1
|
Kim SA, Kim S, Hong Y, Choi Y, Lee Y, Kwon M, Park SY, Jeong C, Nam GH, Han RT, Kim IS. Immunogenic clearance combined with PD-1 blockade elicits antitumor effect by promoting the recruitment and expansion of the effector memory-like CD8 +T cell. Transl Oncol 2025; 51:102209. [PMID: 39608213 PMCID: PMC11635775 DOI: 10.1016/j.tranon.2024.102209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/30/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024] Open
Abstract
Immune checkpoint inhibition shows promise for cancer treatment, but only a minority of patients respond. Combination strategies have been explored to overcome this resistance. Combining immunogenic clearance using immunogenic cell death inducers with a rho kinase inhibitor enhances phagocytosis of immunogenically dying cancer cells by antigen-presenting cells, stimulating tumor-specific immune responses by activating CD8+T cells via dendritic cell-mediated priming. This approach increases the responsiveness of immune checkpoint blockade (ICB)-resistant cancer to ICB. However, the precise mechanisms remain unclear. This study elucidates cellular mechanisms of immunogenic clearance enhancing ICB response. Using single-cell RNA sequencing, we observed an increase in effector memory-like CD8+T cells within the tumor microenvironment with combined treatment. We propose this cell cluster may originate from proliferating CD8+T cells elevated by immunogenic clearance. Notably, abundant effector memory-like CD8+T cells in ICB-responsive patients suggest their antitumor effect. Thus, increasing this cell population through enhanced T cell priming may improve the response of ICB-resistant tumors.
Collapse
Affiliation(s)
- Seong A Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Seohyun Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Department of Research and Development, ShiftBio, Seoul 02751, Republic of Korea
| | - Yeonsun Hong
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Yoonjeong Choi
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Department of Research and Development, ShiftBio, Seoul 02751, Republic of Korea
| | - Yeji Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Minsu Kwon
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Seung-Yoon Park
- Department of Biochemistry, School of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Cherlhyun Jeong
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biological Chemistry, Korea University of Science and Technology, KIST Campus, 02841, Republic of Korea
| | - Gi-Hoon Nam
- Department of Research and Development, ShiftBio, Seoul 02751, Republic of Korea; Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 02841, Republic of Korea.
| | - Rafael T Han
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - In-San Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
2
|
Grundy EE, Shaw LC, Wang L, Lee AV, Argueta JC, Powell DJ, Ostrowski M, Jones RB, Cruz CRY, Gordish-Dressman H, Chappell NP, Bollard CM, Chiappinelli KB. A T cell receptor specific for an HLA-A*03:01-restricted epitope in the endogenous retrovirus ERV-K-Env exhibits limited recognition of its cognate epitope. Mob DNA 2024; 15:19. [PMID: 39385229 PMCID: PMC11462856 DOI: 10.1186/s13100-024-00333-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
Transposable elements (TEs) are often expressed at higher levels in tumor cells than normal cells, implicating these genomic regions as an untapped pool of tumor-associated antigens. In ovarian cancer (OC), protein from the TE ERV-K is frequently expressed by tumor cells. Here we determined whether the targeting of previously identified epitope in the envelope gene (env) of ERV-K resulted in target antigen specificity against cancer cells. We found that transducing healthy donor T cells with an ERV-K-Env-specific T cell receptor construct resulted in antigen specificity only when co-cultured with HLA-A*03:01 B lymphoblastoid cells. Furthermore, in vitro priming of several healthy donors with this epitope of ERV-K-Env did not result in target antigen specificity. These data suggest that the T cell receptor is a poor candidate for targeting this specific ERV-K-Env epitope and has limited potential as a T cell therapy for OC.
Collapse
Affiliation(s)
- Erin E Grundy
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, USA
- The George Washington University Cancer Center, Washington, DC, USA
- The Integrated Biomedical Sciences at the George Washington University, Washington, DC, USA
| | - Lauren C Shaw
- Department of Pathology and Laboratory Medicine, Center for Cellular Immunotherapies, Perelman School of Medicine, Ovarian Cancer Research Center, The University of Pennsylvania, Philadelphia, PA, USA
| | - Loretta Wang
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, USA
- The George Washington University Cancer Center, Washington, DC, USA
| | - Abigail V Lee
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, USA
- The George Washington University Cancer Center, Washington, DC, USA
- The Integrated Biomedical Sciences at the George Washington University, Washington, DC, USA
| | - James Castro Argueta
- The George Washington School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Daniel J Powell
- Department of Pathology and Laboratory Medicine, Center for Cellular Immunotherapies, Perelman School of Medicine, Ovarian Cancer Research Center, The University of Pennsylvania, Philadelphia, PA, USA
| | - Mario Ostrowski
- Department of Medicine, University of Toronto, Toronto, Canada
| | - R Brad Jones
- Weill Cornell Medicine Graduate School of Medical Sciences, New York, NY, USA
| | - C Russell Y Cruz
- The George Washington University Cancer Center, Washington, DC, USA
- The Integrated Biomedical Sciences at the George Washington University, Washington, DC, USA
- Center for Cancer and Immunology, , Children's National Hospital, Washington, DC, United States
| | - Heather Gordish-Dressman
- The George Washington School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
- The Center for Translational Research, Children's National Hospital, Washington, DC, USA
| | | | - Catherine M Bollard
- The George Washington University Cancer Center, Washington, DC, USA
- The Integrated Biomedical Sciences at the George Washington University, Washington, DC, USA
- Center for Cancer and Immunology, , Children's National Hospital, Washington, DC, United States
| | - Katherine B Chiappinelli
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, USA.
- The George Washington University Cancer Center, Washington, DC, USA.
- The Integrated Biomedical Sciences at the George Washington University, Washington, DC, USA.
| |
Collapse
|
3
|
Riess JW, Lara MS, Lopez de Rodas M, Luxardi G, Herbert S, Shimoda M, Kelly K, Meerlev A, Moore E, Beckett L, Monjazeb A, Schalper K, Maverakis E, Gandara DR. Immune Cell Dynamics in EGFR-Mutated NSCLC Treated With Afatinib and Pembrolizumab: Results From a Phase IB Study. JTO Clin Res Rep 2024; 5:100706. [PMID: 39318388 PMCID: PMC11420451 DOI: 10.1016/j.jtocrr.2024.100706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 09/26/2024] Open
Abstract
Introduction EGFR-mutated NSCLC is minimally responsive to programmed cell death protein 1 or programmed death-ligand 1 blockade. We evaluated the safety, tolerability, and immunomodulatory effects of the EGFR tyrosine kinase inhibitor (TKI) afatinib in combination with the programmed cell death protein 1 antibody pembrolizumab in patients with EGFR-mutant NSCLC. Methods Patients with advanced EGFR-mutant NSCLC with progression (PD) on previous EGFR TKI(s), aged above or equal to 18 years, Eastern Cooperative Oncology Group performance status less than or equal to 1, acceptable organ function, no significant autoimmune disease, measurable disease, and controlled brain metastases were eligible. Primary end point was determination of the maximum tolerated dose and recommended phase 2 dose. Serial specimens were collected to assess for alterations in cytokines and immune cell subsets by quantitative immunofluorescence in tissue and Luminex and flow cytometry in the blood. Results A total of 11 patients were enrolled, six in dose finding and five in dose expansion. No dose-limiting toxicities were observed. The maximum tolerated dose was determined to be afatinib 40 mg orally daily and pembrolizumab 200 mg intravenously every 21 days. Four (36%) patients had immune-related adverse events (irAEs). Ten patients were assessable for response: two partial response, seven stable disease, and one PD. Peripheral natural killer and natural killer T-cells (p = 0.027, p = 0.01) increased and exhausted CD8+ T-cells decreased on treatment (p = 0.0035). Peripheral CD4/CD8 T-cells (area under the curve = 0.96, p = 0.042) and central memory T-cells (CD4/CD8) (area under the curve = 1.0, p = 0.0006) increased in patients who had disease control more than 6 months or partial response to afatinib/pembrolizumab as did CD3+ T-cells in a patient with progression-free survival more than 6 months after afatinib/pembrolizumab treatment. Conclusions Afatinib and pembrolizumab were found to have modest activity associated with irAEs after PD on previous EGFR TKI setting. Proinflammatory changes in immune cell subsets in tissue and blood were detected and associated with antitumor activity and irAEs.
Collapse
Affiliation(s)
- Jonathan W. Riess
- University of California Davis Comprehensive Cancer Center, Sacramento, California
| | - Matthew S. Lara
- University of California Davis Comprehensive Cancer Center, Sacramento, California
| | | | - Guillaume Luxardi
- University of California Davis Comprehensive Cancer Center, Sacramento, California
| | - Samantha Herbert
- University of California Davis Comprehensive Cancer Center, Sacramento, California
| | - Michiko Shimoda
- University of California Davis Comprehensive Cancer Center, Sacramento, California
| | - Karen Kelly
- University of California Davis Comprehensive Cancer Center, Sacramento, California
| | - Alexander Meerlev
- University of California Davis Comprehensive Cancer Center, Sacramento, California
| | - Elizabeth Moore
- University of California Davis Comprehensive Cancer Center, Sacramento, California
| | - Laurel Beckett
- University of California Davis Comprehensive Cancer Center, Sacramento, California
| | - Arta Monjazeb
- University of California Davis Comprehensive Cancer Center, Sacramento, California
| | - Kurt Schalper
- Yale School of Medicine and Yale Cancer Center, New Haven, Connecticut
| | - Emanual Maverakis
- University of California Davis Comprehensive Cancer Center, Sacramento, California
| | - David R. Gandara
- University of California Davis Comprehensive Cancer Center, Sacramento, California
| |
Collapse
|
4
|
Principe N, Phung AL, Stevens KLP, Elaskalani O, Wylie B, Tilsed CM, Sheikh F, Orozco Morales ML, Kidman J, Marcq E, Fisher SA, Nowak AK, McDonnell AM, Lesterhuis WJ, Chee J. Anti-metabolite chemotherapy increases LAG-3 expressing tumor-infiltrating lymphocytes which can be targeted by combination immune checkpoint blockade. J Immunother Cancer 2024; 12:e008568. [PMID: 39343508 PMCID: PMC11440230 DOI: 10.1136/jitc-2023-008568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 09/08/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Antibodies that target immune checkpoints such as cytotoxic T lymphocyte antigen 4 (CTLA-4), programmed cell death protein/ligand 1 (PD-1/PD-L1) are approved for treatment of multiple cancer types. Chemotherapy is often administered with immune checkpoint blockade (ICB) therapies that target CTLA-4 and/or PD-(L)1. ICB targeting other immune checkpoints such as lymphocyte activating gene-3 (LAG-3) has the potential to improve antitumor responses when combined with chemotherapy. Response to anti-PD-1 ICB is dependent on progenitor exhausted CD8+ T cells (TPEX) in the tumor, but it is unclear how chemotherapy alters TPEX proportions and phenotype. METHODS Here we investigated whether sequential chemotherapy altered TPEX frequency and immune checkpoint expression in multiple murine tumor models. RESULTS Two doses of two different anti-metabolite chemotherapies increased tumor infiltrating CD4+, and CD8+ TPEX expressing LAG-3 in multiple mouse models, which was not restricted to tumor antigen specific CD8+ T cells. To determine if LAG-3+tumor infiltrating lymphocytes (TILs) could be targeted to improve tumor control, we administered anti-LAG-3 and anti-PD-1 ICB after two doses of chemotherapy and found combination therapy generated robust antitumor responses compared with each agent alone. Both anti-LAG-3 and anti-PD-1 ICB with chemotherapy were required for the complete tumor regression observed. CONCLUSIONS Changes in immune checkpoint expression on TILs during chemotherapy administration informs selection of ICB therapies to combine with.
Collapse
Affiliation(s)
- Nicola Principe
- Institute for Respiratory Health, National Centre for Asbestos Related Diseases, The University of Western Australia, Perth, Western Australia, Australia
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Amber-Lee Phung
- Institute for Respiratory Health, National Centre for Asbestos Related Diseases, The University of Western Australia, Perth, Western Australia, Australia
| | - Kofi L P Stevens
- Institute for Respiratory Health, National Centre for Asbestos Related Diseases, The University of Western Australia, Perth, Western Australia, Australia
| | - Omar Elaskalani
- Telethon Kids Institute, Nedlands, Western Australia, Australia
| | - Ben Wylie
- Telethon Kids Institute, Nedlands, Western Australia, Australia
| | - Caitlin M Tilsed
- Perelman School of Medicine, Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fezaan Sheikh
- Institute for Respiratory Health, National Centre for Asbestos Related Diseases, The University of Western Australia, Perth, Western Australia, Australia
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - M Lizeth Orozco Morales
- Institute for Respiratory Health, National Centre for Asbestos Related Diseases, The University of Western Australia, Perth, Western Australia, Australia
- Telethon Kids Institute, Nedlands, Western Australia, Australia
| | - Joel Kidman
- Institute for Respiratory Health, National Centre for Asbestos Related Diseases, The University of Western Australia, Perth, Western Australia, Australia
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Elly Marcq
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerpen, Belgium
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Lab of Dendritic Cell Biology and Cancer Immunotherapy, VIB Center for Inflammation Research, Brussels, Belgium
| | - Scott A Fisher
- Institute for Respiratory Health, National Centre for Asbestos Related Diseases, The University of Western Australia, Perth, Western Australia, Australia
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Anna K Nowak
- Institute for Respiratory Health, National Centre for Asbestos Related Diseases, The University of Western Australia, Perth, Western Australia, Australia
- Medical School, The University of Western Australia, Crawley, Western Australia, Australia
| | | | | | - Jonathan Chee
- Institute for Respiratory Health, National Centre for Asbestos Related Diseases, The University of Western Australia, Perth, Western Australia, Australia
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
5
|
Núñez K, Sandow T, Gimenez J, Hibino M, Cohen A, Thevenot P. Yttrium-90 Induces an Effector Memory Response with Neoantigen Clonotype Expansion: Implications for Immunotherapy. CANCER RESEARCH COMMUNICATIONS 2024; 4:2163-2173. [PMID: 39069671 PMCID: PMC11331567 DOI: 10.1158/2767-9764.crc-24-0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/14/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Yttrium-90 (90Y) transarterial radioembolization can safely and effectively treat hepatocellular carcinoma (HCC). Clinical trials combining 90Y with immunotherapy are aimed at improving treatment response rates. The impact of transient 90Y-induced lymphopenia on T-cell homeostasis and functional dynamics is unknown. Paired blood specimens were collected prior to first-cycle 90Y and at imaging follow-up in patients with HCC Barcelona Clinic Liver Cancer stages A-B. Flow cytometry and T-cell receptor (TCR) sequencing were used to monitor changes in T-cell subsets and TCR repertoire following 90Y. Objective response (OR) rates were determined using modified RECIST and defined as either OR or nonobjective response. Time-to-progression (TTP) was defined as progression to Barcelona Clinic Liver Cancer stage C within 6 months following 90Y. 90Y induced shifts in both CD4+ (P = 0.049) and CD8+ (P < 0.001) toward an effector memory T-cell response independent of treatment response rate. Nonresponders to 90Y were characterized by a sustained elevation in both naïve CD4+ cells (P = 0.019) and programmed cell death protein 1 expression in CD8+ cells (P = 0.003). Paired analysis of the TCR repertoire revealed a variable induction of neoantigen clonotypes and expansion of existing clonotypes independent of 90Y response. In patients with an OR, changes in TCR clonality did not influence TTP. However, polyclonal profiles in patients without an OR were associated with shorter TTP (P = 0.005; HR, 10.8) and 75% disease progression rates 6 months following treatment. 90Y induces a population shift from central to effector memory accompanied by neoantigen T-cell responses independent of treatment response rate. Monoclonal shifts in the post-90Y T-cell repertoire had superior overall TTP and improved TTP in patients with a first-cycle nonobjective response. SIGNIFICANCE 90Y can safely treat HCC; however, it causes transient lymphopenia. In this article, 90Y stimulates a peripheral effector memory response independent of initial treatment response. TCR sequencing revealed that polyclonal profiles in patients without an OR to treatment were associated with rapid progression rates 6 months after 90Y.
Collapse
Affiliation(s)
- Kelley Núñez
- Institute of Translational Research, Ochsner Health System, New Orleans, Louisiana.
| | - Tyler Sandow
- Interventional Radiology, Ochsner Health System, New Orleans, Louisiana.
| | - Juan Gimenez
- Interventional Radiology, Ochsner Health System, New Orleans, Louisiana.
| | - Mina Hibino
- Institute of Translational Research, Ochsner Health System, New Orleans, Louisiana.
| | - Ari Cohen
- Multi-Organ Transplant Institute, Ochsner Health System, New Orleans, Louisiana.
- Faculty of Medicine, University of Queensland, Brisbane, Australia.
| | - Paul Thevenot
- Institute of Translational Research, Ochsner Health System, New Orleans, Louisiana.
| |
Collapse
|
6
|
Zemek RM, Anagnostou V, Pires da Silva I, Long GV, Lesterhuis WJ. Exploiting temporal aspects of cancer immunotherapy. Nat Rev Cancer 2024; 24:480-497. [PMID: 38886574 DOI: 10.1038/s41568-024-00699-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 06/20/2024]
Abstract
Many mechanisms underlying an effective immunotherapy-induced antitumour response are transient and critically time dependent. This is equally true for several immunological events in the tumour microenvironment induced by other cancer treatments. Immune checkpoint therapy (ICT) has proven to be very effective in the treatment of some cancers, but unfortunately, with many cancer types, most patients do not experience a benefit. To improve outcomes, a multitude of clinical trials are testing combinations of ICT with various other treatment modalities. Ideally, those combination treatments should take time-dependent immunological events into account. Recent studies have started to map the dynamic cellular and molecular changes that occur during treatment with ICT, in the tumour and systemically. Here, we overlay the dynamic ICT response with the therapeutic response following surgery, radiotherapy, chemotherapy and targeted therapies. We propose that by combining treatments in a time-conscious manner, we may optimally exploit the interactions between the individual therapies.
Collapse
Affiliation(s)
- Rachael M Zemek
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Valsamo Anagnostou
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Inês Pires da Silva
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine & Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Crown Princess Mary Cancer Centre Westmead, Blacktown Hospital, Sydney, New South Wales, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine & Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Royal North Shore and Mater Hospitals, Sydney, New South Wales, Australia
| | - Willem Joost Lesterhuis
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
7
|
Chen J, Hu X, Zhao J, Yin X, Zheng L, Guo J, Chen J, Wang Y, Sheng X, Dong H, Liu X, Zhang X, Liang J, Liu H, Yao J, Liu J, Shen Y, Chen Z, He Z, Wang Y, Chen N, Nie L, Zhang M, Pan X, Chen Y, Liu H, Zhang Y, Tang Y, Zhu S, Zhao J, Dai J, Wang Z, Zeng Y, Wang Z, Huang H, Liu Z, Shen P, Zeng H, Sun G. Memory/Active T-Cell Activation Is Associated with Immunotherapeutic Response in Fumarate Hydratase-Deficient Renal Cell Carcinoma. Clin Cancer Res 2024; 30:2571-2581. [PMID: 38512114 PMCID: PMC11145163 DOI: 10.1158/1078-0432.ccr-23-2760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/22/2023] [Accepted: 03/19/2024] [Indexed: 03/22/2024]
Abstract
PURPOSE Fumarate hydratase-deficient renal cell carcinoma (FH-deficient RCC) is a rare and lethal subtype of kidney cancer. However, the optimal treatments and molecular correlates of benefits for FH-deficient RCC are currently lacking. EXPERIMENTAL DESIGN A total of 91 patients with FH-deficient RCC from 15 medical centers between 2009 and 2022 were enrolled in this study. Genomic and bulk RNA-sequencing (RNA-seq) were performed on 88 and 45 untreated FH-deficient RCCs, respectively. Single-cell RNA-seq was performed to identify biomarkers for treatment response. Main outcomes included disease-free survival (DFS) for localized patients, objective response rate (ORR), progression-free survival (PFS), and overall survival (OS) for patients with metastasis. RESULTS In the localized setting, we found that a cell-cycle progression signature enabled to predict disease progression. In the metastatic setting, first-line immune checkpoint inhibitor plus tyrosine kinase inhibitor (ICI+TKI) combination therapy showed satisfactory safety and was associated with a higher ORR (43.2% vs. 5.6%), apparently superior PFS (median PFS, 17.3 vs. 9.6 months, P = 0.016) and OS (median OS, not reached vs. 25.7 months, P = 0.005) over TKI monotherapy. Bulk and single-cell RNA-seq data revealed an enrichment of memory and effect T cells in responders to ICI plus TKI combination therapy. Furthermore, we identified a signature of memory and effect T cells that was associated with the effectiveness of ICI plus TKI combination therapy. CONCLUSIONS ICI plus TKI combination therapy may represent a promising treatment option for metastatic FH-deficient RCC. A memory/active T-cell-derived signature is associated with the efficacy of ICI+TKI but necessitates further validation.
Collapse
Affiliation(s)
- Junru Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xu Hu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Junjie Zhao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoxue Yin
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Linmao Zheng
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Jingjing Guo
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jianhui Chen
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yongquan Wang
- Department of Urology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xinan Sheng
- Department of Genitourinary Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Haiying Dong
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xiaodong Liu
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xingming Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiayu Liang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Haolin Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Yao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiyan Liu
- Department of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yali Shen
- Department of Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhibin Chen
- Department of Urology, The First People's Hospital of Neijiang, Neijiang, China
| | - Zhengyu He
- Department of Urology, Yaan People's Hospital, Yaan, China
| | - Yaodong Wang
- Department of Urology, Mianyang Central Hospital, Mianyang, China
| | - Ni Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Nie
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Mengni Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiuyi Pan
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuntian Chen
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Haoyang Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yaowen Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yanfeng Tang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Sha Zhu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinge Zhao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jindong Dai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Zilin Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuhao Zeng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhipeng Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Haojie Huang
- Institute of Urological Cancer Research, Zhejiang University School of Medicine, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Zhenhua Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Pengfei Shen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Zeng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Guangxi Sun
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Kidman J, Zemek RM, Sidhom JW, Correa D, Principe N, Sheikh F, Fear VS, Forbes CA, Chopra A, Boon L, Zaitouny A, de Jong E, Holt RA, Jones M, Millward MJ, Lassmann T, Forrest AR, Nowak AK, Watson M, Lake RA, Lesterhuis WJ, Chee J. Immune checkpoint therapy responders display early clonal expansion of tumor infiltrating lymphocytes. Oncoimmunology 2024; 13:2345859. [PMID: 38686178 PMCID: PMC11057660 DOI: 10.1080/2162402x.2024.2345859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/17/2024] [Indexed: 05/02/2024] Open
Abstract
Immune checkpoint therapy (ICT) causes durable tumour responses in a subgroup of patients, but it is not well known how T cell receptor beta (TCRβ) repertoire dynamics contribute to the therapeutic response. Using murine models that exclude variation in host genetics, environmental factors and tumour mutation burden, limiting variation between animals to naturally diverse TCRβ repertoires, we applied TCRseq, single cell RNAseq and flow cytometry to study TCRβ repertoire dynamics in ICT responders and non-responders. Increased oligoclonal expansion of TCRβ clonotypes was observed in responding tumours. Machine learning identified TCRβ CDR3 signatures unique to each tumour model, and signatures associated with ICT response at various timepoints before or during ICT. Clonally expanded CD8+ T cells in responding tumours post ICT displayed effector T cell gene signatures and phenotype. An early burst of clonal expansion during ICT is associated with response, and we report unique dynamics in TCRβ signatures associated with ICT response.
Collapse
MESH Headings
- Animals
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Mice
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/metabolism
- Humans
- Mice, Inbred C57BL
- Female
Collapse
Affiliation(s)
- Joel Kidman
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, University of Western Australia, Perth, Australia
| | | | | | - Debora Correa
- Complex Systems Group, Department of Mathematics and Statistics, University of Western Australia, Perth, Australia
| | - Nicola Principe
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, University of Western Australia, Perth, Australia
| | - Fezaan Sheikh
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, University of Western Australia, Perth, Australia
| | | | | | - Abha Chopra
- Medical Genomics Laboratories (IIID), Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, Australia
| | | | - Ayham Zaitouny
- Complex Systems Group, Department of Mathematics and Statistics, University of Western Australia, Perth, Australia
- Department of Mathematical Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Emma de Jong
- Telethon Kids Institute, Perth, Australia
- Medical School, University of Western Australia, Perth, Australia
| | | | - Matt Jones
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Australia
| | | | | | - Alistair R.R. Forrest
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Australia
| | - Anna K. Nowak
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, University of Western Australia, Perth, Australia
- Medical School, University of Western Australia, Perth, Australia
| | - Mark Watson
- Medical Genomics Laboratories (IIID), Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, Australia
| | - Richard A. Lake
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, University of Western Australia, Perth, Australia
| | - W. Joost Lesterhuis
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, University of Western Australia, Perth, Australia
- Telethon Kids Institute, Perth, Australia
| | - Jonathan Chee
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, University of Western Australia, Perth, Australia
| |
Collapse
|
9
|
Li H, Liu J, Wang S, Xu Y, Tang Q, Ying G. 4-Hydroxyphenylpyruvate Dioxygenase-Like predicts the prognosis and the immunotherapy response of cancers: a pan-cancer analysis. Aging (Albany NY) 2024; 16:4327-4347. [PMID: 38451188 PMCID: PMC10968709 DOI: 10.18632/aging.205591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/01/2023] [Indexed: 03/08/2024]
Abstract
The 4-Hydroxyphenylpyruvate Dioxygenase-Like (HPDL) protein plays a crucial role in safeguarding cells from oxidative stress by orchestrating metabolic reprogramming. New research suggests that HPDL is considerably increased in pancreatic ductal adenocarcinoma, although its impact on cancer immunotherapy is still unclear. Pancancer transcriptional data were obtained from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression datasets. The cBioPortal webtool was utilized to examine genomic changes in different cancer types. The prognostic significance of HPDL in pancancer was evaluated using univariate Cox regression analysis. Extensive utilization of the CTRP and PRISM databases was performed to forecast potential medications that specifically target HPDL in LUAD. In summary, studies were conducted to evaluate the impact of HPDL on the proliferation and movement of LUAD cells using loss-of-function experiments. HPDL is expressed excessively in a wide variety of cancer types, indicating its prognostic and predictive value. Moreover, we emphasized the strong correlation between HPDL and indicators of immune stimulation, infiltration of immune cells, and expression of immunoregulators. The remarkable finding of the HPDL was its capacity to precisely anticipate responses to cancer therapies using anti-PDL1 and anti-PD1 antibodies among individuals. Moreover, HPDL can function as a predictive marker for specific inhibitors in instances of cancer. Suppression of HPDL resulted in reduced growth and movement of LUAD cells. To summarize, our results suggest that HPDL acts as a prospective predictor of outcomes and a positive indication of response to immunotherapy in patients undergoing treatment with immune checkpoint inhibitors (ICIs).
Collapse
Affiliation(s)
- Huimin Li
- Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Junzhi Liu
- Department of Otorhinolaryngology, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Shurui Wang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yue Xu
- Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Qiang Tang
- The Second Affiliated Hospital of Zhejiang University School Medicine, Hang Zhou 310000, China
| | - Guoguang Ying
- Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
10
|
Almonte AA, Cavic G, Carroll CSE, Neeman T, Fahrer AM. Early T Cell Infiltration Correlates with Anti-CTLA4 Treatment Response in Murine Cancer Models. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1858-1867. [PMID: 37930122 DOI: 10.4049/jimmunol.2300040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023]
Abstract
Immune checkpoint inhibitor (ICI) Abs are a revolutionary class of cancer treatment, but only ∼30% of patients receive a lasting benefit from therapy. Preclinical studies using animals from the same genetic backgrounds, challenged with the same cancer models, also show nonuniform responses. Most mouse studies that have evaluated tumor-infiltrating leukocytes after ICI therapy cannot directly correlate their findings with treatment outcomes, because terminal methods were used to acquire immune infiltrate data. In the present study, we used fine-needle aspiration (a nonterminal sampling method) to collect multiple aspirates over several days from s.c. implanted P815, CT26, and 4T1 mouse cancer models treated with ICI Abs. These aspirates were then analyzed with flow cytometry to directly correlate tumor-infiltrating leukocyte populations with treatment success. We found that the P815 and CT26 models respond well to anti-CTLA4 therapies. Among P815-challenged animals, mice that regressed following anti-CTLA4 treatment showed significant increases in CD8+ T cells on days 3, 5, and 7 and in CD4+ T cells on days 5 and 7 and a decrease in macrophages and monocytes on days 3, 5, and 7 after treatment. Similar results were obtained in the CT26 model on day 11 posttreatment. Our study is the first, to our knowledge, to directly correlate early tumor infiltration of T cells with anti-CTLA4 treatment success, thus providing a mechanistic clue toward understanding why alloidentical mice challenged with identical tumors do not respond uniformly to ICI therapies.
Collapse
Affiliation(s)
- Andrew A Almonte
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australia
| | - George Cavic
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australia
| | | | - Teresa Neeman
- Biological Data Science Institute, The Australian National University, Canberra, Australia
| | - Aude M Fahrer
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australia
- Faculty of Science and Technology, University of Canberra, Canberra, Australia
| |
Collapse
|
11
|
Raman V, Howell LM, Bloom SMK, Hall CL, Wetherby VE, Minter LM, Kulkarni AA, Forbes NS. Intracellular Salmonella delivery of an exogenous immunization antigen refocuses CD8 T cells against cancer cells, eliminates pancreatic tumors and forms antitumor immunity. Front Immunol 2023; 14:1228532. [PMID: 37868996 PMCID: PMC10585021 DOI: 10.3389/fimmu.2023.1228532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Immunotherapies have shown great promise, but are not effective for all tumors types and are effective in less than 3% of patients with pancreatic ductal adenocarcinomas (PDAC). To make an immune treatment that is effective for more cancer patients and those with PDAC specifically, we genetically engineered Salmonella to deliver exogenous antigens directly into the cytoplasm of tumor cells. We hypothesized that intracellular delivery of an exogenous immunization antigen would activate antigen-specific CD8 T cells and reduce tumors in immunized mice. Methods To test this hypothesis, we administered intracellular delivering (ID) Salmonella that deliver ovalbumin as a model antigen into tumor-bearing, ovalbumin-vaccinated mice. ID Salmonella delivers antigens by autonomously lysing in cells after the induction of cell invasion. Results We showed that the delivered ovalbumin disperses throughout the cytoplasm of cells in culture and in tumors. This delivery into the cytoplasm is essential for antigen cross-presentation. We showed that co-culture of ovalbumin-recipient cancer cells with ovalbumin-specific CD8 T cells triggered a cytotoxic T cell response. After the adoptive transfer of OT-I CD8 T cells, intracellular delivery of ovalbumin reduced tumor growth and eliminated tumors. This effect was dependent on the presence of the ovalbumin-specific T cells. Following vaccination with the exogenous antigen in mice, intracellular delivery of the antigen cleared 43% of established KPC pancreatic tumors, increased survival, and prevented tumor re-implantation. Discussion This response in the immunosuppressive KPC model demonstrates the potential to treat tumors that do not respond to checkpoint inhibitors, and the response to re-challenge indicates that new immunity was established against intrinsic tumor antigens. In the clinic, ID Salmonella could be used to deliver a protein antigen from a childhood immunization to refocus pre-existing T cell immunity against tumors. As an off-the-shelf immunotherapy, this bacterial system has the potential to be effective in a broad range of cancer patients.
Collapse
Affiliation(s)
- Vishnu Raman
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, United States
- Ernest Pharmaceuticals, LLC, Hadley, MA, United States
| | - Lars M. Howell
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, United States
| | - Shoshana M. K. Bloom
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, United States
| | - Christopher L. Hall
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, United States
- Ernest Pharmaceuticals, LLC, Hadley, MA, United States
| | | | - Lisa M. Minter
- Molecular and Cell Biology Program, University of Massachusetts, Amherst, MA, United States
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
- Institute for Applied Life Science, University of Massachusetts, Amherst, MA, United States
| | - Ashish A. Kulkarni
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, United States
- Institute for Applied Life Science, University of Massachusetts, Amherst, MA, United States
| | - Neil S. Forbes
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, United States
- Molecular and Cell Biology Program, University of Massachusetts, Amherst, MA, United States
- Institute for Applied Life Science, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
12
|
Wang MM, Coupland SE, Aittokallio T, Figueiredo CR. Resistance to immune checkpoint therapies by tumour-induced T-cell desertification and exclusion: key mechanisms, prognostication and new therapeutic opportunities. Br J Cancer 2023; 129:1212-1224. [PMID: 37454231 PMCID: PMC10575907 DOI: 10.1038/s41416-023-02361-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023] Open
Abstract
Immune checkpoint therapies (ICT) can reinvigorate the effector functions of anti-tumour T cells, improving cancer patient outcomes. Anti-tumour T cells are initially formed during their first contact (priming) with tumour antigens by antigen-presenting cells (APCs). Unfortunately, many patients are refractory to ICT because their tumours are considered to be 'cold' tumours-i.e., they do not allow the generation of T cells (so-called 'desert' tumours) or the infiltration of existing anti-tumour T cells (T-cell-excluded tumours). Desert tumours disturb antigen processing and priming of T cells by targeting APCs with suppressive tumour factors derived from their genetic instabilities. In contrast, T-cell-excluded tumours are characterised by blocking effective anti-tumour T lymphocytes infiltrating cancer masses by obstacles, such as fibrosis and tumour-cell-induced immunosuppression. This review delves into critical mechanisms by which cancer cells induce T-cell 'desertification' and 'exclusion' in ICT refractory tumours. Filling the gaps in our knowledge regarding these pro-tumoral mechanisms will aid researchers in developing novel class immunotherapies that aim at restoring T-cell generation with more efficient priming by APCs and leukocyte tumour trafficking. Such developments are expected to unleash the clinical benefit of ICT in refractory patients.
Collapse
Affiliation(s)
- Mona Meng Wang
- Medical Immune Oncology Research Group (MIORG), Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
- Singapore National Eye Centre and Singapore Eye Research Institute, Singapore, Singapore
| | - Sarah E Coupland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Liverpool Ocular Oncology Research Group (LOORG), Institute of Systems Molecular and Integrative Biology, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Tero Aittokallio
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Institute for Cancer Research, Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway
- Oslo Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Carlos R Figueiredo
- Medical Immune Oncology Research Group (MIORG), Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
- Turku Bioscience Centre, University of Turku, Turku, Finland.
| |
Collapse
|
13
|
Khodadadi H, Salles ÉL, Alptekin A, Mehrabian D, Rutkowski M, Arbab AS, Yeudall WA, Yu JC, Morgan JC, Hess DC, Vaibhav K, Dhandapani KM, Baban B. Inhalant Cannabidiol Inhibits Glioblastoma Progression Through Regulation of Tumor Microenvironment. Cannabis Cannabinoid Res 2023; 8:824-834. [PMID: 34918964 PMCID: PMC10589502 DOI: 10.1089/can.2021.0098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Introduction: Glioblastoma (GBM) is the most common invasive brain tumor composed of diverse cell types with poor prognosis. The highly complex tumor microenvironment (TME) and its interaction with tumor cells play important roles in the development, progression, and durability of GBM. Angiogenic and immune factors are two major components of TME of GBM; their interplay is a major determinant of tumor vascularization, immune profile, as well as immune unresponsiveness of GBM. Given the ineffectiveness of current standard therapies (surgery, radiotherapy, and concomitant chemotherapy) in managing patients with GBM, it is necessary to develop new ways of treating these lethal brain tumors. Targeting TME, altering tumor ecosystem may be a viable therapeutic strategy with beneficial effects for patients in their fight against GBM. Materials and Methods: Given the potential therapeutic effects of cannabidiol (CBD) in a wide spectrum of diseases, including malignancies, we tested, for the first time, whether inhalant CBD can inhibit GBM tumor growth using a well-established orthotopic murine model. Optical imaging, histology, immunohistochemistry, and flow cytometry were employed to describe the outcomes such as tumor progression, cancer cell signaling pathways, and the TME. Results: Our findings showed that inhalation of CBD was able to not only limit the tumor growth but also to alter the dynamics of TME by repressing P-selectin, apelin, and interleukin (IL)-8, as well as blocking a key immune checkpoint-indoleamine 2,3-dioxygenase (IDO). In addition, CBD enhanced the cluster of differentiation (CD) 103 expression, indicating improved antigen presentation, promoted CD8 immune responses, and reduced innate Lymphoid Cells within the tumor. Conclusion: Overall, our novel findings support the possible therapeutic role of inhaled CBD as an effective, relatively safe, and easy to administer treatment adjunct for GBM with significant impacts on the cellular and molecular signaling of TME, warranting further research.
Collapse
Affiliation(s)
- Hesam Khodadadi
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
- Center for Excellence in Research, Scholarship and Innovation, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Évila Lopes Salles
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
- Center for Excellence in Research, Scholarship and Innovation, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Ahmet Alptekin
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Daniel Mehrabian
- Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Martin Rutkowski
- Department of Neurosurgery and Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Ali S. Arbab
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - W. Andrew Yeudall
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
- Center for Excellence in Research, Scholarship and Innovation, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Jack C. Yu
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - John C. Morgan
- Parkinson's Foundation Center of Excellence, Movement Disorders, Program, Department of Neurology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - David C. Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Kumar Vaibhav
- Department of Neurosurgery and Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Krishnan M. Dhandapani
- Department of Neurosurgery and Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
- Center for Excellence in Research, Scholarship and Innovation, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
14
|
Wang X, Liu L, Yue T, Sun Z, Bae J, Tseng KF, Zhang A, Qiao J, Fu YX. Targeting tumor microenvironment with antibody-guided IL-2 pro-cytokine promotes and rejuvenates dysfunctional CD8 + T cells. Signal Transduct Target Ther 2023; 8:268. [PMID: 37433760 DOI: 10.1038/s41392-023-01463-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/25/2023] [Accepted: 04/19/2023] [Indexed: 07/13/2023] Open
Affiliation(s)
- Xue Wang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Longchao Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Tao Yue
- Aetio Biotherapy, Dallas, TX, 75247, USA
| | - Zhichen Sun
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Joonbeom Bae
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | | | - Anli Zhang
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jian Qiao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA.
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA.
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
15
|
Liu L, Liu J, Li P, Luo J, Qin R, Peng Q, Li B, Wei X, Wang T, Shi H, Wang MD, Li C, Fang W, Chen W, Xu X, Yang T, Yin W, Zeng X. Single-cell analysis reveals HBV-specific PD-1 +CD8 + TRM cells in tumor borders are associated with HBV-related hepatic damage and fibrosis in HCC patients. J Exp Clin Cancer Res 2023; 42:152. [PMID: 37353792 DOI: 10.1186/s13046-023-02710-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/12/2023] [Indexed: 06/25/2023] Open
Abstract
Immune checkpoint blockade (ICB) treatment of hepatocellular carcinoma (HCC) patients with hepatitis B virus (HBV) infection may activate viral-specific T cells to attack HBV infected hepatocytes and thus induce immune-related liver injury. Therefore, it is important to deeply understand the impacts of HBV infection on HCC immune microenvironment in order to better design effective immunotherapies for HBV+ (HBV infected) HCC patients. Here, We performed cytometry by time-of-flight (CyTOF) analyses to characterize the distinct immune compositions of HCC tumors, tumor borders, and their associations with HCC/HBV related clinical characteristics. We identified 31 distinct immune clusters and found significant associations between immune signatures with clinicopathological features of HCC. We further revealed the HBV infection had more effects on shaping immune compositions in tumor borders than in tumors, with the significant enrichment of HBV-specific PD-1+CD8+ tissue-resident memory T (TRM) cells in tumor borders of HBV+ patients. We confirmed this subset with a more exhausted phenotype and respond more actively under anti-PD-L1 treatment, suggesting its involvement in immune-related liver injury induced by ICB treatment to HBV+ HCC patients. Our study shows it may be necessary to consider antiviral prophylaxis for HBV+ HCC patients receiving ICB treatment.
Collapse
Affiliation(s)
- Lulu Liu
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Junwei Liu
- Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310058, China
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
- Present Address: Guangzhou Laboratory, Guangzhou, 510005, Guangdong, China
| | - Pan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Jijun Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Department of Thoracic Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, 310016, China
| | - Rui Qin
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiao Peng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Bin Li
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Tian Wang
- Department of Biological Testing, Zhejiang Puluoting Health Technology Co., Ltd, Hangzhou, 311121, China
| | - Hongyu Shi
- Department of Biological Testing, Zhejiang Puluoting Health Technology Co., Ltd, Hangzhou, 311121, China
| | - Ming-Da Wang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), 225 Changhai Rd, Yangpu Qu, Shanghai, 200433, China
| | - Chao Li
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), 225 Changhai Rd, Yangpu Qu, Shanghai, 200433, China
| | - Weijia Fang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Wei Chen
- Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310058, China
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China.
- Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Tian Yang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), 225 Changhai Rd, Yangpu Qu, Shanghai, 200433, China.
| | - Weiwei Yin
- Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310058, China.
- Department of Thoracic Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, 310016, China.
| | - Xun Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
16
|
Khalil R, Green RJ, Sivakumar K, Varandani P, Bharadwaj S, Mohapatra SS, Mohapatra S. Withaferin A Increases the Effectiveness of Immune Checkpoint Blocker for the Treatment of Non-Small Cell Lung Cancer. Cancers (Basel) 2023; 15:3089. [PMID: 37370701 PMCID: PMC10295988 DOI: 10.3390/cancers15123089] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Treatment of late-stage lung cancers remains challenging with a five-year survival rate of 8%. Immune checkpoint blockers (ICBs) revolutionized the treatment of non-small cell lung cancer (NSCLC) by reactivating anti-tumor immunity. Despite achieving durable responses, ICBs are effective in only 20% of patients due to immune resistance. Therefore, synergistic combinatorial approaches that overcome immune resistance are currently under investigation. Herein, we studied the immunomodulatory role of Withaferin A (WFA)-a herbal compound-and its effectiveness in combination with an ICB for the treatment of NSCLC. Our in vitro results show that WFA induces immunogenic cell death (ICD) in NSCLC cell lines and increases expression of the programmed death ligand-1 (PD-L1). The administration of N-acetyl cysteine (NAC), a reactive oxygen species (ROS) scavenger, abrogated WFA-induced ICD and PD-L1 upregulation, suggesting the involvement of ROS in this process. Further, we found that a combination of WFA and α-PD-L1 significantly reduced tumor growth in an immunocompetent tumor model. Our results showed that WFA increases CD-8 T-cells and reduces immunosuppressive cells infiltrating the tumor microenvironment. Administration of NAC partially inhibited the anti-tumor response of the combination regimen. In conclusion, our results demonstrate that WFA sensitizes NSCLC to α-PD-L1 in part via activation of ROS.
Collapse
Affiliation(s)
- Roukiah Khalil
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Ryan J. Green
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Kavya Sivakumar
- Taneja School of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Payal Varandani
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Srinivas Bharadwaj
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Shyam S. Mohapatra
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Taneja School of Pharmacy, University of South Florida, Tampa, FL 33612, USA
- Department of Veterans Affairs, James A. Haley Veterans Hospital, Tampa, FL 33612, USA
| | - Subhra Mohapatra
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Department of Veterans Affairs, James A. Haley Veterans Hospital, Tampa, FL 33612, USA
| |
Collapse
|
17
|
Ito M, Iwama S, Sugiyama D, Yasuda Y, Okuji T, Kobayashi T, Zhou X, Yamagami A, Onoue T, Miyata T, Sugiyama M, Hagiwara D, Suga H, Banno R, Nishikawa H, Arima H. Anti-tumor effects of anti-programmed cell death-1 antibody treatment are attenuated in streptozotocin-induced diabetic mice. Sci Rep 2023; 13:5939. [PMID: 37046033 PMCID: PMC10097709 DOI: 10.1038/s41598-023-33049-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/06/2023] [Indexed: 04/14/2023] Open
Abstract
Hyperglycemia impairs immune response; however, it remains unknown whether the anti-tumor effects of anti-programmed cell death-1 antibody (PD-1-Ab) treatment are changed in hyperglycemic conditions. We analyzed the effect of PD-1-Ab on tumor growth in streptozotocin-induced diabetic mice (STZ-mice) subcutaneously inoculated with MC38 (a colon carcinoma cell line). Furthermore, we assessed the expression of chemokines by polymerase chain reaction (PCR) array in tumor-draining lymph nodes (dLNs) of these mice and MC38 cells cultured in different glucose concentrations. The suppressive effect of PD-1-Ab on tumor growth was attenuated. This was accompanied by fewer tumor-infiltrating CD8+ T cells, and STZ-mice had fewer tumor-infiltrating CD11c+ dendritic cells (DCs) than normoglycemic mice. mRNA expression levels of CXCL9, a chemokine recruiting CD8+ T cells, were lower in dLNs of STZ-mice than in normoglycemic mice after PD-1-Ab treatment, and its protein was expressed in DCs. In MC38 cells cultured with 25 mM glucose, mRNA expression of CCL7, a chemokine recruiting DCs, was decreased compared to cells cultured with 5 mM glucose. These results suggest that the STZ-induced hyperglycemia impairs the effect of PD-1-Ab treatment on MC38 tumor growth, and is accompanied by reduced infiltration of DCs and CD8+ T cells and decreased expression of CCL7 and CXCL9.
Collapse
Affiliation(s)
- Masaaki Ito
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Shintaro Iwama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
| | - Daisuke Sugiyama
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Yoshinori Yasuda
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Takayuki Okuji
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Tomoko Kobayashi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Xin Zhou
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Ayana Yamagami
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Takeshi Onoue
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Takashi Miyata
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Mariko Sugiyama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Daisuke Hagiwara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Ryoichi Banno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, 464-8601, Japan
| | - Hiroyoshi Nishikawa
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo, 104-0045, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| |
Collapse
|
18
|
30-color full spectrum flow cytometry panel for deep immunophenotyping of T cell subsets in murine tumor tissue. J Immunol Methods 2023; 516:113459. [PMID: 36931458 DOI: 10.1016/j.jim.2023.113459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
This 30-color full spectrum flow cytometry panel was developed and optimized for in-depth analysis T cells immunophenotype in tumor microenvironment and peripheral lymphoid organs. The panel presented here first identify the main cell subsets including myeloid cells, B cells, NKT cells, γδ T cells, CD4+ T cells and CD8+ T cells. For CD4+ T cells or CD8+ T cells, the panel includes markers for further characterization by including a selection of activation status(CD44, CD62L, CD69, Ki67, CD127, KLRG1 and CXCR3), costimulatory/co-inhibitory molecules (ICOS, OX-40, PD-1, LAG3, TIM-3, CTLA-4 and TIGIT), pro-inflammatory/anti-inflammatory cytokines (IFN-γ, TNF-α and IL-10) and cytotoxic molecules (Perforin, Granzymes B and CD107a). The panel has been tested on the tumor infiltrating T cells and corresponding spleen T cells in B16-F10 murine melanoma models.
Collapse
|
19
|
Vendetti FP, Pandya P, Clump DA, Schamus-Haynes S, Tavakoli M, diMayorca M, Islam NM, Chang J, Delgoffe GM, Beumer JH, Bakkenist CJ. The schedule of ATR inhibitor AZD6738 can potentiate or abolish antitumor immune responses to radiotherapy. JCI Insight 2023; 8:e165615. [PMID: 36810257 PMCID: PMC9977511 DOI: 10.1172/jci.insight.165615] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/05/2023] [Indexed: 02/23/2023] Open
Abstract
Inhibitors of the DNA damage signaling kinase ATR increase tumor cell killing by chemotherapies that target DNA replication forks but also kill rapidly proliferating immune cells including activated T cells. Nevertheless, ATR inhibitor (ATRi) and radiotherapy (RT) can be combined to generate CD8+ T cell-dependent antitumor responses in mouse models. To determine the optimal schedule of ATRi and RT, we determined the impact of short-course versus prolonged daily treatment with AZD6738 (ATRi) on responses to RT (days 1-2). Short-course ATRi (days 1-3) plus RT caused expansion of tumor antigen-specific, effector CD8+ T cells in the tumor-draining lymph node (DLN) at 1 week after RT. This was preceded by acute decreases in proliferating tumor-infiltrating and peripheral T cells and a rapid proliferative rebound after ATRi cessation, increased inflammatory signaling (IFN-β, chemokines, particularly CXCL10) in tumors, and an accumulation of inflammatory cells in the DLN. In contrast, prolonged ATRi (days 1-9) prevented the expansion of tumor antigen-specific, effector CD8+ T cells in the DLN, and entirely abolished the therapeutic benefit of short-course ATRi with RT and anti-PD-L1. Our data argue that ATRi cessation is essential to allow CD8+ T cell responses to both RT and immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Frank P. Vendetti
- Department of Radiation Oncology, UPMC Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Pinakin Pandya
- Department of Radiation Oncology, UPMC Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David A. Clump
- Department of Radiation Oncology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Sandra Schamus-Haynes
- Department of Radiation Oncology, UPMC Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Meysam Tavakoli
- Department of Radiation Oncology, UPMC Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Maria diMayorca
- Department of Radiation Oncology, UPMC Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Naveed M. Islam
- Department of Radiation Oncology, UPMC Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jina Chang
- Department of Radiation Oncology, UPMC Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Greg M. Delgoffe
- Department of Immunology and
- Department of Medicine, UPMC Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jan H. Beumer
- Department of Medicine, UPMC Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Hematology-Oncology, Department of Medicine, and
| | - Christopher J. Bakkenist
- Department of Radiation Oncology, UPMC Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Medicine, UPMC Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
20
|
Choi H, Kim Y, Jung YW. The Function of Memory CD8+ T Cells in Immunotherapy for Human Diseases. Immune Netw 2023; 23:e10. [PMID: 36911798 PMCID: PMC9995995 DOI: 10.4110/in.2023.23.e10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 03/07/2023] Open
Abstract
Memory T (Tm) cells protect against Ags that they have previously contacted with a fast and robust response. Therefore, developing long-lived Tm cells is a prime goal for many vaccines and therapies to treat human diseases. The remarkable characteristics of Tm cells have led scientists and clinicians to devise methods to make Tm cells more useful. Recently, Tm cells have been highlighted for their role in coronavirus disease 2019 vaccines during the ongoing global pandemic. The importance of Tm cells in cancer has been emerging. However, the precise characteristics and functions of Tm cells in these diseases are not completely understood. In this review, we summarize the known characteristics of Tm cells and their implications in the development of vaccines and immunotherapies for human diseases. In addition, we propose to exploit the beneficial characteristics of Tm cells to develop strategies for effective vaccines and overcome the obstacles of immunotherapy.
Collapse
Affiliation(s)
- Hanbyeul Choi
- Department of Pharmacy, Korea University, Sejong 30019, Korea
| | - Yeaji Kim
- Department of Pharmacy, Korea University, Sejong 30019, Korea
| | - Yong Woo Jung
- Department of Pharmacy, Korea University, Sejong 30019, Korea
| |
Collapse
|
21
|
Ngan Ngo TK, Kuo CH, Tu TY. Recent advances in microfluidic-based cancer immunotherapy-on-a-chip strategies. BIOMICROFLUIDICS 2023; 17:011501. [PMID: 36647540 PMCID: PMC9840534 DOI: 10.1063/5.0108792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Despite several extraordinary improvements in cancer immunotherapy, its therapeutic effectiveness against many distinct cancer types remains mostly limited and requires further study. Different microfluidic-based cancer immunotherapy-on-a-chip (ITOC) systems have been developed to help researchers replicate the tumor microenvironment and immune system. Numerous microfluidic platforms can potentially be used to perform various on-chip activities related to early clinical cancer immunotherapy processes, such as improving immune checkpoint blockade therapy, studying immune cell dynamics, evaluating cytotoxicity, and creating vaccines or organoid models from patient samples. In this review, we summarize the most recent advancements in the development of various microfluidic-based ITOC devices for cancer treatment niches and present future perspectives on microfluidic devices for immunotherapy research.
Collapse
Affiliation(s)
- Thi Kim Ngan Ngo
- Biomedical Engineering Department, College of Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Cheng-Hsiang Kuo
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ting-Yuan Tu
- Author to whom correspondence should be addressed:
| |
Collapse
|
22
|
Franks SE, Fabian KP, Santiago-Sánchez G, Wolfson B, Hodge JW. Immune targeting of three independent suppressive pathways (TIGIT, PD-L1, TGFβ) provides significant antitumor efficacy in immune checkpoint resistant models. Oncoimmunology 2022; 11:2124666. [PMID: 36211806 PMCID: PMC9542338 DOI: 10.1080/2162402x.2022.2124666] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- S. Elizabeth Franks
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kellsye P. Fabian
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ginette Santiago-Sánchez
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Wolfson
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James W. Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
23
|
CD4 + T cells drive an inflammatory, TNF-α/IFN-rich tumor microenvironment responsive to chemotherapy. Cell Rep 2022; 41:111874. [PMID: 36577370 DOI: 10.1016/j.celrep.2022.111874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 08/08/2022] [Accepted: 12/02/2022] [Indexed: 12/28/2022] Open
Abstract
While chemotherapy remains the first-line treatment for many cancers, it is still unclear what distinguishes responders from non-responders. Here, we characterize the chemotherapy-responsive tumor microenvironment in mice, using RNA sequencing on tumors before and after cyclophosphamide, and compare the gene expression profiles of responders with progressors. Responsive tumors have an inflammatory and highly immune infiltrated pre-treatment tumor microenvironment characterized by the enrichment of pathways associated with CD4+ T cells, interferons (IFNs), and tumor necrosis factor alpha (TNF-α). The same gene expression profile is associated with response to cyclophosphamide-based chemotherapy in patients with breast cancer. Finally, we demonstrate that tumors can be sensitized to cyclophosphamide and 5-FU chemotherapy by pre-treatment with recombinant TNF-α, IFNγ, and poly(I:C). Thus, a CD4+ T cell-inflamed pre-treatment tumor microenvironment is necessary for response to chemotherapy, and this state can be therapeutically attained by targeted immunotherapy.
Collapse
|
24
|
Imaging Effector Memory T-Cells Predicts Response to PD1-Chemotherapy Combinations in Colon Cancer. Biomedicines 2022; 10:biomedicines10102343. [PMID: 36289605 PMCID: PMC9598730 DOI: 10.3390/biomedicines10102343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/14/2022] [Accepted: 09/18/2022] [Indexed: 11/16/2022] Open
Abstract
Often, patients fail to respond to immune checkpoint inhibitor (ICI) treatment despite favourable biomarker status. Numerous chemotherapeutic agents have been shown to promote tumour immunogenicity when used in conjunction with ICIs; however, little is known about whether such combination therapies lead to a lasting immune response. Given the potential toxicity of ICI–chemotherapy combinations, identification of biomarkers that accurately predict how individuals respond to specific treatment combinations and whether these responses will be long lasting is of paramount importance. In this study, we explored [18F]AlF-NOTA-KCNA3P, a peptide radiopharmaceutical that targets the Kv1.3 potassium channel overexpressed on T-effector memory (TEM) cells as a PET imaging biomarker for lasting immunological memory response. The first-line colon cancer chemotherapies oxaliplatin and 5-fluorouracil were assessed in a syngeneic colon cancer model, either as monotherapies or in combination with PD1, comparing radiopharmaceutical uptake to memory-associated immune cells in the tumour. [18F]AlF-NOTA-KCNA3P reliably separated tumours with immunological memory responses from non-responding tumours and could be used to measure Kv1.3-expressing TEM cells responsible for durable immunological memory response to combination therapy in vivo.
Collapse
|
25
|
Fennell DA, Dulloo S, Harber J. Immunotherapy approaches for malignant pleural mesothelioma. Nat Rev Clin Oncol 2022; 19:573-584. [PMID: 35778611 DOI: 10.1038/s41571-022-00649-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2022] [Indexed: 12/27/2022]
Abstract
Over the past decade, immune-checkpoint inhibitors (ICIs) have revolutionized the treatment of cancer. In mesothelioma, a rare cancer with a dismal prognosis generally caused by exposure to asbestos, treatment with single or dual ICIs results in robust improvements in overall survival over previous standard-of-care therapies, both in the first-line and relapsed disease settings. Predictive biological features that underpin response to ICIs remain poorly understood; however, insights into the immune microenvironment and genomic landscape of mesothelioma as well as into their association with response or acquired resistance to ICIs are emerging. Several studies of rational combinations involving ICIs with either another ICI or a different agent are ongoing, with emerging evidence of synergistic antitumour activity. Non-ICI-based immunotherapies, such as peptide-based vaccines and mesothelin-targeted chimeric antigen receptor T cells, have demonstrated promising efficacy. Moreover, results from pivotal trials of dendritic cell vaccines and viral cytokine delivery, among others, are eagerly awaited. In this Review, we comprehensively summarize the key steps in the development of immunotherapies for mesothelioma, focusing on strategies that have led to randomized clinical evaluation and emerging predictors of response. We then forecast the future treatment opportunities that could arise from ongoing research.
Collapse
Affiliation(s)
- Dean A Fennell
- Mesothelioma Research Programme, Centre for Cancer Research, University of Leicester & University of Leicester Hospitals NHS Trust, Leicester, UK.
| | - Sean Dulloo
- Mesothelioma Research Programme, Centre for Cancer Research, University of Leicester & University of Leicester Hospitals NHS Trust, Leicester, UK
| | - James Harber
- Mesothelioma Research Programme, Centre for Cancer Research, University of Leicester & University of Leicester Hospitals NHS Trust, Leicester, UK
- Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
26
|
Su X, Sun T, Li M, Xia Y, Li M, Wang D, Lu F, Ye J, Ji C. Lkb1 aggravates diffuse large B-cell lymphoma by promoting the function of Treg cells and immune escape. Lab Invest 2022; 20:378. [PMID: 35986288 PMCID: PMC9392310 DOI: 10.1186/s12967-022-03588-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/12/2022] [Indexed: 12/03/2022]
Abstract
Background Regulatory T cells (Tregs) induce immune responses and may contribute to immune escape in tumors. Accumulation of Tregs in tumors represents a critical barrier to anti-tumor immunity and immunotherapy. However, conflicting results describing the role of Tregs in lymphoma warrant further investigation. The precise features and mechanisms underlying the alteration in Tregs in diffuse large B-cell lymphoma (DLBCL) are not well understood yet. In this study, we analyzed the mechanism underlying the observed alterations in Tregs in DLBCL and examined the effect of Lkb1 expression on the immunosuppressive function of human Tregs. Methods Flow cytometry and immunofluorescence were used to analyze the proportion of Tregs and effector Tregs in the peripheral blood and lymph nodes of patients with DLBCL and control group. In vitro culture assays were used to analyze the immunosuppressive function of Tregs in the two groups. Transcriptome sequencing was performed to analyze the differentially expressed genes in the two groups, and the transcription level and protein expression of Lkb1 in the two groups were detected using RT-PCR and WES microprotein technology. Lentiviral vectors were constructed to explore the functional changes of Tregs with stable upregulation and downregulation of Lkb1. Finally, a humanized murine lymphoma model was established to study the function of Lkb1 in Tregs in the pathogenesis of DLBCL. Results The number of Tregs was found to be dramatically increased in peripheral blood and tumor tissue in DLBCL patients compared with that in healthy controls, and decreased after treatment. Tregs from DLBCL patients exhibited multiple enhanced functions, including increased inhibition of CD8+cytotoxic T cells (CTL) against tumor cells, enhanced suppression of CD8+CTL secretion of granular enzyme, and suppression of CD8+CTL degranulation. Lkb1 was found to be upregulated in Tregs of DLBCL patients. Furthermore, Lkb1 contributes to Treg immunosuppressive function in DLBCL by regulating the mevalonate pathway. Finally, deletion of Lkb1 in Tregs suppressed tumor growth and promoted anti-tumor immunity in a DLBCL murine model. Conclusions These findings confirmed that Lkb1-regulated Tregs are critical for immune escape in DLBCL, which emphasizes that Lkb1 is a potential target for the immunotherapy of DLBCL. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03588-0.
Collapse
|
27
|
The Double Engines and Single Checkpoint Theory of Endometriosis. Biomedicines 2022; 10:biomedicines10061403. [PMID: 35740424 PMCID: PMC9219825 DOI: 10.3390/biomedicines10061403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/27/2022] [Accepted: 06/07/2022] [Indexed: 12/12/2022] Open
Abstract
Endometriosis is a chronic disease characterized by the ectopic localization of the endometrial tissue in the peritoneal cavity. Consequently, it causes local pathological changes and systemic symptoms, affecting at least one in every ten women. This disease is difficult to diagnose early, it is prone to dissemination, is difficult to eradicate, tends to recur, and is regarded as “a cancer of no kill”. Indeed, the development of endometriosis closely resembles that of cancer in the way of mutagenesis, pelvic spreading, and immunological adaptation. While retrograde menstruation has been regarded as the primary cause of endometriosis, the role of ovulation and menstrual stimuli in the development of endometriosis has long been overlooked. The development of ovarian and peritoneal endometrioses, similar to the development of high-grade serous carcinoma in the fallopian tube fimbriae with intraperitoneal metastasis, depends highly on the carcinogens released during ovulation. Moreover, endometriosis carries an extremely hypermutated genome, which is non-inferior to the ultra-mutated endometrial cancer. The hypermutation would lead to an overproduction of new proteins or neoantigens. Because of this, the developing endometriosis may have to turn on the PD-1/PDL-1 “self-tolerance” checkpoint to evade immune surveillance, leaving an Achilles tendon for an immune checkpoint blockade. In this review, we present the double engines and single checkpoint theory of the genesis of endometriosis, provide the current pieces of evidence supporting the hypothesis, and discuss the new directions of prevention and treatment.
Collapse
|
28
|
Enhanced systemic antilymphoma immune response by photothermal therapy with CpG deoxynucleotide coated nanoparticles. Blood Adv 2022; 6:4581-4592. [PMID: 35687489 DOI: 10.1182/bloodadvances.2022008040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/02/2022] [Indexed: 11/20/2022] Open
Abstract
We investigated a novel mechanism of in situ vaccination in a lymphoma model. Radiation (RT) can induce abscopal responses in pre-clinical lymphoma models but has not translated to clinical efficacy. We hypothesized that immune stimulation with CpG deoxynucleotides could enhance abscopal effects induced by radiation or by photothermal therapy (PTT), which has been shown to have an immune stimulatory effect in solid tumors but has not been studied in lymphoma. Here, we designed a branched gold nanoparticle (BNP) platform to carry CpGs while maintaining PTT function and compared the immunologic profile of the tumor microenvironment after PTT or RT in a dual flank lymphoma model. One flank was treated with CpG with RT or CpG with PTT and the other tumor was left untreated. We found that the CpG/PTT groups had significant reduction in growth in both treated (primary) and untreated (secondary) tumors suggesting an improved abscopal response, with a concomitant increase in CD8/CD4 ratio and cytotoxic T cell/regulatory T cell ratio in both the primary and secondary tumor compared with CpG/RT. Dendritic cells in the primary and secondary draining lymph nodes had increased maturation markers in the CpG/PTT group, and the effector memory T cells (both CD4 and CD8) in the secondary tumor and the spleen were increased, suggesting a systemic vaccination effect. These data suggest that in a lymphoma model, PTT using a CpG nanoparticle platform resulted in enhanced in situ vaccination and abscopal response compared with RT.
Collapse
|
29
|
Tu Z, Peng J, Long X, Li J, Wu L, Huang K, Zhu X. Sperm Autoantigenic Protein 17 Predicts the Prognosis and the Immunotherapy Response of Cancers: A Pan-Cancer Analysis. Front Immunol 2022; 13:844736. [PMID: 35592314 PMCID: PMC9110779 DOI: 10.3389/fimmu.2022.844736] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background Sperm autoantigen protein 17 (SPA17) is a highly conserved mammalian protein that participates in the acrosome reaction during fertilization and is a recently reported member of the cancer-testicular antigen (CTA) family. It has been reported that the SPA17 expression is limited in adult somatic tissues and re-expressed in tumor tissues. Recently, studies have found that SPA17 regulates the progression of various cancers, but its role in cancer immunotherapy is not clear. Methods The pan-cancer and normal tissue transcriptional data were acquired from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) datasets. We explored the SPA17 pan-cancer genomic alteration analysis in the cBioPortal webtool. The Human Protein Atlas (HPA) and ComPPI websites were used to mine the SPA17 protein information. We performed a western blotting assay to validate the upregulated SPA17 expression in clinical glioblastoma (GBM) samples. The univariate Cox regression and Kaplan-Meier method were used to assess the prognostic role of SPA17 in pan-cancer. Gene Set Enrichment Analysis (GSEA) was used to search the associated cancer hallmarks with SPA17 expression in each cancer type. TIMER2.0 was the main platform to investigate the immune cell infiltrations related to SPA17 in pan-cancer. The associations between SPA17 and immunotherapy biomarkers were performed by Spearman correlation analysis. The drug sensitivity information from the Connectivity Map (CMap) dataset was downloaded to perform SAP17-specific inhibitor sensitivity analysis. Findings SPA17 was aberrantly expressed in most cancer types and exhibited prognosis predictive ability in various cancers. In addition, our results also show that SPA17 was significantly correlated with immune-activated hallmarks (including pathways and biological processes), immune cell infiltrations, and immunoregulator expressions. The most exciting finding was that SPA17 could significantly predict anti-PDL1 and anti-PD1 therapy responses in cancer patients. Finally, specific inhibitors, like irinotecan and puromycin, which correlate with SPA17 expression in different cancer types, were also screened using Connectivity Map (CMap). Conclusions Our results reveal that SPA17 was abnormally expressed in cancer tissues, and this expression pattern could be associated with immune cell infiltrations in tumor microenvironments. Clinically, SPA17 not only acted as a potent prognostic factor to predict the clinical outcomes of cancer patients but was also a promising immunotherapy predictive biomarker for cancer patients treated with immune-checkpoint inhibitors (ICIs).
Collapse
Affiliation(s)
- Zewei Tu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China.,Institute of Neuroscience, Nanchang University, Nanchang, China.,Jiangxi Health Commission (JXHC) Key Laboratory of Neurological Medicine, Nanchang, China
| | - Jie Peng
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Xiaoyan Long
- East China Institute of Digital Medical Engineering, Shangrao, China
| | - Jingying Li
- Department of Comprehensive Intensive Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lei Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China.,Institute of Neuroscience, Nanchang University, Nanchang, China.,Jiangxi Health Commission (JXHC) Key Laboratory of Neurological Medicine, Nanchang, China
| | - Kai Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China.,Institute of Neuroscience, Nanchang University, Nanchang, China.,Jiangxi Health Commission (JXHC) Key Laboratory of Neurological Medicine, Nanchang, China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China.,Institute of Neuroscience, Nanchang University, Nanchang, China.,Jiangxi Health Commission (JXHC) Key Laboratory of Neurological Medicine, Nanchang, China
| |
Collapse
|
30
|
Cho J, Tae N, Ahn JH, Chang SY, Ko HJ, Kim DH. Bispecific Antibody-Bound T Cells as a Novel Anticancer Immunotherapy. Biomol Ther (Seoul) 2022; 30:418-426. [PMID: 35577765 PMCID: PMC9424331 DOI: 10.4062/biomolther.2022.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/01/2022] [Accepted: 04/13/2022] [Indexed: 11/05/2022] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy is one of the promising anticancer treatments. It shows a high overall response rate with complete response to blood cancer. However, there is a limitation to solid tumor treatment. Additionally, this currently approved therapy exhibits side effects such as cytokine release syndrome and neurotoxicity. Alternatively, bispecific antibody is an innovative therapeutic tool that simultaneously engages specific immune cells to disease-related target cells. Since programmed death ligand 1 (PD-L1) is an immune checkpoint molecule highly expressed in some cancer cells, in the current study, we generated αCD3xαPD-L1 bispecific antibody (BiTE) which can engage T cells to PD-L1+ cancer cells. We observed that the BiTE-bound OT-1 T cells effectively killed cancer cells in vitro and in vivo. They substantially increased the recruitment of effector memory CD8+ T cells having CD8+CD44+CD62Llow phenotype in tumor. Interestingly, we also observed that BiTE-bound polyclonal T cells showed highly efficacious tumor killing activity in vivo in comparison with the direct intravenous treatment of bispecific antibody, suggesting that PD-L1-directed migration and engagement of activated T cells might increase cancer cell killing. Additionally, BiTE-bound CAR-T cells which targets human Her-2/neu exhibited enhanced killing effect on Her-2-expressing cancer cells in vivo, suggesting that this could be a novel therapeutic regimen. Collectively, our results suggested that engaging activated T cells with cancer cells using αCD3xαPD-L1 BiTE could be an innovative next generation anticancer therapy which exerts simultaneous inhibitory functions on PD-L1 as well as increasing the infiltration of activated T cells having effector memory phenotype in tumor site.
Collapse
Affiliation(s)
- Jaewon Cho
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Nara Tae
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jae-Hee Ahn
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sun-Young Chang
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Hyun-Jeong Ko
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea.,Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Dae Hee Kim
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea.,Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
31
|
Kwiecień I, Rutkowska E, Sokołowski R, Bednarek J, Raniszewska A, Jahnz-Różyk K, Rzepecki P, Domagała-Kulawik J. Effector Memory T Cells and CD45RO+ Regulatory T Cells in Metastatic vs. Non-Metastatic Lymph Nodes in Lung Cancer Patients. Front Immunol 2022; 13:864497. [PMID: 35585972 PMCID: PMC9108231 DOI: 10.3389/fimmu.2022.864497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/07/2022] [Indexed: 11/26/2022] Open
Abstract
Lymphocytes play a leading role in regulation of the immune system in lung cancer patients. The recognition of T cells profile may help in prediction of effectiveness of anticancer immunotherapy. The aim of the study was to determine the dominant subpopulation of CD4+ and CD8+ lymphocytes in metastatic and non-metastatic lymph nodes (LNs) of lung cancer patients. LNs aspirates were obtained during EBUS/TBNA procedure and cells were analyzed by flow cytometry. We showed a higher percentage of CD4+ and CD8+ effector memory T cells in the metastatic than in the non-metastatic LNs (28.6 vs. 15.3% and 28.6 vs. 14.0%, p< 0.05). The proportion of CD45RO+ T regulatory cells (CD45RO+ Tregs) was higher in the metastatic LNs than in the non-metastatic ones (65.6 vs. 31%, p< 0.05). We reported the significant differences in T cell subsets depending on the lung cancer metastatic process. We observed that the effector memory T cells were predominant subpopulations in metastatic LNs. Lymphocyte profile in LNs is easy to evaluate by flow cytometry of EBUS/TBNA samples and may reflect the immune status in lung cancer.
Collapse
Affiliation(s)
- Iwona Kwiecień
- Department of Internal Medicine and Hematology, Laboratory of Flow Cytometry, Military Institute of Medicine, Warsaw, Poland
- *Correspondence: Iwona Kwiecień, ;
| | - Elżbieta Rutkowska
- Department of Internal Medicine and Hematology, Laboratory of Flow Cytometry, Military Institute of Medicine, Warsaw, Poland
| | - Rafał Sokołowski
- Department of Internal Medicine, Pulmonology, Allergology and Clinical Immunology, Military Institute of Medicine, Warsaw, Poland
| | - Joanna Bednarek
- Department of Internal Medicine, Pulmonology, Allergology and Clinical Immunology, Military Institute of Medicine, Warsaw, Poland
| | - Agata Raniszewska
- Department of Internal Medicine and Hematology, Laboratory of Flow Cytometry, Military Institute of Medicine, Warsaw, Poland
| | - Karina Jahnz-Różyk
- Department of Internal Medicine, Pulmonology, Allergology and Clinical Immunology, Military Institute of Medicine, Warsaw, Poland
| | - Piotr Rzepecki
- Department of Internal Medicine and Hematology, Military Institute of Medicine, Warsaw, Poland
| | - Joanna Domagała-Kulawik
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
32
|
Jhala G, Krishnamurthy B, Brodnicki TC, Ge T, Akazawa S, Selck C, Trivedi PM, Pappas EG, Mackin L, Principe N, Brémaud E, De George DJ, Boon L, Smyth I, Chee J, Kay TWH, Thomas HE. Interferons limit autoantigen-specific CD8 + T-cell expansion in the non-obese diabetic mouse. Cell Rep 2022; 39:110747. [PMID: 35476975 DOI: 10.1016/j.celrep.2022.110747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/24/2022] [Accepted: 04/07/2022] [Indexed: 11/24/2022] Open
Abstract
Interferon gamma (IFNγ) is a proinflammatory cytokine implicated in autoimmune diseases. However, deficiency or neutralization of IFNγ is ineffective in reducing disease. We characterize islet antigen-specific T cells in non-obese diabetic (NOD) mice lacking all three IFN receptor genes. Diabetes is minimally affected, but at 125 days of age, antigen-specific CD8+ T cells, quantified using major histocompatibility complex class I tetramers, are present in 10-fold greater numbers in Ifngr-mutant NOD mice. T cells from Ifngr-mutant mice have increased proliferative responses to interleukin-2 (IL-2). They also have reduced phosphorylated STAT1 and its target gene, suppressor of cytokine signaling 1 (SOCS-1). IFNγ controls the expansion of antigen-specific CD8+ T cells by mechanisms which include increased SOCS-1 expression that regulates IL-2 signaling. The expanded CD8+ T cells are likely to contribute to normal diabetes progression despite reduced inflammation in Ifngr-mutant mice.
Collapse
Affiliation(s)
- Gaurang Jhala
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC 3065, Australia
| | - Balasubramanian Krishnamurthy
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC 3065, Australia; Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Thomas C Brodnicki
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC 3065, Australia; Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC 3065, Australia; Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Tingting Ge
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC 3065, Australia; Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Satoru Akazawa
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC 3065, Australia
| | - Claudia Selck
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC 3065, Australia
| | - Prerak M Trivedi
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC 3065, Australia
| | - Evan G Pappas
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC 3065, Australia
| | - Leanne Mackin
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC 3065, Australia
| | - Nicola Principe
- National Centre of Asbestos-Related Diseases, Institute of Respiratory Health, School of Biomedical Science, University of Western Australia, Nedlands, WA 6009, Australia
| | - Erwan Brémaud
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC 3065, Australia
| | - David J De George
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC 3065, Australia; Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Louis Boon
- Polpharma Biologics, 3584 CM Utrecht, the Netherlands
| | - Ian Smyth
- Australian Phenomics Network, Monash Genome Modification Platform, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Jonathan Chee
- National Centre of Asbestos-Related Diseases, Institute of Respiratory Health, School of Biomedical Science, University of Western Australia, Nedlands, WA 6009, Australia
| | - Thomas W H Kay
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC 3065, Australia; Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC 3065, Australia.
| | - Helen E Thomas
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC 3065, Australia; Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC 3065, Australia
| |
Collapse
|
33
|
Wu B, Zhang X, Chiang HC, Pan H, Yuan B, Mitra P, Qi L, Simonyan H, Young CN, Yvon E, Hu Y, Zhang N, Li R. RNA polymerase II pausing factor NELF in CD8 + T cells promotes antitumor immunity. Nat Commun 2022; 13:2155. [PMID: 35444206 PMCID: PMC9021285 DOI: 10.1038/s41467-022-29869-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/31/2022] [Indexed: 11/15/2022] Open
Abstract
T cell factor 1 (TCF1) is required for memory and stem-like CD8+ T cell functions. How TCF1 partners with other transcription factors to regulate transcription remains unclear. Here we show that negative elongation factor (NELF), an RNA polymerase II (Pol II) pausing factor, cooperates with TCF1 in T cell responses to cancer. Deletion of mouse Nelfb, which encodes the NELFB subunit, in mature T lymphocytes impairs immune responses to both primary tumor challenge and tumor antigen-mediated vaccination. Nelfb deletion causes more exhausted and reduced memory T cell populations, whereas its ectopic expression boosts antitumor immunity and efficacy of chimeric antigen receptor T-cell immunotherapy. Mechanistically, NELF is associated with TCF1 and recruited preferentially to the enhancers and promoters of TCF1 target genes. Nelfb ablation reduces Pol II pausing and chromatin accessibility at these TCF1-associated loci. Our findings thus suggest an important and rate-limiting function of NELF in anti-tumor immunity. Negative elongation factor B (NELFB) is one of the four subunits of the NELF complex that controls RNA polymerase II pausing. Here the authors show that, by associating with the key T cell transcription factor TCF1, NELFB is required for eliciting CD8 + T cell memory and anti-tumor immune responses.
Collapse
Affiliation(s)
- Bogang Wu
- Department of Biochemistry & Molecular Medicine, The George Washington University, Washington, DC, 20037, USA
| | - Xiaowen Zhang
- Department of Biochemistry & Molecular Medicine, The George Washington University, Washington, DC, 20037, USA
| | - Huai-Chin Chiang
- Department of Biochemistry & Molecular Medicine, The George Washington University, Washington, DC, 20037, USA
| | - Haihui Pan
- Department of Biochemistry & Molecular Medicine, The George Washington University, Washington, DC, 20037, USA
| | - Bin Yuan
- Department of Biochemistry & Molecular Medicine, The George Washington University, Washington, DC, 20037, USA
| | - Payal Mitra
- Department of Anatomy & Cell Biology, The George Washington University, Washington, DC, 20037, USA
| | - Leilei Qi
- Department of Anatomy & Cell Biology, The George Washington University, Washington, DC, 20037, USA
| | - Hayk Simonyan
- Department of Pharmacology & Physiology, The George Washington University, Washington, DC, 20037, USA
| | - Colin N Young
- Department of Pharmacology & Physiology, The George Washington University, Washington, DC, 20037, USA
| | - Eric Yvon
- Department of Medicine, The George Washington University Cancer Center School of Medicine & Health Sciences, The George Washington University, Washington, DC, 20037, USA
| | - Yanfen Hu
- Department of Anatomy & Cell Biology, The George Washington University, Washington, DC, 20037, USA
| | - Nu Zhang
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Rong Li
- Department of Biochemistry & Molecular Medicine, The George Washington University, Washington, DC, 20037, USA.
| |
Collapse
|
34
|
Tibúrcio R, Narendran G, Barreto-Duarte B, Queiroz ATL, Araújo-Pereira M, Anbalagan S, Nayak K, Ravichandran N, Subramani R, Antonelli LRV, Satagopan K, Anbalagan K, Porter BO, Sher A, Swaminathan S, Sereti I, Andrade BB. Frequency of CXCR3+ CD8+ T-Lymphocyte Subsets in Peripheral Blood Is Associated With the Risk of Paradoxical Tuberculosis-Associated Immune Reconstitution Inflammatory Syndrome Development in Advanced HIV Disease. Front Immunol 2022; 13:873985. [PMID: 35432354 PMCID: PMC9011055 DOI: 10.3389/fimmu.2022.873985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundTuberculosis-associated immune reconstitution inflammatory syndrome (TB-IRIS) is a clinical aggravation of TB symptoms observed among a fraction of HIV coinfected patients shortly after the start of antiretroviral therapy (ART). Of note, TB-IRIS is characterized by exacerbated inflammation and tissue damage that occurs in response to the elevated production of CD4+ T cell-derived IFN-γ. Nevertheless, the possible participation of CD8+ T cells in TB-IRIS development remains unclear.MethodsWe performed a comprehensive assessment of the composition of CD8+ T cell memory subsets and their association with circulating inflammation-related molecules in TB-HIV coinfected patients initiating ART.ResultsWe found that TB-IRIS individuals display higher frequencies of Antigen-experienced CD8+ T cells during the onset of IRIS and that the levels of these cells positively correlate with baseline mycobacterial smear grade. TB-IRIS individuals exhibited higher frequencies of effector memory and lower percentages of naïve CD8+ T cells than their Non-IRIS counterparts. In both TB-IRIS and Non-IRIS patients, ART commencement was associated with fewer significant correlations among memory CD8+ T cells and cells from other immune compartments. Networks analysis revealed distinct patterns of correlation between each memory subset with inflammatory cytokines suggesting different dynamics of CD8+ T cell memory subsets reconstitution. TB-IRIS patients displayed lower levels of memory cells positive for CXCR3 (a chemokine receptor that plays a role in trafficking activated CD8+ T cells to the tissues) than Non-IRIS individuals before and after ART. Furthermore, we found that CXCR3+ naïve CD8+ T cells were inversely associated with the risk of TB-IRIS development. On the other hand, we noticed that the frequencies of CXCR3+ effector CD8+ T cells were positively associated with the probability of TB-IRIS development.ConclusionOur data suggest that TB-IRIS individuals display a distinct profile of memory CD8+ T cell subsets reconstitution after ART initiation. Moreover, our data point to a differential association between the frequencies of CXCR3+ CD8+ T cells and the risk of TB-IRIS development. Collectively, our findings lend insights into the potential role of memory CD8+ T cells in TB-IRIS pathophysiology.
Collapse
Affiliation(s)
- Rafael Tibúrcio
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil
| | - Gopalan Narendran
- Department of Clinical Research, National Institute for Research in Tuberculosis, Chennai, India
| | - Beatriz Barreto-Duarte
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- Curso de Medicina, Universidade Salvador (UNIFACS), Salvador, Brazil
- Programa de Pós-Graduação em Clínica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Artur T. L. Queiroz
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- Center of Data and Knowledge Integration for Health (CIDACS), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Mariana Araújo-Pereira
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil
| | - Selvaraj Anbalagan
- Department of Clinical Research, National Institute for Research in Tuberculosis, Chennai, India
| | - Kaustuv Nayak
- Department of Clinical Research, National Institute for Research in Tuberculosis, Chennai, India
- ICGEB-Emory Vaccine Centre, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | - Rajasekaran Subramani
- Department of Clinical Research, National Institute for Research in Tuberculosis, Chennai, India
| | - Lis R. V. Antonelli
- Laboratório de Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | | | | | - Brian O. Porter
- HIV Pathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Soumya Swaminathan
- Department of Clinical Research, National Institute for Research in Tuberculosis, Chennai, India
| | - Irini Sereti
- HIV Pathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Bruno B. Andrade
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil
- Curso de Medicina, Universidade Salvador (UNIFACS), Salvador, Brazil
- Programa de Pós-Graduação em Clínica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Wellcome Trust Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Curso de Medicina, Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador, Brazil
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
- *Correspondence: Bruno B. Andrade,
| |
Collapse
|
35
|
Mortezaee K, Majidpoor J. CD8 + T Cells in SARS-CoV-2 Induced Disease and Cancer-Clinical Perspectives. Front Immunol 2022; 13:864298. [PMID: 35432340 PMCID: PMC9010719 DOI: 10.3389/fimmu.2022.864298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022] Open
Abstract
Dysregulated innate and adaptive immunity is a sign of SARS-CoV-2-induced disease and cancer. CD8+ T cells are important cells of the immune system. The cells belong to the adaptive immunity and take a front-line defense against viral infections and cancer. Extreme CD8+ T-cell activities in the lung of patients with a SARS-CoV-2-induced disease and within the tumor microenvironment (TME) will change their functionality into exhausted state and undergo apoptosis. Such diminished immunity will put cancer cases at a high-risk group for SARS-CoV-2-induced disease, rendering viral sepsis and a more severe condition which will finally cause a higher rate of mortality. Recovering responses from CD8+ T cells is a purpose of vaccination against SARS-CoV-2. The aim of this review is to discuss the CD8+ T cellular state in SARS-CoV-2-induced disease and in cancer and to present some strategies for recovering the functionality of these critical cells.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
36
|
Tilsed CM, Casey TH, de Jong E, Bosco A, Zemek RM, Salmons J, Wan G, Millward MJ, Nowak AK, Lake RA, Lesterhuis WJ. Retinoic Acid Induces an IFN-Driven Inflammatory Tumour Microenvironment, Sensitizing to Immune Checkpoint Therapy. Front Oncol 2022; 12:849793. [PMID: 35402250 PMCID: PMC8988133 DOI: 10.3389/fonc.2022.849793] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/28/2022] [Indexed: 12/21/2022] Open
Abstract
With immune checkpoint therapy (ICT) having reshaped the treatment of many cancers, the next frontier is to identify and develop novel combination therapies to improve efficacy. Previously, we and others identified beneficial immunological effects of the vitamin A derivative tretinoin on anti-tumour immunity. Although it is known that tretinoin preferentially depletes myeloid derived suppressor cells in blood, little is known about the effects of tretinoin on the tumour microenvironment, hampering the rational design of clinical trials using tretinoin in combination with ICT. Here, we aimed to identify how tretinoin changed the tumour microenvironment in mouse tumour models, using flow cytometry and RNAseq, and we sought to use that information to establish optimal dosing and scheduling of tretinoin in combination with several ICT antibodies in multiple cancer models. We found that tretinoin rapidly induced an interferon dominated inflammatory tumour microenvironment, characterised by increased CD8+ T cell infiltration. This phenotype completely overlapped with the phenotype that was induced by ICT itself, and we confirmed that the combination further amplified this inflammatory milieu. The addition of tretinoin significantly improved the efficacy of anti-CTLA4/anti-PD-L1 combination therapy, and staggered scheduling was more efficacious than concomitant scheduling, in a dose-dependent manner. The positive effects of tretinoin could be extended to ICT antibodies targeting OX40, GITR and CTLA4 monotherapy in multiple cancer models. These data show that tretinoin induces an interferon driven, CD8+ T cell tumour microenvironment that is responsive to ICT.
Collapse
Affiliation(s)
- Caitlin M. Tilsed
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA, Australia
| | - Thomas H. Casey
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA, Australia
| | - Emma de Jong
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Anthony Bosco
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Rachael M. Zemek
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Joanne Salmons
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA, Australia
| | - Graeme Wan
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA, Australia
| | - Michael J. Millward
- Medical School, University of Western Australia, Crawley, WA, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Anna K. Nowak
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA, Australia
- Medical School, University of Western Australia, Crawley, WA, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Richard A. Lake
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA, Australia
| | - Willem Joost Lesterhuis
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA, Australia
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
- *Correspondence: Willem Joost Lesterhuis,
| |
Collapse
|
37
|
Imaging Kv1.3 Expressing Memory T Cells as a Marker of Immunotherapy Response. Cancers (Basel) 2022; 14:cancers14051217. [PMID: 35267526 PMCID: PMC8909107 DOI: 10.3390/cancers14051217] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 01/25/2023] Open
Abstract
Immune checkpoint inhibitors have shown great promise, emerging as a new pillar of treatment for cancer; however, only a relatively small proportion of recipients show a durable response to treatment. Strategies that reliably differentiate durably-responding tumours from non-responsive tumours are a critical unmet need. Persistent and durable immunological responses are associated with the generation of memory T cells. Effector memory T cells associated with tumour response to immune therapies are characterized by substantial upregulation of the potassium channel Kv1.3 after repeated antigen stimulation. We have developed a new Kv1.3 targeting radiopharmaceutical, [18F]AlF-NOTA-KCNA3P, and evaluated whether it can reliably differentiate tumours successfully responding to immune checkpoint inhibitor (ICI) therapy targeting PD-1 alone or combined with CLTA4. In a syngeneic colon cancer model, we compared tumour retention of [18F]AlF-NOTA-KCNA3P with changes in the tumour immune microenvironment determined by flow cytometry. Imaging with [18F]AlF-NOTA-KCNA3P reliably differentiated tumours responding to ICI therapy from non-responding tumours and was associated with substantial tumour infiltration of T cells, especially Kv1.3-expressing CD8+ effector memory T cells.
Collapse
|
38
|
Lawal G, Xiao Y, Rahnemai-Azar AA, Tsilimigras DI, Kuang M, Bakopoulos A, Pawlik TM. The Immunology of Hepatocellular Carcinoma. Vaccines (Basel) 2021; 9:vaccines9101184. [PMID: 34696292 PMCID: PMC8538643 DOI: 10.3390/vaccines9101184] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/20/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022] Open
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Hepatocellular carcinoma (HCC) is the most common primary malignant tumor of the liver. Liver resection or transplantation offer the only potentially curative options for HCC; however, many patients are not candidates for surgical resection, either due to presentation at advanced stages or poor liver function and portal hypertension. Liver transplantation is also limited to patients with certain characteristics, such as those that meet the Milan criteria (one tumor ≤ 5 cm, or up to three tumors no larger than 3 cm, along with the absence of gross vascular invasion or extrahepatic spread). Locoregional therapies, such as ablation (radiofrequency, ethanol, cryoablation, microwave), trans-arterial therapies like chemoembolization (TACE) or radioembolization (TARE), and external beam radiation therapy, have been used mainly as palliative measures with poor prognosis. Therefore, emerging novel systemic treatments, such as immunotherapy, have increasingly become popular. HCC is immunogenic, containing infiltrating tumor-specific T-cell lymphocytes and other immune cells. Immunotherapy may provide a more effective and discriminatory targeting of tumor cells through induction of a tumor-specific immune response in cancer cells and can improve post-surgical recurrence-free survival in HCC. We herein review evidence supporting different immunomodulating cell-based technology relative to cancer therapy in vaccines and targeted therapies, such as immune checkpoint inhibitors, in the management of hepatocellular carcinoma among patients with advanced disease.
Collapse
Affiliation(s)
- Gbemisola Lawal
- Division of Surgical Oncology, Department of Surgery, Arrowhead Regional Cancer Center, California University of Science and Medicine, Colton, CA 92324, USA; (G.L.); (A.A.R.-A.)
| | - Yao Xiao
- Department of Liver Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (Y.X.); (M.K.)
| | - Amir A. Rahnemai-Azar
- Division of Surgical Oncology, Department of Surgery, Arrowhead Regional Cancer Center, California University of Science and Medicine, Colton, CA 92324, USA; (G.L.); (A.A.R.-A.)
| | - Diamantis I. Tsilimigras
- Department of Surgery, The Ohio State Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH 43210, USA;
- Correspondence: ; Tel.: +1-215-987-9177
| | - Ming Kuang
- Department of Liver Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (Y.X.); (M.K.)
| | - Anargyros Bakopoulos
- Department of Surgery, Attikon University Hospital, University of Athens, 12462 Athens, Greece;
| | - Timothy M. Pawlik
- Department of Surgery, The Ohio State Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH 43210, USA;
| |
Collapse
|
39
|
Harber J, Kamata T, Pritchard C, Fennell D. Matter of TIME: the tumor-immune microenvironment of mesothelioma and implications for checkpoint blockade efficacy. J Immunother Cancer 2021; 9:e003032. [PMID: 34518291 PMCID: PMC8438820 DOI: 10.1136/jitc-2021-003032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 12/18/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an incurable cancer with a dismal prognosis and few effective treatment options. Nonetheless, recent positive phase III trial results for immune checkpoint blockade (ICB) in MPM herald a new dawn in the fight to advance effective treatments for this cancer. Tumor mutation burden (TMB) has been widely reported to predict ICB in other cancers, but MPM is considered a low-TMB tumor. Similarly, tumor programmed death-ligand 1 (PD-L1) expression has not been proven predictive in phase III clinical trials in MPM. Consequently, the precise mechanisms that determine response to immunotherapy in this cancer remain unknown. The present review therefore aimed to synthesize our current understanding of the tumor immune microenvironment in MPM and reflects on how specific cellular features might impact immunotherapy responses or lead to resistance. This approach will inform stratified approaches to therapy and advance immunotherapy combinations in MPM to improve clinical outcomes further.
Collapse
Affiliation(s)
- James Harber
- Cancer Research Centre, University of Leicester College of Life Sciences, Leicester, UK
| | - Tamihiro Kamata
- Cancer Research Centre, University of Leicester College of Life Sciences, Leicester, UK
| | - Catrin Pritchard
- Cancer Research Centre, University of Leicester College of Life Sciences, Leicester, UK
| | - Dean Fennell
- Cancer Research Centre, University of Leicester College of Life Sciences, Leicester, UK
| |
Collapse
|
40
|
Comprehensive analysis of immune cell enrichment in the tumor microenvironment of head and neck squamous cell carcinoma. Sci Rep 2021; 11:16134. [PMID: 34373557 PMCID: PMC8352955 DOI: 10.1038/s41598-021-95718-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/28/2021] [Indexed: 01/10/2023] Open
Abstract
Head and neck squamous carcinoma (HNSCC) is highly infiltrated by immune cells, including tumor-infiltrating lymphocytes and myeloid lineage cells. In the tumor microenvironment, tumor cells orchestrate a highly immunosuppressive microenvironment by secreting immunosuppressive mediators, expressing immune checkpoint ligands, and downregulating human leukocyte antigen expression.
In the present study, we aimed to comprehensively profile the immune microenvironment of HNSCC using gene expression data obtained from public database. We calculated enrichment scores of 33 immune cell types based on gene expression data of HNSCC tissues and adjacent non-cancer tissues. Based on these scores, we performed non-supervised clustering and identified three immune signatures—cold, lymphocyte, and myeloid/dendritic cell (DC)—based on the clustering results. We then compared the clinical and biological features of the three signatures. Among HNSCC and non-cancer tissues, human papillomavirus (HPV)-positive HNSCCs exhibited the highest scores in various immune cell types, including CD4+ T cells, CD8+ T cells, B cells, plasma cells, basophils, and their subpopulations. Among the three immune signatures, the proportions of HPV-positive tumors, oropharyngeal cancers, early T tumors, and N factor positive cases were significantly higher in the lymphocyte signature than in other signatures. Among the three signatures, the lymphocyte signature showed the longest overall survival (OS), especially in HPV-positive patients, whereas the myeloid/DC signature demonstrated the shortest OS in these patients. Gene set enrichment analysis revealed the upregulation of several pathways related to inflammatory and proinflammatory responses in the lymphocyte signature. The expression of PRF1, IFNG, GZMB, CXCL9, CXCL10, PDCD1, LAG3, CTLA4, HAVCR2, and TIGIT was the highest in the lymphocyte signature. Meanwhile, the expression of PD-1 ligand genes CD274 and PDCD1LG2 was highest in the myeloid/DC signature. Herein, our findings revealed the transcriptomic landscape of the immune microenvironment that closely reflects the clinical and biological significance of HNSCC, indicating that molecular profiling of the immune microenvironment can be employed to develop novel biomarkers and precision immunotherapies for HNSCC.
Collapse
|
41
|
Goode EF, Roussos Torres ET, Irshad S. Lymph Node Immune Profiles as Predictive Biomarkers for Immune Checkpoint Inhibitor Response. Front Mol Biosci 2021; 8:674558. [PMID: 34141724 PMCID: PMC8205515 DOI: 10.3389/fmolb.2021.674558] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/22/2021] [Indexed: 01/22/2023] Open
Abstract
The need for predictive biomarkers that can accurately predict patients who will respond to immune checkpoint inhibitor (ICI) immunotherapies remains a clinically unmet need. The majority of research efforts have focused on expression of immune-related markers on the tumour and its associated tumour microenvironment (TME). However, immune response to tumour neoantigens starts at the regional lymph nodes, where antigen presentation takes place and is regulated by multiple cell types and mechanisms. Knowledge of the immunological responses in bystander lymphoid organs following ICI therapies and their association with changes in the TME, could prove to be a valuable component in understanding the treatment response to these agents. Here, we review the emerging data on assessment of immunological responses within regional lymph nodes as predictive biomarkers for immunotherapies.
Collapse
Affiliation(s)
- Emily F. Goode
- Institute of Cancer Research, London, United Kingdom
- Cancer Research UK (CRUK) Clinical Fellow, London, United Kingdom
| | - Evanthia T. Roussos Torres
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Sheeba Irshad
- School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
- Cancer Research UK (CRUK) Clinician Scientist, London, United Kingdom
| |
Collapse
|
42
|
The Potential of T Cell Factor 1 in Sustaining CD8 + T Lymphocyte-Directed Anti-Tumor Immunity. Cancers (Basel) 2021; 13:cancers13030515. [PMID: 33572793 PMCID: PMC7866257 DOI: 10.3390/cancers13030515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary The transcription factor T cell factor 1 (TCF1), encoded by the TCF7 gene, is a key regulator of T-cell fate, which is known to promote T cell proliferation and establish T cell stemness. Importantly, increasing evidence has demonstrated that TCF1 is a critical determinant of the success of anti-tumor immunotherapy, implicating that TCF1 is a promising biomarker and therapeutic target in cancer. In recent years, new findings have emerged to provide a clearer view of TCF1 and its role in T cell biology. In this review, we aim to provide a comprehensive outline of the most recent literature on the role of TCF1 in T cell development and to discuss the potential of TCF1 in sustaining CD8+ T lymphocyte-directed anti-tumor immunity. Abstract T cell factor 1 (TCF1) is a transcription factor that has been highlighted to play a critical role in the promotion of T cell proliferation and maintenance of cell stemness in the embryonic and CD8+ T cell populations. The regulatory nature of TCF1 in CD8+ T cells is of great significance, especially within the context of T cell exhaustion, which is linked to the tumor and viral escape in pathological contexts. Indeed, inhibitory signals, such as programmed cell death 1 (PD-1) and cytotoxic-T-lymphocyte-associated protein 4 (CTLA-4), expressed on exhausted T lymphocytes (TEX), have become major therapeutic targets in immune checkpoint blockade (ICB) therapy. The significance of TCF1 in the sustenance of CTL-mediated immunity against pathogens and tumors, as well as its recently observed necessity for an effective anti-tumor immune response in ICB therapy, presents TCF1 as a potentially significant biomarker and/or therapeutic target for overcoming CD8+ T cell exhaustion and resistance to ICB therapy. In this review, we aim to outline the recent findings on the role of TCF1 in T cell development and discuss its implications in anti-tumor immunity.
Collapse
|