1
|
Engler-Chiurazzi E. B cells and the stressed brain: emerging evidence of neuroimmune interactions in the context of psychosocial stress and major depression. Front Cell Neurosci 2024; 18:1360242. [PMID: 38650657 PMCID: PMC11033448 DOI: 10.3389/fncel.2024.1360242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
The immune system has emerged as a key regulator of central nervous system (CNS) function in health and in disease. Importantly, improved understanding of immune contributions to mood disorders has provided novel opportunities for the treatment of debilitating stress-related mental health conditions such as major depressive disorder (MDD). Yet, the impact to, and involvement of, B lymphocytes in the response to stress is not well-understood, leaving a fundamental gap in our knowledge underlying the immune theory of depression. Several emerging clinical and preclinical findings highlight pronounced consequences for B cells in stress and MDD and may indicate key roles for B cells in modulating mood. This review will describe the clinical and foundational observations implicating B cell-psychological stress interactions, discuss potential mechanisms by which B cells may impact brain function in the context of stress and mood disorders, describe research tools that support the investigation of their neurobiological impacts, and highlight remaining research questions. The goal here is for this discussion to illuminate both the scope and limitations of our current understanding regarding the role of B cells, stress, mood, and depression.
Collapse
Affiliation(s)
- Elizabeth Engler-Chiurazzi
- Department of Neurosurgery and Neurology, Clinical Neuroscience Research Center, Tulane Brain Institute, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
2
|
Pulliam L, Sun B, McCafferty E, Soper SA, Witek MA, Hu M, Ford JM, Song S, Kapogiannis D, Glesby MJ, Merenstein D, Tien PC, Freasier H, French A, McKay H, Diaz MM, Ofotokun I, Lake JE, Margolick JB, Kim EY, Levine SR, Fischl MA, Li W, Martinson J, Tang N. Microfluidic Isolation of Neuronal-Enriched Extracellular Vesicles Shows Distinct and Common Neurological Proteins in Long COVID, HIV Infection and Alzheimer's Disease. Int J Mol Sci 2024; 25:3830. [PMID: 38612641 PMCID: PMC11011771 DOI: 10.3390/ijms25073830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Long COVID (LongC) is associated with a myriad of symptoms including cognitive impairment. We reported at the beginning of the COVID-19 pandemic that neuronal-enriched or L1CAM+ extracellular vesicles (nEVs) from people with LongC contained proteins associated with Alzheimer's disease (AD). Since that time, a subset of people with prior COVID infection continue to report neurological problems more than three months after infection. Blood markers to better characterize LongC are elusive. To further identify neuronal proteins associated with LongC, we maximized the number of nEVs isolated from plasma by developing a hybrid EV Microfluidic Affinity Purification (EV-MAP) technique. We isolated nEVs from people with LongC and neurological complaints, AD, and HIV infection with mild cognitive impairment. Using the OLINK platform that assesses 384 neurological proteins, we identified 11 significant proteins increased in LongC and 2 decreased (BST1, GGT1). Fourteen proteins were increased in AD and forty proteins associated with HIV cognitive impairment were elevated with one decreased (IVD). One common protein (BST1) was decreased in LongC and increased in HIV. Six proteins (MIF, ENO1, MESD, NUDT5, TNFSF14 and FYB1) were expressed in both LongC and AD and no proteins were common to HIV and AD. This study begins to identify differences and similarities in the neuronal response to LongC versus AD and HIV infection.
Collapse
Affiliation(s)
- Lynn Pulliam
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA
- Department of Laboratory Medicine, San Francisco VA Health Care System, San Francisco, CA 94121, USA; (B.S.); (E.M.); (N.T.)
| | - Bing Sun
- Department of Laboratory Medicine, San Francisco VA Health Care System, San Francisco, CA 94121, USA; (B.S.); (E.M.); (N.T.)
| | - Erin McCafferty
- Department of Laboratory Medicine, San Francisco VA Health Care System, San Francisco, CA 94121, USA; (B.S.); (E.M.); (N.T.)
| | - Steven A. Soper
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA; (S.A.S.); (M.A.W.)
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
- Cancer Biology, The University of Kansas Medical Center, Kansas City, KS 66103, USA;
- Bioengineering Program, The University of Kansas, Lawrence, KS 66045, USA
| | - Malgorzata A. Witek
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA; (S.A.S.); (M.A.W.)
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
- Cancer Biology, The University of Kansas Medical Center, Kansas City, KS 66103, USA;
| | - Mengjia Hu
- Cancer Biology, The University of Kansas Medical Center, Kansas City, KS 66103, USA;
| | - Judith M. Ford
- Department of Mental Health, San Francisco VA Health Care System, San Francisco, CA 94121, USA; (J.M.F.); (S.S.)
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Sarah Song
- Department of Mental Health, San Francisco VA Health Care System, San Francisco, CA 94121, USA; (J.M.F.); (S.S.)
| | - Dimitrios Kapogiannis
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA;
| | - Marshall J. Glesby
- Department of Medicine, Weill Cornell Medical College, New York City, NY 10021, USA;
| | - Daniel Merenstein
- Department of Family Medicine, Georgetown University School of Medicine, Washington, DC 20007, USA;
| | - Phyllis C. Tien
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA; (P.C.T.); (H.F.)
- Department of Medicine, San Francisco VA Health Care System, San Francisco, CA 94121, USA
| | - Heather Freasier
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA; (P.C.T.); (H.F.)
| | - Audrey French
- Department of Medicine, Cook County Health, Chicago, IL 60612, USA;
| | - Heather McKay
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Monica M. Diaz
- Department of Neurology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA;
| | - Igho Ofotokun
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Jordan E. Lake
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Joseph B. Margolick
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Eun-Young Kim
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA;
| | - Steven R. Levine
- Department of Neurology, State University of New York College of Medicine and Downstate Medical Sciences University, Brooklyn, NY 11203, USA;
| | | | - Wei Li
- Department of Clinical and Diagnostic Sciences, University of Alabama, Birmingham, AL 35294, USA;
| | - Jeremy Martinson
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - Norina Tang
- Department of Laboratory Medicine, San Francisco VA Health Care System, San Francisco, CA 94121, USA; (B.S.); (E.M.); (N.T.)
| |
Collapse
|
3
|
Elizaldi SR, Hawes CE, Verma A, Dinasarapu AR, Lakshmanappa YS, Schlegel BT, Rajasundaram D, Li J, Durbin-Johnson BP, Ma ZM, Beckman D, Ott S, Lifson J, Morrison JH, Iyer SS. CCR7+ CD4 T Cell Immunosurveillance Disrupted in Chronic SIV-Induced Neuroinflammation in Rhesus Brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555037. [PMID: 37693567 PMCID: PMC10491118 DOI: 10.1101/2023.08.28.555037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
CD4 T cells survey and maintain immune homeostasis in the brain, yet their differentiation states and functional capabilities remain unclear. Our approach, combining single-cell transcriptomic analysis, ATAC-seq, spatial transcriptomics, and flow cytometry, revealed a distinct subset of CCR7+ CD4 T cells resembling lymph node central memory (T CM ) cells. We observed chromatin accessibility at the CCR7, CD28, and BCL-6 loci, defining molecular features of T CM . Brain CCR7+ CD4 T cells exhibited recall proliferation and interleukin-2 production ex vivo, showcasing their functional competence. We identified the skull bone marrow as a local niche for these cells alongside other CNS border tissues. Sequestering T CM cells in lymph nodes using FTY720 led to reduced CCR7+ CD4 T cell frequencies in the cerebrospinal fluid, accompanied by increased monocyte levels and soluble markers indicating immune activation. In macaques chronically infected with SIVCL57 and experiencing viral rebound due to cessation of antiretroviral therapy, a decrease in brain CCR7+ CD4 T cells was observed, along with increased microglial activation and initiation of neurodegenerative pathways. Our findings highlight a role for CCR7+ CD4 T cells in CNS immune surveillance and their decline during chronic SIV-induced neuroinflammation highlights their responsiveness to neuroinflammatory processes. GRAPHICAL ABSTRACT In Brief Utilizing single-cell and spatial transcriptomics on adult rhesus brain, we uncover a unique CCR7+ CD4 T cell subset resembling central memory T cells (T CM ) within brain and border tissues, including skull bone marrow. Our findings show decreased frequencies of this subset during SIV- induced chronic neuroinflammation, emphasizing responsiveness of CCR7+ CD4 T cells to CNS disruptions. Highlights CCR7+ CD4 T cells survey border and parenchymal CNS compartments during homeostasis; reduced presence of CCR7+ CD4 T cells in cerebrospinal fluid leads to immune activation, implying a role in neuroimmune homeostasis. CNS CCR7+ CD4 T cells exhibit phenotypic and functional features of central memory T cells (T CM ) including production of interleukin 2 and the capacity for rapid recall proliferation. Furthermore, CCR7+ CD4 T cells reside in the skull bone marrow. CCR7+ CD4 T cells are markedly decreased within the brain parenchyma during chronic viral neuroinflammation.
Collapse
|
4
|
Nott A, Holtman IR. Genetic insights into immune mechanisms of Alzheimer's and Parkinson's disease. Front Immunol 2023; 14:1168539. [PMID: 37359515 PMCID: PMC10285485 DOI: 10.3389/fimmu.2023.1168539] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/17/2023] [Indexed: 06/28/2023] Open
Abstract
Microglia, the macrophages of the brain, are vital for brain homeostasis and have been implicated in a broad range of brain disorders. Neuroinflammation has gained traction as a possible therapeutic target for neurodegeneration, however, the precise function of microglia in specific neurodegenerative disorders is an ongoing area of research. Genetic studies offer valuable insights into understanding causality, rather than merely observing a correlation. Genome-wide association studies (GWAS) have identified many genetic loci that are linked to susceptibility to neurodegenerative disorders. (Post)-GWAS studies have determined that microglia likely play an important role in the development of Alzheimer's disease (AD) and Parkinson's disease (PD). The process of understanding how individual GWAS risk loci affect microglia function and mediate susceptibility is complex. A rapidly growing number of publications with genomic datasets and computational tools have formulated new hypotheses that guide the biological interpretation of AD and PD genetic risk. In this review, we discuss the key concepts and challenges in the post-GWAS interpretation of AD and PD GWAS risk alleles. Post-GWAS challenges include the identification of target cell (sub)type(s), causal variants, and target genes. Crucially, the prediction of GWAS-identified disease-risk cell types, variants and genes require validation and functional testing to understand the biological consequences within the pathology of the disorders. Many AD and PD risk genes are highly pleiotropic and perform multiple important functions that might not be equally relevant for the mechanisms by which GWAS risk alleles exert their effect(s). Ultimately, many GWAS risk alleles exert their effect by changing microglia function, thereby altering the pathophysiology of these disorders, and hence, we believe that modelling this context is crucial for a deepened understanding of these disorders.
Collapse
Affiliation(s)
- Alexi Nott
- Department of Brain Sciences, Imperial College London, London, United Kingdom
- UK Dementia Research Institute, Imperial College London, London, United Kingdom
| | - Inge R. Holtman
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
5
|
Hu J, Wang P, Wang Z, Xu Y, Peng W, Chen X, Fang Y, Zhu L, Wang D, Wang X, Lin L, Ruan L. Fibroblast-Conditioned Media Enhance the Yield of Microglia Isolated from Mixed Glial Cultures. Cell Mol Neurobiol 2023; 43:395-408. [PMID: 35152327 DOI: 10.1007/s10571-022-01193-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/09/2022] [Indexed: 01/07/2023]
Abstract
Microglia are the main immune cells of the central nervous system (CNS) and comprise various model systems used to investigate inflammatory mechanisms in CNS disorders. Currently, shaking and mild trypsinization are widely used microglial culture methods; however, the problems with culturing microglia include low yield and a time-consuming process. In this study, we replaced normal culture media (NM) with media containing 25% fibroblast-conditioned media (F-CM) to culture mixed glia and compared microglia obtained by these two methods. We found that F-CM significantly improved the yield and purity of microglia and reduced the total culture time of mixed glia. The microglia obtained from the F-CM group showed longer ramified morphology than those from the NM group, but no difference was observed in cell size. Microglia from the two groups had similar phagocytic function and baseline phenotype markers. Both methods yielded microglia were responsive to various stimuli such as lipopolysaccharide (LPS), interferon-γ (IFN-γ), and interleukin-4 (IL-4). The current results suggest that F-CM affect the growth of primary microglia in mixed glia culture. This method can produce a high yield of primary microglia within a short time and may be a convenient method for researchers to investigate inflammatory mechanisms and some CNS disorders.
Collapse
Affiliation(s)
- Jian Hu
- Pingyang Affiliated Hospital of Wenzhou Medical University, No. 555 Kunao Dadao, Kunyang Town, Wenzhou, 325400, Zhejiang, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Higher Education Park, Wenzhou, 325035, Zhejiang, China
| | - Peng Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Higher Education Park, Wenzhou, 325035, Zhejiang, China
| | - Zhengyi Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Higher Education Park, Wenzhou, 325035, Zhejiang, China
| | - Yuyun Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Higher Education Park, Wenzhou, 325035, Zhejiang, China
| | - Wenshuo Peng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Higher Education Park, Wenzhou, 325035, Zhejiang, China.,The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Xiongjian Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Higher Education Park, Wenzhou, 325035, Zhejiang, China
| | - Yani Fang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Higher Education Park, Wenzhou, 325035, Zhejiang, China
| | - Liyun Zhu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Higher Education Park, Wenzhou, 325035, Zhejiang, China
| | - Dongxue Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Higher Education Park, Wenzhou, 325035, Zhejiang, China
| | - Xue Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Higher Education Park, Wenzhou, 325035, Zhejiang, China
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Higher Education Park, Wenzhou, 325035, Zhejiang, China.
| | - Lixin Ruan
- Pingyang Affiliated Hospital of Wenzhou Medical University, No. 555 Kunao Dadao, Kunyang Town, Wenzhou, 325400, Zhejiang, China.
| |
Collapse
|
6
|
Paracrine ADP Ribosyl Cyclase-Mediated Regulation of Biological Processes. Cells 2022; 11:cells11172637. [PMID: 36078044 PMCID: PMC9454491 DOI: 10.3390/cells11172637] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
ADP-ribosyl cyclases (ADPRCs) catalyze the synthesis of the Ca2+-active second messengers Cyclic ADP-ribose (cADPR) and ADP-ribose (ADPR) from NAD+ as well as nicotinic acid adenine dinucleotide phosphate (NAADP+) from NADP+. The best characterized ADPRC in mammals is CD38, a single-pass transmembrane protein with two opposite membrane orientations. The first identified form, type II CD38, is a glycosylated ectoenzyme, while type III CD38 has its active site in the cytosol. The ectoenzymatic nature of type II CD38 raised long ago the question of a topological paradox concerning the access of the intracellular NAD+ substrate to the extracellular active site and of extracellular cADPR product to its intracellular receptors, ryanodine (RyR) channels. Two different transporters, equilibrative connexin 43 (Cx43) hemichannels for NAD+ and concentrative nucleoside transporters (CNTs) for cADPR, proved to mediate cell-autonomous trafficking of both nucleotides. Here, we discussed how type II CD38, Cx43 and CNTs also play a role in mediating several paracrine processes where an ADPRC+ cell supplies a neighboring CNT-and RyR-expressing cell with cADPR. Recently, type II CD38 was shown to start an ectoenzymatic sequence of reactions from NAD+/ADPR to the strong immunosuppressant adenosine; this paracrine effect represents a major mechanism of acquired resistance of several tumors to immune checkpoint therapy.
Collapse
|
7
|
Integrated Multichip Analysis and WGCNA Identify Potential Diagnostic Markers in the Pathogenesis of ST-Elevation Myocardial Infarction. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:7343412. [PMID: 35475279 PMCID: PMC9010175 DOI: 10.1155/2022/7343412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/19/2022] [Indexed: 12/31/2022]
Abstract
Background ST-elevation myocardial infarction (STEMI) is a myocardial infarction (MI) with ST-segment exaltation of electrocardiogram (ECG) caused by vascular occlusion of the epicardium. However, the diagnostic markers of STEMI remain little. Methods STEMI raw microarray data are acquired from the Gene Expression Omnibus (GEO) database. Based on GSE60993 and GSE61144, differentially expressed genes (DEGs) are verified via R software, and key modules associated with pathological state of STEMI are verified by weighted correlation network analysis (WGCNA). Take the intersection gene of key module and DEGs to perform the pathway enrichment analyses by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Construct the protein-protein interaction (PPI) network by Cytoscape. Then, select and identify the diagnostic biomarkers of STEMI by least absolute shrinkage and selection operator (LASSO) logistic regression and support vector machine-recursive feature elimination (SVM-RFE) algorithms. Finally, assess the infiltration of immune cells of STEMI by CIBERSORT and analyze the correlation between diagnostic markers and infiltrating immune cells. Results We get 710 DEGs in the STEMI group and 376 genes associated with STEMI in blue module. 92 intersection genes were concentrated in 30 GO terms and 2 KEGG pathways. 28 hub genes involved in the development of STEMI. Moreover, upregulated ALOX5AP (AUC = 1.00) and BST1 (AUC = 1.00) are confirmed as diagnostic markers of STEMI. CD8+T cells, regulatory T (Treg) cells, resting natural killer (NK) cells, M0 macrophages, resting mast cells, and neutrophils are related to the procession of STEMI. Moreover, ALOX5AP and BST1 are positively related to resting NK cells, M0 macrophages, and neutrophils, while ALOX5AP and BST1 are negatively related to CD8+ T cells, Treg cells, and resting mast cells. Conclusion ALOX5AP and BST1 may be the diagnostic markers of STEMI. Immune cell infiltration plays a key role in the development of STEMI.
Collapse
|
8
|
Michalak-Micka K, Rütsche D, Johner L, Moehrlen U, Biedermann T, Klar AS. Expression Profile of CD157 Reveals Functional Heterogeneity of Capillaries in Human Dermal Skin. Biomedicines 2022; 10:biomedicines10030676. [PMID: 35327478 PMCID: PMC8945771 DOI: 10.3390/biomedicines10030676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
CD157 acts as a receptor, regulating leukocyte trafficking and the binding of extracellular matrix components. However, the expression pattern and the role of CD157 in human blood (BEC) and the lymphatic endothelial cells (LEC) of human dermal microvascular cells (HDMEC), remain elusive. We demonstrated constitutive expression of CD157 on BEC and LEC, in fetal and juvenile/adult skin, in situ, as well as in isolated HDMEC. Interestingly, CD157 epitopes were mostly localized on BEC, co-expressing high levels of CD31 (CD31High), as compared to CD31Low BEC, whereas the podoplanin expression level on LEC did not affect CD157. Cultured HDMEC exhibited significantly higher numbers of CD157-positive LEC, as compared to BEC. Interestingly, separated CD157− and CD157+ HDMEC demonstrated no significant differences in clonal expansion in vitro, but they showed distinct expression levels of cell adhesion molecules, before and after cytokine stimulation in vitro. In particular, we proved the enhanced and specific adherence of CD11b-expressing human blood myeloid cells to CD157+ HDMEC fraction, using an in vitro immune-binding assay. Indeed, CD157 was also involved in chemotaxis and adhesion of CD11b/c monocytes/neutrophils in prevascularized dermo–epidermal skin substitutes (vascDESS) in vivo. Thus, our data attribute specific roles to endothelial CD157, in the regulation of innate immunity during inflammation.
Collapse
Affiliation(s)
- Katarzyna Michalak-Micka
- Tissue Biology Research Unit, Department of Surgery, University Children’s Hospital Zurich, 8032 Zurich, Switzerland; (K.M.-M.); (D.R.); (L.J.); (U.M.); (T.B.)
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- University of Zurich, 8006 Zurich, Switzerland
| | - Dominic Rütsche
- Tissue Biology Research Unit, Department of Surgery, University Children’s Hospital Zurich, 8032 Zurich, Switzerland; (K.M.-M.); (D.R.); (L.J.); (U.M.); (T.B.)
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- University of Zurich, 8006 Zurich, Switzerland
| | - Lukas Johner
- Tissue Biology Research Unit, Department of Surgery, University Children’s Hospital Zurich, 8032 Zurich, Switzerland; (K.M.-M.); (D.R.); (L.J.); (U.M.); (T.B.)
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- University of Zurich, 8006 Zurich, Switzerland
| | - Ueli Moehrlen
- Tissue Biology Research Unit, Department of Surgery, University Children’s Hospital Zurich, 8032 Zurich, Switzerland; (K.M.-M.); (D.R.); (L.J.); (U.M.); (T.B.)
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- University of Zurich, 8006 Zurich, Switzerland
- Department of Surgery, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
| | - Thomas Biedermann
- Tissue Biology Research Unit, Department of Surgery, University Children’s Hospital Zurich, 8032 Zurich, Switzerland; (K.M.-M.); (D.R.); (L.J.); (U.M.); (T.B.)
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- University of Zurich, 8006 Zurich, Switzerland
| | - Agnes S. Klar
- Tissue Biology Research Unit, Department of Surgery, University Children’s Hospital Zurich, 8032 Zurich, Switzerland; (K.M.-M.); (D.R.); (L.J.); (U.M.); (T.B.)
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- University of Zurich, 8006 Zurich, Switzerland
- Correspondence:
| |
Collapse
|
9
|
Salmina AB, Malinovskaya NA, Morgun AV, Khilazheva ED, Uspenskaya YA, Illarioshkin SN. Reproducibility of developmental neuroplasticity in in vitro brain tissue models. Rev Neurosci 2022; 33:531-554. [PMID: 34983132 DOI: 10.1515/revneuro-2021-0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/13/2021] [Indexed: 11/15/2022]
Abstract
The current prevalence of neurodevelopmental, neurodegenerative diseases, stroke and brain injury stimulates studies aimed to identify new molecular targets, to select the drug candidates, to complete the whole set of preclinical and clinical trials, and to implement new drugs into routine neurological practice. Establishment of protocols based on microfluidics, blood-brain barrier- or neurovascular unit-on-chip, and microphysiological systems allowed improving the barrier characteristics and analyzing the regulation of local microcirculation, angiogenesis, and neurogenesis. Reconstruction of key mechanisms of brain development and even some aspects of experience-driven brain plasticity would be helpful in the establishment of brain in vitro models with the highest degree of reliability. Activity, metabolic status and expression pattern of cells within the models can be effectively assessed with the protocols of system biology, cell imaging, and functional cell analysis. The next generation of in vitro models should demonstrate high scalability, 3D or 4D complexity, possibility to be combined with other tissues or cell types within the microphysiological systems, compatibility with bio-inks or extracellular matrix-like materials, achievement of adequate vascularization, patient-specific characteristics, and opportunity to provide high-content screening. In this review, we will focus on currently available and prospective brain tissue in vitro models suitable for experimental and preclinical studies with the special focus on models enabling 4D reconstruction of brain tissue for the assessment of brain development, brain plasticity, and drug kinetics.
Collapse
Affiliation(s)
- Alla B Salmina
- Laboratory of Experimental Brain Cytology, Research Center of Neurology, Volokolamskoe Highway 80, Moscow, 125367, Russia.,Research Institute of Molecular Medicine & Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, P. Zhelenzyaka str., 1, Krasnoyarsk 660022, Russia
| | - Natalia A Malinovskaya
- Research Institute of Molecular Medicine & Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, P. Zhelenzyaka str., 1, Krasnoyarsk 660022, Russia
| | - Andrey V Morgun
- Department of Ambulatory Pediatrics, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, P. Zheleznyaka str., 1, Krasnoyarsk 660022, Russia
| | - Elena D Khilazheva
- Research Institute of Molecular Medicine & Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, P. Zhelenzyaka str., 1, Krasnoyarsk 660022, Russia
| | - Yulia A Uspenskaya
- Research Institute of Molecular Medicine & Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, P. Zhelenzyaka str., 1, Krasnoyarsk 660022, Russia
| | - Sergey N Illarioshkin
- Department of Brain Studies, Research Center of Neurology, Volokolamskoe Highway, 80, Moscow 125367, Russia
| |
Collapse
|