1
|
Lombardi AEM, Habets DHJ, Al‐Nasiry S, Spaanderman MEA, Wieten L. Natural Killer Cell Education in Women With Recurrent Pregnancy Loss. Am J Reprod Immunol 2025; 93:e70045. [PMID: 39853841 PMCID: PMC11760664 DOI: 10.1111/aji.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025] Open
Abstract
PROBLEM Natural killer (NK) cells undergo education for full functionality via interactions between killer immunoglobulin-like receptors (KIRs) or NKG2A and human leukocyte antigen (HLA) ligands. Presumably, education is important during early pregnancy as insufficient education has been associated with impaired vascular remodeling and restricted fetal growth in mice. NK cell education is influenced by receptor co-expression patterns, human cytomegalovirus (CMV), the HLA-ER107G dimorphism, and HLA-B leader peptide variants. We hypothesized altered NK cell education status and differences in frequencies of HLA-E genotypes and HLA-B leader peptide variants in women with recurrent pregnancy loss (RPL) compared to women with previously uncomplicated pregnancies, and between CMV seropositive and seronegative RPL women. METHODS OF STUDY Peripheral blood mononuclear cells were analyzed by flow cytometry. HLA-ABC was typed by sequence-specific oligonucleotide PCR, and HLA-E by Sanger sequencing. CMV status was determined by anti-CMV IgG immunoassay. NK cells were considered "educated" if the HLA ligand to a KIR or NKG2A was present. RESULTS KIR/NKG2A co-expression patterns and percentages of educated NK cells were similar between RPL and controls, and between seropositive and seronegative RPL women. Frequencies of HLA-E genotypes and HLA-B leader peptide variants were comparable. RPL women with the HLA-B T/T variant had a lower percentage of NKG2A-educated NK cells (47.8%) compared to controls (66.4%) (p = 0.025). CONCLUSIONS HLA-B leader peptide variants might impact NKG2A-specific NK cell education in RPL, warranting validation in larger studies. Follow-up studies are needed to investigate the education status of uterine NK cells and their role in pregnancy.
Collapse
Affiliation(s)
- Amber E. M. Lombardi
- GROW Research Institute for Oncology and ReproductionMaastricht UniversityMaastrichtThe Netherlands
- Department of Transplantation ImmunologyMaastricht University Medical Centre+MaastrichtThe Netherlands
| | - Denise H. J. Habets
- GROW Research Institute for Oncology and ReproductionMaastricht UniversityMaastrichtThe Netherlands
- Department of Transplantation ImmunologyMaastricht University Medical Centre+MaastrichtThe Netherlands
| | - Salwan Al‐Nasiry
- GROW Research Institute for Oncology and ReproductionMaastricht UniversityMaastrichtThe Netherlands
- Department of Obstetrics and GynecologyMaastricht University Medical Centre+MaastrichtThe Netherlands
| | - Marc E. A. Spaanderman
- GROW Research Institute for Oncology and ReproductionMaastricht UniversityMaastrichtThe Netherlands
- Department of Obstetrics and GynecologyMaastricht University Medical Centre+MaastrichtThe Netherlands
- Department of Obstetrics and GynecologyRadboud University Medical CentreNijmegenThe Netherlands
| | - Lotte Wieten
- GROW Research Institute for Oncology and ReproductionMaastricht UniversityMaastrichtThe Netherlands
- Department of Transplantation ImmunologyMaastricht University Medical Centre+MaastrichtThe Netherlands
| |
Collapse
|
2
|
Coyle C, Ma M, Abraham Y, Mahony CB, Steel K, Simpson C, Guerra N, Croft AP, Rapecki S, Cope A, Bowcutt R, Perucha E. NK cell subsets define sustained remission in rheumatoid arthritis. JCI Insight 2024; 9:e182390. [PMID: 39418106 PMCID: PMC11623943 DOI: 10.1172/jci.insight.182390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Rheumatoid arthritis (RA) is an immune-mediated, chronic inflammatory condition. With modern therapeutics and evidence-based management strategies, achieving sustained remission is increasingly common. To prevent complications associated with prolonged use of immunosuppressants, drug tapering or withdrawal is recommended. However, due to the lack of tools that define immunological remission, disease flares are frequent, highlighting the need for a more precision medicine-based approach. Utilizing high-dimensional phenotyping platforms, we set out to define peripheral blood immunological signatures of sustained remission in RA. We identified that CD8+CD57+KIR2DL1+ NK cells are associated with sustained remission. Functional studies uncovered an NK cell subset characterized by normal degranulation responses and reduced proinflammatory cytokine expression, which was elevated in sustained remission. Furthermore, flow cytometric analysis of NK cells from synovial fluid combined with interrogation of a publicly available single-cell RNA-Seq dataset of synovial tissue from active RA identified a deficiency of the phenotypic characteristics associated with this NK cell remission signature. In summary, we have uncovered an immune signature of RA remission associated with compositional changes in NK cell phenotype and function that has implications for understanding the effect of sustained remission on host immunity and distinct features that may define operational tolerance in RA.
Collapse
Affiliation(s)
- Carl Coyle
- Centre for Inflammation Biology and Cancer Immunology, Floor 1, New Hunt’s House, Great Maze Pond, King’s College London, Guy’s Campus, London, United Kingdom
- Centre for Rheumatic Diseases, King’s College London, London, United Kingdom
| | - Margaret Ma
- Centre for Rheumatic Diseases, King’s College London, London, United Kingdom
- Level 10, Tower Block, Division of Rheumatology, University Medicine Cluster, National University Health System, Singapore
- Department of Medicine, National University Singapore, Singapore
| | | | - Christopher B. Mahony
- Rheumatology Research Group, Institute of Inflammation and Ageing, Queen Elizabeth Hospital, and
- Birmingham NIHR Biomedical Research Centre, University of Birmingham, Birmingham, United Kingdom
| | - Kathryn Steel
- Centre for Inflammation Biology and Cancer Immunology, Floor 1, New Hunt’s House, Great Maze Pond, King’s College London, Guy’s Campus, London, United Kingdom
- Centre for Rheumatic Diseases, King’s College London, London, United Kingdom
| | | | - Nadia Guerra
- Faculty of Natural Sciences, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Adam P. Croft
- Rheumatology Research Group, Institute of Inflammation and Ageing, Queen Elizabeth Hospital, and
- Birmingham NIHR Biomedical Research Centre, University of Birmingham, Birmingham, United Kingdom
| | | | - Andrew Cope
- Centre for Inflammation Biology and Cancer Immunology, Floor 1, New Hunt’s House, Great Maze Pond, King’s College London, Guy’s Campus, London, United Kingdom
- Centre for Rheumatic Diseases, King’s College London, London, United Kingdom
| | | | - Esperanza Perucha
- Centre for Inflammation Biology and Cancer Immunology, Floor 1, New Hunt’s House, Great Maze Pond, King’s College London, Guy’s Campus, London, United Kingdom
- Centre for Rheumatic Diseases, King’s College London, London, United Kingdom
| |
Collapse
|
3
|
Liu X, Dong M, Li Y, Li L, Zhang Y, Wang C, Wang N, Wang D. Structural properties of glucan from Russula griseocarnosa and its immunomodulatory activities mediated via T cell differentiation. Carbohydr Polym 2024; 339:122214. [PMID: 38823900 DOI: 10.1016/j.carbpol.2024.122214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 06/03/2024]
Abstract
The polysaccharide, RGP2, was isolated from Russula griseocarnosa and its immunostimulatory effects were confirmed in cyclophosphamide (CTX)-induced immunosuppressed mice. Following purification via chromatography, structural analysis revealed that RGP2 had a molecular weight of 11.82 kDa and consisted of glucose (Glc), galactose (Gal), mannose, glucuronic acid and glucosamine. Bond structure analysis and nuclear magnetic resonance characterization confirmed that the main chain of RGP2 was formed by →6)-β-D-Glcp-(1→, →3)-β-D-Glcp-(1→ and →6)-α-D-Galp-(1→, which was substituted at O-3 of →6)-β-D-Glcp-(1→ by β-D-Glcp-(1→. RGP2 was found to ameliorate pathological damage in the spleen and enhance immune cell activity in immunosuppressed mice. Based on combined multiomics analysis, RGP2 altered the abundance of immune-related microbiota (such as Lactobacillus, Faecalibacterium, and Bacteroides) in the gut and metabolites (uridine, leucine, and tryptophan) in the serum. Compared with immunosuppressed mice, RGP2 also restored the function of antigen-presenting cells, promoted the polarization of macrophages into the M1 phenotype, positively affected the differentiation of helper T cells, and inhibited regulatory T cell differentiation through the protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) pathway, ultimately exerting an immune boosting function. Overall, our findings highlight therapeutic strategies to alleviate CTX-induced immunosuppression in a clinical setting.
Collapse
Affiliation(s)
- Xin Liu
- School of Life Sciences, Jilin University, Changchun 130012, China; School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin, 300131, China.
| | - Mingyuan Dong
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yuan Li
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Yongfeng Zhang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Chunyue Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, 6/F, 3 Sassoon Road, Pokfulam 000000, Hong Kong.
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
4
|
Imširović V, Wensveen FM, Polić B, Jelenčić V. Maintaining the Balance: Regulation of NK Cell Activity. Cells 2024; 13:1464. [PMID: 39273034 PMCID: PMC11393908 DOI: 10.3390/cells13171464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Natural Killer (NK) cells, integral components of the innate immune system, play a crucial role in the protection against intracellular threats. Their cytotoxic power requires that activation is tightly controlled, and in this, they take a unique position within the immune system. Rather than depending on the engagement of a single activating receptor, their activation involves a delicate balance between inhibitory and activating signals mediated through an array of surface molecules. Only when this cumulative balance surpasses a specific threshold do NK cells initiate their activity. Remarkably, the activation threshold of NK cells remains robust even when cells express vastly different repertoires of inhibitory and activating receptors. These threshold values seem to be influenced by NK cell interactions with their environment during development and after release from the bone marrow. Understanding how NK cells integrate this intricate pattern of stimuli is an ongoing area of research, particularly relevant for cellular therapies seeking to harness the anti-cancer potential of these cells by modifying surface receptor expression. In this review, we will explore some of the current dogmas regarding NK cell activation and discuss recent literature addressing advances in our understanding of this field.
Collapse
Affiliation(s)
| | | | | | - Vedrana Jelenčić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
5
|
Covre LP, Fantecelle CH, Queiroz AM, Fardin JM, Miranda PH, Henson S, da Fonseca-Martins AM, de Matos Guedes HL, Mosser D, Falqueto A, Akbar A, Gomes DCO. NKG2C+CD57+ natural killer cells with senescent features are induced during cutaneous leishmaniasis and accumulate in patients with lesional healing impairment. Clin Exp Immunol 2024; 217:279-290. [PMID: 38700066 PMCID: PMC11310703 DOI: 10.1093/cei/uxae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/30/2024] [Accepted: 05/02/2024] [Indexed: 05/05/2024] Open
Abstract
Natural killer (NK) cells include different subsets with diverse effector capacities that are poorly understood in the context of parasitic diseases. Here, we investigated inhibitory and activating receptor expression on NK cells in patients with cutaneous leishmaniasis (CL) and explored their phenotypic and functional heterogeneity based on CD57 and NKG2C expression. The expression of CD57 identified NK cells that accumulated in CL patients and exhibited features of senescence. The CD57+ cells exhibited heightened levels of the activating receptor NKG2C and diminished expression of the inhibitory receptor NKG2A. RNA sequencing analyses based on NKG2C transcriptome have revealed two distinct profiles among CL patients associated with cytotoxic and functional genes. The CD57+NKG2C+ subset accumulated in the blood of patients and presented conspicuous features of senescence, including the expression of markers such as p16, yH2ax, and p38, as well as reduced proliferative capacity. In addition, they positively correlated with the number of days until lesion resolution. This study provides a broad understanding of the NK cell biology during Leishmania infection and reinforces the role of senescent cells in the adverse clinical outcomes of CL.
Collapse
Affiliation(s)
- Luciana Polaco Covre
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Division of Medicine, University College London, London, UK
| | | | | | - Julia Miranda Fardin
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
| | | | - Sian Henson
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Herbert Leonel de Matos Guedes
- Instituto de Microbiologia Professor Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - David Mosser
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Aloisio Falqueto
- Departamento de Medicina Social, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Arne Akbar
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel Claudio Oliveira Gomes
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
- Division of Medicine, University College London, London, UK
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitória, Brazil
| |
Collapse
|
6
|
Naidoo KK, Highton AJ, Baiyegunhi OO, Bhengu SP, Dong KL, Bunders MJ, Altfeld M, Ndung’u T. Early Initiation of Antiretroviral Therapy Preserves the Metabolic Function of CD4+ T Cells in Subtype C Human Immunodeficiency Virus 1 Infection. J Infect Dis 2024; 229:753-762. [PMID: 37804102 PMCID: PMC10938216 DOI: 10.1093/infdis/jiad432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/19/2023] [Accepted: 10/04/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Immune dysfunction often persists in people living with human immunodeficiency virus (HIV) who are on antiretroviral therapy (ART), clinically manifesting as HIV-1-associated comorbid conditions. Early ART initiation may reduce incidence of HIV-1-associated immune dysfunction and comorbid conditions. Immunometabolism is a critical determinant of functional immunity. We investigated the effect of HIV-1 infection and timing of ART initiation on CD4+ T cell metabolism and function. METHODS Longitudinal blood samples from people living with HIV who initiated ART during hyperacute HIV-1 infection (HHI; before peak viremia) or chronic HIV-1 infection (CHI) were assessed for the metabolic and immune functions of CD4+ T cells. Metabolite uptake and mitochondrial mass were measured using fluorescent analogues and MitoTracker Green accumulation, respectively, and were correlated with CD4+ T cell effector functions. RESULTS Initiation of ART during HHI prevented dysregulation of glucose uptake by CD4+ T cells, but glucose uptake was reduced before and after ART initiation in CHI. Glucose uptake positively correlated with interleukin-2 and tumor necrosis factor-α production by CD4+ T cells. CHI was associated with elevated mitochondrial mass in effector memory CD4+ T cells that persisted after ART and correlated with PD-1 expression. CONCLUSIONS ART initiation in HHI largely prevented metabolic impairment of CD4+ T cells. ART initiation in CHI was associated with persistently dysregulated immunometabolism of CD4+ T cells, which was associated with impaired cellular functions and exhaustion.
Collapse
Affiliation(s)
- Kewreshini K Naidoo
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Department of Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Andrew J Highton
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | | | - Sindiswa P Bhengu
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Krista L Dong
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Madeleine J Bunders
- Department of Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marcus Altfeld
- Department of Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
- German Center for Infection Disease (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Germany
| | - Thumbi Ndung’u
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
- Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
7
|
Woelk LM, Kovacevic D, Husseini H, Förster F, Gerlach F, Möckl F, Altfeld M, Guse AH, Diercks BP, Werner R. DARTS: an open-source Python pipeline for Ca 2+ microdomain analysis in live cell imaging data. Front Immunol 2024; 14:1299435. [PMID: 38274810 PMCID: PMC10809147 DOI: 10.3389/fimmu.2023.1299435] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Ca2+ microdomains play a key role in intracellular signaling processes. For instance, they mediate the activation of T cells and, thus, the initial adaptive immune system. They are, however, also of utmost importance for activation of other cells, and a detailed understanding of the dynamics of these spatially localized Ca2+ signals is crucial for a better understanding of the underlying signaling processes. A typical approach to analyze Ca2+ microdomain dynamics is live cell fluorescence microscopy imaging. Experiments usually involve imaging a larger number of cells of different groups (for instance, wild type and knockout cells), followed by a time consuming image and data analysis. With DARTS, we present a modular Python pipeline for efficient Ca2+ microdomain analysis in live cell imaging data. DARTS (Deconvolution, Analysis, Registration, Tracking, and Shape normalization) provides state-of-the-art image postprocessing options like deep learning-based cell detection and tracking, spatio-temporal image deconvolution, and bleaching correction. An integrated automated Ca2+ microdomain detection offers direct access to global statistics like the number of microdomains for cell groups, corresponding signal intensity levels, and the temporal evolution of the measures. With a focus on bead stimulation experiments, DARTS provides a so-called dartboard projection analysis and visualization approach. A dartboard projection covers spatio-temporal normalization of the bead contact areas and cell shape normalization onto a circular template that enables aggregation of the spatiotemporal information of the microdomain detection results for the individual cells of the cell groups of interest. The dartboard visualization allows intuitive interpretation of the spatio-temporal microdomain dynamics at the group level. The application of DARTS is illustrated by three use cases in the context of the formation of initial Ca2+ microdomains after cell stimulation. DARTS is provided as an open-source solution and will be continuously extended upon the feedback of the community. Code available at: 10.5281/zenodo.10459243.
Collapse
Affiliation(s)
- Lena-Marie Woelk
- Department of Applied Medical Informatics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical Artificial Intelligence (bAIome), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dejan Kovacevic
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hümeyra Husseini
- Department of Applied Medical Informatics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical Artificial Intelligence (bAIome), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fritz Förster
- Department of Applied Medical Informatics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical Artificial Intelligence (bAIome), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fynn Gerlach
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Möckl
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marcus Altfeld
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H. Guse
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn-Philipp Diercks
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - René Werner
- Department of Applied Medical Informatics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical Artificial Intelligence (bAIome), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
8
|
Di Vito C, Coianiz N, Calvi M, Terzoli S, Zaghi E, Puccio S, Frigo A, Mariotti J, De Philippis C, Mannina D, Sarina B, Mineri R, Le-Trilling VTK, Trilling M, Castagna L, Bramanti S, Santoro A, Mavilio D. Persistence of KIR neg NK cells after haploidentical hematopoietic stem cell transplantation protects from human cytomegalovirus infection/reactivation. Front Immunol 2024; 14:1266051. [PMID: 38268918 PMCID: PMC10806243 DOI: 10.3389/fimmu.2023.1266051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024] Open
Abstract
Haploidentical hematopoietic stem cell transplantation (h-HSCT) is a therapeutic option to cure patients affected by hematologic malignancies. The kinetics and the quality of immune-reconstitution (IR) impact the clinical outcome of h-HSCT and limit the onset of life-threatening Human Cytomegalovirus (HCMV) infection/reactivation. Natural Killer (NK) cells are the first lymphocytes that recover after h-HSCT and they can provide rapid innate immune responses against opportunistic pathogens. By performing a longitudinal single-cell analysis of multiparametric flow-cytometry data, we show here that the persistence at high frequencies of CD158b1b2jneg/NKG2Apos/NKG2Cneg/NKp30pos/NKp46pos (KIRneg) NK cells is associated with HCMV infection/reactivation control. These KIRneg NK cells are "unlicensed", and are not terminal-differentiated lymphocytes appearing early during IR and mainly belonging to CD56bright/CD16neg and CD56bright/CD16pos subsets. KIRneg NK cells are enriched in oxidative and glucose metabolism pathways, produce interferon-γ, and are endowed with potent antiviral activity against HCMV ex vivo. Decreased frequencies of KIRneg NK cells early during IR are associated with clinically relevant HCMV replication. Taken together, our findings indicate that the prolonged persistence of KIRneg NK cells after h-HSCT could serve as a biomarker to better predict HCMV infection/reactivation. This phenomenon also paves the way to optimize anti-viral immune responses by enriching post-transplant donor lymphocyte infusions with KIRneg NK cells.
Collapse
Affiliation(s)
- Clara Di Vito
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Nicolò Coianiz
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Michela Calvi
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Sara Terzoli
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Elisa Zaghi
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Simone Puccio
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Alessandro Frigo
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Jacopo Mariotti
- Bone Marrow Transplant Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Chiara De Philippis
- Bone Marrow Transplant Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Daniele Mannina
- Bone Marrow Transplant Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Barbara Sarina
- Bone Marrow Transplant Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Rossana Mineri
- Molecular Biology Section, Clinical Investigation Laboratory, IRCCS Humanitas Research Hospital, Milan, Italy
| | | | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Luca Castagna
- Bone Marrow Transplant Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Stefania Bramanti
- Bone Marrow Transplant Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Armando Santoro
- Bone Marrow Transplant Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| |
Collapse
|
9
|
Akiso M, Ameka M, Naidoo K, Langat R, Kombo J, Sikuku D, Ndung’u T, Altfeld M, Anzala O, Mureithi M. Metabolic and mitochondrial dysregulation in CD4+ T cells from HIV-positive women on combination anti-retroviral therapy. PLoS One 2023; 18:e0286436. [PMID: 37816026 PMCID: PMC10564234 DOI: 10.1371/journal.pone.0286436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/20/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND For optimal functionality, immune cells require a robust and adaptable metabolic program that is fueled by dynamic mitochondrial activity. In this study, we investigate the metabolic alterations occurring in immune cells during HIV infection and antiretroviral therapy by analyzing the uptake of metabolic substrates and mitochondrial phenotypes. By delineating changes in immune cell metabolic programming during HIV, we may identify novel potential therapeutic targets to improve anti-viral immune responses. METHODS After consent and voluntary participation was confirmed, whole blood was drawn from HIV uninfected women and women with chronic HIV infection on long-term combination antiretroviral therapy (HIV/cART). Peripheral blood mononuclear cells-derived immune cells were directly incubated with different fluorescently tagged metabolites and markers of mitochondrial activity: FITC-2-NBDG (2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-D-glucose), FITC-BODIPY (4,4-Difluoro-5,7-Dimethyl-4-Bora-3a,4a-Diaza-s-Indacene-3-Hexadecanoic Acid), FITC-MitoTracker Green and APC-MitoTracker Deep Red. The uptake of glucose and fats and the mitochondrial mass and potential were measured using flow cytometry. All values are reported quantitatively as geometric means of fluorescence intensity. RESULTS During chronic HIV infection, cellular uptake of glucose increases in HIV+ dendritic cells in particular. CD4+ T cells had the lowest uptake of glucose and fats compared to all other cells regardless of HIV status, while CD8+ T cells took up more fatty acids. Interestingly, despite the lower utilization of glucose and fats in CD4+ T cells, mitochondrial mass increased in HIV+ CD4+ T cells compared to HIV negative CD4+ T-cells. HIV+ CD4+ T cells also had the highest mitochondrial potential. CONCLUSIONS Significant disparities in the utilization of substrates by leukocytes during chronic HIV/cART exist. Innate immune cells increased utilization of sugars and fats while adaptive immune cells displayed lower glucose and fat utilization despite having a higher mitochondrial activity. Our findings suggest that cART treated HIV-infected CD4+ T cells be dysfunctional or may prefer alternative fuel sources not included in these studies. This underscores the importance of understanding the metabolic effects of HIV treatment on immune function.
Collapse
Affiliation(s)
- Matrona Akiso
- Department of Medical Microbiology & Immunology, Faculty of Health Sciences, University of Nairobi, Nairobi, Kenya
- KAVI-Institute of Clinical Research (KAVI-ICR), University of Nairobi, Nairobi, Kenya
| | - Magdalene Ameka
- KAVI-Institute of Clinical Research (KAVI-ICR), University of Nairobi, Nairobi, Kenya
| | - Kewreshini Naidoo
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Robert Langat
- KAVI-Institute of Clinical Research (KAVI-ICR), University of Nairobi, Nairobi, Kenya
- Division of Surgical Outcomes and Precision Medicine Research, Department of Surgery, University of Minnesota Twin Cities, United States of America
| | - Janet Kombo
- Department of Medical Microbiology & Immunology, Faculty of Health Sciences, University of Nairobi, Nairobi, Kenya
- KAVI-Institute of Clinical Research (KAVI-ICR), University of Nairobi, Nairobi, Kenya
| | - Delories Sikuku
- Department of Medical Microbiology & Immunology, Faculty of Health Sciences, University of Nairobi, Nairobi, Kenya
| | - Thumbi Ndung’u
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Marcus Altfeld
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Virus Immunology Department, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Omu Anzala
- Department of Medical Microbiology & Immunology, Faculty of Health Sciences, University of Nairobi, Nairobi, Kenya
- KAVI-Institute of Clinical Research (KAVI-ICR), University of Nairobi, Nairobi, Kenya
| | - Marianne Mureithi
- Department of Medical Microbiology & Immunology, Faculty of Health Sciences, University of Nairobi, Nairobi, Kenya
- KAVI-Institute of Clinical Research (KAVI-ICR), University of Nairobi, Nairobi, Kenya
| |
Collapse
|
10
|
Mac Donald A, Guipouy D, Lemieux W, Harvey M, Bordeleau LJ, Guay D, Roméro H, Li Y, Dion R, Béland K, Haddad E. KLRC1 knockout overcomes HLA-E-mediated inhibition and improves NK cell antitumor activity against solid tumors. Front Immunol 2023; 14:1231916. [PMID: 37675109 PMCID: PMC10478211 DOI: 10.3389/fimmu.2023.1231916] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/24/2023] [Indexed: 09/08/2023] Open
Abstract
Introduction Natural Killer (NK) cells hold the potential to shift cell therapy from a complex autologous option to a universal off-the-shelf one. Although NK cells have demonstrated efficacy and safety in the treatment of leukemia, the limited efficacy of NK cell-based immunotherapies against solid tumors still represents a major hurdle. In the immunosuppressive tumor microenvironment (TME), inhibitory interactions between cancer and immune cells impair antitumoral immunity. KLRC1 gene encodes the NK cell inhibitory receptor NKG2A, which is a potent NK cell immune checkpoint. NKG2A specifically binds HLA-E, a non-classical HLA class I molecule frequently overexpressed in tumors, leading to the transmission of inhibitory signals that strongly impair NK cell function. Methods To restore NK cell cytotoxicity against HLA-E+ tumors, we have targeted the NKG2A/HLA-E immune checkpoint by using a CRISPR-mediated KLRC1 gene editing. Results KLRC1 knockout resulted in a reduction of 81% of NKG2A+ cell frequency in ex vivo expanded human NK cells post-cell sorting. In vitro, the overexpression of HLA-E by tumor cells significantly inhibited wild-type (WT) NK cell cytotoxicity with p-values ranging from 0.0071 to 0.0473 depending on tumor cell lines. In contrast, KLRC1 KO NK cells exhibited significantly higher cytotoxicity when compared to WT NK cells against four different HLA-E+ solid tumor cell lines, with p-values ranging from<0.0001 to 0.0154. Interestingly, a proportion of 43.5% to 60.2% of NKG2A- NK cells within the edited NK cell population was sufficient to reverse at its maximum the HLA-E-mediated inhibition of NK cell cytotoxicity. The expression of the activating receptor NKG2C was increased in KLRC1 KO NK cells and contributed to the improved NK cell cytotoxicity against HLA-E+ tumors. In vivo, the adoptive transfer of human KLRC1 KO NK cells significantly delayed tumor progression and increased survival in a xenogeneic mouse model of HLA-E+ metastatic breast cancer, as compared to WT NK cells (p = 0.0015). Conclusions Our results demonstrate that KLRC1 knockout is an effective strategy to improve NK cell antitumor activity against HLA-E+ tumors and could be applied in the development of NK cell therapy for solid tumors.
Collapse
Affiliation(s)
- Alice Mac Donald
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Microbiology, Infectiology and Immunology, University of Montréal, Montréal, QC, Canada
| | - Delphine Guipouy
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Microbiology, Infectiology and Immunology, University of Montréal, Montréal, QC, Canada
| | - William Lemieux
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Microbiology, Infectiology and Immunology, University of Montréal, Montréal, QC, Canada
| | | | | | | | - Hugo Roméro
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
| | - Yuanyi Li
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
| | - Renaud Dion
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
| | - Kathie Béland
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
| | - Elie Haddad
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Microbiology, Infectiology and Immunology, University of Montréal, Montréal, QC, Canada
- Department of Pediatrics, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
11
|
De Re V, Tornesello ML, Racanelli V, Prete M, Steffan A. Non-Classical HLA Class 1b and Hepatocellular Carcinoma. Biomedicines 2023; 11:1672. [PMID: 37371767 DOI: 10.3390/biomedicines11061672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
A number of studies are underway to gain a better understanding of the role of immunity in the pathogenesis of hepatocellular carcinoma and to identify subgroups of individuals who may benefit the most from systemic therapy according to the etiology of their tumor. Human leukocyte antigens play a key role in antigen presentation to T cells. This is fundamental to the host's defense against pathogens and tumor cells. In addition, HLA-specific interactions with innate lymphoid cell receptors, such those present on natural killer cells and innate lymphoid cell type 2, have been shown to be important activators of immune function in the context of several liver diseases. More recent studies have highlighted the key role of members of the non-classical HLA-Ib and the transcript adjacent to the HLA-F locus, FAT10, in hepatocarcinoma. The present review analyzes the major contribution of these molecules to hepatic viral infection and hepatocellular prognosis. Particular attention has been paid to the association of natural killer and Vδ2 T-cell activation, mediated by specific HLA class Ib molecules, with risk assessment and novel treatment strategies to improve immunotherapy in HCC.
Collapse
Affiliation(s)
- Valli De Re
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", 80131 Naples, Italy
| | - Vito Racanelli
- Department of Interdisciplinary Medicine, School of Medicine, 'Aldo Moro' University of Bari, 70124 Bari, Italy
| | - Marcella Prete
- Department of Interdisciplinary Medicine, School of Medicine, 'Aldo Moro' University of Bari, 70124 Bari, Italy
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy
| |
Collapse
|
12
|
Rascle P, Woolley G, Jost S, Manickam C, Reeves RK. NK cell education: Physiological and pathological influences. Front Immunol 2023; 14:1087155. [PMID: 36742337 PMCID: PMC9896005 DOI: 10.3389/fimmu.2023.1087155] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023] Open
Abstract
Natural killer (NK) cells represent a critical defense against viral infections and cancers. NK cells require integration of activating and inhibitory NK cell receptors to detect target cells and the balance of these NK cell inputs defines the global NK cell response. The sensitivity of the response is largely defined by interactions between self-major histocompatibility complex class I (MHC-I) molecules and specific inhibitory NK cell receptors, so-called NK cell education. Thus, NK cell education is a crucial process to generate tuned effector NK cell responses in different diseases. In this review, we discuss the relationship between NK cell education and physiologic factors (type of self-MHC-I, self-MHC-I allelic variants, variant of the self-MHC-I-binding peptides, cytokine effects and inhibitory KIR expression) underlying NK cell education profiles (effector function or metabolism). Additionally, we describe the broad-spectrum of effector educated NK cell functions on different pathologies (such as HIV-1, CMV and tumors, among others).
Collapse
Affiliation(s)
- Philippe Rascle
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Griffin Woolley
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Stephanie Jost
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Cordelia Manickam
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - R. Keith Reeves
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
13
|
Sun Z, Li Y, Zhang Z, Fu Y, Han X, Hu Q, Ding H, Shang H, Jiang Y. CD160 Promotes NK Cell Functions by Upregulating Glucose Metabolism and Negatively Correlates With HIV Disease Progression. Front Immunol 2022; 13:854432. [PMID: 36110864 PMCID: PMC9469471 DOI: 10.3389/fimmu.2022.854432] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Natural killer (NK) cells are crucial for immune responses to viral infections. CD160 is an important NK cell activating receptor, with unknown function in HIV infection. Here, we found that CD160 expression was reduced on NK cells from HIV-infected individuals and its expression was negatively correlated with HIV disease progression. Further, GLUT1 expression and glucose uptake were higher in CD160+ NK cells, and the results of RNA-seq and flow cytometry demonstrated that CD160 positively regulated glucose metabolism through the PI3K/AKT/mTOR/s6k signaling pathway, thereby enhancing NK cell function. Moreover, we determined that reduced CD160 expression on NK cells could be attributed to the higher plasma levels of TGF-β1 in HIV-infected individuals. Overall, these results highlight the vital role of CD160 in HIV disease progression and regulation of glucose metabolism, indicating a potential target for HIV immunotherapy.
Collapse
Affiliation(s)
- Zheng Sun
- National Health Commission (NHC) Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology of Liaoning Province, Shenyang, China
| | - Yidi Li
- National Health Commission (NHC) Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology of Liaoning Province, Shenyang, China
| | - Zining Zhang
- National Health Commission (NHC) Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology of Liaoning Province, Shenyang, China
| | - Yajing Fu
- National Health Commission (NHC) Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology of Liaoning Province, Shenyang, China
| | - Xiaoxu Han
- National Health Commission (NHC) Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology of Liaoning Province, Shenyang, China
| | - Qinghai Hu
- National Health Commission (NHC) Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology of Liaoning Province, Shenyang, China
| | - Haibo Ding
- National Health Commission (NHC) Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology of Liaoning Province, Shenyang, China
| | - Hong Shang
- National Health Commission (NHC) Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology of Liaoning Province, Shenyang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yongjun Jiang
- National Health Commission (NHC) Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology of Liaoning Province, Shenyang, China
| |
Collapse
|
14
|
Wang X, Xiong H, Ning Z. Implications of NKG2A in immunity and immune-mediated diseases. Front Immunol 2022; 13:960852. [PMID: 36032104 PMCID: PMC9399941 DOI: 10.3389/fimmu.2022.960852] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022] Open
Abstract
In recent studies, NKG2A is revealed to be a key immune checkpoint for both natural killer (NK) cells and CD8+ T cells. It form heterodimer receptors with CD94, and targets the peptide-presenting human leukocyte antigen-E (HLA-E) molecules. Upon crosslinking, NKG2A/CD94 delivers inhibitory signals for NK cells and CD8+ T cells, while blocking NKG2A can effectively unleash functions of these cytotoxic lymphocytes. The interaction between NKG2A and HLA-E contributes to tumor immune escape, and NKG2A-mediated mechanisms are currently being exploited to develop potential antitumor therapeutic strategies. In addition, growing evidence shows that NKG2A also plays important roles in other immune-related diseases including viral infections, autoimmune diseases, inflammatory diseases, parasite infections and transplant rejection. Therefore, the current work focuses on describing the effect of NKG2A on immune regulation and exploring its potential role in immune-mediated disorders.
Collapse
Affiliation(s)
- Xiaotong Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
- *Correspondence: Zhaochen Ning, ; Huabao Xiong,
| | - Zhaochen Ning
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
- *Correspondence: Zhaochen Ning, ; Huabao Xiong,
| |
Collapse
|
15
|
Bi-specific and Tri-specific NK Cell Engagers: The New Avenue of Targeted NK Cell Immunotherapy. Mol Diagn Ther 2021; 25:577-592. [PMID: 34327614 DOI: 10.1007/s40291-021-00550-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2021] [Indexed: 02/01/2023]
Abstract
Natural killer (NK) cell-mediated cancer immunotherapy has grown significantly over the past two decades. More recently, multi-specific engagers have been developed as cancer therapeutics to effectively arm endogenous NK cells to more potently induce specific cytolytic responses against tumor targets. This review explores the bi- and tri-specific NK/tumor engagers that are emerging as a new generation of immunotherapeutics. These molecules vary in configuration, but they typically have small molecular weights and domains that engage specific tumor antigens and NK cell-activating receptors such as CD16, NKp30, NKp46, and NKG2D. They have demonstrated compelling potential in boosting NK cell cytotoxicity against specific tumor targets. This highly adaptable off-the-shelf platform, which in some formats also integrates cytokines, is poised to revolutionize targeted NK cell immunotherapy, either as a monotherapy or in combination with other effective anti-cancer therapies.
Collapse
|
16
|
Shreeve N, Depierreux D, Hawkes D, Traherne JA, Sovio U, Huhn O, Jayaraman J, Horowitz A, Ghadially H, Perry JRB, Moffett A, Sled JG, Sharkey AM, Colucci F. The CD94/NKG2A inhibitory receptor educates uterine NK cells to optimize pregnancy outcomes in humans and mice. Immunity 2021; 54:1231-1244.e4. [PMID: 33887202 PMCID: PMC8211638 DOI: 10.1016/j.immuni.2021.03.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/13/2020] [Accepted: 03/25/2021] [Indexed: 12/13/2022]
Abstract
The conserved CD94/NKG2A inhibitory receptor is expressed by nearly all human and ∼50% of mouse uterine natural killer (uNK) cells. Binding human HLA-E and mouse Qa-1, NKG2A drives NK cell education, a process of unknown physiological importance influenced by HLA-B alleles. Here, we show that NKG2A genetic ablation in dams mated with wild-type males caused suboptimal maternal vascular responses in pregnancy, accompanied by perturbed placental gene expression, reduced fetal weight, greater rates of smaller fetuses with asymmetric growth, and abnormal brain development. These are features of the human syndrome pre-eclampsia. In a genome-wide association study of 7,219 pre-eclampsia cases, we found a 7% greater relative risk associated with the maternal HLA-B allele that does not favor NKG2A education. These results show that the maternal HLA-B→HLA-E→NKG2A pathway contributes to healthy pregnancy and may have repercussions on offspring health, thus establishing the physiological relevance for NK cell education. Video Abstract
CD94/NKG2A educates uterine NK cells NKG2A-deficient dams display reduced utero-placental hemodynamic adaptations Asymmetric growth restriction and abnormal brain development in NKG2A-deficient dams Non-functional HLA-B→HLA-E→NKG2A pathway exposes women to greater pre-eclampsia risk
Collapse
Affiliation(s)
- Norman Shreeve
- Department of Obstetrics & Gynaecology, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge CB2 0SW, UK; University of Cambridge Centre for Trophoblast Research, Cambridge, UK
| | - Delphine Depierreux
- Department of Obstetrics & Gynaecology, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge CB2 0SW, UK; University of Cambridge Centre for Trophoblast Research, Cambridge, UK
| | - Delia Hawkes
- Department of Obstetrics & Gynaecology, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge CB2 0SW, UK
| | | | - Ulla Sovio
- Department of Obstetrics & Gynaecology, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge CB2 0SW, UK; University of Cambridge Centre for Trophoblast Research, Cambridge, UK
| | - Oisin Huhn
- Department of Obstetrics & Gynaecology, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge CB2 0SW, UK; University of Cambridge Centre for Trophoblast Research, Cambridge, UK; Department of Pathology, University of Cambridge, Cambridge, UK; AstraZeneca, Granta Park, Cambridge CB21 6GH, UK
| | - Jyothi Jayaraman
- University of Cambridge Centre for Trophoblast Research, Cambridge, UK; Department of Pathology, University of Cambridge, Cambridge, UK; Department of Physiology, Development and Neurobiology, University of Cambridge, Cambridge, UK
| | - Amir Horowitz
- Department of Oncological Sciences, Precision Immunology Institute and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - John R B Perry
- MRC Epidemiology Unit, University of Cambridge, Cambridge UK
| | - Ashley Moffett
- University of Cambridge Centre for Trophoblast Research, Cambridge, UK; Department of Pathology, University of Cambridge, Cambridge, UK
| | - John G Sled
- Department of Medical Biophysics, University of Toronto, Toronto, Canada; Translational Medicine, Hospital for Sick Children, Toronto, Canada
| | - Andrew M Sharkey
- University of Cambridge Centre for Trophoblast Research, Cambridge, UK; Department of Pathology, University of Cambridge, Cambridge, UK
| | - Francesco Colucci
- Department of Obstetrics & Gynaecology, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge CB2 0SW, UK; University of Cambridge Centre for Trophoblast Research, Cambridge, UK.
| |
Collapse
|