1
|
Fierro JJ, Schoots MH, Liefers SC, der Meer BDV, Diercks GFH, Bootsma H, Prins JR, Westra J, de Leeuw K. Immunohistochemical analysis reveals higher Myxovirus resistance protein 1 expression and increased macrophage count in placentas from patients with systemic rheumatic diseases. Rheumatol Int 2025; 45:90. [PMID: 40183958 DOI: 10.1007/s00296-025-05856-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
To compare immune cell subsets and interferon (IFN) expression in placentas from patients with systemic lupus erythematosus (SLE), primary Sjögren's disease (pSjD), antiphospholipid syndrome (APS), healthy controls (HC) and of women with adverse pregnancy outcomes (APO) without these systemic rheumatic diseases (SRD). Placenta biopsies from HC, SLE, pSjD, APS, and patients with fetal growth restriction (FGR), spontaneous preterm birth (PTB), or FGR and preeclampsia (FGR/PE) attended between 2008 and 2022 were recovered from the pathology biobank of the University Medical Center Groningen. Clinical characteristics and APO were retrieved from medical records. Immunohistochemistry was performed for Myxovirus resistance protein 1 (MxA), CD3, CD20, CD56, CD68, CD123, and Foxp3. The proportion of positive cells was established using an automated detection classifier, while MxA expression was assessed semi/quantitatively discriminating between maternal (decidua) and fetal (villi) tissue. Finally, placental lesion classification was performed. Our study included placentas from 11 SLE, 4 pSjD, 8 APS, 4 PTB, 8 FGR, 8 FGR/PE patients and 11 HC. A high rate of APO (70%) was identified in SRD patients. Patients with SRD had a higher macrophage (CD68+) count in decidua and villi than HC, but no differences were observed in T (CD3+), B (CD20+), NK (CD56+) and T regulatory (Foxp3+) cell count. No plasmacytoid dendritic cells (CD123+) were identified. Furthermore, patients with these SRD had higher MxA values than HC in villi but not in decidua. SLE, pSjD and APS patients have an increased macrophage count and interferon upregulation in the placenta compared to HC. Therefore, a pro-inflammatory environment might be key inducing placental dysfunction, which may lead to subsequent APO development.
Collapse
Affiliation(s)
- Juan J Fierro
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, 9700RB, The Netherlands.
- Grupo Reproducción, Departamento de Microbiología y Parasitología, Universidad de Antioquia UdeA, Medellín, Colombia.
| | - Mirthe H Schoots
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Silvia C Liefers
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, 9700RB, The Netherlands
| | - Berber Doornbos-van der Meer
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, 9700RB, The Netherlands
| | - Gilles F H Diercks
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hendrika Bootsma
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, 9700RB, The Netherlands
| | - Jelmer R Prins
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Johanna Westra
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, 9700RB, The Netherlands
| | - Karina de Leeuw
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, 9700RB, The Netherlands
| |
Collapse
|
2
|
Mestan KK, Sharma AM, Lazar S, Pandey S, Parast MM, Laurent LC, Prince LS, Sahoo D. Bronchopulmonary dysplasia: signatures of monocyte-macrophage reactivity and tolerance define novel placenta-lung endotypes. Pediatr Res 2025:10.1038/s41390-025-04025-w. [PMID: 40175585 DOI: 10.1038/s41390-025-04025-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/12/2025] [Accepted: 03/15/2025] [Indexed: 04/04/2025]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is a complex disease involving aberrant immune responses across the lifespan, but these mechanisms are challenging to follow in human infants. Leveraging novel Signatures of Macrophage Reactivity and Tolerance (SMaRT), we hypothesized that distinct profiles of immune cell polarization in blood and lung are associated with BPD. METHODS Published transcriptomic datasets of cord blood-derived monocytes (CB-MNC), peripheral blood monocytes (PBMC) and tracheal aspirate-derived lung macrophages were linked to placental inflammatory (PID) and vascular (PVD) disease states using Amsterdam criteria, and BPD outcomes using NIH consensus criteria. Datasets were integrated using SMaRT to investigate monocyte-macrophage polarization tracked over the neonatal course. RESULTS At birth and day 1 (D1), CB-MNCs and lung macrophages exhibited significant reactivity with PID versus PVD. After D14, macrophages from PID versus PVD-exposed infants exhibited reactive phenotypes (p = 0.002), with convergence towards original placental disease. Macrophages exhibited reactivity with BPD on D1-D7 (p = 0.007), but no difference after D14. At birth, CB-MNCs from BPD patients exhibited tolerance, which persisted in PBMCs throughout the neonatal period. CONCLUSION Inflammatory versus vascular-mediated processes in developing lungs are influenced by immune cells programmed by distinct placental disease states. Circulating monocytes may play a role in attenuating macrophage reactivity towards a tolerant phenotype. IMPACT Bronchopulmonary dysplasia is a complex, multifactorial chronic lung disease in which the mechanisms of placenta-lung crosstalk are poorly understood. This study uses novel AI approaches to understand how fetal monocytes and lung macrophages contribute to the pathogenesis of BPD. The study identified changes in macrophage reactivity versus tolerance that could explain the heterogeneity and adaptability of immune cells and the placenta in modulating health and disease in the developing fetus and neonate.
Collapse
Affiliation(s)
- Karen K Mestan
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
| | - Abhineet M Sharma
- Department of Pediatrics, Divisions of Neonatology and Pediatric Pulmonology, University of Nebraska College of Medicine, Omaha, NE, USA
| | - Sarah Lazar
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Sonalisa Pandey
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Mana M Parast
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Louise C Laurent
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | | | - Debashis Sahoo
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
- Department of Computer Science and Engineering, Jacob's School of Engineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Bezemer RE, Brenøe JE, Schoots MH, Feenstra ME, van Goor H, Ganzevoort W, Gordijn SJ, Prins JR. Effects of sildenafil treatment on placental immune cell subsets in early-onset fetal growth restriction. Placenta 2025; 159:62-69. [PMID: 39644752 DOI: 10.1016/j.placenta.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/11/2024] [Accepted: 11/24/2024] [Indexed: 12/09/2024]
Abstract
INTRODUCTION Early onset fetal growth restriction is a common pregnancy complication with significant risk of perinatal mortality and morbidity. The most common etiology is placental insufficiency, reflected by several placental lesions that appear with fetal growth restriction. Placental immune cells are involved in almost all aspects of the development of the placenta and immune cell imbalances have been related to common pregnancy complications. The STRIDER trial investigated the therapeutic potential of sildenafil. No clinical improvements were observed, however, since sildenafil can have immunological effects, we aimed to investigate if sildenafil alters local placental immune cells. METHODS Placental samples from 146 patients were included from the STRIDER trial and stained with IHC for leukocytes (CD45), macrophages (CD68 and CD206), T cells (CD3 and CD8), regulatory T cells (FOXP3) and NK cells (CD56). Immune cells were quantified in the decidua basalis and villi at term using a trained detection classifier. In addition, maternal plasma cytokines were measured at inclusion. RESULTS In the sildenafil group, numbers of CD3+ T cells, CD68+ and CD206+ macrophages and CD56+ NK cell were greater in the decidua basalis compared to the control group. Correlating maternal plasma cytokines to placental immune cell subsets showed predominantly negative correlations in the placebo group, whereas most cytokines correlated positively to placental immune cells in the sildenafil group. DISCUSSION Our data demonstrates the immunomodulatory effects of sildenafil in pregnancies complicated by early onset fetal growth restriction and offers valuable insights on the use of immunomodulatory drugs in pregnancy.
Collapse
Affiliation(s)
- R E Bezemer
- Department of Gynecology and Obstetrics, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, the Netherlands; Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, the Netherlands.
| | - J E Brenøe
- Department of Gynecology and Obstetrics, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, the Netherlands; Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, the Netherlands
| | - M H Schoots
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, the Netherlands
| | - M E Feenstra
- Department of Gynecology and Obstetrics, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, the Netherlands; Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, the Netherlands
| | - H van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, the Netherlands
| | - W Ganzevoort
- Department of Gynecology and Obstetrics, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, the Netherlands; Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
| | - S J Gordijn
- Department of Gynecology and Obstetrics, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, the Netherlands
| | - J R Prins
- Department of Gynecology and Obstetrics, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, the Netherlands
| |
Collapse
|
4
|
Chen H, Shao LZ, Wang YX, Han ZJ, Wang YH, Li X, Chen JY, Liu TH. Causal Relationships Between Leukocyte Subsets and Adverse Fetal Outcomes: A Mendelian Randomization Study. Mediators Inflamm 2024; 2024:6349687. [PMID: 39748887 PMCID: PMC11695084 DOI: 10.1155/mi/6349687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/28/2024] [Accepted: 11/07/2024] [Indexed: 01/04/2025] Open
Abstract
Background: The tolerance and dynamic regulation of the maternal immune system during pregnancy are pivotal for ensuring fetal health. Immune cell subsets play a complex and crucial role in this process, closely linked to the neonatal health status. Despite recognizing the significance of dysregulation in the quantity and activity of immune cells in neonatal disease occurrence, their specific roles remain elusive, resulting in a dearth of clinically viable interventions for immune-mediated neonatal diseases. Materials and Methods: Employing two-sample Mendelian randomization (MR) methodology, this study systematically investigated 446 leukocyte features (N = 500,675), including leukocyte subsets, absolute cell (AC) counts, and morphological parameters (MP) and their correlation with seven adverse fetal outcomes (N = 1,100,458), encompassing fetal growth restriction (FGR), preterm birth (PTB), neonatal jaundice (NNJ), digestive system disorders of fetus and newborn (DSDFN), hemorrhagic and hematological disorders of fetus and newborn (HDFN), respiratory distress of newborn (RDN), and transitory disorders of metabolism specific to fetus and newborn (TDMSFN). Results: The results unveiled significant causal relationships between 301 leukocyte subsets and these seven adverse fetal outcomes, with 259, 245, 15, 44, 11, 32, and 68 pairs of notable associations for each adverse outcome, respectively. Furthermore, the study highlighted potential pathogenic mechanisms underlying the mutual influence among neonatal diseases. MR results indicated FGR as a robustly correlated risk factor for PTB and NNJ and showed a reciprocal causal relationship between NNJ and FGR. PTB exhibited a positive correlation with HDFN. Conclusions: This study provided profound insights into the intricate regulatory mechanisms of leukocyte subsets in neonatal diseases, paving the way for new avenues in the diagnosis and treatment of associated disorders.
Collapse
Affiliation(s)
- Hong Chen
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing 400016, China
| | - Li-Zhen Shao
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing 400016, China
| | - Ying-Xiong Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing 400016, China
| | - Zhi-Jie Han
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Yong-Heng Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing 400016, China
| | - Xia Li
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing 400016, China
| | - Jing-Yu Chen
- Department of Ultrasound, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Chongqing 400014, China
| | - Tai-Hang Liu
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
5
|
Park CW, Lee EM, Shin SH, Lee C, Won JK. The Intensity of BCL2A1 Expression Increases According to the Stage Progression of Acute Histologic Chorioamnionitis in the Extra-Placental Membranes of Spontaneous Preterm Birth. Life (Basel) 2024; 14:1535. [PMID: 39768244 PMCID: PMC11677416 DOI: 10.3390/life14121535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Our prior findings showed that BCL2A1 in neutrophils is highly expressed in the extra-placental membranes (EPMs) of both the human spontaneous preterm-birth (PTB) (i.e., PTL or preterm PROM) and nonhuman-primate PTB model. However, no data exist on whether the intensity of BCL2A1 expression quantitatively increases according to the stage progression of acute histologic chorioamnionitis (acute HCA) in EPM. The objective is to investigate whether the intensity of BCL2A1 expression quantitatively increases according to the stage progression of acute HCA in EPM among spontaneous PTB cases, as measured using QuPath. The study population included 121 singleton PTBs (gestational age [GA] at delivery < 34 weeks) due to either preterm labor or preterm PROM. With digital image analysis, we calculated the percentage of BCL2A1-positive cells in immunohistochemistry according to the stage progression of acute HCA in EPMs as the primary outcome and examined the relationship between the percentage of BCL2A1-positive cells and either the GA at delivery or the amniotic-fluid (AF) WBC count as the secondary outcome. The median percentage of BCL2A1-positive cells progressively increases with the stage progression of acute HCA in EPM (group-1 vs. group-2 vs. group-3 vs. group-4 vs. group-5; 7.62 vs. 5.15 vs. 43.57 vs. 71.07; γ = 0.552, p < 0.000001). The percentage of BCL2A1-positive cells in EPMs and the AFWBC count shows a positive correlation (γ = 0.492, p = 0.000385). Moreover, the percentage of BCL2A1-positive cells in EPMs continuously decreased with increasing GA at delivery (γ = -0.253, p = 0.005148). In conclusion, the intensity of BCL2A1 expression increases according to the stage progression of acute HCA in EPMs and the elevation of AFWBC among spontaneous PTB cases. This finding suggests BCL2A1 in EPMs may be a promising marker and target for acute HCA.
Collapse
Affiliation(s)
- Chan-Wook Park
- The Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea;
| | - Eun-Mi Lee
- The Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea;
| | - Seung-Han Shin
- The Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Republic of Korea;
| | - Chul Lee
- The Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea;
| | - Jae-Kyung Won
- The Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea;
| |
Collapse
|
6
|
Shen C, Zhu X, Chang H, Li C, Hou M, Chen L, Lu Chen, Zhou Z, Ji M, Xu Z. The rebalancing of the immune system at the maternal-fetal interface ameliorates autism-like behavior in adult offspring. Cell Rep 2024; 43:114787. [PMID: 39321022 DOI: 10.1016/j.celrep.2024.114787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/04/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024] Open
Abstract
Maternal immune activation (MIA) is critical for imparting neuropathology and altered behaviors in offspring; however, maternal-fetal immune cell populations have not been thoroughly investigated in MIA-induced autism spectrum disorders (ASDs). Here, we report the single-cell transcriptional landscape of placental cells in both PBS- and poly(I:C)-induced MIA dams. We observed a decrease in regulatory T (Treg) cells but an increase in the M1 macrophage population at the maternal-fetal interface in MIA dams. Based on the Treg-targeting approach, we investigate an immunoregulatory protein, the helminth-derived heat shock protein 90α (Sjp90α), that induces maternal Treg cells and subsequently rescues the autism-like behaviors in adult offspring. Furthermore, in vivo depletion of maternal macrophages attenuates placental inflammatory reaction and reverses behavioral abnormalities in adult offspring. Notably, Sjp90α induces CD4+ T cell differentiation via scavenger receptor A (SR-A) on the macrophage in vitro. Our findings suggest a maternal Treg-targeted approach to alleviate MIA-induced autism-like behavior in adult offspring.
Collapse
Affiliation(s)
- Chunxiang Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Xinyi Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Hao Chang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Chen Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Min Hou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China; Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu 211166, P.R. China
| | - Lin Chen
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu 211166, P.R. China
| | - Lu Chen
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu 211166, P.R. China
| | - Zikai Zhou
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, P.R. China.
| | - Minjun Ji
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China; Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu 211166, P.R. China; NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China.
| | - Zhipeng Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China; Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu 211166, P.R. China; NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China.
| |
Collapse
|
7
|
Huang X, Lin Z, Zheng ZM, Shi JL, Lu KY, Wang JR, Li MQ, Shao J. A Hypoxia-Decidual Macrophage Regulatory Axis in Normal Pregnancy and Spontaneous Miscarriage. Int J Mol Sci 2024; 25:9710. [PMID: 39273657 PMCID: PMC11395248 DOI: 10.3390/ijms25179710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
The significance of hypoxia at the maternal-fetal interface is proven to be self-explanatory in the context of pregnancy. During the first trimester, low oxygen conditions play a crucial role in processes such as angiogenesis, trophoblast invasion and differentiation, and immune regulation. Recently, there has been increasing research on decidual macrophages, which contribute to the maintenance of immune tolerance, placental and fetal vascular development, and spiral artery remodeling, to investigate the effects of hypoxia on their biological behaviors. On these grounds, this review describes the dynamic changes in oxygen levels at the maternal-fetal interface throughout gestation, summarizing current knowledge on how the hypoxic environment sustains a successful pregnancy by regulating retention, differentiation and efferocytosis of decidual macrophages. Additionally, we explore the relationship between spontaneous miscarriages and an abnormal hypoxia-macrophage axis, shedding light on the underlying mechanisms. However, further studies are essential to elucidate these pathways in greater detail and to develop targeted interventions that could improve pregnancy outcomes.
Collapse
Affiliation(s)
- Xu Huang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China
| | - Zhi Lin
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200010, China
| | - Zi-Meng Zheng
- Department of Reproductive Immunology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jia-Lu Shi
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200010, China
| | - Ke-Yu Lu
- Xing Lin College, Nantong University, Nantong 226236, China
| | - Jia-Rui Wang
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200010, China
| | - Ming-Qing Li
- Department of Reproductive Immunology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jun Shao
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200010, China
| |
Collapse
|
8
|
Wei X, Liu Z, Cai L, Shi D, Sun Q, Zhang L, Zhou F, Sun L. Integrated transcriptomic analysis and machine learning for characterizing diagnostic biomarkers and immune cell infiltration in fetal growth restriction. Front Immunol 2024; 15:1381795. [PMID: 39295860 PMCID: PMC11408188 DOI: 10.3389/fimmu.2024.1381795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024] Open
Abstract
Background Fetal growth restriction (FGR) occurs in 10% of pregnancies worldwide. Placenta dysfunction, as one of the most common causes of FGR, is associated with various poor perinatal outcomes. The main objectives of this study were to screen potential diagnostic biomarkers for FGR and to evaluate the function of immune cell infiltration in the process of FGR. Methods Firstly, differential expression genes (DEGs) were identified in two Gene Expression Omnibus (GEO) datasets, and gene set enrichment analysis was performed. Diagnosis-related key genes were identified by using three machine learning algorithms (least absolute shrinkage and selection operator, random forest, and support vector machine model), and the nomogram was then developed. The receiver operating characteristic curve, calibration curve, and decision curve analysis curve were used to verify the validity of the diagnostic model. Using cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT), the characteristics of immune cell infiltration in placental tissue of FGR were evaluated and the candidate key immune cells of FGR were screened. In addition, this study also validated the diagnostic efficacy of TREM1 in the real world and explored associations between TREM1 and various clinical features. Results By overlapping the genes selected by three machine learning algorithms, four key genes were identified from 290 DEGs, and the diagnostic model based on the key genes showed good predictive performance (AUC = 0.971). The analysis of immune cell infiltration indicated that a variety of immune cells may be involved in the development of FGR, and nine candidate key immune cells of FGR were screened. Results from real-world data further validated TREM1 as an effective diagnostic biomarker (AUC = 0.894) and TREM1 expression was associated with increased uterine artery PI (UtA-PI) (p-value = 0.029). Conclusion Four candidate hub genes (SCD, SPINK1, TREM1, and HIST1H2BB) were identified, and the nomogram was constructed for FGR diagnosis. TREM1 was not only associated with a variety of key immune cells but also correlated with increased UtA-PI. The results of this study could provide some new clues for future research on the prediction and treatment of FGR.
Collapse
Affiliation(s)
- Xing Wei
- Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zesi Liu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Luyao Cai
- Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dayuan Shi
- Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qianqian Sun
- Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Luye Zhang
- Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fenhe Zhou
- Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Luming Sun
- Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
9
|
Brenøe JE, van Hoorn EGM, Beck L, Bulthuis M, Bezemer RE, Gordijn SJ, Schoots MH, Prins JR. Altered placental macrophage numbers and subsets in pregnancies complicated with intrahepatic cholestasis of pregnancy (ICP) compared to healthy pregnancies. Placenta 2024; 153:22-30. [PMID: 38810541 DOI: 10.1016/j.placenta.2024.05.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/29/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024]
Abstract
INTRODUCTION Intrahepatic cholestasis of pregnancy (ICP) can result in adverse outcomes for both mother and fetus. Inflammatory (M1 subset) or anti-inflammatory (M2 subset) macrophage polarisation is associated with various complications of pregnancy. However, the influence of ICP on macrophage numbers and polarisation remains unknown. This study analyses macrophage density and distribution in placentas of patients with ICP compared to controls. Clinical parameters were correlated to macrophage distribution and ursodeoxycholic acid use (UDCA). METHODS This study included routinely collected placental tissue samples of 42 women diagnosed with ICP and of 50 control pregnancies. Immunohistochemical staining was performed on placental tissue using CD68 antibody as a pan-macrophage marker, CD206 antibody as an M2 and HLA-DR antibody as an M1 macrophage marker. Macrophage density (cells/mm2) and distribution (CD206+/CD68+ or CD206+/CD68+HLA-DR+) in both decidua (maternal tissue) and villous parenchyma (fetal tissue) were compared between groups. Macrophage density and distribution were correlated to clinical parameters for ICP patients. RESULTS The density of CD68+ macrophages differed significantly between groups in villous parenchyma. In both decidua and villous parenchyma, CD206+/CD68+ ratio was significantly lower in ICP patients compared to controls (p = 0.003 and p=<0.001, respectively). No difference was found based on UDCA use or in CD68+HLA-DR+ cell density. Significant correlations were found between macrophage density and peak serum bile acids and liver enzymes. DISCUSSION In ICP patients, an immune shift was observed in both decidual and villous tissue, indicated by a lower CD206+/CD68+ ratio. ICP seems to affect placental tissue, however more research is required to understand its consequences.
Collapse
Affiliation(s)
- J E Brenøe
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - E G M van Hoorn
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - L Beck
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - M Bulthuis
- Department of Pathology and Medical Biology, Division of Pathology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - R E Bezemer
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - S J Gordijn
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - M H Schoots
- Department of Pathology and Medical Biology, Division of Pathology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - J R Prins
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
10
|
Bezemer RE, Faas MM, van Goor H, Gordijn SJ, Prins JR. Decidual macrophages and Hofbauer cells in fetal growth restriction. Front Immunol 2024; 15:1379537. [PMID: 39007150 PMCID: PMC11239338 DOI: 10.3389/fimmu.2024.1379537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024] Open
Abstract
Placental macrophages, which include maternal decidual macrophages and fetal Hofbauer cells, display a high degree of phenotypical and functional plasticity. This provides these macrophages with a key role in immunologically driven events in pregnancy like host defense, establishing and maintaining maternal-fetal tolerance. Moreover, placental macrophages have an important role in placental development, including implantation of the conceptus and remodeling of the intrauterine vasculature. To facilitate these processes, it is crucial that placental macrophages adapt accordingly to the needs of each phase of pregnancy. Dysregulated functionalities of placental macrophages are related to placental malfunctioning and have been associated with several adverse pregnancy outcomes. Although fetal growth restriction is specifically associated with placental insufficiency, knowledge on the role of macrophages in fetal growth restriction remains limited. This review provides an overview of the distinct functionalities of decidual macrophages and Hofbauer cells in each trimester of a healthy pregnancy and aims to elucidate the mechanisms by which placental macrophages could be involved in the pathogenesis of fetal growth restriction. Additionally, potential immune targeted therapies for fetal growth restriction are discussed.
Collapse
Affiliation(s)
- Romy Elisa Bezemer
- Department of Obstetrics and Gynecology, University Medical Center Groningen, Groningen, Netherlands
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, Netherlands
| | - Marijke M Faas
- Department of Obstetrics and Gynecology, University Medical Center Groningen, Groningen, Netherlands
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, Netherlands
| | - Sanne Jehanne Gordijn
- Department of Obstetrics and Gynecology, University Medical Center Groningen, Groningen, Netherlands
| | - Jelmer R Prins
- Department of Obstetrics and Gynecology, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
11
|
Andreescu M. Correlation Between Maternal-Fetus Interface and Placenta-Mediated Complications. Cureus 2024; 16:e62457. [PMID: 38882223 PMCID: PMC11180486 DOI: 10.7759/cureus.62457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2024] [Indexed: 06/18/2024] Open
Abstract
Pregnancy is a highly regulated biological phenomenon that involves the development of a semi-allogeneic fetus inside the uterus of the mother. The maternal-fetal interface is a critical junction where communication takes place between the fetal and maternal immune systems, which determine the outcome of the pregnancy. The interface is composed of the decidua and placenta. The main cells present at the maternal-fetal interface include invading trophoblasts, maternal immune cells, and decidual stromal cells. Although maternal tolerance is crucial for maintaining a successful pregnancy, the role of the placenta in pregnancy is also important. Dysregulation of the placenta leads to various placenta-mediated complications, such as preeclampsia, intrauterine growth restriction, and placental abruption. Although the exact mechanism involving these complications is unclear, research has elucidated various factors involved in these pregnancy disorders. This review aimed to provide a summary of the maternal-fetal interface and immune mechanisms involved in placenta-mediated complications.
Collapse
Affiliation(s)
- Mihaela Andreescu
- Faculty of Medicine, Titu Maiorescu University, Bucharest, ROU
- Hematology, Colentina Clinical Hospital, Bucharest, ROU
| |
Collapse
|
12
|
Xiong Y, Wang Y, Wu M, Chen S, Lei H, Mu H, Yu H, Hou Y, Tang K, Chen X, Dong J, Wang X, Chen L. Aberrant NK cell profile in gestational diabetes mellitus with fetal growth restriction. Front Immunol 2024; 15:1346231. [PMID: 38375483 PMCID: PMC10875967 DOI: 10.3389/fimmu.2024.1346231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/17/2024] [Indexed: 02/21/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is a gestational disorder characterized by hyperglycemia, that can lead to dysfunction of diverse cells in the body, especially the immune cells. It has been reported that immune cells, specifically natural killer (NK) cells, play a crucial role in normal pregnancy. However, it remains unknown how hyperglycemia affects NK cell dysfunction thus participates in the development of GDM. In this experiment, GDM mice were induced by an intraperitoneal injection of streptozotocin (STZ) after pregnancy and it has been found that the intrauterine growth restriction occurred in mice with STZ-induced GDM, accompanied by the changed proportion and function of NK cells. The percentage of cytotoxic CD27-CD11b+ NK cells was significantly increased, while the proportion of nourished CD27-CD11b- NK cells was significantly reduced in the decidua of GDM mice. Likewise, the same trend appeared in the peripheral blood NK cell subsets of GDM patients. What's more, after intrauterine reinfusion of NK cells to GDM mice, the fetal growth restriction was alleviated and the proportion of NK cells was restored. Our findings provide a theoretical and experimental basis for further exploring the pathogenesis of GDM.
Collapse
Affiliation(s)
- Yujing Xiong
- Department of Immunology, Air Force Medical University, Xi’an, Shaanxi, China
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Yazhen Wang
- Department of Immunology, Air Force Medical University, Xi’an, Shaanxi, China
| | - Mengqi Wu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shuqiang Chen
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Hui Lei
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Hui Mu
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Haikun Yu
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Yongli Hou
- Department of Immunology, Air Force Medical University, Xi’an, Shaanxi, China
| | - Kang Tang
- Department of Immunology, Air Force Medical University, Xi’an, Shaanxi, China
| | - Xutao Chen
- Department of Immunology, Air Force Medical University, Xi’an, Shaanxi, China
| | - Jie Dong
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Xiaohong Wang
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Lihua Chen
- Department of Immunology, Air Force Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
13
|
Mestan KK, Sharma A, Lazar S, Pandey S, Parast MM, Laurent LC, Prince LS, Sahoo D. Macrophage Polarizations in the Placenta and Lung are Associated with Bronchopulmonary Dysplasia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577443. [PMID: 38352616 PMCID: PMC10862768 DOI: 10.1101/2024.01.26.577443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The intricate interplay between macrophage polarization and placenta vascular dysfunction has garnered increasing attention in the context of placental inflammatory diseases. This study delves into the complex relationship between macrophage polarization within the placenta and its potential impact on the development of vascular dysfunction and inflammatory conditions. The placenta, a crucial organ in fetal development, relies on a finely tuned balance of immune responses for proper functioning. Disruptions in this delicate equilibrium can lead to pathological conditions, including inflammatory diseases affecting the fetus and newborn infant. We explored the interconnectedness between placental macrophage polarization and its relevance to lung macrophages, particularly in the context of early life lung development. Bronchopulmonary dysplasia (BPD), the most common chronic lung disease of prematurity, has been associated with abnormal immune responses, and understanding the role of macrophages in this context is pivotal. The investigation aims to shed light on how alterations in placental macrophage polarization may contribute to lung macrophage behavior and, consequently, influence the development of BPD. By unraveling the intricate mechanisms linking macrophage polarization, placental dysfunction and BPD, this research seeks to provide insights that could pave the way for targeted therapeutic interventions. The findings may offer novel perspectives on preventing and managing placental and lung-related pathologies, ultimately contributing to improved maternal and neonatal health outcomes.
Collapse
Affiliation(s)
- Karen K. Mestan
- Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Abhineet Sharma
- Department of Pediatrics, Divisions of Neonatology and Pediatric Pulmonology, University of Nebraska College of Medicine, Omaha, NE
| | - Sarah Lazar
- Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Sonalisa Pandey
- Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Mana M. Parast
- Department of Pathology, University of California San Diego, La Jolla, CA
| | - Louise C. Laurent
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA
| | | | - Debashis Sahoo
- Department of Pediatrics, University of California San Diego, La Jolla, CA
- Department of Computer Science and Engineering, Jacob’s School of Engineering, University of California San Diego, La Jolla, CA
| |
Collapse
|
14
|
Qin XY, Ha SY, Chen L, Zhang T, Li MQ. Recent Advances in Folates and Autoantibodies against Folate Receptors in Early Pregnancy and Miscarriage. Nutrients 2023; 15:4882. [PMID: 38068740 PMCID: PMC10708193 DOI: 10.3390/nu15234882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Though firstly identified in cerebral folate deficiency, autoantibodies against folate receptors (FRAbs) have been implicated in pregnancy complications such as miscarriage; however, the underlying mechanism needs to be further elaborated. FRAbs can be produced via sensitization mediated by folate-binding protein as well as gene mutation, aberrant modulation, or degradation of folate receptors (FRs). FRAbs may interfere with folate internalization and metabolism through blocking or binding with FRs. Interestingly, different types of FRs are expressed on trophoblast cells, decidual epithelium or stroma, and macrophages at the maternal-fetal interface, implying FRAbs may be involved in the critical events necessary for a successful pregnancy. Thus, we propose that FRAbs may disturb pregnancy establishment and maintenance by modulating trophoblastic biofunctions, placental development, decidualization, and decidua homeostasis as well as the functions of FOLR2+ macrophages. In light of these findings, FRAbs may be a critical factor in pathological pregnancy, and deserve careful consideration in therapies involving folic acid supplementation for pregnancy complications.
Collapse
Affiliation(s)
- Xue-Yun Qin
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China; (X.-Y.Q.); (S.-Y.H.)
| | - Si-Yao Ha
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China; (X.-Y.Q.); (S.-Y.H.)
| | - Lu Chen
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Tao Zhang
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China; (X.-Y.Q.); (S.-Y.H.)
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China
| |
Collapse
|
15
|
Lewis EL, Reichenberger ER, Anton L, Gonzalez MV, Taylor DM, Porrett PM, Elovitz MA. Regulatory T cell adoptive transfer alters uterine immune populations, increasing a novel MHC-II low macrophage associated with healthy pregnancy. Front Immunol 2023; 14:1256453. [PMID: 37901247 PMCID: PMC10611509 DOI: 10.3389/fimmu.2023.1256453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Intrauterine fetal demise (IUFD) - fetal loss after 20 weeks - affects 6 pregnancies per 1,000 live births in the United States, and the majority are of unknown etiology. Maternal systemic regulatory T cell (Treg) deficits have been implicated in fetal loss, but whether mucosal immune cells at the maternal-fetal interface contribute to fetal loss is under-explored. We hypothesized that the immune cell composition and function of the uterine mucosa would contribute to the pathogenesis of IUFD. To investigate local immune mechanisms of IUFD, we used the CBA mouse strain, which naturally has mid-late gestation fetal loss. We performed a Treg adoptive transfer and interrogated both pregnancy outcomes and the impact of systemic maternal Tregs on mucosal immune populations at the maternal-fetal interface. Treg transfer prevented fetal loss and increased an MHC-IIlow population of uterine macrophages. Single-cell RNA-sequencing was utilized to precisely evaluate the impact of systemic Tregs on uterine myeloid populations. A population of C1q+, Trem2+, MHC-IIlow uterine macrophages were increased in Treg-recipient mice. The transcriptional signature of this novel uterine macrophage subtype is enriched in multiple studies of human healthy decidual macrophages, suggesting a conserved role for these macrophages in preventing fetal loss.
Collapse
Affiliation(s)
- Emma L. Lewis
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Erin R. Reichenberger
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Lauren Anton
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael V. Gonzalez
- Center for Cytokine Storm Treatment & Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Deanne M. Taylor
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Paige M. Porrett
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Michal A. Elovitz
- Women’s Biomedical Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
16
|
Gualdoni GS, Barril C, Jacobo PV, Pacheco Rodríguez LN, Cebral E. Involvement of metalloproteinase and nitric oxide synthase/nitric oxide mechanisms in early decidual angiogenesis-vascularization of normal and experimental pathological mouse placenta related to maternal alcohol exposure. Front Cell Dev Biol 2023; 11:1207671. [PMID: 37670932 PMCID: PMC10476144 DOI: 10.3389/fcell.2023.1207671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/28/2023] [Indexed: 09/07/2023] Open
Abstract
Successful pregnancy for optimal fetal growth requires adequate early angiogenesis and remodeling of decidual spiral arterioles during placentation. Prior to the initiation of invasion and endothelial replacement by trophoblasts, interactions between decidual stromal cells and maternal leukocytes, such as uterine natural killer cells and macrophages, play crucial roles in the processes of early maternal vascularization, such as proliferation, apoptosis, migration, differentiation, and matrix and vessel remodeling. These placental angiogenic events are highly dependent on the coordination of several mechanisms at the early maternal-fetal interface, and one of them is the expression and activity of matrix metalloproteinases (MMPs) and endothelial nitric oxide synthases (NOSs). Inadequate balances of MMPs and nitric oxide (NO) are involved in several placentopathies and pregnancy complications. Since alcohol consumption during gestation can affect fetal growth associated with abnormal placental development, recently, we showed, in a mouse model, that perigestational alcohol consumption up to organogenesis induces fetal malformations related to deficient growth and vascular morphogenesis of the placenta at term. In this review, we summarize the current knowledge of the early processes of maternal vascularization that lead to the formation of the definitive placenta and the roles of angiogenic MMP and NOS/NO mechanisms during normal and altered early gestation in mice. Then, we propose hypothetical defective decidual cellular and MMP and NOS/NO mechanisms involved in abnormal decidual vascularization induced by perigestational alcohol consumption in an experimental mouse model. This review highlights the important roles of decidual cells and their MMP and NOS balances in the physiological and pathophysiological early maternal angiogenesis-vascularization during placentation in mice.
Collapse
Affiliation(s)
| | | | | | | | - Elisa Cebral
- Laboratorio de Reproducción y Fisiología Materno-Embrionaria, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
17
|
Zhang Y, Wang H, Qiu P, Jiang J, Wu X, Mei J, Sun H. Decidual macrophages derived NO downregulates PD-L1 in trophoblasts leading to decreased Treg cells in recurrent miscarriage. Front Immunol 2023; 14:1180154. [PMID: 37520550 PMCID: PMC10379637 DOI: 10.3389/fimmu.2023.1180154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Placental trophoblasts contribute to regulatory T (Treg) function via the programmed cell death-1 (PD-1)/PD-1 ligand 1 (PD-L1) pathway during normal pregnancy. Decreased expression of PD-L1 in trophoblasts was closely associated with Treg deficiency in the development of pregnancy failure. Thus, targeting PD-L1 might be a novel therapy to prevent pregnancy loss. However, the mechanisms for modulating the expression of PD-L1 in trophoblasts are an enigma. Methods The proportion of decidual Treg cells, and the profile of decidual macrophages (DMs) sampled from women with normal pregnancy (NP) and recurrent miscarriage (RM) were evaluated by flow cytometry. The expression of Yin and Yang 1 protein (YY1) and PD-L1 in human villous were measured by Immunohistochemistry (IHC), qRT-PCR and western blot. The determination of soluble PD-L1 (sPD-L1) in serum from NP and RM, and trophoblast conditioned media (TCM) was performed by the PD-L1 SimpleStep ELISA kit. Knockdown of YY1 was processed in the human trophoblast derived cell lines, HTR-8 and Bewo, with siYY1 transfection. Peripheral naïve CD4+ T cells were isolated from women with NP for the in vitro culture. The percentages of Treg cells differentiated from peripheral naïve CD4+ T cells were measured by flow cytometry. The interaction between YY1 and CD274 was proved by CHIP. The expression of inducible nitric oxide synthase (iNOS) in decidua was evaluated by IHC. The level of NO in serum from women with NP and RM was determined by the Griess reagent system. The effects of NO on YY1 were determined by the in vitro culture of HTR-8 cells with the NO donor, SNAP. The in vivo model comprising twelve pregnant mice and underwent different treatment. The percentages of Treg cells in murine uterus were measured by flow cytometry. Similarly, Western blot and IHC were performed to determine the expression of YY1 and PD-L1 in murine placenta. Results Decreased expression of YY1 and PD-L1 in trophoblasts and lower proportion of decidual Treg cells were observed in patients with RM. Knockdown of YY1 contributes to a lower expression of YY1 and PD-L1. Soluble PD-L1 in the supernatant from HTR-8 cells was also decreased with siYY1 administration. Lower Treg differentiation was observed in the presence of supernatant from HTR-8 cells treated with siYY1. CHIP analysis revealed that endogenous YY1 directly occupied the promoter region of the CD274 (PD-L1) gene. Accompanied with increased M1 DMs, higher NO was observed in serum sampled from patients with RM. In the presence of Reduced expression of YY1 and PD-L1 was observed in HTR-8 cells with the treatment of SNAP. Furthermore, less Treg differentiation was observed with SNAP treated TCM. Moreover, our in vivo data found that YY1 deficiency was associated with decreased PD-L1, which further resulting in less Treg differentiation and Treg deficiency at the maternal-fetal interface and increased embryo loss. Discussion Our work found the modulatory capacity of YY1 on PD-L1 in trophoblasts during early pregnancy. Furthermore, reduced YY1 was supposed resulting from higher levels of NO produced from the M1 DMs in RM.
Collapse
Affiliation(s)
| | | | | | | | | | - Jie Mei
- *Correspondence: Haixiang Sun, ; Jie Mei,
| | | |
Collapse
|
18
|
Ersoy Canillioglu Y, Senturk GE, Sahin H, Sahin S, Seval-Celik Y. The Distribution of Foxp3 and CD68 in Preeclamptic and Healthy Placentas: A Histomorphological Evaluation. J Histochem Cytochem 2023; 71:211-225. [PMID: 37070940 PMCID: PMC10149892 DOI: 10.1369/00221554231170662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/27/2023] [Indexed: 04/19/2023] Open
Abstract
Preeclampsia is a complication of pregnancy that affects 3-5% of pregnancies and is one of the major causes of maternal/neonatal mortality and morbidities worldwide. We aimed to investigate the distribution of Foxp3+ regulatory T-cells and CD68+ Hofbauer cells in the placenta of preeclamptic and healthy pregnant women with a special focus on correlating these findings with placental histology. Decidua and chorionic villi of the placenta obtained from healthy and preeclamptic pregnancies were evaluated in full-thickness sections. Sections were stained with hematoxylin and eosin and Masson's trichrome and immunostained for Foxp3 and CD68 for histological analyses. The total histomorphological score for placentas was found to be higher in preeclamptic placentas than that in the controls. The CD68 immunoreactivity was higher in the chorionic villi of preeclamptic placentas than that in the controls. The immunoreactivity of Foxp3 was found widely distributed within the decidua in both the groups and did not differ significantly. Interestingly, Foxp3 immunoreactivity in the chorionic villi was found mainly in the villous core and, to a lesser extent, in the syncytiotrophoblasts. We found no significant relation between Foxp3 expressions and morphological changes observed in preeclamptic placentas. Although extensive research is being carried out regarding the pathophysiology of preeclampsia, the findings are still controversial.
Collapse
Affiliation(s)
| | - Gozde Erkanli Senturk
- Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Hakan Sahin
- Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Sadik Sahin
- Department of Obstetrics and Gynecology, Medeniyet University, Istanbul, Turkey
| | - Yasemin Seval-Celik
- Faculty of Medicine, Department of Histology and Embryology, Izmir University of Economics, Izmir, Turkey
| |
Collapse
|
19
|
Laskewitz A, Kieffer TEC, van Benthem KL, Erwich JJHM, Faas MM, Prins JR. Differences in Immune phenotype in decidual tissue from multigravid women compared to primigravid women. Am J Reprod Immunol 2023; 89:e13658. [PMID: 36414574 DOI: 10.1111/aji.13658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 10/26/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
Abstract
PROBLEM Women with a previous uncomplicated pregnancy have lower risks of immune-associated pregnancy disorders in a subsequent pregnancy. This could indicate a different maternal immune response in multigravid women compared to primigravid women. In a previous study, we showed persistent higher memory T cell proportions with higher CD69 expression after uncomplicated pregnancies. To our knowledge no studies have reported on immune cells in general, and immune memory cells and macrophages specifically in multigravid and primigravid women. METHOD OF STUDY T cells and macrophages were isolated from term decidua parietalis and decidua basalis tissue from healthy primigravid women (n = 12) and multigravid women (n = 12). Using flow cytometry, different T cell populations including memory T cells and macrophages were analyzed. To analyze whether a different immune phenotype is already present in early pregnancy, decidual tissue from uncomplicated ongoing pregnancies between 9 and 12 weeks of gestation from multigravida and primigravid women was investigated using qRT-PCR. RESULTS Nearly all T cell subsets analyzed in the decidua parietalis had significantly higher CD69+ proportions in multigravid women compared to primigravid women. A higher proportion of decidual (CD50- ) M2-like macrophages was found in the decidua parietalis in multigravid women compared to primigravid women. In first trimester decidual tissue higher FOXP3 mRNA expression was found in multigravid women compared to primigravid women. CONCLUSIONS This study shows that decidual tissue from multigravid women has a more activated and immunoregulatory phenotype compared to decidual tissue from primigravid women in early pregnancy and at term which could suggest a more balanced immune adaptation towards pregnancy after earlier uncomplicated pregnancies.
Collapse
Affiliation(s)
- Anne Laskewitz
- Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tom E C Kieffer
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Currently: Department of Obstetrics and Gynecology, OLVG, Amsterdam, The Netherlands
| | - Karlijn L van Benthem
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan Jaap H M Erwich
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marijke M Faas
- Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jelmer R Prins
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
20
|
Decreased ratio of FOXP3 +/FOXP3 -CD45RA +CD4 + T cells in peripheral blood is associated with unexplained infertility and ART failure. J Reprod Immunol 2023; 155:103793. [PMID: 36603467 DOI: 10.1016/j.jri.2022.103793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/17/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Unexplained infertility has a huge social impact and is a significant challenge for both clinicians and researchers. Previous studies have shown the involvement of multiple factors in infertility. Among these, the subset of regulatory T cells is of particular interest for the maternal tolerance towards the semi-allogenic fetus. We investigated circulating CD45RA+ regulatory and non-regulatory CD4+ T cells in healthy women and patients with unexplained infertility in the context of thymic output and peripheral proliferation. The proportion of FOXP3+ and FOXP3-CD45RA+CD4+ T cells in peripheral blood was studied in control groups of healthy parous and nulliparous (never-pregnant) women and in patients with unexplained infertility. In the same groups thymic output and peripheral proliferation were defined by the sj/βTREC ratio, and signal joint T-cell receptor excision circles (sjTREC) and Ki67 expression, respectively. In parous women a decrease in sjTREC/105 cells and CD45RA+ T lymphocytes, compared to nulliparous group was found. At the same time, the proportion of FOXP3-CD45RA+CD4+ cells, but not FOXP3+CD45RA+ Tregs was reduced. In contrast, in patients with unsuccessful pregnancy, proportions of both regulatory and non-regulatory T cell counterparts were lower. Taken together, our results provide evidence for group-specific properties in the CD45RA+ T cell compartment between healthy parous, nulliparous and women with unexplained infertility.
Collapse
|
21
|
Zhang XY, Qin XY, Shen HH, Liu KT, Wang CJ, Peng T, Wu JN, Zhao SM, Li MQ. IL-27 deficiency inhibits proliferation and invasion of trophoblasts via the SFRP2/Wnt/β-catenin pathway in fetal growth restriction. Int J Med Sci 2023; 20:392-405. [PMID: 36860682 PMCID: PMC9969501 DOI: 10.7150/ijms.80684] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/19/2023] [Indexed: 02/15/2023] Open
Abstract
Background: Fetal growth restriction (FGR) is characterized by restricted fetal growth and dysregulated placental development. The etiology and pathogenesis still remain elusive. IL-27 shows multiple roles in regulating various biological processes, however, how IL-27 involves in placentation in FGR pregnancy hasn't been demonstrated. Methods: The levels of IL-27 and IL-27RA in FGR and normal placentae were determined by immunohistochemistry, western blot and RT-PCR. HTR-8/SVneo cells and Il27ra-/- murine models have been adopted to evaluate the effects of IL-27 on the bio-functions of trophoblast cells. GO enrichment and GSEA analysis were performed to explore the underlying mechanism. Findings: IL-27 and IL-27RA was lowly expressed in FGR placentae and administration of IL-27 on HTR-8/SVneo could promote its proliferation, migration and invasion. Comparing with wildtypes, Il27ra-/- embryos were smaller and lighter, and the placentae from which were poorly developed. In mechanism, the molecules of canonical Wnt/β-catenin pathway (CCND1, CMYC, SOX9) were downregulated in Il27ra-/- placentae. In contrast, the expression of SFRP2 (negative regulator of Wnt) was increased. Overexpression of SFRP2 in vitro could impair trophoblast migration and invasion capacity. Interpretation: IL-27/IL-27RA negatively regulates SFRP2 to activate Wnt/β-catenin, and thus promotes migration and invasion of trophoblasts during pregnancy. However, IL-27 deficiency may contribute to the development of FGR by restricting the Wnt activity.
Collapse
Affiliation(s)
- Xin-Yan Zhang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China.,NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 201203, People's Republic of China
| | - Xue-Yun Qin
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Hui-Hui Shen
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Ke-Tong Liu
- Department of Obstetrics, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, People's Republic of China
| | - Cheng-Jie Wang
- Department of Obstetrics, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, People's Republic of China
| | - Ting Peng
- Department of Obstetrics, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, People's Republic of China
| | - Jiang-Nan Wu
- Clinical Epidemiology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, People's Republic of China
| | - Shi-Min Zhao
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China.,NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 201203, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| |
Collapse
|
22
|
Lodge-Tulloch NA, Toews AJ, Atallah A, Cotechini T, Girard S, Graham CH. Cross-Generational Impact of Innate Immune Memory Following Pregnancy Complications. Cells 2022; 11:3935. [PMID: 36497193 PMCID: PMC9741472 DOI: 10.3390/cells11233935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Pregnancy complications can have long-term negative effects on the health of the affected mothers and their children. In this review, we highlight the underlying inflammatory etiologies of common pregnancy complications and discuss how aberrant inflammation may lead to the acquisition of innate immune memory. The latter can be described as a functional epigenetic reprogramming of innate immune cells following an initial exposure to an inflammatory stimulus, ultimately resulting in an altered response following re-exposure to a similar inflammatory stimulus. We propose that aberrant maternal inflammation associated with complications of pregnancy increases the cross-generational risk of developing noncommunicable diseases (i.e., pregnancy complications, cardiovascular disease, and metabolic disease) through a process mediated by innate immune memory. Elucidating a role for innate immune memory in the cross-generational health consequences of pregnancy complications may lead to the development of novel strategies aimed at reducing the long-term risk of disease.
Collapse
Affiliation(s)
| | - Alexa J. Toews
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Aline Atallah
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Tiziana Cotechini
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Sylvie Girard
- Department of Obstetrics and Gynecology, Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Charles H. Graham
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
23
|
Wang LL, Li ZH, Wang H, Kwak-Kim J, Liao AH. Cutting edge: the regulatory mechanisms of macrophage polarization and function during pregnancy. J Reprod Immunol 2022; 151:103627. [DOI: 10.1016/j.jri.2022.103627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023]
|
24
|
Lampiasi N. Interactions between Macrophages and Mast Cells in the Female Reproductive System. Int J Mol Sci 2022; 23:ijms23105414. [PMID: 35628223 PMCID: PMC9142086 DOI: 10.3390/ijms23105414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
Mast cells (MCs) and macrophages (Mϕs) are innate immune cells that differentiate from early common myeloid precursors and reside in all body tissues. MCs have a unique capacity to neutralize/degrade toxic proteins, and they are hypothesized as being able to adopt two alternative polarization profiles, similar to Mϕs, with distinct or even opposite roles. Mϕs are very plastic phagocytic cells that are devoted to the elimination of senescent/anomalous endogenous entities (to maintain tissue homeostasis), and to the recognition and elimination of exogenous threats. They can adopt several functional phenotypes in response to microenvironmental cues, whose extreme profiles are the inflammatory/killing phenotype (M1) and the anti-inflammatory/healing phenotype (M2). The concomitant and abundant presence of these two cell types and the partial overlap of their defensive and homeostatic functions leads to the hypothesis that their crosstalk is necessary for the optimal coordination of their functions, both under physiological and pathological conditions. This review will examine the relationship between MCs and Mϕs in some situations of homeostatic regulation (menstrual cycle, embryo implantation), and in some inflammatory conditions in the same organs (endometriosis, preeclampsia), in order to appreciate the importance of their cross-regulation.
Collapse
Affiliation(s)
- Nadia Lampiasi
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l'Innovazione Biomedica, Via Ugo La Malfa 153, 90146 Palermo, Italy
| |
Collapse
|
25
|
Krstic J, Deutsch A, Fuchs J, Gauster M, Gorsek Sparovec T, Hiden U, Krappinger JC, Moser G, Pansy K, Szmyra M, Gold D, Feichtinger J, Huppertz B. (Dis)similarities between the Decidual and Tumor Microenvironment. Biomedicines 2022; 10:1065. [PMID: 35625802 PMCID: PMC9138511 DOI: 10.3390/biomedicines10051065] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 02/05/2023] Open
Abstract
Placenta-specific trophoblast and tumor cells exhibit many common characteristics. Trophoblast cells invade maternal tissues while being tolerated by the maternal immune system. Similarly, tumor cells can invade surrounding tissues and escape the immune system. Importantly, both trophoblast and tumor cells are supported by an abetting microenvironment, which influences invasion, angiogenesis, and immune tolerance/evasion, among others. However, in contrast to tumor cells, the metabolic, proliferative, migrative, and invasive states of trophoblast cells are under tight regulatory control. In this review, we provide an overview of similarities and dissimilarities in regulatory processes that drive trophoblast and tumor cell fate, particularly focusing on the role of the abetting microenvironments.
Collapse
Affiliation(s)
- Jelena Krstic
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| | - Alexander Deutsch
- Division of Hematology, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria; (A.D.); (K.P.); (M.S.)
| | - Julia Fuchs
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
- Division of Biophysics, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Martin Gauster
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| | - Tina Gorsek Sparovec
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria; (T.G.S.); (U.H.); (D.G.)
| | - Ursula Hiden
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria; (T.G.S.); (U.H.); (D.G.)
| | - Julian Christopher Krappinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| | - Gerit Moser
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| | - Katrin Pansy
- Division of Hematology, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria; (A.D.); (K.P.); (M.S.)
| | - Marta Szmyra
- Division of Hematology, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria; (A.D.); (K.P.); (M.S.)
| | - Daniela Gold
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria; (T.G.S.); (U.H.); (D.G.)
| | - Julia Feichtinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| | - Berthold Huppertz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| |
Collapse
|
26
|
True H, Blanton M, Sureshchandra S, Messaoudi I. Monocytes and macrophages in pregnancy: The good, the bad, and the ugly. Immunol Rev 2022; 308:77-92. [PMID: 35451089 DOI: 10.1111/imr.13080] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/08/2022] [Indexed: 12/12/2022]
Abstract
A successful human pregnancy requires precisely timed adaptations by the maternal immune system to support fetal growth while simultaneously protecting mother and fetus against microbial challenges. The first trimester of pregnancy is characterized by a robust increase in innate immune activity that promotes successful implantation of the blastocyst and placental development. Moreover, early pregnancy is also a state of increased vulnerability to vertically transmitted pathogens notably, human immunodeficiency virus (HIV), Zika virus (ZIKV), SARS-CoV-2, and Listeria monocytogenes. As gestation progresses, the second trimester is marked by the establishment of an immunosuppressive environment that promotes fetal tolerance and growth while preventing preterm birth, spontaneous abortion, and other gestational complications. Finally, the period leading up to labor and parturition is characterized by the reinstatement of an inflammatory milieu triggering childbirth. These dynamic waves of carefully orchestrated changes have been dubbed the "immune clock of pregnancy." Monocytes in maternal circulation and tissue-resident macrophages at the maternal-fetal interface play a critical role in this delicate balance. This review will summarize the current data describing the longitudinal changes in the phenotype and function of monocyte and macrophage populations in healthy and complicated pregnancies.
Collapse
Affiliation(s)
- Heather True
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky, USA
| | - Madison Blanton
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky, USA
| | | | - Ilhem Messaoudi
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
27
|
Broekhuizen M, Hitzerd E, van den Bosch TPP, Dumas J, Verdijk RM, van Rijn BB, Danser AHJ, van Eijck CHJ, Reiss IKM, Mustafa DAM. The Placental Innate Immune System Is Altered in Early-Onset Preeclampsia, but Not in Late-Onset Preeclampsia. Front Immunol 2022; 12:780043. [PMID: 34992598 PMCID: PMC8724430 DOI: 10.3389/fimmu.2021.780043] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022] Open
Abstract
Preeclampsia is a severe placenta-related pregnancy disorder that is generally divided into two subtypes named early-onset preeclampsia (onset <34 weeks of gestation), and late-onset preeclampsia (onset ≥34 weeks of gestation), with distinct pathophysiological origins. Both forms of preeclampsia have been associated with maternal systemic inflammation. However, alterations in the placental immune system have been less well characterized. Here, we studied immunological alterations in early- and late-onset preeclampsia placentas using a targeted expression profile approach. RNA was extracted from snap-frozen placenta samples (healthy n=13, early-onset preeclampsia n=13, and late-onset preeclampsia n=6). The expression of 730 immune-related genes from the Pan Cancer Immune Profiling Panel was measured, and the data were analyzed in the advanced analysis module of nSolver software (NanoString Technology). The results showed that early-onset preeclampsia placentas displayed reduced expression of complement, and toll-like receptor (TLR) associated genes, specifically TLR1 and TLR4. Mast cells and M2 macrophages were also decreased in early-onset preeclampsia compared to healthy placentas. The findings were confirmed by an immunohistochemistry approach using 20 healthy, 19 early-onset preeclampsia, and 10 late-onset preeclampsia placentas. We conclude that the placental innate immune system is altered in early-onset preeclampsia compared to uncomplicated pregnancies. The absence of these alterations in late-onset preeclampsia placentas indicates dissimilar immunological profiles. The study revealed distinct pathophysiological processes in early-onset and late-onset preeclampsia placentas and imply that a tailored treatment to each subtype is desirable.
Collapse
Affiliation(s)
- Michelle Broekhuizen
- Division of Neonatology, Department of Pediatrics, Erasmus University Medical Center, Rotterdam, Netherlands.,Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands.,Division of Experimental Cardiology, Department of Cardiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Emilie Hitzerd
- Division of Neonatology, Department of Pediatrics, Erasmus University Medical Center, Rotterdam, Netherlands.,Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Jasper Dumas
- Department of Pathology, Erasmus University Medical Center, Rotterdam, Netherlands.,The Tumor Immuno-Pathology (TIP) Laboratory, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Robert M Verdijk
- Department of Pathology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Bas B van Rijn
- Department of Obstetrics and Gynecology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - A H Jan Danser
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Casper H J van Eijck
- Department of Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Irwin K M Reiss
- Division of Neonatology, Department of Pediatrics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Dana A M Mustafa
- Department of Pathology, Erasmus University Medical Center, Rotterdam, Netherlands.,The Tumor Immuno-Pathology (TIP) Laboratory, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
28
|
Hein AL, Mukherjee M, Talmon GA, Natarajan SK, Nordgren TM, Lyden E, Hanson CK, Cox JL, Santiago-Pintado A, Molani MA, Ormer MV, Thompson M, Thoene M, Akhter A, Anderson-Berry A, Yuil-Valdes AG. QuPath Digital Immunohistochemical Analysis of Placental Tissue. J Pathol Inform 2021; 12:40. [PMID: 34881095 PMCID: PMC8609285 DOI: 10.4103/jpi.jpi_11_21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/25/2021] [Accepted: 06/07/2021] [Indexed: 01/24/2023] Open
Abstract
Background: QuPath is an open-source digital image analyzer notable for its user-friendly design, cross-platform compatibility, and customizable functionality. Since it was first released in 2016, at least 624 publications have reported its use, and it has been applied in a wide spectrum of settings. However, there are currently limited reports of its use in placental tissue. Here, we present the use of QuPath to quantify staining of G-protein coupled receptor 18 (GPR18), the receptor for the pro-resolving lipid mediator Resolvin D2, in placental tissue. Methods: Whole slide images of vascular smooth muscle (VSM) and extravillous trophoblast (EVT) cells stained for GPR18 were annotated for areas of interest. Visual scoring was performed on these images by trained and in-training pathologists, while QuPath scoring was performed with the methodology described herein. Results: Bland–Altman analyses showed that, for the VSM category, the two methods were comparable across all staining levels. For EVT cells, the high-intensity staining level was comparable across methods, but the medium and low staining levels were not comparable. Conclusions: Digital image analysis programs offer great potential to revolutionize pathology practice and research by increasing accuracy and decreasing the time and cost of analysis. Careful study is needed to optimize this methodology further.
Collapse
Affiliation(s)
- Ashley L Hein
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Maheswari Mukherjee
- Department of Medical Sciences, College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE, USA
| | - Geoffrey A Talmon
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sathish Kumar Natarajan
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Tara M Nordgren
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, USA
| | - Elizabeth Lyden
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Corrine K Hanson
- Division of Medical Nutrition Education College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jesse L Cox
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Annelisse Santiago-Pintado
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mariam A Molani
- University of Texas-Southwestern Medical Center, Dallas, TX, USA
| | - Matthew Van Ormer
- Department of Pediatrics, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Maranda Thompson
- Department of Pediatrics, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Melissa Thoene
- Department of Pediatrics, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Aunum Akhter
- Department of Pediatrics, College of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Ann Anderson-Berry
- Department of Pediatrics, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ana G Yuil-Valdes
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
29
|
Kulkarni VG, Sunilkumar KB, Nagaraj T, Uddin Z, Ahmed I, Hwang K, Goudar SS, Guruprasad G, Saleem S, Tikmani SS, Dhaded SM, Yogeshkumar S, Somannavar MS, McClure EM, Goldenberg RL. Maternal and fetal vascular lesions of malperfusion in the placentas associated with fetal and neonatal death: results of a prospective observational study. Am J Obstet Gynecol 2021; 225:660.e1-660.e12. [PMID: 34111407 DOI: 10.1016/j.ajog.2021.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Fetal death is one of the major adverse pregnancy outcomes and is common in low- and middle-income countries. Placental lesions may play an important role in the etiology of fetal and neonatal deaths. Previous research relating placental lesions to fetal death causation was hindered by a lack of agreement on a placental classification scheme. The Amsterdam consensus statement that was published in 2016 focused its attention on malperfusions in the maternal and fetal placental circulations. OBJECTIVE This study aimed to investigate the relationships of placental maternal and fetal vascular malperfusions in fetal and neonatal deaths, focusing on the most important maternal clinical conditions in the pathway to fetal and neonatal deaths, such as maternal hypertension, antepartum hemorrhage, and decreased fetal growth. STUDY DESIGN This was a prospective, observational cohort study conducted at 2 Asian sites. The data collected included clinical history, gross and histologic evaluations of the placenta, and several other investigations and were used to determine the cause of death. The placenta was evaluated at both sites using the Amsterdam consensus framework. We estimated the risk of placental maternal and fetal vascular malperfusions in fetal and neonatal deaths. RESULTS Between July 2018 and January 2020 in India and Pakistan, 1633 women with placentas available for the study provided consent. Of these women, 814 had fetal deaths, 618 had preterm live births and subsequent neonatal deaths, and 201 had term live births. The prevalence of maternal vascular malperfusion was higher in the placentas associated with fetal deaths (58.4%) and preterm neonatal deaths (31.1%) than in the placentas associated with term live births (15.4%). Adjusting for site, maternal vascular malperfusion had a relative risk of 3.88 (95% confidence interval, 2.70-5.59) in fetal deaths vs term live births and a relative risk of 2.07 (95% confidence interval, 1.41-3.02) in preterm neonatal deaths vs term live births. Infarcts and distal villous hypoplasia were the most common histologic components of maternal vascular malperfusion. Compared with maternal vascular malperfusion (58.4%), fetal vascular malperfusion was less common in the placentas associated with fetal deaths (19.0%). However, there were higher frequencies of fetal vascular malperfusion in the placentas associated with fetal deaths (19.0%) than in placentas associated with neonatal deaths (8.3%) or term live birth (5.0%). Adjusting for site, fetal vascular malperfusion had a relative risk of 4.09 (95% confidence interval, 2.15-7.75) in fetal deaths vs term live births and a relative risk of 1.77 (95% confidence interval, 0.90-3.49) in preterm neonatal deaths vs term live births. Furthermore, there was a higher incidence of maternal vascular malperfusion in cases of maternal hypertension (71.4%), small for gestational age (69.9%), and antepartum hemorrhage (59.1%) than in cases of fetal deaths with none of these conditions (43.3%). There was no significant difference in the occurrence of fetal vascular malperfusion in the 4 clinical categories. CONCLUSION Histologic examination of the placenta, especially for malperfusion disorders, is crucial in elucidating pathways to fetal and neonatal deaths in preterm infants. In particular, focusing on placental maternal and fetal vascular malperfusions during pregnancy is a means to identify fetuses at risk of fetal death and is an important strategy to reduce the risk of fetal death early delivery. We hope that the increased risk of fetal and neonatal deaths in these pregnancies can be reduced by the development of an intervention that reduces the likelihood of developing maternal and fetal vascular malperfusion.
Collapse
|
30
|
Ding J, Zhang Y, Cai X, Diao L, Yang C, Yang J. Crosstalk Between Trophoblast and Macrophage at the Maternal-Fetal Interface: Current Status and Future Perspectives. Front Immunol 2021; 12:758281. [PMID: 34745133 PMCID: PMC8566971 DOI: 10.3389/fimmu.2021.758281] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/06/2021] [Indexed: 12/31/2022] Open
Abstract
The immune tolerance microenvironment is crucial for the establishment and maintenance of pregnancy at the maternal-fetal interface. The maternal-fetal interface is a complex system containing various cells, including lymphocytes, decidual stromal cells, and trophoblasts. Macrophages are the second-largest leukocytes at the maternal-fetal interface, which has been demonstrated to play essential roles in remodeling spiral arteries, maintaining maternal-fetal immune tolerance, and regulating trophoblast's biological behaviors. Many researchers, including us, have conducted a series of studies on the crosstalk between macrophages and trophoblasts at the maternal-fetal interface: on the one hand, macrophages can affect the invasion and migration of trophoblasts; on the other hand, trophoblasts can regulate macrophage polarization and influence the state of the maternal-fetal immune microenvironment. In this review, we systemically introduce the functions of macrophages and trophoblasts and the cell-cell interaction between them for the establishment and maintenance of pregnancy. Advances in this area will further accelerate the basic research and clinical translation of reproductive medicine.
Collapse
Affiliation(s)
- Jinli Ding
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaopeng Cai
- Department of Gastrointestinal Surgery, The Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Periimplantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Chaogang Yang
- Department of Gastrointestinal Surgery, The Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| |
Collapse
|
31
|
Ticconi C, Di Simone N, Campagnolo L, Fazleabas A. Clinical consequences of defective decidualization. Tissue Cell 2021; 72:101586. [PMID: 34217128 DOI: 10.1016/j.tice.2021.101586] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023]
Abstract
Decidualization is characterized by a series of genetic, metabolic, morphological, biochemical, vascular and immune changes occurring in the endometrial stroma in response to the implanting embryo or even before conception and involves the stromal cells of the endometrium. It is a fundamental reproductive event occurring in mammalian species with hemochorial placentation. A growing body of experimental and clinical evidence strongly suggests that defective or disrupted decidualization contributes to the establishment of an inappropriate maternal-fetal interface. This has relevant clinical consequences, ranging from recurrent implantation failure and recurrent pregnancy loss in early pregnancy to several significant complications of advanced gestation. Moreover, recent evidence indicates that selected diseases of the endometrium, such as chronic endometritis and endometriosis, can have a detrimental impact on the decidualization response in the endometrium and may help explain some aspects of the reduced reproductive outcome associated with these conditions. Further research efforts are needed to fully understand the biomolecular mechanisms ans events underlying an abnormal decidualization response. This will permit the development of new diagnostic and therapeutic strategies aimed to improve the likelihood of achieveing a successful pregnancy.
Collapse
Affiliation(s)
- Carlo Ticconi
- Department of Surgical Sciences, Section of Gynecology and Obstetrics, University Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.
| | - Nicoletta Di Simone
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy; IRCCS, Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy.
| | - Luisa Campagnolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.
| | - Asgerally Fazleabas
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
32
|
Shi M, Chen Z, Chen M, Liu J, Li J, Xing Z, Zhang X, Lv S, Li X, Zuo S, Feng S, Lin Y, Xiao G, Wang L, He Y. Continuous activation of polymorphonuclear myeloid-derived suppressor cells during pregnancy is critical for fetal development. Cell Mol Immunol 2021; 18:1692-1707. [PMID: 34099889 DOI: 10.1038/s41423-021-00704-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/08/2021] [Indexed: 02/06/2023] Open
Abstract
The maternal immune system is vital in maintaining immunotolerance to the semiallogeneic fetus for a successful pregnancy. Although studies have shown that myeloid-derived suppressor cells (MDSCs) play an important role in maintaining feto-maternal tolerance, little is known about the role of MDSCs in pregnancies with intrauterine growth retardation (IUGR). Here, we reported that the activation of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) during pregnancy was closely associated with fetal growth. In humans, class E scavenger receptor 1 (SR-E1), a distinct marker for human PMN-MDSCs, was used to investigate PMN-MDSC function during pregnancy. Continuous activation of SR-E1+ PMN-MDSCs was observed in all stages of pregnancy, accompanied by high cellular levels of ROS and arginase-1 activity, mediated through STAT6 signaling. However, SR-E1+ PMN-MDSCs in pregnancies with IUGR showed significantly lower suppressive activity, lower arginase-1 activity and ROS levels, and decreased STAT6 phosphorylation level, which were accompanied by an increase in inflammatory factors, compared with those in normal pregnancies. Moreover, the population of SR-E1+ PMN-MDSCs was negatively correlated with the adverse outcomes of newborns from pregnancies with IUGR. In mice, decreases in cell population, suppressive activity, target expression levels, and STAT6 phosphorylation levels were also observed in the pregnancies with IUGR compared with the normal pregnancies, which were rescued by the adoptive transfer of PMN-MDSCs from pregnant mice. Interestingly, the growth-promoting factors (GPFs) secreted by placental PMN-MDSCs in both humans and mice play a vital role in fetal development. These findings collectively support that PMN-MDSCs have another new role in pregnancy, which can improve adverse neonatal outcomes.
Collapse
Affiliation(s)
- Mengyu Shi
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ziyang Chen
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Meiqi Chen
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jingping Liu
- Department of Laboratory Medicine, the Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Jing Li
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhe Xing
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaogang Zhang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shuaijun Lv
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xinyao Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shaowen Zuo
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shi Feng
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ying Lin
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Gang Xiao
- Department of Laboratory Medicine, the Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China.
| | - Liping Wang
- The First Affiliated Hospital of Shenzhen University, Reproductive Medicine Centre, Shenzhen Second People's Hospital, Shenzhen, China.
| | - Yumei He
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China. .,Department of Laboratory Medicine, the Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China. .,Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China.
| |
Collapse
|
33
|
Humphries M, Maxwell P, Salto-Tellez M. QuPath: The global impact of an open source digital pathology system. Comput Struct Biotechnol J 2021; 19:852-859. [PMID: 33598100 PMCID: PMC7851421 DOI: 10.1016/j.csbj.2021.01.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 02/07/2023] Open
Abstract
QuPath, originally created at the Centre for Cancer Research & Cell Biology at Queen's University Belfast as part of a research programme in digital pathology (DP) funded by Invest Northern Ireland and Cancer Research UK, is arguably the most wildly used image analysis software program in the world. On the back of the explosion of DP and a need to comprehensively visualise and analyse whole slides images (WSI), QuPath was developed to address the many needs associated with tissue based image analysis; these were several fold and, predominantly, translational in nature: from the requirement to visualise images containing billions of pixels from files several GBs in size, to the demand for high-throughput reproducible analysis, which the paradigm of routine visual pathological assessment continues to struggle to deliver. Resultantly, large-scale biomarker quantification must increasingly be augmented with DP. Here we highlight the impact of the open source Quantitative Pathology & Bioimage Analysis DP system since its inception, by discussing the scope of scientific research in which QuPath has been cited, as the system of choice for researchers.
Collapse
Affiliation(s)
- M.P. Humphries
- Precision Medicine Centre of Excellence, The Patrick G Johnston Centre for Cancer Research, Queen’s University, Belfast, UK
| | - P. Maxwell
- Precision Medicine Centre of Excellence, The Patrick G Johnston Centre for Cancer Research, Queen’s University, Belfast, UK
| | - M. Salto-Tellez
- Precision Medicine Centre of Excellence, The Patrick G Johnston Centre for Cancer Research, Queen’s University, Belfast, UK
- Integrated Pathology Programme, Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| |
Collapse
|
34
|
MORPHOMETRIC ANALYSIS OF PLACENTAL AND M1/M2 MACROPHAGES POLARIZATION IN THE DETECTION OF FETAL GROWTH RESTRICTION. WORLD OF MEDICINE AND BIOLOGY 2021. [DOI: 10.26724/2079-8334-2021-1-75-12-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|