1
|
Olasard P, Suksri P, Taneerat C, Rungrassamee W, Sathapondecha P. In silico identification and functional study of long non-coding RNA involved in acute hepatopancreatic necrosis disease caused by Vibrio parahaemolyticus infection in white shrimp, Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2024; 152:109768. [PMID: 39013534 DOI: 10.1016/j.fsi.2024.109768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/04/2024] [Accepted: 07/13/2024] [Indexed: 07/18/2024]
Abstract
Acute hepatopancreatic necrosis disease (AHPND) caused by toxin-producing Vibrio parahaemolyticus (VpAHPND) has severely affected shrimp production. Long non-coding RNA (lncRNA), a regulatory non-coding RNA, which can play important function in shrimp disease responses. This study aimed to identify and investigate the role of lncRNA involved in VpAHPND infection in Pacific white shrimp, Litopenaeus vannamei. From a total of 368,736 de novo assembled transcripts, 67,559 were identified as putative lncRNAs, and only 72 putative lncRNAs showed differential expression between VpAHPND-infected and normal shrimp. The six candidate lncRNAs were validated for their expression profiles during VpAHPND infection and tissue distribution using RT-qPCR. The role of lnc2088 in response to VpAHPND infection was investigated through RNA interference. The result indicated that the suppression of lnc2088 expression led to an increase in shrimp mortality after VpAHPND infection. To explore the set of genes involved in lnc2088 knockdown, RNA sequencing was performed. A total of 275 differentially expressed transcripts were identified in the hepatopancreas of lnc2088 knockdown shrimp. The expression profiles of five candidate metabolic and immune-related genes were validated in lnc2088 knockdown and VpAHPND-infected shrimp. The result showed that the expression of ChiNAG was significantly increased, while that of NCBP1, WIPF2, and NFKB1 was significantly downregulated in ds2088-injected shrimp. Additionally, the expression of NFKB1, NCBP1 and WIPF2 was significantly increased, whereas that of ChiNAG and CUL5 were significantly decreased after infection with VpAHPND. Our work identified putative lncRNA profiles in L. vannamei in response to VpAHPND infection and investigated the role of lncRNA in shrimp immunity.
Collapse
Affiliation(s)
- Praewrung Olasard
- Center for Genomics and Bioinformatics Research, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Phassorn Suksri
- Center for Genomics and Bioinformatics Research, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Chanikan Taneerat
- Center for Genomics and Bioinformatics Research, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Wanilada Rungrassamee
- Biosensing and Bioprospectiing Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathum Thani 12120, Thailand
| | - Ponsit Sathapondecha
- Center for Genomics and Bioinformatics Research, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
2
|
Wan B, Lei Y, Yuan Z, Wang W. Metagenomic dissection of the intestinal microbiome in the giant river prawn Macrobrachium rosenbergii infected with Decapod iridescent virus 1. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109617. [PMID: 38723876 DOI: 10.1016/j.fsi.2024.109617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Microbiome in the intestines of aquatic invertebrates plays pivotal roles in maintaining intestinal homeostasis, especially when the host is exposed to pathogen invasion. Decapod iridescent virus 1 (DIV1) is a devastating virus seriously affecting the productivity and success of crustacean aquaculture. In this study, a metagenomic analysis was conducted to investigate the genomic sequences, community structure and functional characteristics of the intestinal microbiome in the giant river prawn Macrobrachiumrosenbergii infected with DIV1. The results showed that DIV1 infection could significantly reduce the diversity and richness of intestinal microbiome. Proteobacteria represented the largest taxon at the phylum level, and at the species level, the abundance of Gonapodya prolifera and Solemya velum gill symbiont increased significantly following DIV1 infection. In the infected prawns, four metabolic pathways related to purine metabolism, pyrimidine metabolism, glycerophospholipid metabolism, and pentose phosphate pathway, and five pathways related to nucleotide excision repair, homologous recombination, mismatch repair, base excision repair, and DNA replication were significantly enriched. Moreover, several immune response related pathways, such as shigellosis, bacterial invasion of epithelial cells, Salmonella infection, and Vibrio cholerae infection were repressed, indicating that secondary infection in M. rosenbergii may be inhibited via the suppression of these immune related pathways. DIV1 infection led to the induction of microbial carbohydrate enzymes such as the glycoside hydrolases (GHs), and reduced the abundance and number of antibiotic-resistant ontologies (AROs). A variety of AROs were identified from the microbiota, and mdtF and lrfA appeared as the dominant genes in the detected AROs. In addition, antibiotic efflux, antibiotic inactivation, and antibiotic target alteration were the main antibiotic resistance mechanisms. Collectively, the data would enable a deeper understanding of the molecular response of intestinal microbiota to DIV1, and offer more insights into its roles in prawn resistance to DIVI infection.
Collapse
Affiliation(s)
- Boquan Wan
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yiguo Lei
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhixiang Yuan
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Wei Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, 524088, China.
| |
Collapse
|
3
|
Liu H, Wei M, Tan B, Dong X, Xie S. The Supplementation of Berberine in High-Carbohydrate Diets Improves Glucose Metabolism of Tilapia ( Oreochromis niloticus) via Transcriptome, Bile Acid Synthesis Gene Expression and Intestinal Flora. Animals (Basel) 2024; 14:1239. [PMID: 38672387 PMCID: PMC11047455 DOI: 10.3390/ani14081239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Berberine is an alkaloid used to treat diabetes. This experiment aimed to investigate the effects of berberine supplementation in high-carbohydrate diets on the growth performance, glucose metabolism, bile acid synthesis, liver transcriptome, and intestinal flora of Nile tilapia. The six dietary groups were the C group with 29% carbohydrate, the H group with 44% carbohydrate, and the HB1-HB4 groups supplemented with 25, 50, 75, and 100 mg/kg of berberine in group H. The results of the 8-week trial showed that compared to group C, the abundance of Bacteroidetes was increased in group HB2 (p < 0.05). The cholesterol-7α-hydroxylase (CYP7A1) and sterol-27-hydroxylase (CYP27A1) activities were decreased and the expression of FXR was increased in group HB4 (p < 0.05). The pyruvate carboxylase (PC) and phosphoenolpyruvate carboxykinase (PEPCK) activities was decreased in group HB4 (p < 0.05). The liver transcriptome suggests that berberine affects carbohydrate metabolic pathways and primary bile acid synthesis pathways. In summary, berberine affects the glucose metabolism in tilapia by altering the intestinal flora structure, enriching differentially expressed genes (DEGs) in the bile acid pathway to stimulate bile acid production so that it promotes glycolysis and inhibits gluconeogenesis. Therefore, 100 mg/kg of berberine supplementation in high-carbohydrate diets is beneficial to tilapia.
Collapse
Affiliation(s)
- Hongyu Liu
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (H.L.); (M.W.); (X.D.); (S.X.)
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Menglin Wei
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (H.L.); (M.W.); (X.D.); (S.X.)
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Beiping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (H.L.); (M.W.); (X.D.); (S.X.)
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Xiaohui Dong
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (H.L.); (M.W.); (X.D.); (S.X.)
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Shiwei Xie
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (H.L.); (M.W.); (X.D.); (S.X.)
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| |
Collapse
|
4
|
Jie YK, Xie JW, Cheng CH, Jiang JJ, Ma HL, Liu GX, Fan SG, Deng YQ, Feng J, Guo ZX. HIF-1-mediated regulation of LDH gene unravels key insights into MCDV-1 pathogenesis in mud crabs Scylla paramamosain. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 153:105127. [PMID: 38160871 DOI: 10.1016/j.dci.2023.105127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Hypoxia-inducible factors -1 (HIF-1) is a crucial transcription factor that regulates the expression of glycolytic genes. Our previous study proved that the Mud crab dicistrovirus-1 (MCDV-1) can induce aerobic glycolysis that favors viral replication in mud crab Scylla paramamosain. However, the role of HIF-1 on key glycolytic genes during the MCDV-1 infection has not been examined. In this study, the intricate interplay between HIF-1 and the key glycolysis enzyme, lactate dehydrogenase (LDH), was investigated after MCDV-1 infection. The expression of LDH was significant increased after MCDV-1 infection. Additionally, the expression of HIF-1α was upregulated following MCDV-1 infection, potentially attributed to the downregulation of prolyl hydroxylase domains 2 expression. Subsequent examination of the SpLDH promoter identified the presence of hypoxia response elements (HREs), serving as binding sites for HIF-1α. Intriguingly, experimental evidence demonstrated that SpHIF-1α actively promotes SpLDH transcription through these HREs. To further elucidate the functional significance of SpHIF-1α, targeted silencing was employed, resulting in a substantial reduction in SpLDH expression, activity, and lactate concentrations in MCDV-1-infected mud crabs. Notably, SpHIF-1α-silenced mud crabs exhibited higher survival rates and lower viral loads in hepatopancreas tissues following MCDV-1 infection. These results highlight the critical role of SpHIF-1α in MCDV-1 pathogenesis by regulating LDH gene dynamics, providing valuable insights into the molecular mechanisms underlying the virus-host interaction.
Collapse
Affiliation(s)
- Yu-Kun Jie
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Jia-Wei Xie
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Chang-Hong Cheng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China
| | - Jian-Jun Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China
| | - Hong-Ling Ma
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China
| | - Guang-Xin Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China
| | - Si-Gang Fan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China
| | - Yi-Qin Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China
| | - Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China
| | - Zhi-Xun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China.
| |
Collapse
|
5
|
Zhang J, Liu K, Gong X, Zhang N, Zeng Y, Ren W, Huang A, Long H, Xie Z. Transcriptome analysis of the hepatopancreas from the Litopenaeus vannamei infected with different flagellum types of Vibrio alginolyticus strains. Front Cell Infect Microbiol 2023; 13:1265917. [PMID: 38076457 PMCID: PMC10703188 DOI: 10.3389/fcimb.2023.1265917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Vibrio alginolyticus, one of the prevalently harmful Vibrio species found in the ocean, causes significant economic damage in the shrimp farming industry. Its flagellum serves as a crucial virulence factor in the invasion of host organisms. However, the processes of bacteria flagella recognition and activation of the downstream immune system in shrimp remain unclear. To enhance comprehension of this, a ΔflhG strain was created by in-frame deletion of the flhG gene in V. alginolyticus strain HN08155. Then we utilized the transcriptome analysis to examine the different immune responses in Litopenaeus vannamei hepatopancreas after being infected with the wild type and the mutant strains. The results showed that the ΔflhG strain, unlike the wild type, lost its ability to regulate flagella numbers negatively and displayed multiple flagella. When infected with the hyperflagella-type strain, the RNA-seq revealed the upregulation of several immune-related genes in the shrimp hepatopancreas. Notably, two C-type lectins (CTLs), namely galactose-specific lectin nattectin and macrophage mannose receptor 1, and the TNF receptor-associated factor (TRAF) 6 gene were upregulated significantly. These findings suggested that C-type lectins were potentially involved in flagella recognition in shrimp and the immune system was activated through the TRAF6 pathway after flagella detection by CTLs.
Collapse
Affiliation(s)
- Jingwen Zhang
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, China
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, China
| | - Kaifang Liu
- School of Fisheries, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Xiaoxiao Gong
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, China
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, China
| | - Na Zhang
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, China
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, China
| | - Yanhua Zeng
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, China
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, China
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China
| | - Wei Ren
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, China
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, China
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China
| | - Aiyou Huang
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, China
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, China
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China
| | - Hao Long
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, China
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, China
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China
| | - Zhenyu Xie
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, China
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, China
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China
| |
Collapse
|
6
|
Liao X, Liu S, Chen S, Shan X, He J, Li C. Transcriptomic analysis reveals the role of Glycolysis pathway in Litopenaeus vannamei during DIV1 infection. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109036. [PMID: 37640121 DOI: 10.1016/j.fsi.2023.109036] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
In recent years, shrimp farming has experienced significant losses due to the emergence of DIV1 (Decapod iridescent virus 1), an infectious virus with a high fatality rate among shrimp. In this study, we conducted transcriptomic analyses on shrimp Litopenaeus vannamei hemocytes following DIV1 infection and focused on the function of genes in the Glycolysis pathway during DIV1 infection. A total of 2197 differentially expressed genes (DEGs) were identified, comprising 1506 up-regulated genes and 691 down-regulated genes. These genes were primarily associated with Phagosome, ECM-Receptor Interaction, Drug Metabolism-Other Enzymes, and the AGE-RAGE signaling pathway in diabetic complications. KEGG pathway enrichment analysis of the DEGs revealed a noteworthy correlation with metabolic pathways, with a specific focus on glucose metabolism. Specifically, the Glycolysis/Gluconeogenesis pathway exhibited significant upregulation following DIV1 infection. In line with this, we observed an augmented accumulation of glycolytic-related metabolites in the hemolymph following DIV1 challenge along with upregulation of the relative mRNA expression of several glycolytic-related genes. Moreover, we found that the inhibition of lactate dehydrogenase (LDH) activity through RNAi or the use of an inhibitor resulted in reduced lactate production, effectively safeguarding shrimp from DIV1 infection. These findings not only provide a comprehensive dataset for further investigation into DIV1 pathogenesis but also offer valuable insights into the immunometabolism mechanisms that govern shrimp responses to DIV1 infection.
Collapse
Affiliation(s)
- Xuzheng Liao
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/ State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Sihong Liu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/ State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Shihan Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/ State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Xinxin Shan
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/ State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Jianguo He
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/ State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/ Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China; Maoming Branch Center of Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Maoming, PR China.
| | - Chaozheng Li
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/ State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/ Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China; Maoming Branch Center of Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Maoming, PR China.
| |
Collapse
|
7
|
Yin B, Wang H, Weng S, Li S, He J, Li C. A simple sequence repeats marker of disease resistance in shrimp Litopenaeus vannamei and its application in selective breeding. Front Genet 2023; 14:1144361. [PMID: 37576558 PMCID: PMC10415038 DOI: 10.3389/fgene.2023.1144361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/18/2023] [Indexed: 08/15/2023] Open
Abstract
The polymorphism of the simple sequence repeat (SSR) in the 5' untranslated coding region (5'-UTR) of the antiviral gene IRF (LvIRF) has been shown to be implicated in the resistance to viral pathogens in shrimp Litopenaeus vannamei (L. vannamei). In this study, we explored the potential of this (CT)n-SSR marker in disease resistance breeding and the hereditary property of disease resistance traits in offspring. From 2018 to 2021, eight populations were generated through crossbreeding by selecting individuals according to microsatellite genotyping. Our results demonstrated that shrimp with the shorter (CT)n repeat exhibited higher resistance to white spot syndrome virus (WSSV) or Decapod iridescent virus 1 (DIV1); meanwhile, these resistance traits could be inherited in offspring. Interestingly, we observed that the longer (CT)n repeats were associated with bacterial resistance traits. Accordingly, shrimp with longer (CT)n repeats exhibited higher tolerance to Vibrio parahaemolyticus infection. Taken together, these results indicate that the single (CT)n-SSR marker could be used to selective breeding for both resistance to virus and bacteria in shrimps.
Collapse
Affiliation(s)
- Bin Yin
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangzhou, China
- China-ASEAN Belt and Road Joint Laboratory on Marine Aquaculture Technology, Guangzhou, China
| | - Haiyang Wang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangzhou, China
- China-ASEAN Belt and Road Joint Laboratory on Marine Aquaculture Technology, Guangzhou, China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangzhou, China
- China-ASEAN Belt and Road Joint Laboratory on Marine Aquaculture Technology, Guangzhou, China
| | - Sedong Li
- Guangdong Evergreen Feed Industry Co., Ltd., Zhanjiang, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangzhou, China
- China-ASEAN Belt and Road Joint Laboratory on Marine Aquaculture Technology, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Chaozheng Li
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangzhou, China
- China-ASEAN Belt and Road Joint Laboratory on Marine Aquaculture Technology, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| |
Collapse
|
8
|
Keawthong C, Bunnoy A, Chuchird N, Srisapoome P. Immune responses and histopathological analyses of giant river prawn (Macrobrachium rosenbergii, De Man 1879) challenged with a sub-lethal dose of decapod iridescent virus 1 (DIV1) and chemical control investigation. FISH & SHELLFISH IMMUNOLOGY 2023; 137:108792. [PMID: 37141959 DOI: 10.1016/j.fsi.2023.108792] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/06/2023]
Abstract
Decapod iridescent virus 1 (DIV1) is a lethal virus that has a significant influence on the shrimp and prawn culture industries. The mechanism through which infected prawns respond to the DIV1 virus is currently unknown. Here, we examined in detail the clinical signs, histopathology, and humoral, cellular, and immune-related gene responses after a sub-lethal dose of DIV1 during the acute infection period of 0-120 hours post infection (hpi). Interestingly, at the end of the experiment, DIV1-infected prawns had black lesions on several external regions. The DIV1-infected prawns also exhibited few karyopyknotic nuclei in the gills and intestine tissues and exhibited increasing immunological responses, as revealed by significant increases in all examined parameters, including total hemocytes, phagocytosis, lysozyme, and overall bactericidal activity, from 6 to 48 hpi. In addition, between 72 and 120 hpi, all immune response activities of DIV1-infected prawn were impaired compared with those of normal prawns, indicating negative impacts on immunological parameters. A viral load analysis of various tissues by qPCR indicated that hemocytes were the dominant initial viral target tissues, followed by the gills and hepatopancreas. An expression analysis of crucial immune-related genes by qRT‒PCR revealed various expression patterns in response to DIV1 infection; in particular, fold changes in the relative expression of anti-lipopolysaccharide factors (ALFs), prophenoloxidase (proPO), lipopolysaccharide and β-1,3-glucan binding protein (LGBP) were observed. Additionally, five common chemicals, calcium hypochlorite [Ca(OCl)2] at 16.25-130 ppm, hydrogen peroxide (H2O2) at 8.75-70 ppm, povidone iodine (PVP-I) at 3-24 ppm, benzalkonium chloride (BKC) at 20-160 ppm, and formalin at 25-200 ppm, had a significant effect on the killing of DIV1 particles in vitro within 24 h after exposure. These data will be helpful for determining the health status and immune defense mechanisms of giant river prawns during DIV1 infection periods. The study performed the first application of very common disinfectants, and the obtained information will be useful for implementing effective strategies to prevent and control DIV1 infection in both hatchery and grow-out ponds.
Collapse
Affiliation(s)
- Chalinda Keawthong
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Road, Ladyao, Chatuchak, 10900, Bangkok, Thailand; Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Road, Ladyao, Chatuchak, 10900, Bangkok, Thailand.
| | - Anurak Bunnoy
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Road, Ladyao, Chatuchak, 10900, Bangkok, Thailand; Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Road, Ladyao, Chatuchak, 10900, Bangkok, Thailand.
| | - Niti Chuchird
- Aquaculture Business Research Center, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand.
| | - Prapansak Srisapoome
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Road, Ladyao, Chatuchak, 10900, Bangkok, Thailand; Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Road, Ladyao, Chatuchak, 10900, Bangkok, Thailand.
| |
Collapse
|
9
|
Liao M, Liao X, Long X, Zhao J, He Z, Zhang J, Wu T, Sun C. Host-microbiota interactions and responses of Metapenaeus ensis infected with decapod iridescent virus 1. Front Microbiol 2023; 13:1097931. [PMID: 36713173 PMCID: PMC9880205 DOI: 10.3389/fmicb.2022.1097931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction Decapod iridescent virus 1 (DIV1) has caused severe economic losses in shrimp aquaculture. So far, Researchs on DIV1-infected shrimp have mainly focused on the hemocytes immune response, while studies on the host-intestine microbiota interactions during DIV1 infection have been scarce. Methods This study determined the lethal concentration 50 (LC50) of DIV1 to Metapenaeus ensis, preliminarily determining that M. ensis could serve as a susceptible object for DIV1. The interactions and responses between the immune and intestine microbiota of shrimp under DIV1 infection were also investigated. Results and Discussion DIV1 infection decreases intestine bacterial diversity and alters the composition of intestine microbiota. Specifically, DIV1 infection decreases the abundance of potentially beneficial bacteria (Bacteroidetes, Firmicutes, and Actinobacteria), and significantly increases the abundance of pathogenic bacteria such as Vibrio and Photobacterium, thereby increasing the risk of secondary bacterial infections. The results of PICRUSt functional prediction showed that altered intestine microbiota induces host metabolism disorders, which could be attributed to the bioenergetic and biosynthetic requirements for DIV1 replication in shrimp. The comparative transcriptomic analysis showed that some metabolic pathways related to host immunity were significantly activated following DIV1 infection, including ncRNA processing and metabolic process, Ascorbate and aldarate metabolism, and Arachidonic acid metabolism. M. ensis may against DIV1 infection by enhancing the expression of some immune-related genes, such as Wnt16, heat shock protein 90 (Hsp90) and C-type lectin 3 (Ctl3). Notably, correlation analysis of intestinal microbial variation with host immunity showed that expansion of pathogenic bacteria (Vibrio and Photobacterium) in DIV1 infection could increased the expression of NF-κB inhibitors cactus-like and Toll interacting protein (Tollip), which may limit the TLR-mediated immune response and ultimately lead to further DIV1 infection. Significance and Impact of the Study This study enhances our understanding of the interactions between shrimp immunity and intestinal microbiota. The ultimate goal is to develop novel immune enhancers for shrimp and formulate a safe and effective DIV1 defense strategy.
Collapse
Affiliation(s)
- Minze Liao
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Xuzheng Liao
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xinxin Long
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Jichen Zhao
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Zihao He
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Jingyue Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Tingfen Wu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Chengbo Sun
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China,Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, Guangdong, China,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, China,*Correspondence: Chengbo Sun, ✉
| |
Collapse
|
10
|
Zheng Q, Wang W, Zhao F, Lin S, Chen J. Identification and characterization of an envelope protein 168L in Cherax quadricarinatus iridovirus (CQIV). Virus Res 2023; 323:198967. [PMID: 36241037 PMCID: PMC10194265 DOI: 10.1016/j.virusres.2022.198967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
Abstract
Cherax quadricarinatus iridovirus (CQIV), a new member of family Iridoviridae, mainly infects the shrimps and crayfish with a high mortality rate. Previous gel-based LC-MS/MS study on CQIV has identified 30 structural proteins. In this study, one of the structural proteins, CQIV-168L, was selected for further analysis. RT-PCR and Western-blotting (WB) detection revealed that the transcript and the protein appeared late during infection of C. quadricarinatus cells and that the transcript was blocked by viral DNA replication inhibitor, indicating that CQIV-168L is a late expression gene. The specific antiserum against CQIV-168L was raised and immunofluorescence analysis showed that CQIV-168L was localized in the cytoplasm and associated with virus factories. Western-blotting (WB) assay suggested that CQIV-168L antiserum bound specifically to a 57-kDa protein in both the intact virions and the envelope fraction. As revealed by immunogold labeling, CQIV-168L was a component of the viral envelope. Findings in this work help to further understand the structure and entry mechanism of CQIV.
Collapse
Affiliation(s)
- Qin Zheng
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Wei Wang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Furong Zhao
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Shen Lin
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Jianming Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China.
| |
Collapse
|
11
|
Zheng J, Jia Y, Li F, Chi M, Cheng S, Liu S, Jiang W, Liu Y. Changes in the gene expression and gut microbiome to the infection of decapod iridescent virus 1 in Cherax quadricarinatus. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108451. [PMID: 36504164 DOI: 10.1016/j.fsi.2022.108451] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
As a new emerging viral pathogen, Decapod iridescent virus 1 (DIV1) seriously threatens crustacean farming in recent years. However, limited research progresses have been made on the immune mechanism between host and viral factors in response to DIV1 infection. In the current study, a natural occurrence of DIV1 infection with obvious clinical signs was found in farmed redclaw crayfish Cherax quadricarinatus, and confirmed by nested PCR detection and histopathological examination. Besides, gene expression profiles were analyzed after being challenged with DIV1, and results showed that 27 immune related genes were upregulated compared with the control group. Moreover, the gut microbiota from healthy and DIV1-infected crayfish were investigated by 16S rDNA high-throughput sequencing. Results showed that significant differences in the microbial composition and function were observed after DIV1 challenge. Furthermore, we discovered that changes in gene expression profiles were correlated with microbiota alterations under DIV1 challenge. Taken together, our findings will provide new insights into the immune response mechanism of DIV1 infection in crustaceans.
Collapse
Affiliation(s)
- Jianbo Zheng
- Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Yongyi Jia
- Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China.
| | - Fei Li
- Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Meili Chi
- Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Shun Cheng
- Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Shili Liu
- Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Wenping Jiang
- Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Yinuo Liu
- Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| |
Collapse
|
12
|
Yuan H, Zhang W, Jin S, Jiang S, Xiong Y, Chen T, Gong Y, Qiao H, Fu H. Transcriptome analysis provides novel insights into the immune mechanisms of Macrobrachium nipponense during molting. FISH & SHELLFISH IMMUNOLOGY 2022; 131:454-469. [PMID: 36257556 DOI: 10.1016/j.fsi.2022.10.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/16/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Molting is a basic physiological behavior of the Oriental river prawn (Macrobrachium nipponense), however, the gene expression patterns and immune mechanisms during the molting process of Oriental river prawn are unclear. In the current study, the gene expression levels of the hepatopancreas of the Oriental river prawn at different molting stages (pre-molting, Prm; mid-molting, Mm; and post-molting, Pom) were detected by mRNA sequencing. A total of 1721, 551, and 1054 differentially expressed genes (DEGs) were identified between the Prm hepatopancreas (PrmHe) and Mm hepatopancreas (MmHe), MmHe and Pom hepatopancreas (PomHe) and PrmHe and PomHe, respectively. The results showed that a total of 1151 DEGs were annotated into 316 signaling pathways, and the significantly enriched immune-related pathways were "Lysosome", "Hippo signaling pathway", "Apoptosis", "Autophagy-animal", and "Endocytosis". The qRT-PCR verification results of 30 randomly selected DEGs were consistent with RNA-seq. The expression patterns of eight immune related genes in different molting stages of the Oriental river prawn were analyzed by qRT-PCR. The function of Caspase-1 (CASP1) was further investigated by bioinformatics, qRT-PCR, and RNAi analysis. CASP1 has two identical conserved domains: histidine active site and pentapeptide motif, and the expression of CASP1 is the highest in ovary. The expression levels of triosephosphate isomerase (TPI), Cathepsin B (CTSB) and Hexokinase (HXK) were evaluated after knockdown of CASP1. This research provides a valuable basis to improve our understanding the immune mechanisms of Oriental river prawns at different molting stages. The identification of immune-related genes is of great significance for enhancing the immunity of the Oriental river prawn, or other crustaceans, by transgenic methods in the future.
Collapse
Affiliation(s)
- Huwei Yuan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China.
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Tianyong Chen
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
13
|
Sarmiento ME, Chin KL, Lau NS, Ismail N, Norazmi MN, Acosta A, Yaacob NS. Transcriptomic Signature of Horseshoe Crab Carcinoscorpius rotundicauda Hemocytes' Response to Lipopolysaccharides. Curr Issues Mol Biol 2022; 44:5866-5878. [PMID: 36547060 PMCID: PMC9777084 DOI: 10.3390/cimb44120399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/06/2022] [Accepted: 11/16/2022] [Indexed: 11/30/2022] Open
Abstract
Carcinoscorpius rotundicauda (C. rotundicauda) is one of the four species of horseshoe crabs (HSCs). The HSC hemocytes store defense molecules that are released upon encountering invading pathogens. The HSCs rely on this innate immunity to continue its existence as a living fossil for more than 480 million years. To gain insight into the innate mechanisms involved, transcriptomic analysis was performed on isolated C. rotundicauda hemocytes challenged with lipopolysaccharides (LPS), the main components of the outer cell membrane of gram-negative bacteria. RNA-sequencing with Illumina HiSeq platform resulted in 232,628,086 and 245,448,176 raw reads corresponding to 190,326,253 and 201,180,020 high-quality mappable reads from control and LPS-stimulated hemocytes, respectively. Following LPS-stimulation, 79 genes were significantly upregulated and 265 genes were downregulated. The differentially expressed genes (DEGs) were related to multiple immune functional categories and pathways such as those of the cytoskeleton, Toll and Imd, apoptosis, MAP kinase (MAPK), inositol phosphate metabolism, phagosome, leucocyte endothelial migration, and gram-negative bacterial infection, among others. This study provides important information about the mechanisms of response to LPS, which is relevant for the understanding the HSCs' immune response.
Collapse
Affiliation(s)
- Maria E. Sarmiento
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Malaysia
| | - Kai Ling Chin
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Nyok-Sean Lau
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas 11900, Malaysia
| | - Noraznawati Ismail
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus 21030, Malaysia
| | - Mohd Nor Norazmi
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Malaysia
| | - Armando Acosta
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Malaysia
- Correspondence: (A.A.); (N.S.Y.)
| | - Nik Soriani Yaacob
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Malaysia
- Correspondence: (A.A.); (N.S.Y.)
| |
Collapse
|
14
|
He Z, Zhong Y, Liao M, Dai L, Wang Y, Zhang S, Sun C. Integrated analysis of intestinal microbiota and metabolomic reveals that decapod iridescent virus 1 (DIV1) infection induces secondary bacterial infection and metabolic reprogramming in Marsupenaeus japonicus. Front Immunol 2022; 13:982717. [PMID: 36189245 PMCID: PMC9524744 DOI: 10.3389/fimmu.2022.982717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
In recent years, with global warming and increasing marine pollution, some novel marine viruses have become widespread in the aquaculture industry, causing huge losses to the aquaculture industry. Decapod iridescent virus 1 (DIV1) is one of the newly discovered marine viruses that has been reported to be detected in a variety of farmed crustacean and wild populations. Several previous studies have found that DIV1 can induce Warburg effect-related gene expression. In this study, the effects of DIV1 infection on intestinal health of shrimp were further explored from the aspects of histological, enzymatic activities, microorganisms and metabolites using Marsupenaeus japonicus as the object of study. The results showed that obvious injury in the intestinal mucosa was observed after DIV1 infection, the oxidative and antioxidant capacity of the shrimp intestine was unbalanced, the activity of lysozyme was decreased, and the activities of digestive enzymes were disordered, and secondary bacterial infection was caused. Furthermore, the increased abundance of harmful bacteria, such as Photobacterium and Vibrio, may synergized with DIV1 to promote the Warburg effect and induce metabolic reprogramming, thereby providing material and energy for DIV1 replication. This study is the first to report the changes of intestinal microbiota and metabolites of M. japonicus under DIV1 infection, demonstrating that DIV1 can induce secondary bacterial infection and metabolic reprogramming. Several bacteria and metabolites highly associated with DIV1 infection were screened, which may be leveraged for diagnosis of pathogenic infections or incorporated as exogenous metabolites to enhance immune response.
Collapse
Affiliation(s)
- Zihao He
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Yunqi Zhong
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Minze Liao
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Linxin Dai
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Yue Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Shuang Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- *Correspondence: Chengbo Sun, ; Shuang Zhang,
| | - Chengbo Sun
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
- *Correspondence: Chengbo Sun, ; Shuang Zhang,
| |
Collapse
|
15
|
Yang N, Xu J, Gao Y, Cao Z, Si L, Chang L, Li T, Yan D. Transcriptome analysis of IHHNV infection in Penaeus vannamei at different developmental stages. FISH & SHELLFISH IMMUNOLOGY 2022; 127:329-339. [PMID: 35760280 DOI: 10.1016/j.fsi.2022.06.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Infectious hypodermal and haematopoietic necrosis virus (IHHNV) is the smallest known virus in shrimp, which causes runt-deformity syndrome (RDS) and leads to huge economic loss every year in penaeid shrimp farming. Previous studies have shown that the juvenile Penaeus vannamei is more susceptible to IHHNV infection than the adults, but the mechanism is still unclear. In order to investigate the mechanism of pathogenic differences in IHHNV infection of P. vannamei at different developmental stages, the juvenile and adult P. vannamei were studied by transcriptome high-throughput sequencing to analyze their response to IHHNV infection. GO and KEGG enrichment were analyzed to search for differentially expressed genes (DEGs) related to immunity, growth and metabolism. The results showed that many immune-related genes of the juvenile and adult P. vannamei responded differently to IHHNV infection. For the adult P. vannamei, the expression of most immune-related genes was significantly up-regulated, which means that a cellular defense response was triggered after IHHNV infection. However, most immune-related genes in juvenile P. vannamei were inhibited, indicating that the immune system of juvenile the P. vannamei is imperfect and makes it to be more susceptible to IHHNV. Similarly, the growth-related genes of P. vannamei were changed during IHHNV infection. For the juvenile P. vannamei, the growth-related genes were significantly down-regulated, which resulted in a growth hormone disorder and prevented the juvenile P. vannamei from growth. In the adult P. vannamei, most molting-related genes were significantly up-regulated, indicating that IHHNV infection leads the adult P. vannamei to early molting to eliminate pathogen in the body. Metabolic process data showed that energy metabolism pathway was affected when P. vannamei infected with IHHNV. The adult P. vannamei infected with IHHNV can cause energetically costly and lead to the disturbance of the metabolism, activate complex immune systems to resist the invasion of pathogens. The results of this study clarified the response mechanism of P. vannamei at different developmental stages to IHHNV infection, which can provide new insights to IHHNV effective control and a reference for the study of sensitive period of different shrimp virus to host infection.
Collapse
Affiliation(s)
- Ning Yang
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Jiahui Xu
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Yang Gao
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Zheng Cao
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Lingjun Si
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Linrui Chang
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Ting Li
- School of Agriculture, Ludong University, Yantai, 264025, PR China.
| | - Dongchun Yan
- School of Agriculture, Ludong University, Yantai, 264025, PR China.
| |
Collapse
|
16
|
He Z, Zhong Y, Hou D, Hu X, Fu Z, Liu L, Zhang S, Sun C. Integrated Analysis of mRNA-Seq and MiRNA-Seq Reveals the Molecular Mechanism of the Intestinal Immune Response in Marsupenaeus japonicus Under Decapod Iridescent Virus 1 Infection. Front Immunol 2022; 12:807093. [PMID: 35116034 PMCID: PMC8804360 DOI: 10.3389/fimmu.2021.807093] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/21/2021] [Indexed: 01/01/2023] Open
Abstract
The intestine is not only an important digestive organ but also an important immune organ for shrimp; it plays a key role in maintaining homeostasis. Decapod iridescent virus 1 (DIV1) is a new type of shrimp-lethal virus that has received extensive attention in recent years. To date, most studies of the shrimp intestinal immune response under viral infections have relied on single omics analyses; there is a lack of systematic multi-omics research. In the current study, intestinal mRNA-seq and microRNA (miRNA)-seq analyses of Marsupenaeus japonicus under DIV1 infection were performed. A total of 1,976 differentially expressed genes (DEGs) and 32 differentially expressed miRNAs (DEMs) were identified. Among them, 21 DEMs were negatively correlated with 194 DEGs from a total of 223 correlations. Functional annotation analysis revealed that M. japonicus can regulate glycosaminoglycan biosynthesis (chondroitin sulfate, dermatan sulfate, and keratan sulfate), vitamin metabolism (retinol metabolism and ascorbate and aldarate metabolism), immune pathway activation (Toll and IMD signaling pathways, Wnt signaling pathway, IL-17 signaling pathway, and Hippo signaling pathway), immunity enzyme activity promotion (triose-phosphate isomerase), antimicrobial peptide (AMP) expression, reactive oxygen species (ROS) production, and cell apoptosis through miRNAs to participate in the host’s antiviral immune response, while DIV1 can influence Warburg effect-related pathways (pyruvate metabolism, glycolysis/gluconeogenesis, and citrate cycle), glycosphingolipid biosynthesis-related pathways (glycosphingolipid biosynthesis—globo and isoglobo series and glycosphingolipid biosynthesis—lacto and neolacto series), and the tight junction and adhesion junction of the intestinal mucosal epithelium through the host’s miRNAs and mRNA to promote its own invasion and replication. These results indicate that intestinal miRNAs play important roles in the shrimp immune response against DIV1 infection. This study provides a basis for further study of the shrimp intestinal antiviral immune response and for the formulation of effective new strategies for the prevention and treatment of DIV1 infection.
Collapse
Affiliation(s)
- Zihao He
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Yunqi Zhong
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Danqing Hou
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Xianye Hu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Zhibin Fu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Luyao Liu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Shuang Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- *Correspondence: Chengbo Sun, ; Shuang Zhang,
| | - Chengbo Sun
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
- *Correspondence: Chengbo Sun, ; Shuang Zhang,
| |
Collapse
|
17
|
You Y, Xu L, Li F, Yang F. Proteomic analysis of the Decapod iridescent virus 1. Virus Res 2022; 311:198686. [DOI: 10.1016/j.virusres.2022.198686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 10/19/2022]
|
18
|
Zheng Q, You YL, Li F, Lai QN, Chen JM. Interaction between 038R and 125R of Cherax quadricarinatus iridovirus (CQIV) and their effects on virus replication. J Invertebr Pathol 2021; 187:107699. [PMID: 34838791 DOI: 10.1016/j.jip.2021.107699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 11/28/2022]
Abstract
Iridovirids are a group icosahedral viruses containing linear double-stranded DNA, and mainly infect invertebrates and poikilothermic vertebrates. Cherax quadricarinatus iridovirus (CQIV) is a new species of the family Iridoviridae and can cause high mortality in shrimps. In CQIV genome, there are 25 conserved genes and the putative products are involved in several viral processes. In this study, three core protein including CQIV-032R, CQIV-125R and CQIV-160L were identified to interact with CQIV-038R by yeast two-hybrid (Y2H), and the interaction between CQIV-038R and CQIV-125R was further confirmed by co-immunoprecipitation (Co-IP) assays. In the expression system, EGFP-038R and mCherry-125R were colocalized in the cytoplasm when co-expressed in Sf9 cells. Moreover, silencing the expression of 038R, 125R or both of these two proteins respectively in C. quadricarinatus cells by small interfering RNAs showed significantly inhibit CQIV replication. Collectively, we identified the interaction between 038R and 125R, and demonstrated they are essential for CQIV replication.
Collapse
Affiliation(s)
- Qin Zheng
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Yan-Lin You
- College of Biological Sciences and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Fang Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Qing-Na Lai
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Jian-Ming Chen
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China.
| |
Collapse
|
19
|
Yu C, Xu W, Li X, Jin J, Zhao X, Wang S, Zhang Z, Wei Y, Chen Q, Li Y. Comparative transcriptome analysis of Chinese grass shrimp (Palaemonetes sinensis) hepatopancreas under ectoparasitic isopod (Tachaea chinensis) infection. FISH & SHELLFISH IMMUNOLOGY 2021; 117:211-219. [PMID: 34303835 DOI: 10.1016/j.fsi.2021.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Tachaea chinensis, a parasitic isopod, negatively affects the production of several commercially important shrimp species. To better understand the interaction between shrimp immunity and isopod infection, we performed a transcriptome analysis of the hepatopancreas of Palaemonetes sinensis challenged with T. chinensis. After assembly and annotation, 75,980 high-quality unigenes were obtained using RNA-seq data. Differential gene expression analysis revealed 896 significantly differently expressed genes (DEGs) after infection, with 452 and 444 upregulated and downregulated genes, respectively. Specifically, expression levels of genes involved in detoxification, such as the interferon regulatory factor, venom carboxylesterase-6, serine proteinase inhibitor, and cytochrome P450, were upregulated. Furthermore, expression levels of genes corresponding to retinol dehydrogenase, triosephosphate isomerase, variant ionotropic glutamate receptor, and phosphoenolpyruvate carboxykinase were significantly upregulated after isopod parasitization, indicating that the shrimp's visual system was influenced by isopod parasitization. Moreover, quantitative real-time PCR of 10 DEGs helped validate the RNA-seq findings. These results provide a valuable basis for future studies on the elucidation of immune responses of P. sinensis to T. chinensis infection.
Collapse
Affiliation(s)
- Changyue Yu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China
| | - Weibin Xu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China
| | - Xin Li
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China
| | - Jiaxin Jin
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China
| | - Xinmiao Zhao
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China
| | - Simiao Wang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China
| | - Zhiyuan Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China
| | - Yanyu Wei
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China
| | - Yingdong Li
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China.
| |
Collapse
|
20
|
He Z, Zhao J, Chen X, Liao M, Xue Y, Zhou J, Chen H, Chen G, Zhang S, Sun C. The Molecular Mechanism of Hemocyte Immune Response in Marsupenaeus japonicus Infected With Decapod Iridescent Virus 1. Front Microbiol 2021; 12:710845. [PMID: 34512588 PMCID: PMC8427283 DOI: 10.3389/fmicb.2021.710845] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/28/2021] [Indexed: 11/13/2022] Open
Abstract
As a new type of shrimp lethal virus, decapod iridescent virus 1 (DIV1) has caused huge economic losses to shrimp farmers in China. Up to now, DIV1 has been detected in a variety of shrimps, but there is no report in Marsupenaeus japonicus. In the current study, we calculated the LC50 to evaluate the toxicity of DIV1 to M. japonicus and determined through nested PCR that M. japonicus can be the host of DIV1. Through enzyme activity study, it was found that DIV1 can inhibit the activities of superoxide dismutase, catalase, lysozyme, and phenoloxidase, which could be a way for DIV1 to achieve immune evasion. In a comprehensive study on the transcriptomic changes of M. japonicus in response to DIV1 infection, a total of 52,287 unigenes were de novo assembled, and 20,342 SSR markers associated with these unigenes were obtained. Through a comparative transcriptomic analysis, 6,900 differentially expressed genes were identified, including 3,882 upregulated genes and 3,018 downregulated genes. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that some GO terms related to virus invasion, replication, and host antiviral infection were promoted under DIV1 infection, such as carbohydrate binding, chitin binding, chitin metabolic process, and DNA replication initiation, and some KEGG pathways related to immune response were significantly influenced by DIV1 infection, including Toll and IMD signaling pathway, JAK-STAT signaling pathway, IL-17 signaling pathway, C-type lectin receptor signaling pathway, complement and coagulation cascades, antigen processing and presentation, necroptosis, apoptosis, NOD-like receptor signaling pathway, apoptosis-multiple species, and TNF signaling pathway. Further analysis showed that STAT, Dorsal, Relish, heat shock protein 70 (HSP70), C-type lectins, and caspase play an important role in DIV1 infection. This is the first detailed study of DIV1 infection in M. japonicus, which initially reveals the molecular mechanism of DIV1 infection in M. japonicus by using the transcriptome analysis of hemocytes combined with enzyme activity study.
Collapse
Affiliation(s)
- Zihao He
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Jichen Zhao
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Xieyan Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Minze Liao
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Yuan Xue
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Jianing Zhou
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Haozhen Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Guoliang Chen
- Haimao Seed Technology Group Co., Ltd., Zhanjiang, China
| | - Shuang Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China.,Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
| | - Chengbo Sun
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China.,Guangdong Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, China.,Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
| |
Collapse
|
21
|
Zhao J, He Z, Chen X, Huang Y, Xie J, Qin X, Ni Z, Sun C. Growth trait gene analysis of kuruma shrimp (Marsupenaeus japonicus) by transcriptome study. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 40:100874. [PMID: 34243027 DOI: 10.1016/j.cbd.2021.100874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/16/2021] [Accepted: 06/28/2021] [Indexed: 10/21/2022]
Abstract
Growth traits are a vital standard for the animal culture industry. The molecular mechanism of growth traits remains poorly understood, especially in aquaculture, which hinders the development of the selective breeding industry. Genomic resources discovered by next-generation sequencing (NGS) have been widely applied in certain species. However, accurate assembly and downstream analysis by NGS are still major challenges for species without reference genomes. In this study, a comparative transcriptome analysis of an economic crustacean species (Marsupenaeus japonicus) between a fast growth group and slow growth group at different stages was performed by SMRT (single molecule real time) and NGS. A high-quality full-length transcriptome (e.g., mean length of unigenes was longer than those unigenes assembled by Illumina clean reads from previous reports, and annotation rate was higher than Illumina sequencing in the same studies) was generated and analyzed. Several differentially expressed genes (DEGs) related to growth were identified and validated by quantitative real-time PCR (qPCR). The results showed that compared with the late stage, more DEGs were identified at the early stage, indicating that the growth-related physiological activity differences between different individuals at the early stage were higher than at the late stage. Moreover, 215 DEGs were shared between the early stage and late stage, and 109 had divergent functions during development. These 109 genes may play an important role in regulating the specific growth rate (SGR) of kuruma shrimp. In addition, twelve growth-related pathways were shared between the two comparative groups. Among these pathways, the fly Hippo signaling pathway and its key gene Mj14-3-3-like were identified for the first time to be involved in growth traits in crustaceans. Further analysis showed that Mj14-3-3-like was significantly downregulated in the fast growth group at the early stage and late stage; its expression level was reduced to its lowest level at the intermolt stage (C), the most important growth stage in shrimp, suggesting that Mj14-3-3-like may inhibit the growth of kuruma shrimp. Our study helps to elucidate the genes involved in the molecular mechanisms governing growth traits in kuruma shrimp, which is valuable for future shrimp developmental research.
Collapse
Affiliation(s)
- Jichen Zhao
- College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China
| | - Zihao He
- College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China
| | - Xieyan Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China
| | - Yiyi Huang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China
| | - Jingjing Xie
- College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China
| | - Xuan Qin
- College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China
| | - Zuotao Ni
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, PR China.
| | - Chengbo Sun
- College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China; Guangdong Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, PR China.
| |
Collapse
|
22
|
Zhu L, Zhang S, Hou C, Liang X, Saif Dehwah MA, Tan B, Shi L. The T cell factor, pangolin, from Litopenaeus vannamei play a positive role in the immune responses against white spot syndrome virus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 119:104041. [PMID: 33577842 DOI: 10.1016/j.dci.2021.104041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
As a downstream interactor of β-catenin, Pangolin which is the homologous protein of the T cell factor/lymphoid enhancer factor (TCF/LEF) in vertebrates is less understood in the research field of immunity. In this study, two isoforms of Litopenaeus vannamei Pangolin (LvPangolin1 and LvPangolin2) were identified. Phylogenetic tree analysis revealed that all of the Pangolin proteins from invertebrates were represented the same lineage. The mRNA expression profiles of the LvPangolin1 and LvPangolin2 genes differed across different tissues. The expression of LvPangolin1 and the amount of LvPangolin1and LvPangolin2 combined (LvPangolinComb) were significantly increased in the haemocyte, intestine and gill but reduced in the hepatopancreas after white spot syndrome virus (WSSV) challenge. The inhibition of LvPangolin1 but not LvPangolinComb significantly reduced the survival rates of L. vannamei after WSSV infection, while significantly higher WSSV viral loads in both LvPangolin1-inhibited and LvPangolinComb-inhibited L. vannamei were observed. Knockdown of LvPangolin by RNAi could distinctly decrease the expression of antimicrobial peptide (AMP) genes and their related transcription factors. All of these results indicate that LvPangolin plays a positive role in the response to WSSV infection and that this may be mediated through regulating the immune signalling pathways which control the expression of AMPs with antiviral abilities.
Collapse
Affiliation(s)
- Lulu Zhu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Shuang Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China; Key Laboratory of Aquatic Non-grain-based Feed Resources, Ministry of Agriculture, Zhanjiang, China
| | - Cuihong Hou
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Xueping Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Mustafa Abdo Saif Dehwah
- Department of Medical Laboratories, Faculty of Medical and Health Science, Taiz University/AL-Turba Branch, Taiz, 3191, Republic of Yemen
| | - Beiping Tan
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China; Key Laboratory of Aquatic Non-grain-based Feed Resources, Ministry of Agriculture, Zhanjiang, China
| | - Lili Shi
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China; Key Laboratory of Aquatic Non-grain-based Feed Resources, Ministry of Agriculture, Zhanjiang, China.
| |
Collapse
|
23
|
Zhang S, Zhu L, Hou C, Yuan H, Yang S, Dehwah MAS, Shi L. GSK3β Plays a Negative Role During White Spot Syndrome Virus (WSSV) Infection by Regulating NF-κB Activity in Shrimp Litopenaeus vannamei. Front Immunol 2020; 11:607543. [PMID: 33324423 PMCID: PMC7725904 DOI: 10.3389/fimmu.2020.607543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/30/2020] [Indexed: 11/28/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK3), a cytoplasmic serine/threonine-protein kinase involved in a large number of key cellular processes, is a little-known signaling molecule in virus study. In this study, a GSK3 protein which was highly similar to GSK3β homologs from other species in Litopenaeus vannamei (designated as LvGSK3β) was obtained. LvGSK3β was expressed constitutively in the healthy L. vannamei, at the highest level in the intestine and the lowest level in the eyestalk. White spot syndrome virus (WSSV) reduced LvGSK3β expression was in immune tissues including the hemocyte, intestine, gill and hepatopancreas. The inhibition of LvGSK3β resulted in significantly higher survival rates of L. vannamei during WSSV infection than the control group, and significantly lower WSSV viral loads in LvGSK3β-inhibited L. vannamei were observed. Knockdown of LvGSK3β by RNAi resulted in increases in the expression of LvDorsal and several NF-κB driven antimicrobial peptide (AMP) genes (including ALF, PEN and crustin), but a decrease in LvCactus expression. Accordingly, overexpression of LvGSK3β could reduce the promoter activity of LvDorsal and several AMPs, while the promoter activity of LvCactus was increased. Electrophoretic mobility shift assays (EMSA) showed that LvDorsal could bind to the promoter of LvGSK3β. The interaction between LvGSK3β and LvDorsal or LvCactus was confirmed using co-immunoprecipitation (Co-IP) assays. In addition, the expression of LvGSK3β was dramatically reduced by knockdown of LvDorsal. In summary, the results presented in this study indicated that LvGSK3β had a negative effect on L. vannamei by mediating a feedback regulation of the NF-κB pathway when it is infected by WSSV.
Collapse
Affiliation(s)
- Shuang Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China.,Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China.,Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
| | - Lulu Zhu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Cuihong Hou
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Hang Yuan
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Sheng Yang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Mustafa Abdo Saif Dehwah
- Department of Medical Laboratories, Faculty of Medical and Health Science, Taiz University/AL-Turba Branch, Taiz, Yemen
| | - Lili Shi
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China.,Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, China
| |
Collapse
|
24
|
Transcriptomic analysis of Procambarus clarkii affected by "Black May" disease. Sci Rep 2020; 10:21225. [PMID: 33277587 PMCID: PMC7719172 DOI: 10.1038/s41598-020-78191-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/12/2020] [Indexed: 12/29/2022] Open
Abstract
Each year from April to May, high mortality rates are reported in red swamp crayfish (Procambarus clarkii) cultured in Jiangsu and other regions, in China, and this phenomenon has come to be known as “Black May” disease (BMD). Therefore, in order to investigate the possible causes of this disease, this study gathered BMD-affected P. clarkii samples and performed transcriptome analysis on hepatopancreas, gill, and muscle tissues. A total of 19,995,164, 149,212,804, and 222,053,848 clean reads were respectively obtained from the gills, muscle, and hepatopancreas of BMD-affected P. clarkii, and 114,024 unigenes were identified. The number of differentially expressed genes (DEGs) in gill, muscle, and hepatopancreas was 1703, 964, and 476, respectively. GO and KEGG enrichment analyses of the DEGs were then conducted. Based on KEGG pathway enrichment analysis, the most significantly differentially expressed pathways were mainly those involved with metabolism, human disease, and cellular processes. Further analysis of the significantly DEGs revealed that they were mainly related to the mitochondrial-mediated apoptosis pathway and that the expression of these DEGs was mostly down-regulated. Moreover, the expression of genes related to immune and metabolism-related pathways was also significantly down-regulated, and these significantly-inhibited pathways were the likely causes of P. clarkii death. Therefore, our results provide a basis for the identification of BMD causes.
Collapse
|