1
|
Zheng Y, Cai X, Wang D, Chen X, Wang T, Xie Y, Li H, Wang T, He Y, Li J, Li J. Exploring the relationship between lipid metabolism and cognition in individuals living with stable-phase Schizophrenia: a small cross-sectional study using Olink proteomics analysis. BMC Psychiatry 2024; 24:593. [PMID: 39227832 PMCID: PMC11370234 DOI: 10.1186/s12888-024-06054-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Cognitive impairment is a core symptom of schizophrenia. Metabolic abnormalities impact cognition, and although the influence of blood lipids on cognition has been documented, it remains unclear. We conducted a small cross-sectional study to investigate the relationship between blood lipids and cognition in patients with stable-phase schizophrenia. Using Olink proteomics, we explored the potential mechanisms through which blood lipids might affect cognition from an inflammatory perspective. METHODS A total of 107 patients with stable-phase schizophrenia and cognitive impairment were strictly included. Comprehensive data collection included basic patient information, blood glucose, blood lipids, and body mass index. Cognitive function was assessed using the Montreal Cognitive Assessment (MoCA) and the MATRICS Consensus Cognitive Battery (MCCB). After controlling for confounding factors, we identified differential metabolic indicators between patients with mild and severe cognitive impairment and conducted correlation and regression analyses. Furthermore, we matched two small sample groups of patients with lipid metabolism abnormalities and used Olink proteomics to analyze inflammation-related differential proteins, aiming to further explore the association between lipid metabolism abnormalities and cognition. RESULTS The proportion of patients with severe cognitive impairment (SCI) was 34.58%. Compared to patients with mild cognitive impairment (MCI), those with SCI performed worse in the Attention/Alertness (t = 2.668, p = 0.009) and Working Memory (t = 2.496, p = 0.014) cognitive dimensions. Blood lipid metabolism indicators were correlated with cognitive function, specifically showing that higher levels of TG (r = -0.447, p < 0.001), TC (r = -0.307, p = 0.002), and LDL-C (r = -0.607, p < 0.001) were associated with poorer overall cognitive function. Further regression analysis indicated that TG (OR = 5.578, P = 0.003) and LDL-C (OR = 5.425, P = 0.001) may be risk factors for exacerbating cognitive impairment in individuals with stable-phase schizophrenia. Proteomics analysis revealed that, compared to individuals with stable-phase schizophrenia and normal lipid metabolism, those with hyperlipidemia had elevated levels of 10 inflammatory proteins and decreased levels of 2 inflammatory proteins in plasma, with these changes correlating with cognitive function. The differential proteins were primarily involved in pathways such as cytokine-cytokine receptor interaction, chemokine signaling pathway, and IL-17 signaling pathway. CONCLUSION Blood lipids are associated with cognitive function in individuals with stable-phase schizophrenia, with higher levels of TG, TC, and LDL-C correlating with poorer overall cognitive performance. TG and LDL-C may be risk factors for exacerbating cognitive impairment in these patients. From an inflammatory perspective, lipid metabolism abnormalities might influence cognition by activating or downregulating related proteins, or through pathways such as cytokine-cytokine receptor interaction, chemokine signaling pathway, and IL-17 signaling pathway.
Collapse
Affiliation(s)
- Yingkang Zheng
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaojun Cai
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China.
- Department of Endocrinology, Heilongjiang Academy of Chinese Medicine, Harbin, China.
| | - Dezhong Wang
- Department of Endocrinology, Heilongjiang Academy of Chinese Medicine, Harbin, China
| | - Xinghai Chen
- Department of Endocrinology, Heilongjiang Academy of Chinese Medicine, Harbin, China
| | - Tao Wang
- Department of Endocrinology, Heilongjiang Academy of Chinese Medicine, Harbin, China
| | - Yanpeng Xie
- Department of Endocrinology, Heilongjiang Academy of Chinese Medicine, Harbin, China
| | - Haojing Li
- Department of Endocrinology, Heilongjiang Academy of Chinese Medicine, Harbin, China
| | - Tong Wang
- Department of Endocrinology, Heilongjiang Academy of Chinese Medicine, Harbin, China
| | - Yinxiong He
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiarui Li
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Juan Li
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
2
|
Esgalhado AJ, Reste-Ferreira D, Weinhold S, Uhrberg M, Cardoso EM, Arosa FA. In vitro IL-15-activated human naïve CD8+ T cells down-modulate the CD8β chain and become CD8αα T cells. Front Immunol 2024; 15:1252439. [PMID: 38903513 PMCID: PMC11188365 DOI: 10.3389/fimmu.2024.1252439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 05/21/2024] [Indexed: 06/22/2024] Open
Abstract
Antigen-driven human effector-memory CD8+ T cells expressing low levels of the CD8β chain have been previously described. However, little is known on a possible antigen-independent trigger. We have examined the impact that IL-15 has on the expression of CD8β on purified human naïve CD8+ T cells after CFSE labeling and culture with IL-15. As expected, IL-15 induced naïve CD8+ T cells to proliferate and differentiate. Remarkably, the process was associated with a cell-cycle dependent down-modulation of CD8β from the cell surface, leading to the generation of CD8αβlow and CD8αβ- (i.e., CD8αα) T cells. In contrast, expression of the CD8α chain remained steady or even increased. Neither IL-2 nor IL-7 reproduced the effect of IL-15. Determination of mRNA levels for CD8α and CD8β isoforms by qPCR revealed that IL-15 promoted a significant decrease in mRNA levels of the CD8β M-4 isoform, while levels of the M-1/M-2 isoforms and of CD8α increased. Noteworthy, CD8+ T cell blasts obtained after culture of CD8+ T cells with IL-15 showed a cell-cycle dependent increase in the level of the tyrosine kinase Lck, when compared to CD8+ T cells at day 0. This study has shown for the first time that IL-15 generates CD8αα+αβlow and CD8αα+αβ- T cells containing high levels of Lck, suggesting that they may be endowed with unique functional features.
Collapse
Affiliation(s)
- André J. Esgalhado
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), Covilhã, Portugal
| | - Débora Reste-Ferreira
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), Covilhã, Portugal
| | - Sandra Weinhold
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Markus Uhrberg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Elsa M. Cardoso
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), Covilhã, Portugal
- School of Health Sciences, Polytechnic of Guarda (ESS-IPG), Guarda, Portugal
| | - Fernando A. Arosa
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior (FCS-UBI), Covilhã, Portugal
| |
Collapse
|
3
|
Cardoso EM, Lourenço-Gomes V, Esgalhado AJ, Reste-Ferreira D, Oliveira N, Amaral AS, Martinho A, Gama JMR, Verde I, Lourenço O, Fonseca AM, Buchli R, Arosa FA. HLA-A23/HLA-A24 serotypes and dementia interaction in the elderly: Association with increased soluble HLA class I molecules in plasma. HLA 2023; 102:660-670. [PMID: 37400938 DOI: 10.1111/tan.15149] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/05/2023]
Abstract
MHC class I molecules regulate brain development and plasticity in mice and HLA class I molecules are associated with brain disorders in humans. We investigated the relationship between plasma-derived soluble human HLA class I molecules (sHLA class I), HLA class I serotypes and dementia. A cohort of HLA class I serotyped elderly subjects with no dementia/pre-dementia (NpD, n = 28), or with dementia (D, n = 28) was studied. Multivariate analysis was used to examine the influence of dementia and HLA class I serotype on sHLA class I levels, and to compare sHLA class I within four groups according to the presence or absence of HLA-A23/A24 and dementia. HLA-A23/A24 and dementia, but not age, significantly influenced the level of sHLA class I. Importantly, the concurrent presence of HLA-A23/A24 and dementia was associated with higher levels of sHLA class I (p < 0.001). This study has shown that the simultaneous presence of HLA-A23/HLA-A24 and dementia is associated with high levels of serum sHLA class I molecules. Thus, sHLA class I could be considered a biomarker of neurodegeneration in certain HLA class I carriers.
Collapse
Affiliation(s)
- Elsa M Cardoso
- ESS-IPG, School of Health Sciences, Polytechnic of Guarda, Guarda, Portugal
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | | | - André J Esgalhado
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Débora Reste-Ferreira
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Nádia Oliveira
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ana Saraiva Amaral
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - António Martinho
- Molecular Genetics Laboratory, Coimbra Blood and Transplantation Center, Coimbra, Portugal
| | - Jorge M R Gama
- Centre of Mathematics and Applications, Faculty of Sciences, University of Beira Interior, Covilhã, Portugal
| | - Ignácio Verde
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- Centre of Mathematics and Applications, Faculty of Sciences, University of Beira Interior, Covilhã, Portugal
| | - Olga Lourenço
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Ana M Fonseca
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Rico Buchli
- Pure Protein LLC, Oklahoma City, Oklahoma, USA
| | - Fernando A Arosa
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
4
|
Tatara Y, Yamazaki H, Katsuoka F, Chiba M, Saigusa D, Kasai S, Nakamura T, Inoue J, Aoki Y, Shoji M, Motoike IN, Tamada Y, Hashizume K, Shoji M, Kinoshita K, Murashita K, Nakaji S, Yamamoto M, Itoh K. Multiomics and artificial intelligence enabled peripheral blood-based prediction of amnestic mild cognitive impairment. Curr Res Transl Med 2023; 71:103367. [PMID: 36446162 DOI: 10.1016/j.retram.2022.103367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/03/2022] [Accepted: 10/20/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Since dementia is preventable with early interventions, biomarkers that assist in diagnosing early stages of dementia, such as mild cognitive impairment (MCI), are urgently needed. METHODS Multiomics analysis of amnestic MCI (aMCI) peripheral blood (n = 25) was performed covering the transcriptome, microRNA, proteome, and metabolome. Validation analysis for microRNAs was conducted in an independent cohort (n = 12). Artificial intelligence was used to identify the most important features for predicting aMCI. FINDINGS We found that hsa-miR-4455 is the best biomarker in all omics analyses. The diagnostic index taking a ratio of hsa-miR-4455 to hsa-let-7b-3p predicted aMCI patients against healthy subjects with 97% overall accuracy. An integrated review of multiomics data suggested that a subset of T cells and the GCN (general control nonderepressible) pathway are associated with aMCI. INTERPRETATION The multiomics approach has enabled aMCI biomarkers with high specificity and illuminated the accompanying changes in peripheral blood. Future large-scale studies are necessary to validate candidate biomarkers for clinical use.
Collapse
Affiliation(s)
- Yota Tatara
- Department of Stress Response Science, Center for Advanced Medical Research, Graduate School of Medicine, Hirosaki University, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Hiromi Yamazaki
- Department of Stress Response Science, Center for Advanced Medical Research, Graduate School of Medicine, Hirosaki University, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Fumiki Katsuoka
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan
| | - Mitsuru Chiba
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| | - Daisuke Saigusa
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan
| | - Shuya Kasai
- Department of Stress Response Science, Center for Advanced Medical Research, Graduate School of Medicine, Hirosaki University, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Tomohiro Nakamura
- Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Division of Personalized Prevention and Epidemiology, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan
| | - Jin Inoue
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan
| | - Yuichi Aoki
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan
| | - Miho Shoji
- Human Metabolome Technologies, Inc., 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Ikuko N Motoike
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan
| | - Yoshinori Tamada
- Innovation Center for Health Promotion, Graduate School of Medicine, Hirosaki University, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Katsuhito Hashizume
- Human Metabolome Technologies, Inc., 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Mikio Shoji
- Department of Neurology, Gunma University Hospital, 3-39-15 Showamachi, Maebashi, Gunma 371-8511, Japan; Department of Neurology, Dementia Research Center, Geriatrics Research Institute and Hospital, 3-26-8 Ootomo-machi, Maebashi, Gunma 371-0847 Japan; COI Research Initiatives Organization, Hirosaki University, 5 Zaifu-cho, Hirosaki, Aomori 036-8216, Japan
| | - Kengo Kinoshita
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan; Department of Applied Information Sciences, Graduate School of Information Sciences, Tohoku University, 6-6-05 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan
| | - Koichi Murashita
- COI Research Initiatives Organization, Hirosaki University, 5 Zaifu-cho, Hirosaki, Aomori 036-8216, Japan
| | - Shigeyuki Nakaji
- Department of Social Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8216, Japan
| | - Masayuki Yamamoto
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan; Department of Medical Biochemistry, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Ken Itoh
- Department of Stress Response Science, Center for Advanced Medical Research, Graduate School of Medicine, Hirosaki University, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan.
| |
Collapse
|
5
|
Arosa FA, Esgalhado AJ, Reste-Ferreira D, Cardoso EM. Open MHC Class I Conformers: A Look through the Looking Glass. Int J Mol Sci 2021; 22:ijms22189738. [PMID: 34575902 PMCID: PMC8470049 DOI: 10.3390/ijms22189738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 12/16/2022] Open
Abstract
Studies carried out during the last few decades have consistently shown that cell surface MHC class I (MHC-I) molecules are endowed with functions unrelated with antigen presentation. These include cis–trans-interactions with inhibitory and activating KIR and LILR, and cis-interactions with receptors for hormones, growth factors, cytokines, and neurotransmitters. The mounting body of evidence indicates that these non-immunological MHC-I functions impact clinical and biomedical settings, including autoimmune responses, tumor escape, transplantation, and neuronal development. Notably, most of these functions appear to rely on the presence in hematopoietic and non-hematopoietic cells of heavy chains not associated with β2m and the peptide at the plasma membrane; these are known as open MHC-I conformers. Nowadays, open conformers are viewed as functional cis-trans structures capable of establishing physical associations with themselves, with other surface receptors, and being shed into the extracellular milieu. We review past and recent developments, strengthening the view that open conformers are multifunctional structures capable of fine-tuning cell signaling, growth, differentiation, and cell communication.
Collapse
Affiliation(s)
- Fernando A Arosa
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - André J Esgalhado
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Débora Reste-Ferreira
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Elsa M Cardoso
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
- Health School, Guarda Polytechnic Institute, 6300-749 Guarda, Portugal
| |
Collapse
|