1
|
Battistone MA, Elizagaray ML, Barrachina F, Ottino K, Mendelsohn AC, Breton S. Immunoregulatory mechanisms between epithelial clear cells and mononuclear phagocytes in the epididymis. Andrology 2024; 12:949-963. [PMID: 37572347 PMCID: PMC10859549 DOI: 10.1111/andr.13509] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/14/2023]
Abstract
INTRODUCTION One of the most intriguing aspects of male reproductive physiology is the ability of the epididymis to prevent the mounting of immune responses against the onslaught of foreign antigens carried by spermatozoa while initiating very efficient immune responses versus stressors. Epithelial clear cells are strategically positioned to work in a concerted manner with region-specific heterogeneous subsets of mononuclear phagocytes to survey the epididymal barrier and regulate the balance between inflammation and immune tolerance in the post-testicular environment. OBJECTIVE This review aims to describe how clear cells communicate with mononuclear phagocytes to contribute to the unique immune environment in which sperm mature and are stored in the epididymis. MATERIALS/METHODS A comprehensive systematic review was performed. PubMed was searched for articles specific to clear cells, mononuclear phagocytes, and epididymis. Articles that did not specifically address the target material were excluded. RESULTS In this review, we discuss the unexpected roles of clear cells, including the transfer of new proteins to spermatozoa via extracellular vesicles and nanotubes as they transit along the epididymal tubule; and we summarize the immune phenotype, morphology, and antigen capturing, processing, and presenting abilities of mononuclear phagocytes. Moreover, we present the current knowledge of immunoregulatory mechanisms by which clear cells and mononuclear phagocytes may contribute to the immune-privileged environment optimal for sperm maturation and storage. DISCUSSION AND CONCLUSION Notably, we provide an in-depth characterization of clear cell-mononuclear phagocyte communication networks in the steady-state epididymis and in the presence of injury. This review highlights crucial concepts of mucosal immunology and cellcell interactions, all of which are critical but understudied facets of human male reproductive health.
Collapse
Affiliation(s)
- MA Battistone
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - ML Elizagaray
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - F Barrachina
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - K Ottino
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - AC Mendelsohn
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - S Breton
- Centre Hospitalier Universitaire de Québec-Research Center, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec (Québec), Canada
| |
Collapse
|
2
|
Wang F, Shao X, Bao B, Yang Y, Wang Y, Zhang J, Wang S, Chen Y, Han D. Cytotoxic and viricidal effects of human semen on mumps virus-infected lymphocytes: In vitro studies. J Med Virol 2024; 96:e29733. [PMID: 38874268 DOI: 10.1002/jmv.29733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/24/2024] [Accepted: 06/01/2024] [Indexed: 06/15/2024]
Abstract
Viruses in human semen may be sexually transmitted via free and cell-mediated viral infection. The potential effects of semen on the infection and sexual transmission of most viruses in semen remain largely unclear. The present study elucidated the inhibitory effects of human seminal plasma (SP) on Jurkat cell (JC)-mediated mumps virus (MuV) infection. We demonstrated that MuV efficiently infected JCs and that the JCs infected by MuV (JC-MuV) mediated MuV infection of HeLa cells. Remarkably, SP was highly cytotoxic to JCs and inhibited JC-MuV infection of HeLa cells. The cytotoxic factor possessed a molecular weight of less than 3 kDa, whereas that of the viricidal factor was over 100 kDa. The cooperation of cytotoxic and viricidal factors was required for the SP inhibition of JC-MuV infection, and prostatic fluid (PF) was responsible for both the cytotoxic and viricidal effects of SP. The cytotoxic effects we observed were resistant to the treatment of PF with boiling water, proteinase K, RNase A, and DNase I. Our results provide novel insights into the antiviral properties of SP, which may limit cell-mediated sexual viral transmission.
Collapse
Affiliation(s)
- Fei Wang
- Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xinyi Shao
- Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Binghao Bao
- Department of Andrology, China-Japan Friendship Hospital, Beijing, China
| | - Yixuan Yang
- Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yu Wang
- Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jing Zhang
- Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Siqi Wang
- Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yongmei Chen
- Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Daishu Han
- Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Jiménez-Cabello L, Utrilla-Trigo S, Benavides-Silván J, Anguita J, Calvo-Pinilla E, Ortego J. IFNAR(-/-) Mice Constitute a Suitable Animal Model for Epizootic Hemorrhagic Disease Virus Study and Vaccine Evaluation. Int J Biol Sci 2024; 20:3076-3093. [PMID: 38904031 PMCID: PMC11186350 DOI: 10.7150/ijbs.95275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/24/2024] [Indexed: 06/22/2024] Open
Abstract
Epizootic hemorrhagic disease (EHD), caused by Epizootic hemorrhagic disease virus (EHDV), is an emerging and severe livestock disease. Recent incursion and distribution of EHDV in Europe have outlined the emerging character of EHD. Despite its worldwide impact, numerous knowledge gaps exist. A range of inconveniences restricts utilization of natural hosts of EHDV. Here, we show that adult mice deficient in type I IFN receptor (IFNAR(-/-)) are highly susceptible to EHDV-6 and EHDV-8 infection when the virus is administered subcutaneously. Disease was characterized by ruffled hair, reluctance to move, dehydration and conjunctivitis, with viraemia detected from day 5 post-infection. A deeper characterization of EHDV-8 infection showed viral replication in the lung, liver, spleen, kidney, testis and ovaries. Importantly, increased expression levels of pro-inflammatory cytokines IL-1β, IL-6 and CXCL2 were observed in spleen after EHDV-8 infection. Furthermore, IFNAR(-/-) adult mice immunized with a EHDV-8 inactivated vaccine elicited neutralizing antibodies specific of EHDV-8 and full protection against challenge with a lethal dose of this virus. This study also explores the possibilities of this animal model for study of BTV and EHDV coinfection. In summary, the IFNAR(-/-) mouse model faithfully recapitulates EHD and can be applied for vaccine testing, which can facilitate progress in addressing the animal health challenge posed by this virus.
Collapse
Affiliation(s)
- Luis Jiménez-Cabello
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, 28130 Madrid, Spain
| | - Sergio Utrilla-Trigo
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, 28130 Madrid, Spain
| | - Julio Benavides-Silván
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), 24346 Grulleros, León, Spain
| | - Juan Anguita
- Centro de Investigación Cooperativa en Biociencias (CIC bioGUNE), 48160 Derio, Spain
- Ikerbasque, Basque Foundation for Science, 48012 Bilbao, Spain
| | - Eva Calvo-Pinilla
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, 28130 Madrid, Spain
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, 28130 Madrid, Spain
| |
Collapse
|
4
|
Zhang H, Zhou XP. The Effect of Neutral Alpha-Glucosidase on Semen Parameters. Urol Int 2024; 108:479-486. [PMID: 38735284 DOI: 10.1159/000539218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024]
Abstract
INTRODUCTION The objective of this study was to investigate the relationship between the activity of neutral α-glucosidase in seminal plasma and semen quality and to explore the effect of secretory capability of the epididymis on male fertility. METHODS A retrospective analysis of 542 men treated in the Center for Reproductive Medicine and Infertility from February to December 2022, the semen parameters and neutral α-glucosidase were tested and compared among different groups. These 542 men included normozoospermia, oligospermia, asthenospermia, and teratozoospermia. RESULTS There was statistical difference in neutral alpha-glucosidase (NAG) level among different groups with different sperm concentration, motility, and morphology (p < 0.001). The NAG activity in seminal plasma was positively correlated with ejaculate volume and sperm concentration; meanwhile, a very weak positive correlation was found between NAG level and sperm motility, sperm morphology, respectively. CONCLUSIONS Our results indicated that the secretion of NAG affected the volume, concentration, motility, and morphology of sperm to a certain extent. Given that NAG is a specific and marker enzyme in epididymis, where is the site of sperm maturation, we can conclude that there is a close relationship between NAG and sperm quality. Therefore, seminal plasma NAG has a definite clinical value in helping diagnosis of male infertility.
Collapse
Affiliation(s)
- Han Zhang
- Center for Reproductive Medicine, the Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Xiao-Pu Zhou
- Center for Reproductive Medicine, the Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| |
Collapse
|
5
|
Liu MM, Fan CQ, Zhang GL. A Single-Cell Landscape of Spermioteleosis in Mice and Pigs. Cells 2024; 13:563. [PMID: 38607002 PMCID: PMC11011153 DOI: 10.3390/cells13070563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
(1) Background: Spermatozoa acquired motility and matured in epididymis after production in the testis. However, there is still limited understanding of the specific characteristics of sperm development across different species. In this study, we employed a comprehensive approach to analyze cell compositions in both testicular and epididymal tissues, providing valuable insights into the changes occurring during meiosis and spermiogenesis in mouse and pig models. Additionally, we identified distinct gene expression signatures associated with various spermatogenic cell types. (2) Methods: To investigate the differences in spermatogenesis between mice and pigs, we constructed a single-cell RNA dataset. (3) Results: Our findings revealed notable differences in testicular cell clusters between these two species. Furthermore, distinct gene expression patterns were observed among epithelial cells from different regions of the epididymis. Interestingly, regional gene expression patterns were also identified within principal cell clusters of the mouse epididymis. Moreover, through analysing differentially expressed genes related to the epididymis in both mouse and pig models, we successfully identified potential marker genes associated with sperm development and maturation for each species studied. (4) Conclusions: This research presented a comprehensive single-cell landscape analysis of both testicular and epididymal tissues, shedding light on the intricate processes involved in spermatogenesis and sperm maturation, specifically within mouse and pig models.
Collapse
Affiliation(s)
| | | | - Guo-Liang Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (M.-M.L.); (C.-Q.F.)
| |
Collapse
|
6
|
Zhang J, Wang J, Chen L, Yu X, Zhang S, Yu Y. Toxicity and Toxicokinetics of a Four-Week Repeated Gavage of Levamisole in Male Beagle Dogs: A Good Laboratory Practice Study. Pharmaceuticals (Basel) 2024; 17:141. [PMID: 38276014 PMCID: PMC10819294 DOI: 10.3390/ph17010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 01/27/2024] Open
Abstract
Levamisole (LVM) is considered an immunomodulatory agent that has the potential to treat various cancer and inflammation diseases. However, there is still much debate surrounding the toxicokinetic and toxicological information of LVM. Therefore, it is crucial to assess its toxicity to provide useful data for future human LVM risk assessments. In this study, a barrier environment was established under the guidance of good laboratory practice (GLP) at the Fujian Center for New Drug Safety Evaluation. Male beagle dogs were orally administered with 5, 15, and 30 mg/kg of LVM daily for four weeks. Toxicity assessment was based on various factors such as mortality, clinical signs, food and water consumption, body weight, body temperature, electrocardiogram, ophthalmological examination, hematology, serum biochemistry, organ/body coefficients, histopathological study, and toxicokinetic analysis. The results of this study showed that LVM did not exhibit any significant toxicological effects on beagle dogs at the exposure levels tested. A no observed adverse effect level (NOAEL) of LVM was set at 30 mg/kg/day for male beagle dogs, which is equivalent to a 12-fold clinical dose in humans. Moreover, the repeated exposure to LVM for four weeks did not lead to any bioaccumulation. These findings provide valuable insights for future human LVM risk assessments.
Collapse
Affiliation(s)
- Jiahui Zhang
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; (J.Z.); (J.W.); (L.C.); (X.Y.)
- Fujian Center for New Drug Safety Evaluation, Fuzhou 350122, China
| | - Junxiang Wang
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; (J.Z.); (J.W.); (L.C.); (X.Y.)
- Fujian Center for New Drug Safety Evaluation, Fuzhou 350122, China
| | - Lingfan Chen
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; (J.Z.); (J.W.); (L.C.); (X.Y.)
- Fujian Center for New Drug Safety Evaluation, Fuzhou 350122, China
| | - Xiangbin Yu
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; (J.Z.); (J.W.); (L.C.); (X.Y.)
- Fujian Center for New Drug Safety Evaluation, Fuzhou 350122, China
| | - Shuihua Zhang
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; (J.Z.); (J.W.); (L.C.); (X.Y.)
- Fujian Center for New Drug Safety Evaluation, Fuzhou 350122, China
| | - Yue Yu
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; (J.Z.); (J.W.); (L.C.); (X.Y.)
- Fujian Center for New Drug Safety Evaluation, Fuzhou 350122, China
| |
Collapse
|
7
|
Li Y, Wu W, Xu W, Wang Y, Wan S, Chen W, Yang D, Zhang M, Wu X, Yang X, Du X, Wang C, Han M, Chen Y, Li N, Hua J. Eif2s3y alleviated LPS-induced damage to mouse testis and maintained spermatogenesis by negatively regulating Adamts5. Theriogenology 2023; 211:65-75. [PMID: 37586163 DOI: 10.1016/j.theriogenology.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/09/2023] [Accepted: 08/05/2023] [Indexed: 08/18/2023]
Abstract
Eif2s3y (eukaryotic translation initiation factor 2, subunit 3, structural gene Y-linked, Eif2s3y) is an essential gene for spermatogenesis. Early studies have shown that Eif2s3y can promote the proliferation of spermatogonial stem cells (SSCs) and can replace the Y chromosome together with sex-determining region Y (Sry) to transform SSCs into round spermatozoa. We injected lentiviral particles into the seminiferous tubules of mouse testes by sterile surgery surgically to establish overexpressing Eif2s3y testes. And then the mice were intraperitoneally injected with LPS to established the model of testis inflammation. Through RNA sequencing, qRT-PCR analysis, Western blot, co-culture etc., we found that Eif2s3y alleviated LPS-induced damage in mouse testes and maintained spermatogenesis. In testes with Eif2s3y overexpression, the seminiferous tubules were more regularly organized after exposure to LPS compared with the control. Eif2s3y performs its function by negatively regulating Adamts5 (a disintegrin and metalloproteinase containing a thrombospondin-1 motif), an extracellular matrix-degrading enzyme. ADAMTS5 shows a disruptive effect when the testis is exposed to LPS. Overexpression of Eif2s3y inhibited the TLR4/NFκB signaling pathway in the testis in response to LPS. Generally, our research shows that Eif2s3y protects the testis from LPS and maintains spermatogenesis by negatively regulating Adamts5.
Collapse
Affiliation(s)
- Yunxiang Li
- College of Veterinary Medicine/Shaanxi Centre of Stem Cells Engineering & Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Wenping Wu
- College of Veterinary Medicine/Shaanxi Centre of Stem Cells Engineering & Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Wenjing Xu
- College of Veterinary Medicine/Shaanxi Centre of Stem Cells Engineering & Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Yuqi Wang
- College of Veterinary Medicine/Shaanxi Centre of Stem Cells Engineering & Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Shicheng Wan
- College of Veterinary Medicine/Shaanxi Centre of Stem Cells Engineering & Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Wenbo Chen
- College of Veterinary Medicine/Shaanxi Centre of Stem Cells Engineering & Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Donghui Yang
- College of Veterinary Medicine/Shaanxi Centre of Stem Cells Engineering & Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Mengfei Zhang
- College of Veterinary Medicine/Shaanxi Centre of Stem Cells Engineering & Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Xiaojie Wu
- College of Veterinary Medicine/Shaanxi Centre of Stem Cells Engineering & Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Xinchun Yang
- College of Veterinary Medicine/Shaanxi Centre of Stem Cells Engineering & Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Xiaomin Du
- College of Veterinary Medicine/Shaanxi Centre of Stem Cells Engineering & Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Congliang Wang
- College of Veterinary Medicine/Shaanxi Centre of Stem Cells Engineering & Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Miao Han
- College of Veterinary Medicine/Shaanxi Centre of Stem Cells Engineering & Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Yuguang Chen
- College of Veterinary Medicine/Shaanxi Centre of Stem Cells Engineering & Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Na Li
- College of Veterinary Medicine/Shaanxi Centre of Stem Cells Engineering & Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, China.
| | - Jinlian Hua
- College of Veterinary Medicine/Shaanxi Centre of Stem Cells Engineering & Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
8
|
Tang Q, Su Q, Wei L, Wang K, Jiang T. Identifying potential biomarkers for non-obstructive azoospermia using WGCNA and machine learning algorithms. Front Endocrinol (Lausanne) 2023; 14:1108616. [PMID: 37854191 PMCID: PMC10579891 DOI: 10.3389/fendo.2023.1108616] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 09/08/2023] [Indexed: 10/20/2023] Open
Abstract
Objective The cause and mechanism of non-obstructive azoospermia (NOA) is complicated; therefore, an effective therapy strategy is yet to be developed. This study aimed to analyse the pathogenesis of NOA at the molecular biological level and to identify the core regulatory genes, which could be utilised as potential biomarkers. Methods Three NOA microarray datasets (GSE45885, GSE108886, and GSE145467) were collected from the GEO database and merged into training sets; a further dataset (GSE45887) was then defined as the validation set. Differential gene analysis, consensus cluster analysis, and WGCNA were used to identify preliminary signature genes; then, enrichment analysis was applied to these previously screened signature genes. Next, 4 machine learning algorithms (RF, SVM, GLM, and XGB) were used to detect potential biomarkers that are most closely associated with NOA. Finally, a diagnostic model was constructed from these potential biomarkers and visualised as a nomogram. The differential expression and predictive reliability of the biomarkers were confirmed using the validation set. Furthermore, the competing endogenous RNA network was constructed to identify the regulatory mechanisms of potential biomarkers; further, the CIBERSORT algorithm was used to calculate immune infiltration status among the samples. Results A total of 215 differentially expressed genes (DEGs) were identified between NOA and control groups (27 upregulated and 188 downregulated genes). The WGCNA results identified 1123 genes in the MEblue module as target genes that are highly correlated with NOA positivity. The NOA samples were divided into 2 clusters using consensus clustering; further, 1027 genes in the MEblue module, which were screened by WGCNA, were considered to be target genes that are highly correlated with NOA classification. The 129 overlapping genes were then established as signature genes. The XGB algorithm that had the maximum AUC value (AUC=0.946) and the minimum residual value was used to further screen the signature genes. IL20RB, C9orf117, HILS1, PAOX, and DZIP1 were identified as potential NOA biomarkers. This 5 biomarker model had the highest AUC value, of up to 0.982, compared to other single biomarker models; additionally, the results of this biomarker model were verified in the validation set. Conclusions As IL20RB, C9orf117, HILS1, PAOX, and DZIP1 have been determined to possess the strongest association with NOA, these five genes could be used as potential therapeutic targets for NOA patients. Furthermore, the model constructed using these five genes, which possessed the highest diagnostic accuracy, may be an effective biomarker model that warrants further experimental validation.
Collapse
Affiliation(s)
- Qizhen Tang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Quanxin Su
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Letian Wei
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Kenan Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Tao Jiang
- Department of Andrology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
9
|
Paira DA, Olmedo JJ, Olivera C, Tissera AD, Molina RI, Rivero VE, Motrich RD, Saka HA. Chronic epididymitis due to Chlamydia trachomatis LGV-L2 in an HIV-negative heterosexual patient: a case report. Front Public Health 2023; 11:1129166. [PMID: 37228719 PMCID: PMC10203518 DOI: 10.3389/fpubh.2023.1129166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/05/2023] [Indexed: 05/27/2023] Open
Abstract
Chlamydia trachomatis is an obligate intracellular pathogen and the leading bacterial cause of sexually transmitted infections worldwide. Chlamydia trachomatis genovars L1-L3 are responsible for lymphogranuloma venereum (LGV), an invasive sexually transmitted disease endemic in tropical and subtropical regions of Africa, South America, the Caribbean, India and South East Asia. The typical signs and symptoms of C. trachomatis LGV urogenital infections in men include herpetiform ulcers, inguinal buboes, and/or lymphadenopathies. Since 2003, endemic cases of proctitis and proctocolitis caused by C. trachomatis LGV emerged in Europe, mainly in HIV-positive men who have sex with men (MSM). Scarce data have been reported about unusual clinical presentations of C. trachomatis LGV urogenital infections. Herein, we report a case of a 36-year-old heterosexual, HIV-negative male declaring he did not have sex with men or trans women, who presented to the Urology and Andrology outpatient clinic of a healthcare center from Cordoba, Argentina, with intermittent testicular pain over the preceding 6 months. Doppler ultrasound indicated right epididymitis and funiculitis. Out of 17 sexually transmitted infections (STIs) investigated, a positive result was obtained only for C. trachomatis. Also, semen analysis revealed oligoasthenozoospermia, reduced sperm viability as well as increased sperm DNA fragmentation and necrosis, together with augmented reactive oxygen species (ROS) levels and the presence of anti-sperm IgG autoantibodies. In this context, doxycycline 100 mg/12 h for 45 days was prescribed. A post-treatment control documented microbiological cure along with resolution of clinical signs and symptoms and improved semen quality. Strikingly, sequencing of the ompA gene revealed C. trachomatis LGV L2 as the causative uropathogen. Remarkably, the patient did not present the typical signs and symptoms of LGV. Instead, the infection associated with chronic testicular pain, semen inflammation and markedly reduced sperm quality. To our knowledge, this is the first reported evidence of chronic epididymitis due to C. trachomatis LGV L2 infection in an HIV-negative heterosexual man. These findings constitute important and valuable information for researchers and practitioners and highlight that C. trachomatis LGV-L2 should be considered as putative etiologic agent of chronic epididymitis, even in the absence of the typical LGV signs and symptoms.
Collapse
Affiliation(s)
- Daniela Andrea Paira
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - José Javier Olmedo
- Fundación Urológica Córdoba para la Docencia e Investigación Médica (FUCDIM), Córdoba, Argentina
| | - Carolina Olivera
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | | - Virginia Elena Rivero
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Rubén Darío Motrich
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Héctor Alex Saka
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
10
|
Li T, Wang H, Luo R, Shi H, Su M, Wu Y, Li Q, Ma K, Zhang Y, Ma Y. Identification and Functional Assignment of Genes Implicated in Sperm Maturation of Tibetan Sheep. Animals (Basel) 2023; 13:ani13091553. [PMID: 37174590 PMCID: PMC10177108 DOI: 10.3390/ani13091553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
While traveling through the epididymis, immature sheep spermatozoa undergo a sequence of processes that ultimately give them the capacity to swim and fertilize an egg. Different gene expression patterns may be found in the epididymal caput, corpus, and cauda, conferring variant or unique biological roles during epididymis development and sperm maturation. To search for candidate genes associated with ovine sperm maturation and assess their possible modulating mechanisms, we characterized gene expression in each epididymal segment derived from pre- and post-pubertal Tibetan sheep by RNA sequencing. Compared with pre-puberty, 7730 (3724 upregulated and 4006 downregulated), 7516 (3909 upregulated and 3607 downregulated), and 7586 (4115 elevated and 3471 downregulated) genes were found to be differentially expressed in the post-pubertal caput, corpus, and cauda epididymis, respectively, and real-time quantitative PCR verified the validity of the gathered expression patterns. Based on their functional annotations, most differential genes were assigned to the biological processes and pathways associated with cellular proliferation, differentiation, immune response, or metabolic activities. As for the post-pubertal epididymis, 2801, 197, and 186 genes were specifically expressed in the caput, corpus, and cauda, respectively. Functional annotation revealed that they were mainly enriched to various distinct biological processes associated with reproduction (including the caput binding of sperm to the zona pellucida; fertilization in the caput and corpus; and meiosis in the caput and cauda) and development (such as cell differentiation and developmental maturation in the caput; cell proliferation and metabolism in the corpus; and regulation of tube size and cell division/cell cycle in the cauda). Additionally, we focused on the identification of genes implicated in immunity and sperm maturation, and subsequent functional enrichment analysis revealed that immune-related genes mainly participated in the biological processes or pathways associated with the immune barrier (such as JAM3 and ITGA4/6/9) and immunosuppression (such as TGFB2, TGFBR1, TGFBR2, and SMAD3), thus protecting auto-immunogenic spermatozoa. Additionally, sperm maturation was mostly controlled by genes linked with cellular processes, including cell growth, proliferation, division, migration, morphogenesis, and junction. Altogether, these results suggest that most genes were differentially expressed in developmental epididymal regions to contribute to microenvironment development and sperm maturation. These findings help us better understand the epididymal biology, including sperm maturation pathways and functional differences between the epididymal regions in Tibetan sheep and other sheep breeds.
Collapse
Affiliation(s)
- Taotao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Huihui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Ruirui Luo
- Animal Husbandry, Pasture and Green Agriculture Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Huibin Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Manchun Su
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yi Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Qiao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Keyan Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yong Zhang
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| |
Collapse
|
11
|
Liu JC, Wang P, Zeng QX, Yang C, Lyu M, Li Y, Yeung WSB, Chiu PCN, Haidl G, Allam JP, Duan YG. Myd88 Signaling Is Involved in the Inflammatory Response in LPS-Induced Mouse Epididymitis and Bone-Marrow-Derived Dendritic Cells. Int J Mol Sci 2023; 24:ijms24097838. [PMID: 37175545 PMCID: PMC10178089 DOI: 10.3390/ijms24097838] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/30/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Epididymitis is an epididymal inflammation that may lead to male infertility. Dendritic cells (DCs) and myeloid differentiation primary response gene 88 (Myd88) were associated with epididymitis in rodents. However, the functions of Myd88 on epididymal DCs remain unclear. This study investigated the role of Myd88 in DCs for epididymitis. The Myd88 signaling pathway, phenotypes of DC subsets, and cytokines were investigated in lipopolysaccharide (LPS)-induced epididymitis in mice. CRISPR-Cas9 was used to knockout Myd88 in bone-marrow-derived dendritic cells (BMDCs) and immortalized mouse epididymal (DC2) cell line. In the vivo experiments, levels of the proinflammatory cytokines IL-1α, IL-6, IL-17A, TNF-α, IL-1β, MCP-1, and GM-CSF, mRNA for MyD88 related genes, and the percentages of monocyte-derived DCs (Mo-DCs) were significantly elevated in mice with epididymitis. In the vitro experiments, LPS significantly promoted the apoptosis of BMDCs. In addition, the concentration of inflammatory cytokines in BMDCs and DC2s were increased in the LPS group, while decreasing after the knockout of Myd88. These findings indicate that Myd88 on DCs is involved in the inflammation of epididymitis in mice, which may be a potential target for better strategies regarding the treatment of immunological male infertility.
Collapse
Affiliation(s)
- Jin-Chuan Liu
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Peng Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Qun-Xiong Zeng
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chen Yang
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Minmin Lyu
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Yanfeng Li
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - William Shu-Biu Yeung
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Philip Chi-Ngong Chiu
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Gerhard Haidl
- Department of Andrology, Bonn University Hospital, Campus-Venusberg 1, 53127 Bonn, Germany
| | - Jean-Pierre Allam
- Department of Andrology, Bonn University Hospital, Campus-Venusberg 1, 53127 Bonn, Germany
| | - Yong-Gang Duan
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| |
Collapse
|
12
|
Peng J, Li H, Yang S, Zhang X, Li PZ, Nie X, Zhang L, Zhang Z. Individual variation in and lateral asymmetry of mouse epididymal draining lymph nodes. Am J Reprod Immunol 2023; 89:e13678. [PMID: 36648083 DOI: 10.1111/aji.13678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/24/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
PROBLEM Draining lymph nodes (LNs) are pivotal sites for maintaining tolerance to self-antigens as well as eliciting immune responses to exogenous antigens. The epididymis is a male reproductive organ with a unique local immune environment. Although mice are the most commonly used laboratory animals for immunology research, there are no detailed descriptions of the anatomical location and function of LNs that drain the epididymis. METHOD OF STUDY Evans blue labeling was utilized to explore lymphatic drainage of the epididymis in eight- to ten-week-old male C57BL/6 mice. We confirmed the lymphatic drainage of the epididymis in mice using the objective technique of carboxyfluorescein succinimidyl ester (CFSE)-labeled cells. RESULTS By combined Evans blue labeling and fluorescent labeling, we found that 1) the patterns of epididymal LN drainage are highly heterogeneous between individual mice; 2) the leftside LNs participate in drainage more frequently than the right-side LNs; and 3) epididymal lymphatic drainage bypasses both the paraaortic and renal LNs in some mice. CONCLUSIONS These data highlighted the need to consider the individual variation in and lateral asymmetry of draining LNs when characterizing the regional immunology of the mouse epididymis.
Collapse
Affiliation(s)
- Jing Peng
- Andrology Center, Department of Urology, Peking University First Hospital, Peking University, Beijing, China
| | - Huixi Li
- Andrology Center, Department of Urology, Peking University First Hospital, Peking University, Beijing, China
| | - Shaojun Yang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xuyuan Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Patrick Z Li
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaohua Nie
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Liguo Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhichao Zhang
- Andrology Center, Department of Urology, Peking University First Hospital, Peking University, Beijing, China
| |
Collapse
|
13
|
Chen Y, Sun T, Gu L, Ouyang S, Liu K, Yuan P, Liu C. Identification of hub genes and biological mechanisms underlying the pathogenesis of asthenozoospermia and chronic epididymitis. Front Genet 2023; 14:1110218. [PMID: 37152990 PMCID: PMC10160426 DOI: 10.3389/fgene.2023.1110218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Objective: Asthenozoospermia (AZS) is one of the most common causes of male fertility, affecting family wellbeing and population growth. Chronic epididymitis (CE) is a common and lingering inflammatory disease in the scrotum. Inflammation in the epididymis has a severe impact on sperm motility. This study aimed to explore the genetic profile and critical pathways involved in the pathological mechanisms of AZS and CE, and discover potential biomarkers. Methods: Genomic datasets of AZS and CE were obtained from the Gene Expression Omnibus (GEO) database, and relevant differentially expressed genes (DEGs) were identified. GO and pathway enrichment analyses, construction of a protein-protein interaction network, and receiver operator characteristic curve analysis were conducted. The expression profile of hub genes was validated in immunohistochemical data and testicular cell data. Immune infiltration, miRNA-hub gene interactions, and gene-disease interactions were explored. The mRNA levels of hub genes were further measured by qRT-PCR. Results: A total of 109 DEGs were identified between the AZS/CE and healthy control groups. Pathways of the immune system, neutrophil degranulation, and interleukin-4 and interleukin-13 signaling were enriched in AZS and CE. Five hub genes (CD300LB, CMKLR1, CCR4, B3GALT5, and CTSK) were selected, and their diagnostic values were validated in AZS, CE, and independent validation sets (area under the curve >0.7). Furthermore, the five-hub gene signature was well characterized in testicular immunohistochemical staining and testicular cells from healthy controls. Immune infiltration analysis showed that infiltration of CD8+ cells and T helper cells was significantly related to the expression level of five hub genes. In addition, a miRNA-hub gene network and interaction of other diseases were displayed. The mRNA levels of hub genes (CD300LB, CMKLR1, CCR4, and B3GALT5) were significantly elevated in the patient group. The mRNA level of CTSK also showed a similar trend. Conclusion: Our study uncovered the genetic profile involved in AZS and CE, and elucidated enriched pathways and molecular associations between hub genes and immune infiltration. This finding provides novel insight into the common pathogenesis of both diseases as well as the potential biomarkers for CE-associated AZS.
Collapse
Affiliation(s)
- Yinwei Chen
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Taotao Sun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Longjie Gu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Song Ouyang
- Department of Urology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Kang Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Penghui Yuan
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Penghui Yuan, ; Chang Liu,
| | - Chang Liu
- Reproductive Medicine Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
- *Correspondence: Penghui Yuan, ; Chang Liu,
| |
Collapse
|
14
|
Barrachina F, Ottino K, Tu LJ, Soberman RJ, Brown D, Breton S, Battistone MA. CX3CR1 deficiency leads to impairment of immune surveillance in the epididymis. Cell Mol Life Sci 2022; 80:15. [PMID: 36550225 PMCID: PMC9948740 DOI: 10.1007/s00018-022-04664-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/09/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Mononuclear phagocytes (MPs) play an active role in the immunological homeostasis of the urogenital tract. In the epididymis, a finely tuned balance between tolerance to antigenic sperm and immune activation is required to maintain epididymal function while protecting sperm against pathogens and stressors. We previously characterized a subset of resident MPs that express the CX3CR1 receptor, emphasizing their role in antigen sampling and processing during sperm maturation and storage in the murine epididymis. Bacteria-associated epididymitis is the most common cause of intrascrotal inflammation and frequently leads to reproductive complications. Here, we examined whether the lack of functional CX3CR1 in homozygous mice (CX3CR1EGFP/EGFP, KO) alters the ability of MPs to initiate immune responses during epididymitis induced by LPS intravasal-epididymal injection. Confocal microscopy revealed that CX3CR1-deficient MPs located in the initial segments of the epididymis displayed fewer luminal-reaching membrane projections and impaired antigen capture activity. Moreover, flow cytometry showed a reduction of epididymal KO MPs with a monocytic phenotype under physiological conditions. In contrast, flow cytometry revealed an increase in the abundance of MPs with a monocytic signature in the distal epididymal segments after an LPS challenge. This was accompanied by the accumulation of CD103+ cells in the interstitium, and the prevention or attenuation of epithelial damage in the KO epididymis during epididymitis. Additionally, CX3CR1 deletion induced downregulation of Gja1 (connexin 43) expression in KO MPs. Together, our study provides evidence that MPs are gatekeepers of the immunological blood-epididymis barrier and reveal the role of the CX3CR1 receptor in epididymal mucosal homeostasis by inducing MP luminal protrusions and by regulating the monocyte population in the epididymis at steady state as well as upon infection. We also uncover the interaction between MPs and CD103+ dendritic cells, presumably through connexin 43, that enhance immune responses during epididymitis. Our study may lead to new diagnostics and therapies for male infertility and epididymitis by identifying immune mechanisms in the epididymis.
Collapse
Affiliation(s)
- F Barrachina
- Program in Membrane Biology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - K Ottino
- Program in Membrane Biology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - L J Tu
- Program in Membrane Biology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - R J Soberman
- Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - D Brown
- Program in Membrane Biology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - S Breton
- Centre Hospitalier Universitaire de Québec-Research Center, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - M A Battistone
- Program in Membrane Biology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
- Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
15
|
The Role of Mononuclear Phagocytes in the Testes and Epididymis. Int J Mol Sci 2022; 24:ijms24010053. [PMID: 36613494 PMCID: PMC9820352 DOI: 10.3390/ijms24010053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The mononuclear phagocytic system (MPS) is the primary innate immune cell group in male reproductive tissues, maintaining the balance of pro-inflammatory and immune tolerance. This article aims to outline the role of mononuclear macrophages in the immune balance of the testes and epididymis, and to understand the inner immune regulation mechanism. A review of pertinent publications was performed using the PubMed and Google Scholar databases on all articles published prior to January 2021. Search terms were based on the following keywords: 'MPS', 'mononuclear phagocytes', 'testes', 'epididymis', 'macrophage', 'Mφ', 'dendritic cell', 'DC', 'TLR', 'immune', 'inflammation', and 'polarization'. Additionally, reference lists of primary and review articles were reviewed for other publications of relevance. This review concluded that MPS exhibits a precise balance in the male reproductive system. In the testes, MPS cells are mainly suppressed subtypes (M2 and cDC2) under physiological conditions, which maintain the local immune tolerance. Under pathological conditions, MPS cells will transform into M1 and cDC1, producing various cytokines, and will activate T cell specific immunity as defense to foreign pathogens or self-antigens. In the epididymis, MPS cells vary in the different segments, which express immune tolerance in the caput and pro-inflammatory condition in the cauda. Collectively, MPS is the control point for maintaining the immune tolerance of the testes and epididymis as well as for eliminating pathogens.
Collapse
|
16
|
Li Y, Zeng Q, Deng H, Xiang T, Qi W, Wu D. Ameliorating effect of gold nanoparticles decorated on biodegradable apple pectin modified magnetic nanoparticles on epididymo-orchitis inducing alterations in sperm quality and spermatogenic cells apoptosis. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Wang F, Zhang J, Wang Y, Chen Y, Han D. Viral tropism for the testis and sexual transmission. Front Immunol 2022; 13:1040172. [PMID: 36439102 PMCID: PMC9682072 DOI: 10.3389/fimmu.2022.1040172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/24/2022] [Indexed: 10/17/2023] Open
Abstract
The mammalian testis adopts an immune privileged environment to protect male germ cells from adverse autoimmune reaction. The testicular immune privileged status can be also hijacked by various microbial pathogens as a sanctuary to escape systemic immune surveillance. In particular, several viruses have a tropism for the testis. To overcome the immune privileged status and mount an effective local defense against invading viruses, testicular cells are well equipped with innate antiviral machinery. However, several viruses may persist an elongated duration in the testis and disrupt the local immune homeostasis, thereby impairing testicular functions and male fertility. Moreover, the viruses in the testis, as well as other organs of the male reproductive system, can shed to the semen, thus allowing sexual transmission to partners. Viral infection in the testis, which can impair male fertility and lead to sexual transmission, is a serious concern in research on known and on new emerging viruses. To provide references for our scientific peers, this article reviews research achievements and suggests future research focuses in the field.
Collapse
Affiliation(s)
| | | | | | - Yongmei Chen
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Daishu Han
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
18
|
Tung KSK, Han D, Duan YG. Editorial: The immunology of the male genital tract. Front Immunol 2022; 13:1042468. [DOI: 10.3389/fimmu.2022.1042468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
|
19
|
Bao XF, Zhu YX, Xie WX, Liu ZY, Zhu L, Jiang H, Zhao Y. Synthesis of 1-substituted phenazines as novel antichlamydial agents. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:827-838. [PMID: 34657526 DOI: 10.1080/10286020.2021.1982909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
A novel series of 1-substituted phenazines 4a-4l were designed and synthesized via Palladium-catalyzed reactions from 1-phenazine trifluoromethanesulfonate. These phenazines showed antichlamydial activity with IC50 values from 1 to 10 μM. Among them, compounds 4c and 4i exhibited the best antichlamydial activity with IC50 values from 2.06 to 2.74 μM without apparent cytotoxicity to host cells.
Collapse
Affiliation(s)
- Xiao-Feng Bao
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Yi-Xin Zhu
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Wen-Xia Xie
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Zi-Yi Liu
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Li Zhu
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - He Jiang
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Yu Zhao
- School of Pharmacy, Nantong University, Nantong 226001, China
| |
Collapse
|
20
|
Drevet JR, Hallak J, Nasr-Esfahani MH, Aitken RJ. Reactive Oxygen Species and Their Consequences on the Structure and Function of Mammalian Spermatozoa. Antioxid Redox Signal 2022; 37:481-500. [PMID: 34913729 DOI: 10.1089/ars.2021.0235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Significance: Among the 200 or so cell types that comprise mammals, spermatozoa have an ambiguous relationship with the reactive oxygen species (ROS) inherent in the consumption of oxygen that supports aerobic metabolism. Recent Advances: In this review, we shall see that spermatozoa need the action of ROS to reach their structural and functional maturity, but that due to intrinsic unique characteristics, they are, perhaps more than any other cell type, susceptible to oxidative damage. Recent studies have improved our knowledge of how oxidative damage affects sperm structures and functions. The focus of this review will be on how genetic and epigenetic oxidative alterations to spermatozoa can have dramatic unintended consequences in terms of both the support and the suppression of sperm function. Critical Issues: Oxidative stress can have dramatic consequences not only for the spermatozoon itself, but also, and above all, on its primary objective, which is to carry out fertilization and to ensure, in part, that the embryonic development program should lead to a healthy progeny. Future Directions: Sperm oxidative DNA damage largely affects the integrity of the paternal genetic material to such an extent that the oocyte may have difficulties in correcting it. Diagnostic and therapeutic actions should be considered more systematically, especially in men with difficulties to conceive. Research is underway to determine whether the epigenetic information carried by spermatozoa is also subject to changes mediated by pro-oxidative situations. Antioxid. Redox Signal. 37, 481-500.
Collapse
Affiliation(s)
- Joël R Drevet
- Faculty of Medicine, GReD Institute, INSERM U1103-CNRS UMR6293-Université Clermont Auvergne, Clermont-Ferrand, France
| | - Jorge Hallak
- Androscience, Science and Innovation Center in Andrology and High-Complex Clinical and Research Andrology Laboratory, São Paulo, Brazil.,Division of Urology, University of São Paulo, São Paulo, Brazil.,Men's Health Study Group, Institute for Advanced Studies, University of São Paulo, São Paulo, Brazil.,Reproductive Toxicology Unit, Department of Pathology, University of São Paulo, São Paulo, Brazil
| | - Mohammad-Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.,Isfahan Fertility and Infertility Center, Isfahan, Iran
| | - Robert J Aitken
- Faculty of Science and Priority Research Center for Reproductive Sciences, The University of Newcastle, Callaghan, Australia.,Faculty of Health and Medicine, Priority Research Center for Reproductive Sciences, The University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute, New Lambton Heights, Australia
| |
Collapse
|
21
|
The Role of Male Reproductive Organs in the Transmission of African Swine Fever-Implications for Transmission. Viruses 2021; 14:v14010031. [PMID: 35062235 PMCID: PMC8782017 DOI: 10.3390/v14010031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
African swine fever (ASF) has evolved from an exotic animal disease to a threat to global pig production. An important avenue for the wide-spread transmission of animal diseases is their dissemination through boar semen used for artificial insemination. In this context, we investigated the role of male reproductive organs in the transmission of ASF. Mature domestic boars and adolescent wild boars, inoculated with different ASF virus strains, were investigated by means of virological and pathological methods. Additionally, electron microscopy was employed to investigate in vitro inoculated sperm. The viral genome, antigens and the infectious virus could be found in all gonadal tissues and accessory sex glands. The viral antigen and viral mRNAs were mainly found in mononuclear cells of the respective tissues. However, some other cell types, including Leydig, endothelial and stromal cells, were also found positive. Using RNAScope, p72 mRNA could be found in scattered halo cells of the epididymal duct epithelium, which could point to the disruption of the barrier. No direct infection of spermatozoa was observed by immunohistochemistry, or electron microscopy. Taken together, our results strengthen the assumption that ASFV can be transmitted via boar semen. Future studies are needed to explore the excretion dynamics and transmission efficiency.
Collapse
|