1
|
Li J, Wang K, Starodubtseva MN, Nadyrov E, Kapron CM, Hoh J, Liu J. Complement factor H in molecular regulation of angiogenesis. MEDICAL REVIEW (2021) 2024; 4:452-466. [PMID: 39444793 PMCID: PMC11495524 DOI: 10.1515/mr-2023-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 06/07/2024] [Indexed: 10/25/2024]
Abstract
Angiogenesis, the process of formation of new capillaries from existing blood vessels, is required for multiple physiological and pathological processes. Complement factor H (CFH) is a plasma protein that inhibits the alternative pathway of the complement system. Loss of CFH enhances the alternative pathway and increases complement activation fragments with pro-angiogenic capacity, including complement 3a, complement 5a, and membrane attack complex. CFH protein contains binding sites for C-reactive protein, malondialdehyde, and endothelial heparan sulfates. Dysfunction of CFH prevents its interaction with these molecules and initiates pro-angiogenic events. Mutations in the CFH gene have been found in patients with age-related macular degeneration characterized by choroidal neovascularization. The Cfh-deficient mice show an increase in angiogenesis, which is decreased by administration of recombinant CFH protein. In this review, we summarize the molecular mechanisms of the anti-angiogenic effects of CFH and the regulatory mechanisms of CFH expression. The therapeutic potential of recombinant CFH protein in angiogenesis-related diseases has also been discussed.
Collapse
Affiliation(s)
- Jiang Li
- Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province, China
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong Province, China
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Jinan, Shandong Province, China
| | - Kaili Wang
- Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province, China
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Jinan, Shandong Province, China
| | - Maria N. Starodubtseva
- Gomel State Medical University, Gomel, Belarus
- Institute of Radiobiology of NAS of Belarus, Gomel, Belarus
| | | | | | - Josephine Hoh
- Department of Ophthalmology, Yale School of Medicine, New Haven, CT, USA
| | - Ju Liu
- Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province, China
- Gomel State Medical University, Gomel, Belarus
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Jinan, Shandong Province, China
| |
Collapse
|
2
|
Nell D, Wolf R, Podgorny PM, Kuschnereit T, Kuschnereit R, Dabers T, Stracke S, Schmidt T. Complement Activation in Nephrotic Glomerular Diseases. Biomedicines 2024; 12:455. [PMID: 38398059 PMCID: PMC10886869 DOI: 10.3390/biomedicines12020455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/23/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
The nephrotic syndrome holds significant clinical importance and is characterized by a substantial protein loss in the urine. Damage to the glomerular basement membrane or podocytes frequently underlies renal protein loss. There is an increasing belief in the involvement of the complement system, a part of the innate immune system, in these conditions. Understanding the interactions between the complement system and glomerular structures continually evolves, challenging the traditional view of the blood-urine barrier as a passive filter. Clinical studies suggest that a precise inhibition of the complement system at various points may soon become feasible. However, a thorough understanding of current knowledge is imperative for planning future therapies in nephrotic glomerular diseases such as membranous glomerulopathy, membranoproliferative glomerulonephritis, lupus nephritis, focal segmental glomerulosclerosis, and minimal change disease. This review provides an overview of the complement system, its interactions with glomerular structures, and insights into specific glomerular diseases exhibiting a nephrotic course. Additionally, we explore new diagnostic tools and future therapeutic approaches.
Collapse
|
3
|
Jiang H, Shen Z, Zhuang J, Lu C, Qu Y, Xu C, Yang S, Tian X. Understanding the podocyte immune responses in proteinuric kidney diseases: from pathogenesis to therapy. Front Immunol 2024; 14:1335936. [PMID: 38288116 PMCID: PMC10822972 DOI: 10.3389/fimmu.2023.1335936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
The glomerular filtration barrier, comprising the inner layer of capillary fenestrated endothelial cells, outermost podocytes, and the glomerular basement membrane between them, plays a pivotal role in kidney function. Podocytes, terminally differentiated epithelial cells, are challenging to regenerate once injured. They are essential for maintaining the integrity of the glomerular filtration barrier. Damage to podocytes, resulting from intrinsic or extrinsic factors, leads to proteinuria in the early stages and eventually progresses to chronic kidney disease (CKD). Immune-mediated podocyte injury is a primary pathogenic mechanism in proteinuric glomerular diseases, including minimal change disease, focal segmental glomerulosclerosis, membranous nephropathy, and lupus nephritis with podocyte involvement. An extensive body of evidence indicates that podocytes not only contribute significantly to the maintenance of the glomerular filtration barrier and serve as targets of immune responses but also exhibit immune cell-like characteristics, participating in both innate and adaptive immunity. They play a pivotal role in mediating glomerular injury and represent potential therapeutic targets for CKD. This review aims to systematically elucidate the mechanisms of podocyte immune injury in various podocyte lesions and provide an overview of recent advances in podocyte immunotherapy. It offers valuable insights for a deeper understanding of the role of podocytes in proteinuric glomerular diseases, and the identification of new therapeutic targets, and has significant implications for the future clinical diagnosis and treatment of podocyte-related disorders.
Collapse
Affiliation(s)
- Hong Jiang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Zhirang Shen
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Jing Zhuang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Chen Lu
- Division of Nephrology, Department of Internal Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yue Qu
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Chengren Xu
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Shufen Yang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
4
|
Zhuang X, Sun Z, Du H, Zhou T, Zou J, Fu W. Metformin inhibits high glucose-induced apoptosis of renal podocyte through regulating miR-34a/SIRT1 axis. Immun Inflamm Dis 2024; 12:e1053. [PMID: 38270305 PMCID: PMC10797654 DOI: 10.1002/iid3.1053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/21/2023] [Accepted: 10/09/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Previous studies have reported SIRT1 was inversely modulated by miR-34a, However, mechanism of metformin (MFN)'s renal podocyte protection under high glucose (HG) conditions and the connection between miR-34a and SIRT1 expression in diabetic nephropathy (DN) remain unclear. METHOD We aimed to further elucidate the role of miR-34a in HG-treated podocytes in DN. A conditionally immortalized human podocyte cell line was cultivated in d-glucose (30 mM). RESULTS Microarray and RT-qPCR revealed that miR-34a was downregulated in HG-treated podocytes. Additionally, miR-34a levels increased in MFN-treated HG-induced podocytes. CCK-8 assay, colony formation assay, flow cytometry, and Western blot detection showed that HG treatment reduced cell viability and promoted via HG treatment, and MFN treatment reversed this phenotypic change. MiR-34a upregulation caused restored cell viability and suppressed cell apoptosis in HG-treated podocytes, and miR-34a downregulation led to damaged cell survival and induced apoptosis in MFN-administered and HG-treated podocytes. The dual luciferase reporter assay showed that SIRT1 3'-UTR was a direct miR-34a target. Further studies demonstrated an elevation in SIRT1 levels in HG-exposed podocytes, whereas MFN treatment decreased SIRT1 levels. In addition, miR-34a upregulation led to reduced SIRT1 expression, whereas miR-34a inhibition increased SIRT1 levels in cells. MFN-induced miR-34a suppresses podocyte apoptosis under HG conditions by acting on SIRT1. CONCLUSION This study proposes a promising approach to interpret the mechanisms of action of the MFN-miR-34a axis involved in DN.
Collapse
Affiliation(s)
- Xudong Zhuang
- Department of DialysisLinyi Traditional Chinese Medicine HospitalLinyiShandongChina
| | - Zhuye Sun
- Department of PharmacyRizhao Hospital of Traditional Chinese MedicineRizhaoShandongChina
| | - Huasheng Du
- Department of NephrologyQingdao Municipal HospitalQingdaoShandongChina
| | - Tianhui Zhou
- Beijing University of Chinese MedicineBeijingChina
| | - Jing Zou
- Department of DialysisLinyi Traditional Chinese Medicine HospitalLinyiShandongChina
| | - Wei Fu
- Department of Drug DispensingZibo Central HospitalZiboShandongChina
| |
Collapse
|
5
|
Wang S, Broder A, Shao D, Kesarwani V, Boderman B, Aguilan J, Sidoli S, Suzuki M, Greally JM, Saenger YM, Rovin BH, Michelle Kahlenberg J. Urine Proteomics Link Complement Activation with Interstitial Fibrosis/Tubular Atrophy in Lupus Nephritis Patients. Semin Arthritis Rheum 2023; 63:152263. [PMID: 37802003 PMCID: PMC10783434 DOI: 10.1016/j.semarthrit.2023.152263] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 08/14/2023] [Accepted: 08/27/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND Intrarenal complement activation has been implicated in the pathogenesis of tubulointerstitial fibrosis in lupus nephritis (LN) based on prior animal studies. The assembly of the membrane attack complex (MAC) by complement C5b to C9 on the cell membrane leads to cytotoxic pores and cell lysis, while CD59 inhibits MAC formation by preventing C9 from joining the complex. We hypothesize that complement activation and imbalance between complement activation and inhibition, as defined by increased production of individual complement components and uncontrolled MAC activation relative to CD59 inhibition, are associated with interstitial fibrosis and tubular atrophy (IFTA) in LN and correlate with the key mediators of kidney fibrosis- transforming growth factor receptors beta (TGFRβ), platelet-derived growth factor beta (PDGFβ) and platelet-derived growth factor receptor beta (PDGFRβ). METHODS We included urine samples from 46 adults and pediatric biopsy-proven lupus nephritis patients who underwent clinically indicated kidney biopsies between 2010 and 2019. We compared individual urinary complement components and the urinary C9-to-CD59 ratio between LN patients with moderate/severe IFTA and none/mild IFTA. IFTA was defined as none/mild (<25% of interstitium affected) versus moderate/severe (≥ 25% of interstitium affected). Proteomics analysis was performed using mass spectrometry (Orbitrap Fusion Lumos, Thermo Scientific) and processed by the Proteome Discoverer. Urinary complement proteins enriched in LN patients with moderate/severe IFTA were correlated with serum creatinine, TGFβR1, TGFβR2, PDGFβ, and PDGFRβ. RESULTS Of the 46 LN patients included in the study, 41 (89.1%) were women, 20 (43.5%) self-identified as Hispanic or Latino, and 26 (56.5%) self-identified as Black or African American. Ten of the 46 (21.7%) LN patients had moderate/severe IFTA on kidney biopsy. LN patients with moderate/severe IFTA had an increased urinary C9-to-CD59 ratio [median 0.91 (0.83-1.05) vs 0.81 (0.76-0.91), p=0.01]. Urinary C3 and CFI levels in LN patients with moderate/severe IFTA were higher compared to those with none/mild IFTA [C3 median (IQR) 24.4(23.5-25.5) vs. 20.2 (18.5-22.2), p= 0.02], [CFI medium (IQR) 28.8 (21.8-30.6) vs. 20.4 (18.5-22.9), p=0.01]. Complement C9, CD59, C3 and CFI correlated with TGFβR1, PDGFβ, and PDGFRβ, while C9, CD59 and C3 correlated with TGFβR2. CONCLUSION This study is one of the first to compare the urinary complement profile in LN patients with moderate/severe IFTA and none/mild IFTA in human tissues. This study identified C3, CFI, and C9-to-CD59 ratio as potential markers of tubulointerstitial fibrosis in LN.
Collapse
Affiliation(s)
- Shudan Wang
- Division of Rheumatology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA.
| | - Anna Broder
- Division of Rheumatology, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Daming Shao
- Department of Medicine, Jacobi Medical Center, Bronx, NY, USA
| | - Vartika Kesarwani
- Department of Medicine, University of Wisconsin Hospital and Clinics, WI, USA
| | - Brianna Boderman
- Department of Medicine, University of Connecticut School of Medicine, CT, USA
| | - Jennifer Aguilan
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Masako Suzuki
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY USA
| | - John M Greally
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY USA
| | - Yvonne M Saenger
- Department of Oncology and Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY USA
| | - Brad H Rovin
- Division of Nephrology, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | | |
Collapse
|
6
|
Chen Q, Jiang H, Ding R, Zhong J, Li L, Wan J, Feng X, Peng L, Yang X, Chen H, Wang A, Jiao J, Yang Q, Chen X, Li X, Shi L, Zhang G, Wang M, Yang H, Li Q. Cell-type-specific molecular characterization of cells from circulation and kidney in IgA nephropathy with nephrotic syndrome. Front Immunol 2023; 14:1231937. [PMID: 37908345 PMCID: PMC10613708 DOI: 10.3389/fimmu.2023.1231937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/20/2023] [Indexed: 11/02/2023] Open
Abstract
Nephrotic syndrome (NS) is a relatively rare and serious presentation of IgA nephropathy (IgAN) (NS-IgAN). Previous research has suggested that the pathogenesis of NS-IgAN may involve circulating immune imbalance and kidney injury; however, this has yet to be fully elucidated. To investigate the cellular and molecular status of NS-IgAN, we performed single-cell RNA sequencing (scRNA-seq) of peripheral blood mononuclear cells (PBMCs) and kidney cells from pediatric patients diagnosed with NS-IgAN by renal biopsy. Consistently, the proportion of intermediate monocytes (IMs) in NS-IgAN patients was higher than in healthy controls. Furthermore, flow cytometry confirmed that IMs were significantly increased in pediatric patients with NS. The characteristic expression of VSIG4 and MHC class II molecules and an increase in oxidative phosphorylation may be important features of IMs in NS-IgAN. Notably, we found that the expression level of CCR2 was significantly increased in the CMs, IMs, and NCMs of patients with NS-IgAN. This may be related to kidney injury. Regulatory T cells (Tregs) are classified into two subsets of cells: Treg1 (CCR7 high, TCF7 high, and HLA-DR low) and Treg2 (CCR7 low, TCF7 low, and HLA-DR high). We found that the levels of Treg2 cells expressed significant levels of CCR4 and GATA3, which may be related to the recovery of kidney injury. The state of NS in patients was closely related to podocyte injury. The expression levels of CCL2, PRSS23, and genes related to epithelial-mesenchymal transition were significantly increased in podocytes from NS-IgAN patients. These represent key features of podocyte injury. Our analysis suggests that PTGDS is significantly downregulated following injury and may represent a new marker for podocytes. In this study, we systematically analyzed molecular events in the circulatory system and kidney tissue of pediatric patients with NS-IgAN, which provides new insights for targeted therapy in the future.
Collapse
Affiliation(s)
- Qilin Chen
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Huimin Jiang
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Rong Ding
- Nanjing Jiangbei New Area Biopharmaceutical Public Service Platform Co. Ltd, Nanjing, Jiangsu, China
| | - Jinjie Zhong
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Longfei Li
- Nanjing Jiangbei New Area Biopharmaceutical Public Service Platform Co. Ltd, Nanjing, Jiangsu, China
| | - Junli Wan
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Xiaoqian Feng
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Liping Peng
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xia Yang
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Han Chen
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Anshuo Wang
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Jia Jiao
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Qin Yang
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Xuelan Chen
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Xiaoqin Li
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Lin Shi
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Gaofu Zhang
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Mo Wang
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Haiping Yang
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Qiu Li
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
7
|
Bruno V, Mühlig AK, Oh J, Licht C. New insights into the immune functions of podocytes: the role of complement. Mol Cell Pediatr 2023; 10:3. [PMID: 37059832 PMCID: PMC10104987 DOI: 10.1186/s40348-023-00157-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 03/24/2023] [Indexed: 04/16/2023] Open
Abstract
Podocytes are differentiated epithelial cells which play an essential role to ensure a normal function of the glomerular filtration barrier (GFB). In addition to their adhesive properties in maintaining the integrity of the filtration barrier, they have other functions, such as synthesis of components of the glomerular basement membrane (GBM), production of vascular endothelial growth factor (VEGF), release of inflammatory proteins, and expression of complement components. They also participate in the glomerular crosstalk through multiple signalling pathways, including endothelin-1, VEGF, transforming growth factor β (TGFβ), bone morphogenetic protein 7 (BMP-7), latent transforming growth factor β-binding protein 1 (LTBP1), and extracellular vesicles.Growing literature suggests that podocytes share many properties of innate and adaptive immunity, supporting a multifunctional role ensuring a healthy glomerulus. As consequence, the "immune podocyte" dysfunction is thought to be involved in the pathogenesis of several glomerular diseases, referred to as "podocytopathies." Multiple factors like mechanical, oxidative, and/or immunologic stressors can induce cell injury. The complement system, as part of both innate and adaptive immunity, can also define podocyte damage by several mechanisms, such as reactive oxygen species (ROS) generation, cytokine production, and endoplasmic reticulum stress, ultimately affecting the integrity of the cytoskeleton, with subsequent podocyte detachment from the GBM and onset of proteinuria.Interestingly, podocytes are found to be both source and target of complement-mediated injury. Podocytes express complement proteins which contribute to local complement activation. At the same time, they rely on several protective mechanisms to escape this damage. Podocytes express complement factor H (CFH), one of the main regulators of the complement cascade, as well as membrane-bound complement regulators like CD46 or membrane cofactor protein (MCP), CD55 or decay-accelerating factor (DAF), and CD59 or defensin. Further mechanisms, like autophagy or actin-based endocytosis, are also involved to ensure podocyte homeostasis and protection against injury.This review will provide an overview of the immune functions of podocytes and their response to immune-mediated injury, focusing on the pathogenic link between complement and podocyte damage.
Collapse
Affiliation(s)
- Valentina Bruno
- Division of Nephrology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Anne Katrin Mühlig
- University Children's Research@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatric Nephrology, University Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jun Oh
- University Children's Research@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatric Nephrology, University Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Licht
- Division of Nephrology, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada.
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
8
|
Alduraibi FK, Sullivan KA, Chatham WW, Hsu HC, Mountz JD. Interrelation of T cell cytokines and autoantibodies in systemic lupus erythematosus: A cross-sectional study. Clin Immunol 2023; 247:109239. [PMID: 36682593 PMCID: PMC10118038 DOI: 10.1016/j.clim.2023.109239] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 01/21/2023]
Abstract
T-helper cytokines interferon gamma (IFNɣ), interleukin 17 (IL-17) and IL-10 impact systemic lupus erythematosus (SLE) directly and indirectly via modulation of autoAb production. We determined the separate and combined effects on clinical manifestations of SLE (N = 62). IFNɣ, IL-17 but not IL-10 were significantly elevated in patients with SLE. IFNɣ positively correlated with anti-DNA and anti-SSA. IL-17 positively correlated with anti-SSA and was significantly higher in patients with discoid rash and class V LN. IL-10 did not correlate with circulating autoantibodies but was significantly elevated in patients with LN. Patients with LN had elevated plasma levels of anti-DNA and anti-Sm/ribonuclear protein (RNP). Anti-Sm/RNP levels were decreased in patients with acute mucocutaneous manifestations, including photosensitivity and/or malar rash. The study provides critical insights into pathological mechanisms of LN, which could help guide future diagnoses and therapies.
Collapse
Affiliation(s)
- Fatima K Alduraibi
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA; Medicine Service, Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA; Department of Medicine, Division of Clinical Immunology and Rheumatology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Kathryn A Sullivan
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - W Winn Chatham
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hui-Chen Hsu
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John D Mountz
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA; Medicine Service, Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA.
| |
Collapse
|
9
|
Lin L, Tian E, Ren J, Wu Z, Deng J, Yang J. Traditional Chinese Medicine in Treating Primary Podocytosis: From Fundamental Science to Clinical Research. Front Pharmacol 2022; 13:932739. [PMID: 36003509 PMCID: PMC9393213 DOI: 10.3389/fphar.2022.932739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022] Open
Abstract
Podocytes form a key component of the glomerular filtration barrier. Damage to podocytes is referred to as “podocyte disease.” There are many causes of podocyte injury, including primary injury, secondary injury, and gene mutations. Primary podocytosis mostly manifests as nephrotic syndrome. At present, first-line treatment is based on glucocorticoid administration combined with immunosuppressive therapy, but some patients still progress to end-stage renal disease. In Asia, especially in China, traditional Chinese medicine (TCM) still plays an important role in the treatment of kidney diseases. This study summarizes the potential mechanism of TCM and its active components in protecting podocytes, such as repairing podocyte injury, inhibiting podocyte proliferation, reducing podocyte apoptosis and excretion, maintaining podocyte skeleton structure, and upregulating podocyte-related protein expression. At the same time, the clinical efficacy of TCM in the treatment of primary podocytosis (including idiopathic membranous nephropathy, minimal change disease, and focal segmental glomerulosclerosis) is summarized to support the development of new treatment strategies for primary podocytosis.
Collapse
Affiliation(s)
- Lirong Lin
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University (General Hospital), Chongqing, China
| | - En Tian
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University (General Hospital), Chongqing, China
| | - Jiangwen Ren
- Department of Nephrology, Rheumatism and Immunology, Jiulongpo District People’s Hospital of Chongqing, Chongqing, China
| | - Zhifeng Wu
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University (General Hospital), Chongqing, China
| | | | - Jurong Yang
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University (General Hospital), Chongqing, China
- *Correspondence: Jurong Yang,
| |
Collapse
|
10
|
Xu Z, Tao L, Su H. The Complement System in Metabolic-Associated Kidney Diseases. Front Immunol 2022; 13:902063. [PMID: 35924242 PMCID: PMC9339597 DOI: 10.3389/fimmu.2022.902063] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
Metabolic syndrome (MS) is a group of clinical abnormalities characterized by central or abdominal obesity, hypertension, hyperuricemia, and metabolic disorders of glucose or lipid. Currently, the prevalence of MS is estimated about 25% in general population and is progressively increasing, which has become a challenging public health burden. Long-term metabolic disorders can activate the immune system and trigger a low-grade chronic inflammation named “metaflammation.” As an important organ involved in metabolism, the kidney is inevitably attacked by immunity disequilibrium and “metaflammation.” Recently, accumulating studies have suggested that the complement system, the most important and fundamental component of innate immune responses, is actively involved in the development of metabolic kidney diseases. In this review, we updated and summarized the different pathways through which the complement system is activated in a series of metabolic disturbances and the mechanisms on how complement mediate immune cell activation and infiltration, renal parenchymal cell damage, and the deterioration of renal function provide potential new biomarkers and therapeutic options for metabolic kidney diseases.
Collapse
|
11
|
Fernandez-Ruiz R, Belmont HM. The role of anticomplement therapy in lupus nephritis. Transl Res 2022; 245:1-17. [PMID: 35158097 DOI: 10.1016/j.trsl.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 10/19/2022]
Abstract
The complement system plays crucial roles in homeostasis and host defense against microbes. Deficiency of early complement cascade components has been associated with increased susceptibility to systemic lupus erythematosus (SLE), whereas excessive complement consumption is a hallmark of this disease. Although enhanced classical pathway activation by immune complexes was initially thought to be the main contributor to lupus nephritis (LN) pathogenesis, an increasing body of evidence has suggested the alternative and the lectin pathways are also involved. Therapeutic agents targeting complement activation have been used in LN patients and clinical trials are ongoing. We review the mechanisms by which complement system dysregulation contributes to renal injury in SLE and summarize the latest evidence on the use of anticomplement agents to manage this condition.
Collapse
Affiliation(s)
- Ruth Fernandez-Ruiz
- Division of Rheumatology, NYU Grossman School of Medicine, New York, New York
| | | |
Collapse
|
12
|
Wang C, Wang Z, Zhang W. The potential role of complement alternative pathway activation in hypertensive renal damage. Exp Biol Med (Maywood) 2022; 247:797-804. [PMID: 35473318 DOI: 10.1177/15353702221091986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hypertensive renal damage is a common secondary kidney disease caused by poor control of blood pressure. Recent evidence has revealed abnormal activation of the complement alternative pathway (AP) in hypertensive patients and animal models and that this phenomenon is related to hypertensive renal damage. Conditions in the setting of hypertension, including high renin concentration, reduced binding of factor H to the glomerular basement membrane, and abnormal local synthesis of complement proteins, potentially promote the AP activation in the kidney. The products of the AP activation promote the phenotypic transition of mesangial cells and tubular cells, attack endothelial cells and recruit immunocytes to worsen hypertensive renal damage. The effects of complement inhibition on hypertensive renal damage are contradictory. Although clinical data support the use of C5 monoclonal antibody in malignant hypertension, pharmacological inhibition in hypertensive animals provides little benefit to kidney function. Therefore, the role of the complement AP in the pathogenesis of hypertensive renal damage and the value of complement inhibition in hypertensive renal damage treatment must be further explored.
Collapse
Affiliation(s)
- Chongjian Wang
- Division of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhiyu Wang
- Division of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wen Zhang
- Division of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
13
|
Isaksson GL, Nielsen MB, Hinrichs GR, Krogstrup NV, Zachar R, Stubmark H, Svenningsen P, Madsen K, Bistrup C, Jespersen B, Birn H, Palarasah Y, Jensen BL. Proteinuria is accompanied by intratubular complement activation and apical membrane deposition of C3dg and C5b-9 in kidney transplant recipients. Am J Physiol Renal Physiol 2021; 322:F150-F163. [PMID: 34927448 PMCID: PMC8791842 DOI: 10.1152/ajprenal.00300.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Proteinuria predicts accelerated decline in kidney function in kidney transplant recipients (KTRs). We hypothesized that aberrant filtration of complement factors causes intraluminal activation, apical membrane attack on tubular cells, and progressive injury. Biobanked samples from two previous studies in albuminuric KTRs were used. The complement-activation split products C3c, C3dg, and soluble C5b-9-associated C9 neoantigen were analyzed by ELISA in urine and plasma using neoepitope-specific antibodies. Urinary extracellular vesicles (uEVs) were enriched by lectin and immunoaffinity isolation and analyzed by immunoblot analysis. Urine complement excretion increased significantly in KTRs with an albumin-to-creatinine ratio of ≥300 mg/g compared with <30 mg/g. Urine C3dg and C9 neoantigen excretion correlated significantly to changes in albumin excretion from 3 to 12 mo after transplantation. Fractional excretion of C9 neoantigen was significantly higher than for albumin, indicating postfiltration generation. C9 neoantigen was detected in uEVs in six of the nine albuminuric KTRs but was absent in non-albuminuric controls (n = 8). In C9 neoantigen-positive KTRs, lectin affinity enrichment of uEVs from the proximal tubules yielded signal for iC3b, C3dg, C9 neoantigen, and Na+-glucose transporter 2 but only weakly for aquaporin 2. Coisolation of podocyte markers and Tamm–Horsfall protein was minimal. Our findings show that albuminuria is associated with aberrant filtration and intratubular activation of complement with deposition of C3 activation split products and C5b-9-associated C9 neoantigen on uEVs from the proximal tubular apical membrane. Intratubular complement activation may contribute to progressive kidney injury in proteinuric kidney grafts. NEW & NOTEWORTHY The present study proposes a mechanistic coupling between proteinuria and aberrant filtration of complement precursors, intratubular complement activation, and apical membrane attack in kidney transplant recipients. C3dg and C5b-9-associated C9 neoantigen associate with proximal tubular apical membranes as demonstrated in urine extracellular vesicles. The discovery suggests intratubular complement as a mediator between proteinuria and progressive kidney damage. Inhibitors of soluble and/or luminal complement activation with access to the tubular lumen may be beneficial.
Collapse
Affiliation(s)
- Gustaf Lissel Isaksson
- Dept. of Molecular Medicine - Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark.,Dept. of Nephrology, Odense University Hospital, Odense, Denmark
| | - Marie Bodilsen Nielsen
- Dept. of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Dept of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Gitte Rye Hinrichs
- Dept. of Molecular Medicine - Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark.,Dept. of Nephrology, Odense University Hospital, Odense, Denmark
| | | | - Rikke Zachar
- Dept. of Molecular Medicine - Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Heidi Stubmark
- Dept. of Molecular Medicine - Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Per Svenningsen
- Dept. of Molecular Medicine - Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Kirsten Madsen
- Dept. of Molecular Medicine - Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark.,Dept. of Pathology, Odense University Hospital, Odense, Denmark
| | - Claus Bistrup
- Dept. of Nephrology, Odense University Hospital, Odense, Denmark.,Dept. of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Bente Jespersen
- Dept. of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Dept. of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Henrik Birn
- Dept. of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Dept of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Yaseelan Palarasah
- Dept. of Molecular Medicine - Cancer and Inflammation Research, University of Southern Denmark, Odense, Denmark
| | - Boye L Jensen
- Dept. of Molecular Medicine - Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
14
|
Zhao L, Zhang Y, Liu F, Yang H, Zhong Y, Wang Y, Li S, Su Q, Tang L, Bai L, Ren H, Zou Y, Wang S, Zheng S, Xu H, Li L, Zhang J, Chai Z, Cooper ME, Tong N. Urinary complement proteins and risk of end-stage renal disease: quantitative urinary proteomics in patients with type 2 diabetes and biopsy-proven diabetic nephropathy. J Endocrinol Invest 2021; 44:2709-2723. [PMID: 34043214 PMCID: PMC8572220 DOI: 10.1007/s40618-021-01596-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/18/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE To investigate the association between urinary complement proteins and renal outcome in biopsy-proven diabetic nephropathy (DN). METHODS Untargeted proteomic and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional analyses and targeted proteomic analysis using parallel reaction-monitoring (PRM)-mass spectrometry was performed to determine the abundance of urinary complement proteins in healthy controls, type 2 diabetes mellitus (T2DM) patients, and patients with T2DM and biopsy-proven DN. The abundance of each urinary complement protein was individually included in Cox proportional hazards models for predicting progression to end-stage renal disease (ESRD). RESULTS Untargeted proteomic and functional analysis using the KEGG showed that differentially expressed urinary proteins were primarily associated with the complement and coagulation cascades. Subsequent urinary complement proteins quantification using PRM showed that urinary abundances of C3, C9, and complement factor H (CFAH) correlated negatively with annual estimated glomerular filtration rate (eGFR) decline, while urinary abundances of C5, decay-accelerating factor (DAF), and CD59 correlated positively with annual rate of eGFR decline. Furthermore, higher urinary abundance of CFAH and lower urinary abundance of DAF were independently associated with greater risk of progression to ESRD. Urinary abundance of CFAH and DAF had a larger area under the curve (AUC) than that of eGFR, proteinuria, or any pathological parameter. Moreover, the model that included CFAH or DAF had a larger AUC than that with only clinical or pathological parameters. CONCLUSION Urinary abundance of complement proteins was significantly associated with ESRD in patients with T2DM and biopsy-proven DN, indicating that therapeutically targeting the complement pathway may alleviate progression of DN.
Collapse
Affiliation(s)
- L Zhao
- Division of Nephrology, Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan Province, China
- Division of General Practice, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Y Zhang
- Key Laboratory of Transplant Engineering and Immunology, MOH, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan Province, China
- West China-Washington Mitochondria and Metabolism Research Center, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan Province, China
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan Province, China
| | - F Liu
- Division of Nephrology, Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan Province, China.
- Division of General Practice, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
- Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - H Yang
- Key Laboratory of Transplant Engineering and Immunology, MOH, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan Province, China.
- West China-Washington Mitochondria and Metabolism Research Center, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan Province, China.
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan Province, China.
| | - Y Zhong
- Key Laboratory of Transplant Engineering and Immunology, MOH, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan Province, China
- West China-Washington Mitochondria and Metabolism Research Center, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan Province, China
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan Province, China
| | - Y Wang
- Division of Nephrology, Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan Province, China
- Division of General Practice, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - S Li
- Division of General Practice, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Q Su
- Division of General Practice, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - L Tang
- Histology and Imaging Platform, Core Facility of West China Hospital, Chengdu, Sichuan, China
| | - L Bai
- Histology and Imaging Platform, Core Facility of West China Hospital, Chengdu, Sichuan, China
| | - H Ren
- Division of Nephrology, Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan Province, China
- Division of General Practice, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Y Zou
- Division of Nephrology, Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan Province, China
- Division of General Practice, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - S Wang
- Key Laboratory of Transplant Engineering and Immunology, MOH, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan Province, China
- West China-Washington Mitochondria and Metabolism Research Center, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan Province, China
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan Province, China
| | - S Zheng
- Key Laboratory of Transplant Engineering and Immunology, MOH, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan Province, China
- West China-Washington Mitochondria and Metabolism Research Center, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan Province, China
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan Province, China
| | - H Xu
- Division of Pathology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - L Li
- Division of Pathology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - J Zhang
- Histology and Imaging Platform, Core Facility of West China Hospital, Chengdu, Sichuan, China
| | - Z Chai
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - M E Cooper
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - N Tong
- Division of Endocrinology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Rosa-Guerrero P, Leiva-Cepas F, Agüera-Morales M, Navarro-Cabello MD, Rodríguez-Benot A, Torres-De-Rueda A. First Report in the Literature of Biopsy-Proven Noncollapsing Focal Segmental Glomerulosclerosis Relapse in a Second Renal Transplant Presenting With Thrombotic Microangiopathy: A Case Report. Transplant Proc 2021; 53:2747-2750. [PMID: 34627595 DOI: 10.1016/j.transproceed.2021.07.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/16/2021] [Indexed: 11/30/2022]
Abstract
Primary focal segmental glomerulosclerosis (FSGS) is a podocytopathy with an irregular response to immunosuppressive therapies. FSGS relapse occurs in 30% to 80% of kidney grafts, and poor survival outcomes include large proteinuria and the nephrotic syndrome's cardinal clinical features. Thrombotic microangiopathy (TMA) is caused by endothelial injury due to complement dysregulation including acute kidney injury, proteinuria, and severe hypertension common renal presentations. Both pathologies have well-described genetic forms, but their relationship remains uncertain. FSGS lesions can be found in kidney biopsy specimens in patients with TMA, and TMA has been reported in patients with collapsing glomerulopathy. However, this combination has not been clearly described in renal transplant recipients. We present the case of a 22-year-old man who received his second kidney allograft and developed an early graft disfunction with nephrotic syndrome and clinical TMA. His background was remarkable for primary, biopsy-confirmed FSGS in childhood, and he started hemodialysis in 2006 and received a living donor kidney graft the same year. He presented with a FSGS relapse with malignant hypertension and seizures in the first posttransplant month and had an irregular response to plasma exchange and rituximab, and dialysis was reinitiated 10 years later. A total of 3 biopsies were performed after his second kidney transplant showing the evolution of a FSGS relapse with histologic and clinical TMA in the absence of identified genetic mutations. Partial responses to treatments with plasma exchange, eculizumab, and rituximab were obtained, but the allograft was lost after 26 months. This case is the first report of concomitant FSGS and TMA in a renal transplant recipient.
Collapse
Affiliation(s)
- Pedro Rosa-Guerrero
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Reina Sofía University Hospital, University of Cordoba, Córdoba, Spain; Department of Nephrology, Reina Sofía University Hospital, Córdoba, Spain.
| | - Fernando Leiva-Cepas
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Reina Sofía University Hospital, University of Cordoba, Córdoba, Spain; Department of Pathology, Reina Sofía University Hospital, Córdoba, Spain
| | - Marisa Agüera-Morales
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Reina Sofía University Hospital, University of Cordoba, Córdoba, Spain; Department of Nephrology, Reina Sofía University Hospital, Córdoba, Spain
| | - María Dolores Navarro-Cabello
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Reina Sofía University Hospital, University of Cordoba, Córdoba, Spain; Department of Nephrology, Reina Sofía University Hospital, Córdoba, Spain
| | - Alberto Rodríguez-Benot
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Reina Sofía University Hospital, University of Cordoba, Córdoba, Spain; Department of Nephrology, Reina Sofía University Hospital, Córdoba, Spain
| | - Alvaro Torres-De-Rueda
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Reina Sofía University Hospital, University of Cordoba, Córdoba, Spain; Department of Nephrology, Reina Sofía University Hospital, Córdoba, Spain; Asociación Medicina e Investigación (AMI), Córdoba, Spain
| |
Collapse
|
16
|
Portilla D, Xavier S. Role of intracellular complement activation in kidney fibrosis. Br J Pharmacol 2021; 178:2880-2891. [PMID: 33555070 DOI: 10.1111/bph.15408] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/22/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Increased expression of complement C1r, C1s and C3 in kidney cells plays an important role in the pathogenesis of kidney fibrosis. Our studies suggest that activation of complement in kidney cells with increased generation of C3 and its fragments occurs by activation of classical and alternative pathways. Single nuclei RNA sequencing studies in kidney tissue from unilateral ureteral obstruction mice show that increased synthesis of complement C3 and C5 occurs primarily in renal tubular epithelial cells (proximal and distal), while increased expression of complement receptors C3ar1 and C5ar1 occurs in interstitial cells including immune cells like monocytes/macrophages suggesting compartmentalization of complement components during kidney injury. Although global deletion of C3 and macrophage ablation prevent inflammation and reduced kidney tissue scarring, the development of mice with cell-specific deletion of complement components and their regulators could bring further insights into the mechanisms by which intracellular complement activation leads to fibrosis and progressive kidney disease. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.
Collapse
Affiliation(s)
- Didier Portilla
- Department of Medicine and Center for Immunity and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Sandhya Xavier
- Department of Medicine and Center for Immunity and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
17
|
Liang Y, Liu H, Zhu J, Song N, Lu Z, Fang Y, Teng J, Dai Y, Ding X. Inhibition of p53/miR-34a/SIRT1 axis ameliorates podocyte injury in diabetic nephropathy. Biochem Biophys Res Commun 2021; 559:48-55. [PMID: 33932899 DOI: 10.1016/j.bbrc.2021.04.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
Podocyte injury is associated with albuminuria and the progression of diabetic nephropathy (DN). MiR-34a, a p53-regulated miRNA, directly targets SIRT1 and contributed to DN progression. MiR-34a represses SIRT1 to activate p53 and establish a positive feedback loop. However, whether p53/miR-34a/SIRT1 signaling is activated in podocytes and contributes to DN pathogenesis remains elusive. In this study, we observed that serum miR-34a level was positively correlated with podocyte injury in DN patients. The expression of acetylated p53 and miR-34a was upregulated, SIRT1was downregulated in glomeruli from patients with DN and STZ induced diabetic mice, as well as in human podocytes treated with advanced glycation end (AGE). MiR-34a antagonism in vitro and vivo in STZ induced diabetic mice developed alleviated glomerulus injury as reflected by attenuated albuminuria, reduced podocyte loss and restored autophagic flux. In human podocyte, inhibition of AGE formation by pyridoxamine prevented miR-34a dependent repression of SIRT1, p53 acetylation and activate podocyte autophagy in a dose-dependent manner. MiR-34a overexpression increases acetylation of p53 by translational repression of SIRT1. SIRT1 overexpression also impacts AGE induced apoptosis through deacetylating p53, whereas silencing of SIRT1 by EX527 attenuated the cytoprotective functions of miR-34a knockdown. Moreover, blockade of p53 acetylation significantly rescued miR-34a-induced apoptosis through SIRT1 restoration. Collectively, we demonstrate that by activation of p53, AGE induced the transcription of miR-34a, miR-34a in turn repressed SIRT1 to activate p53, resulting in a positive-feedback loop and contributing to podocyte injury. Targeting modulation of p53/miR-34a/SIRT1 feedback by miR-34a knockdown or overexpression of SIRT1 could rescue podocyte injury during DN.
Collapse
Affiliation(s)
- Yiran Liang
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China; Kidney and Dialysis Institute of Shanghai, Shanghai, China; Kidney and Blood Purification Laboratory of Shanghai, Shanghai, China
| | - Hong Liu
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China; Kidney and Dialysis Institute of Shanghai, Shanghai, China; Kidney and Blood Purification Laboratory of Shanghai, Shanghai, China
| | - Jiaming Zhu
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China; Kidney and Dialysis Institute of Shanghai, Shanghai, China; Kidney and Blood Purification Laboratory of Shanghai, Shanghai, China
| | - Nana Song
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China; Kidney and Dialysis Institute of Shanghai, Shanghai, China; Kidney and Blood Purification Laboratory of Shanghai, Shanghai, China
| | - Zhihui Lu
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China; Kidney and Dialysis Institute of Shanghai, Shanghai, China; Kidney and Blood Purification Laboratory of Shanghai, Shanghai, China
| | - Yi Fang
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China; Kidney and Dialysis Institute of Shanghai, Shanghai, China; Kidney and Blood Purification Laboratory of Shanghai, Shanghai, China
| | - Jie Teng
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China; Kidney and Dialysis Institute of Shanghai, Shanghai, China; Kidney and Blood Purification Laboratory of Shanghai, Shanghai, China
| | - Yan Dai
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China; Kidney and Dialysis Institute of Shanghai, Shanghai, China; Kidney and Blood Purification Laboratory of Shanghai, Shanghai, China.
| | - Xiaoqiang Ding
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China; Kidney and Dialysis Institute of Shanghai, Shanghai, China; Kidney and Blood Purification Laboratory of Shanghai, Shanghai, China.
| |
Collapse
|
18
|
Tootee A, Nikbin B, Ghahary A, Esfahani EN, Arjmand B, Aghayan H, Qorbani M, Larijani B. Immunopathology of Type 1 Diabetes and Immunomodulatory Effects of Stem Cells: A Narrative Review of the Literature. Endocr Metab Immune Disord Drug Targets 2021; 22:169-197. [PMID: 33538679 DOI: 10.2174/1871530321666210203212809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/11/2020] [Accepted: 10/27/2020] [Indexed: 11/22/2022]
Abstract
Type 1 Diabetes (T1D) is a complex autoimmune disorder which occurs as a result of an intricate series of pathologic interactions between pancreatic β-cells and a wide range of components of both the innate and the adaptive immune systems. Stem-cell therapy, a recently-emerged potentially therapeutic option for curative treatment of diabetes, is demonstrated to cause significant alternations to both different immune cells such as macrophages, natural killer (NK) cells, dendritic cells, T cells, and B cells and non-cellular elements including serum cytokines and different components of the complement system. Although there exists overwhelming evidence indicating that the documented therapeutic effects of stem cells on patients with T1D is primarily due to their potential for immune regulation rather than pancreatic tissue regeneration, to date, the precise underlying mechanisms remain obscure. On the other hand, immune-mediated rejection of stem cells remains one of the main obstacles to regenerative medicine. Moreover, the consequences of efferocytosis of stem-cells by the recipients' lung-resident macrophages have recently emerged as a responsible mechanism for some immune-mediated therapeutic effects of stem-cells. This review focuses on the nature of the interactions amongst different compartments of the immune systems which are involved in the pathogenesis of T1D and provides explanation as to how stem cell-based interventions can influence immune system and maintain the physiologic equilibrium.
Collapse
Affiliation(s)
- Ali Tootee
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, . Iran
| | - Behrouz Nikbin
- Research Center of Molecular Immunology, Tehran University of Medical Sciences, Tehran, . Iran
| | - Aziz Ghahary
- British Columbia Professional Firefighters' Burn and Wound Healing Research Laboratory, Department of Surgery, Plastic Surgery, University of British Columbia, Vancouver, . Canada
| | - Ensieh Nasli Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, . Iran
| | - Babak Arjmand
- Cell therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, . Iran
| | - Hamidreza Aghayan
- Cell therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, . Iran
| | - Mostafa Qorbani
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, . Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, . Iran
| |
Collapse
|