecnologia em Estudos Interdisciplinares e Transdisciplinares em Ecologia e Evolução (IN-TREE), Salvador, Brazil
| | - Cintia Rodrigues Marques
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | | | | |
Collapse
|
44
|
Acevedo N, Alashkar Alhamwe B, Caraballo L, Ding M, Ferrante A, Garn H, Garssen J, Hii CS, Irvine J, Llinás-Caballero K, López JF, Miethe S, Perveen K, Pogge von Strandmann E, Sokolowska M, Potaczek DP, van Esch BCAM. Perinatal and Early-Life Nutrition, Epigenetics, and Allergy. Nutrients 2021; 13:724. [PMID: 33668787 PMCID: PMC7996340 DOI: 10.3390/nu13030724] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 02/08/2023] Open
Abstract
Epidemiological studies have shown a dramatic increase in the incidence and the prevalence of allergic diseases over the last several decades. Environmental triggers including risk factors (e.g., pollution), the loss of rural living conditions (e.g., farming conditions), and nutritional status (e.g., maternal, breastfeeding) are considered major contributors to this increase. The influences of these environmental factors are thought to be mediated by epigenetic mechanisms which are heritable, reversible, and biologically relevant biochemical modifications of the chromatin carrying the genetic information without changing the nucleotide sequence of the genome. An important feature characterizing epigenetically-mediated processes is the existence of a time frame where the induced effects are the strongest and therefore most crucial. This period between conception, pregnancy, and the first years of life (e.g., first 1000 days) is considered the optimal time for environmental factors, such as nutrition, to exert their beneficial epigenetic effects. In the current review, we discussed the impact of the exposure to bacteria, viruses, parasites, fungal components, microbiome metabolites, and specific nutritional components (e.g., polyunsaturated fatty acids (PUFA), vitamins, plant- and animal-derived microRNAs, breast milk) on the epigenetic patterns related to allergic manifestations. We gave insight into the epigenetic signature of bioactive milk components and the effects of specific nutrition on neonatal T cell development. Several lines of evidence suggest that atypical metabolic reprogramming induced by extrinsic factors such as allergens, viruses, pollutants, diet, or microbiome might drive cellular metabolic dysfunctions and defective immune responses in allergic disease. Therefore, we described the current knowledge on the relationship between immunometabolism and allergy mediated by epigenetic mechanisms. The knowledge as presented will give insight into epigenetic changes and the potential of maternal and post-natal nutrition on the development of allergic disease.
Collapse
Affiliation(s)
- Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena 130014, Colombia; (N.A.); (L.C.); (K.L.-C.); (J.F.L.)
| | - Bilal Alashkar Alhamwe
- Institute of Tumor Immunology, Clinic for Hematology, Oncology and Immunology, Center for Tumor Biology and Immunology, Philipps University Marburg, 35043 Marburg, Germany; (B.A.A.); (E.P.v.S.)
- College of Pharmacy, International University for Science and Technology (IUST), Daraa 15, Syria
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena 130014, Colombia; (N.A.); (L.C.); (K.L.-C.); (J.F.L.)
| | - Mei Ding
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos, Switzerland; (M.D.); (M.S.)
- Christine Kühne-Center for Allergy Research and Education, 7265 Davos, Switzerland
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Antonio Ferrante
- Department of Immunopathology, SA Pathology at the Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia; (A.F.); (C.S.H.); (J.I.); (K.P.)
- Adelaide School of Medicine and the Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Holger Garn
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, 35043 Marburg, Germany; (H.G.); (S.M.)
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands;
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands
| | - Charles S. Hii
- Department of Immunopathology, SA Pathology at the Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia; (A.F.); (C.S.H.); (J.I.); (K.P.)
- Adelaide School of Medicine and the Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - James Irvine
- Department of Immunopathology, SA Pathology at the Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia; (A.F.); (C.S.H.); (J.I.); (K.P.)
- Adelaide School of Medicine and the Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - Kevin Llinás-Caballero
- Institute for Immunological Research, University of Cartagena, Cartagena 130014, Colombia; (N.A.); (L.C.); (K.L.-C.); (J.F.L.)
| | - Juan Felipe López
- Institute for Immunological Research, University of Cartagena, Cartagena 130014, Colombia; (N.A.); (L.C.); (K.L.-C.); (J.F.L.)
| | - Sarah Miethe
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, 35043 Marburg, Germany; (H.G.); (S.M.)
| | - Khalida Perveen
- Department of Immunopathology, SA Pathology at the Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia; (A.F.); (C.S.H.); (J.I.); (K.P.)
- Adelaide School of Medicine and the Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - Elke Pogge von Strandmann
- Institute of Tumor Immunology, Clinic for Hematology, Oncology and Immunology, Center for Tumor Biology and Immunology, Philipps University Marburg, 35043 Marburg, Germany; (B.A.A.); (E.P.v.S.)
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos, Switzerland; (M.D.); (M.S.)
- Christine Kühne-Center for Allergy Research and Education, 7265 Davos, Switzerland
| | - Daniel P. Potaczek
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, 35043 Marburg, Germany; (H.G.); (S.M.)
| | - Betty C. A. M. van Esch
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands;
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
45
|
Chatkin J, Correa L, Santos U. External Environmental Pollution as a Risk Factor for Asthma. Clin Rev Allergy Immunol 2021; 62:72-89. [PMID: 33433826 PMCID: PMC7801569 DOI: 10.1007/s12016-020-08830-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 12/12/2022]
Abstract
Air pollution is a worrisome risk factor for global morbidity and mortality and plays a special role in many respiratory conditions. It contributes to around 8 million deaths/year, with outdoor exposure being responsible for more than 4.2 million deaths throughout the world, while more than 3.8 million die from situations related to indoor pollution. Pollutant agents induce several respiratory symptoms. In addition, there is a clear interference in numerous asthma outcomes, such as incidence, prevalence, hospital admission, visits to emergency departments, mortality, and asthma attacks, among others. The particulate matter group of pollutants includes coarse particles/PM10, fine particles/PM2.5, and ultrafine particles/PM0.1. The gaseous components include ground-level ozone, nitrogen dioxide, sulfur dioxide, and carbon monoxide. The timing, load, and route of allergen exposure are other items affecting allergic disease phenotypes. The complex interaction between pollutant exposures and human host factors has an implication in the development and rise of asthma as a public health problem. However, there are hiatuses in the understanding of the pathways in this disease. The routes through which pollutants induce asthma are multiple, and include the epigenetic changes that occur in the respiratory tract microbiome, oxidative stress, and immune dysregulation. In addition, the expansion of the modern Westernized lifestyle, which is characterized by intense urbanization and more time spent indoors, resulted in greater exposure to polluted air. Another point to consider is the different role of the environment according to age groups. Children growing up in economically disadvantaged neighborhoods suffer more important negative health impacts. This narrative review highlights the principal polluting agents, their sources of emission, epidemiological findings, and mechanistic evidence that links environmental exposures to asthma.
Collapse
Affiliation(s)
- Jose Chatkin
- Pulmonology Division, School of Medicine, Pontifical Catholic University Rio Grande Do Sul (PUCRS), Hospital São Lucas da PUCRS, Porto Alegre, Brazil.
| | - Liana Correa
- Health Sciences Doctorate Program, School of Medicine, Pontifical Catholic University Rio Grande Do Sul (PUCRS), Pulmonologist Hospital São Lucas da PUCRS, Porto Alegre, Brazil
| | - Ubiratan Santos
- Pulmonology Division of Instituto Do Coração, Hospital das Clínicas, University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
46
|
Inflammation-Induced Protein Unfolding in Airway Smooth Muscle Triggers a Homeostatic Response in Mitochondria. Int J Mol Sci 2020; 22:ijms22010363. [PMID: 33396378 PMCID: PMC7795579 DOI: 10.3390/ijms22010363] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/17/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022] Open
Abstract
The effects of airway inflammation on airway smooth muscle (ASM) are mediated by pro-inflammatory cytokines such as tumor necrosis factor alpha (TNFα). In this review article, we will provide a unifying hypothesis for a homeostatic response to airway inflammation that mitigates oxidative stress and thereby provides resilience to ASM. Previous studies have shown that acute exposure to TNFα increases ASM force generation in response to muscarinic stimulation (hyper-reactivity) resulting in increased ATP consumption and increased tension cost. To meet this increased energetic demand, mitochondrial O2 consumption and oxidative phosphorylation increases but at the cost of increased reactive oxygen species (ROS) production (oxidative stress). TNFα-induced oxidative stress results in the accumulation of unfolded proteins in the endoplasmic reticulum (ER) and mitochondria of ASM. In the ER, TNFα selectively phosphorylates inositol-requiring enzyme 1 alpha (pIRE1α) triggering downstream splicing of the transcription factor X-box binding protein 1 (XBP1s); thus, activating the pIRE1α/XBP1s ER stress pathway. Protein unfolding in mitochondria also triggers an unfolded protein response (mtUPR). In our conceptual framework, we hypothesize that activation of these pathways is homeostatically directed towards mitochondrial remodeling via an increase in peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC1α) expression, which in turn triggers: (1) mitochondrial fragmentation (increased dynamin-related protein-1 (Drp1) and reduced mitofusin-2 (Mfn2) expression) and mitophagy (activation of the Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1)/Parkin mitophagy pathway) to improve mitochondrial quality; (2) reduced Mfn2 also results in a disruption of mitochondrial tethering to the ER and reduced mitochondrial Ca2+ influx; and (3) mitochondrial biogenesis and increased mitochondrial volume density. The homeostatic remodeling of mitochondria results in more efficient O2 consumption and oxidative phosphorylation and reduced ROS formation by individual mitochondrion, while still meeting the increased ATP demand. Thus, the energetic load of hyper-reactivity is shared across the mitochondrial pool within ASM cells.
Collapse
|
47
|
The Airway Epithelium-A Central Player in Asthma Pathogenesis. Int J Mol Sci 2020; 21:ijms21238907. [PMID: 33255348 PMCID: PMC7727704 DOI: 10.3390/ijms21238907] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 12/11/2022] Open
Abstract
Asthma is a chronic inflammatory airway disease characterized by variable airflow obstruction in response to a wide range of exogenous stimuli. The airway epithelium is the first line of defense and plays an important role in initiating host defense and controlling immune responses. Indeed, increasing evidence indicates a range of abnormalities in various aspects of epithelial barrier function in asthma. A central part of this impairment is a disruption of the airway epithelial layer, allowing inhaled substances to pass more easily into the submucosa where they may interact with immune cells. Furthermore, many of the identified susceptibility genes for asthma are expressed in the airway epithelium. This review focuses on the biology of the airway epithelium in health and its pathobiology in asthma. We will specifically discuss external triggers such as allergens, viruses and alarmins and the effect of type 2 inflammatory responses on airway epithelial function in asthma. We will also discuss epigenetic mechanisms responding to external stimuli on the level of transcriptional and posttranscriptional regulation of gene expression, as well the airway epithelium as a potential treatment target in asthma.
Collapse
|