1
|
Gubbins S, Paudyal B, Dema B, Vats A, Ulaszewska M, Vatzia E, Tchilian E, Gilbert SC. Predicting airway immune responses and protection from immune parameters in blood following immunization in a pig influenza model. Front Immunol 2024; 15:1506224. [PMID: 39749329 PMCID: PMC11693722 DOI: 10.3389/fimmu.2024.1506224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Whereas the intranasally delivered influenza vaccines used in children affect transmission of influenza virus in the community as well as reducing illness, inactivated influenza vaccines administered by intramuscular injection do not prevent transmission and have a variable, sometimes low rate of vaccine effectiveness. Although mucosally administered vaccines have the potential to induce more protective immune response at the site of viral infection, quantitating such immune responses in large scale clinical trials and developing correlates of protection is challenging. Here we show that by using mathematical models immune responses measured in the blood after delivery of vaccine to the lungs by aerosol can predict immune responses in the respiratory tract in pigs. Additionally, these models can predict protection from influenza virus challenge despite lower levels of blood responses following aerosol immunization. However, the inclusion of immune responses measured in nasal swab eluates did not improve the predictive power of the model. Our models are an important first step, providing proof of principle that it is feasible to predict immune responses and protection in pigs. This approach now provides a path to develop correlates of protection for mucosally delivered vaccines in samples that are easily accessed in clinical trials.
Collapse
Affiliation(s)
| | | | - Barbara Dema
- Nuffield Department of Medicine, Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
| | | | - Marta Ulaszewska
- Nuffield Department of Medicine, Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
| | - Eleni Vatzia
- The Pirbright Institute, Pirbright, United Kingdom
| | | | - Sarah C. Gilbert
- Nuffield Department of Medicine, Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
- Chinese Academy of Medical Science (CAMS), Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Potla S, Smaldone GC. High-Flow Nasal Aerosol Therapy; Regional Aerosol Deposition and Airway Responsiveness. J Aerosol Med Pulm Drug Deliv 2024. [PMID: 39435567 DOI: 10.1089/jamp.2024.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
Introduction: In normal subjects, during tidal breathing, aerosols deposit by settling in small airways. With obstructive lung disease (OLD), collapse of airways during expiration causes turbulence and increased deposition in central airways. High-flow nasal cannula (HFNC) therapy, washing out dead space, may affect deposition mechanisms and drug delivery. This study compared aerosol deposition and airway responsiveness in OLD after traditional and HFNC nebulization therapy. Methods: Twelve subjects with moderate to severe OLD participated in a two-day study. Spirometry was measured pre- and post-aerosol inhalation. On Day 1 (D1) subjects tidally inhaled radiolabeled albuterol (99mTc DTPA) by mouth via AeroTech II, (Biodex. Shirley, NY). Day 2 (D2) inhalation was via HFNC using i-AIRE (InspiRx, Inc. Somerset, NJ). The HFNC system (60 L/m) was infused by syringe pump at 50 mL/h. D2 lung deposition was monitored in real time by gamma camera to match D1. Pre and post heart rate, O2 sat, and nasopharyngeal deposition (NP) were measured. Mechanistic contributions were modeled using multiple linear regression (MLR) of deposition rate (DR µg/m) as a function of breathing frequency, airway geometry (FEV1), and parenchymal integrity (DLCO). Results: Albuterol lung depositions were matched (p = 0.13) with D1 central/peripheral (sC/P) ratios 1.99 ± 0.98. Following HFNC, peripheral deposition increased (31% ± 33%, sC/P = 1.51 ± 0.43, p = 0.01). D2/D1% change FVC increased by 16.1 ± 16.7% (p = 0.003). NP deposition averaged 333% of lung. Heart rate and O2 sat were unaffected (p = 0.31, p = 0.63 respectively). DR analysis was markedly different between D1 (R2 = 0.82) and D2 (R2 = 0.12). Conclusion: In subjects with OLD, HFNC nebulization at 60 L/min was well tolerated and increased peripheral drug delivery. Spirometry significantly improved. Systemic effects were undetected indicating limited nasal absorption. MLR demonstrated that different mechanisms of deposition govern traditional vs HFNC aerosol delivery. Breath-enhanced nebulization via HFNC may provide controllable and effective aerosol therapy in OLD.
Collapse
Affiliation(s)
- Srinivasa Potla
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Stony Brook University Medical Center, Stony Brook, New York, USA
| | - Gerald C Smaldone
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Stony Brook University Medical Center, Stony Brook, New York, USA
| |
Collapse
|
3
|
Vatzia E, Paudyal B, Dema B, Carr BV, Sedaghat-Rostami E, Gubbins S, Sharma B, Moorhouse E, Morris S, Ulaszewska M, MacLoughlin R, Salguero FJ, Gilbert SC, Tchilian E. Aerosol immunization with influenza matrix, nucleoprotein, or both prevents lung disease in pig. NPJ Vaccines 2024; 9:188. [PMID: 39397062 PMCID: PMC11471855 DOI: 10.1038/s41541-024-00989-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024] Open
Abstract
Current influenza vaccines are strain-specific and require frequent updates to combat new strains, making a broadly protective influenza vaccine (BPIV) highly desirable. A promising strategy is to induce T-cell responses against internal proteins conserved across influenza strains. In this study, pH1N1 pre-exposed pigs were immunized by aerosol using viral vectored vaccines (ChAdOx2 and MVA) expressing matrix (M1) and nucleoprotein (NP). Following H3N2 challenge, all immunizations (M1, NP or NPM1) reduced lung pathology, but M1 alone offered the greatest protection. NP or NPM1 immunization induced both T-cell and antibody responses. M1 immunization generated no detectable antibodies but elicited M1-specific T-cell responses, suggesting T cell-mediated protection. Additionally, a single aerosol immunization with the ChAdOx vaccine encoding M1, NP and neuraminidase reduced lung pathology. These findings provide insights into BPIV development using a relevant large natural host, the pig.
Collapse
Affiliation(s)
| | | | - Barbara Dema
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | | | | | | | - Susan Morris
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Marta Ulaszewska
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | - Sarah C Gilbert
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | |
Collapse
|
4
|
Jian F, Cao Y. The delivery device of SARS-CoV-2 mucosal vaccine matters. Nat Immunol 2024; 25:1781-1783. [PMID: 39227515 DOI: 10.1038/s41590-024-01950-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Affiliation(s)
- Fanchong Jian
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- Changping Laboratory, Beijing, China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yunlong Cao
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China.
- Changping Laboratory, Beijing, China.
| |
Collapse
|
5
|
Muir A, Paudyal B, Schmidt S, Sedaghat-Rostami E, Chakravarti S, Villanueva-Hernández S, Moffat K, Polo N, Angelopoulos N, Schmidt A, Tenbusch M, Freimanis G, Gerner W, Richard AC, Tchilian E. Single-cell analysis reveals lasting immunological consequences of influenza infection and respiratory immunization in the pig lung. PLoS Pathog 2024; 20:e1011910. [PMID: 39024231 PMCID: PMC11257366 DOI: 10.1371/journal.ppat.1011910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
The pig is a natural host for influenza viruses and integrally involved in virus evolution through interspecies transmissions between humans and swine. Swine have many physiological, anatomical, and immunological similarities to humans, and are an excellent model for human influenza. Here, we employed single cell RNA-sequencing (scRNA-seq) and flow cytometry to characterize the major leukocyte subsets in bronchoalveolar lavage (BAL), twenty-one days after H1N1pdm09 infection or respiratory immunization with an adenoviral vector vaccine expressing hemagglutinin and nucleoprotein with or without IL-1β. Mapping scRNA-seq clusters from BAL onto those previously described in peripheral blood facilitated annotation and highlighted differences between tissue resident and circulating immune cells. ScRNA-seq data and functional assays revealed lasting impacts of immune challenge on BAL populations. First, mucosal administration of IL-1β reduced the number of functionally active Treg cells. Second, influenza infection upregulated IFI6 in BAL cells and decreased their susceptibility to virus replication in vitro. Our data provide a reference map of porcine BAL cells and reveal lasting immunological consequences of influenza infection and respiratory immunization in a highly relevant large animal model for respiratory virus infection.
Collapse
Affiliation(s)
- Andrew Muir
- Immunology Programme, The Babraham Institute, Cambridge, United Kingdom
| | | | | | | | | | | | - Katy Moffat
- The Pirbright Institute, Pirbright, United Kingdom
| | - Noemi Polo
- The Pirbright Institute, Pirbright, United Kingdom
| | | | - Anna Schmidt
- Virologisches Institut-Klinische und Molekulare Virologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- FAU Profilzentrum Immunmedizin (FAU I-MED), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Tenbusch
- Virologisches Institut-Klinische und Molekulare Virologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- FAU Profilzentrum Immunmedizin (FAU I-MED), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | |
Collapse
|
6
|
Neary MT, Mulder LM, Kowalski PS, MacLoughlin R, Crean AM, Ryan KB. Nebulised delivery of RNA formulations to the lungs: From aerosol to cytosol. J Control Release 2024; 366:812-833. [PMID: 38101753 DOI: 10.1016/j.jconrel.2023.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
In the past decade RNA-based therapies such as small interfering RNA (siRNA) and messenger RNA (mRNA) have emerged as new and ground-breaking therapeutic agents for the treatment and prevention of many conditions from viral infection to cancer. Most clinically approved RNA therapies are parenterally administered which impacts patient compliance and adds to healthcare costs. Pulmonary administration via inhalation is a non-invasive means to deliver RNA and offers an attractive alternative to injection. Nebulisation is a particularly appealing method due to the capacity to deliver large RNA doses during tidal breathing. In this review, we discuss the unique physiological barriers presented by the lung to efficient nebulised RNA delivery and approaches adopted to circumvent this problem. Additionally, the different types of nebulisers are evaluated from the perspective of their suitability for RNA delivery. Furthermore, we discuss recent preclinical studies involving nebulisation of RNA and analysis in in vitro and in vivo settings. Several studies have also demonstrated the importance of an effective delivery vector in RNA nebulisation therefore we assess the variety of lipid, polymeric and hybrid-based delivery systems utilised to date. We also consider the outlook for nebulised RNA medicinal products and the hurdles which must be overcome for successful clinical translation. In summary, nebulised RNA delivery has demonstrated promising potential for the treatment of several lung-related conditions such as asthma, COPD and cystic fibrosis, to which the mode of delivery is of crucial importance for clinical success.
Collapse
Affiliation(s)
- Michael T Neary
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Ireland; School of Pharmacy, University College Cork, Ireland
| | | | - Piotr S Kowalski
- School of Pharmacy, University College Cork, Ireland; APC Microbiome, University College Cork, Cork, Ireland
| | | | - Abina M Crean
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Ireland; School of Pharmacy, University College Cork, Ireland
| | - Katie B Ryan
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Ireland; School of Pharmacy, University College Cork, Ireland.
| |
Collapse
|
7
|
McNee A, Vanover D, Rijal P, Paudyal B, Lean FZX, MacLoughlin R, Núñez A, Townsend A, Santangelo PJ, Tchilian E. A direct contact pig influenza challenge model for assessing protective efficacy of monoclonal antibodies. Front Immunol 2023; 14:1229051. [PMID: 37965320 PMCID: PMC10641767 DOI: 10.3389/fimmu.2023.1229051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023] Open
Abstract
Monoclonal antibodies (mAbs) can be used to complement immunization for the therapy of influenza virus infection. We have established the pig, a natural large animal host for influenza A, with many physiological, immunological, and anatomical similarities to humans, as an appropriate model for testing mAbs. We have evaluated the protective efficacy of the strongly neutralizing human anti-hemagglutinin mAb, 2-12C in the pig influenza model. Intravenous administration of recombinant 2-12C reduced virus load and lung pathology, however, it did not prevent virus nasal shedding and, consequently, transmission. This may be because the pigs were directly infected intranasally with a high dose of the H1N1pdm09 virus. To address this, we developed a contact challenge model in which the animals were given 2-12C and one day later co-housed with donor pigs previously infected intra-nasally with H1N1pdm09. 2-12C pre-treatment completely prevented infection. We also administered a lower dose of 2-12C by aerosol to the respiratory tract, but this did not prevent shedding in the direct challenge model, although it abolished lung infection. We propose that the direct contact challenge model of pig influenza may be useful for evaluating candidate mAbs and emerging delivery platforms prior to clinical trials.
Collapse
Affiliation(s)
- Adam McNee
- Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | - Daryll Vanover
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA, United States
| | - Pramila Rijal
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Basudev Paudyal
- Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | - Fabian Z. X. Lean
- Department of Pathology, Animal and Plant Health Agency (APHA)-Weybridge, Addlestone, United Kingdom
| | - Ronan MacLoughlin
- Research and Development, Science and Emerging Technologies, Aerogen Ltd, Galway, Ireland
| | - Alejandro Núñez
- Department of Pathology, Animal and Plant Health Agency (APHA)-Weybridge, Addlestone, United Kingdom
| | - Alain Townsend
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Philip J. Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA, United States
| | - Elma Tchilian
- Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| |
Collapse
|
8
|
Rotolo L, Vanover D, Bruno NC, Peck HE, Zurla C, Murray J, Noel RK, O'Farrell L, Araínga M, Orr-Burks N, Joo JY, Chaves LCS, Jung Y, Beyersdorf J, Gumber S, Guerrero-Ferreira R, Cornejo S, Thoresen M, Olivier AK, Kuo KM, Gumbart JC, Woolums AR, Villinger F, Lafontaine ER, Hogan RJ, Finn MG, Santangelo PJ. Species-agnostic polymeric formulations for inhalable messenger RNA delivery to the lung. NATURE MATERIALS 2023; 22:369-379. [PMID: 36443576 DOI: 10.1038/s41563-022-01404-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Messenger RNA has now been used to vaccinate millions of people. However, the diversity of pulmonary pathologies, including infections, genetic disorders, asthma and others, reveals the lung as an important organ to directly target for future RNA therapeutics and preventatives. Here we report the screening of 166 polymeric nanoparticle formulations for functional delivery to the lungs, obtained from a combinatorial synthesis approach combined with a low-dead-volume nose-only inhalation system for mice. We identify P76, a poly-β-amino-thio-ester polymer, that exhibits increased expression over formulations lacking the thiol component, delivery to different animal species with varying RNA cargos and low toxicity. P76 allows for dose sparing when delivering an mRNA-expressed Cas13a-mediated treatment in a SARS-CoV-2 challenge model, resulting in similar efficacy to a 20-fold higher dose of a neutralizing antibody. Overall, the combinatorial synthesis approach allowed for the discovery of promising polymeric formulations for future RNA pharmaceutical development for the lungs.
Collapse
Affiliation(s)
- Laura Rotolo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Daryll Vanover
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Nicholas C Bruno
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Hannah E Peck
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Chiara Zurla
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Jackelyn Murray
- Department of Infectious Diseases, College of Veterinary Medicine University of Georgia, Athens, GA, USA
| | - Richard K Noel
- Physiological Research Laboratory, Georgia Institute of Technology, Atlanta, GA, USA
| | - Laura O'Farrell
- Physiological Research Laboratory, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mariluz Araínga
- New Iberia Research Center, University of Louisiana Lafayette, Lafayette, LA, USA
| | - Nichole Orr-Burks
- Department of Infectious Diseases, College of Veterinary Medicine University of Georgia, Athens, GA, USA
| | - Jae Yeon Joo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Lorena C S Chaves
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Younghun Jung
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Jared Beyersdorf
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Sanjeev Gumber
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | | | - Santiago Cornejo
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Merrilee Thoresen
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Alicia K Olivier
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Katie M Kuo
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - James C Gumbart
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Amelia R Woolums
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana Lafayette, Lafayette, LA, USA
| | - Eric R Lafontaine
- Department of Infectious Diseases, College of Veterinary Medicine University of Georgia, Athens, GA, USA
| | - Robert J Hogan
- Department of Infectious Diseases, College of Veterinary Medicine University of Georgia, Athens, GA, USA
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine University of Georgia, Athens, GA, USA
| | - M G Finn
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
9
|
Vatzia E, Feest K, McNee A, Manjegowda T, Carr BV, Paudyal B, Chrun T, Maze EA, Mccarron A, Morris S, Everett HE, MacLoughlin R, Salguero FJ, Lambe T, Gilbert SC, Tchilian E. Immunization with matrix-, nucleoprotein and neuraminidase protects against H3N2 influenza challenge in pH1N1 pre-exposed pigs. NPJ Vaccines 2023; 8:19. [PMID: 36792640 PMCID: PMC9930017 DOI: 10.1038/s41541-023-00620-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
There is an urgent need for influenza vaccines providing broader protection that may decrease the need for annual immunization of the human population. We investigated the efficacy of heterologous prime boost immunization with chimpanzee adenovirus (ChAdOx2) and modified vaccinia Ankara (MVA) vectored vaccines, expressing conserved influenza virus nucleoprotein (NP), matrix protein 1 (M1) and neuraminidase (NA) in H1N1pdm09 pre-exposed pigs. We compared the efficacy of intra-nasal, aerosol and intra-muscular vaccine delivery against H3N2 influenza challenge. Aerosol prime boost immunization induced strong local lung T cell and antibody responses and abrogated viral shedding and lung pathology following H3N2 challenge. In contrast, intramuscular immunization induced powerful systemic responses and weak local lung responses but also abolished lung pathology and reduced viral shedding. These results provide valuable insights into the development of a broadly protective influenza vaccine in a highly relevant large animal model and will inform future vaccine and clinical trial design.
Collapse
Affiliation(s)
- Eleni Vatzia
- The Pirbright Institute, Pirbright, United Kingdom.
| | | | - Adam McNee
- The Pirbright Institute, Pirbright, United Kingdom
| | | | | | | | | | | | - Amy Mccarron
- The Pirbright Institute, Pirbright, United Kingdom
| | - Susan Morris
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Helen E Everett
- Animal and Plant Health Agency-Weybridge, New Haw, Addlestone, United Kingdom
| | | | - Francisco J Salguero
- United Kingdom Health Security Agency, UKHSA-Porton Down, Salisbury, United Kingdom
| | - Teresa Lambe
- Oxford Vaccine Group, Department of Paediatrics, Medical Sciences Division, University of Oxford and Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| | - Sarah C Gilbert
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
10
|
Vanover D, Zurla C, Peck HE, Orr‐Burks N, Joo JY, Murray J, Holladay N, Hobbs RA, Jung Y, Chaves LCS, Rotolo L, Lifland AW, Olivier AK, Li D, Saunders KO, Sempowski GD, Crowe JE, Haynes BF, Lafontaine ER, Hogan RJ, Santangelo PJ. Nebulized mRNA-Encoded Antibodies Protect Hamsters from SARS-CoV-2 Infection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202771. [PMID: 36316224 PMCID: PMC9731714 DOI: 10.1002/advs.202202771] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Despite the success of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccines, there remains a clear need for new classes of preventatives for respiratory viral infections due to vaccine hesitancy, lack of sterilizing immunity, and for at-risk patient populations, including the immunocompromised. While many neutralizing antibodies have been identified, and several approved, to treat COVID-19, systemic delivery, large doses, and high costs have the potential to limit their widespread use, especially in low- and middle-income countries. To use these antibodies more efficiently, an inhalable formulation is developed that allows for the expression of mRNA-encoded, membrane-anchored neutralizing antibodies in the lung to mitigate SARS-CoV-2 infections. First, the ability of mRNA-encoded, membrane-anchored, anti-SARS-CoV-2 antibodies to prevent infections in vitro is demonstrated. Next, it is demonstrated that nebulizer-based delivery of these mRNA-expressed neutralizing antibodies potently abrogates disease in the hamster model. Overall, these results support the use of nebulizer-based mRNA expression of neutralizing antibodies as a new paradigm for mitigating respiratory virus infections.
Collapse
Affiliation(s)
- Daryll Vanover
- Wallace H. Coulter Department of Biomedical EngineeringEmory University and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Chiara Zurla
- Wallace H. Coulter Department of Biomedical EngineeringEmory University and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Hannah E. Peck
- Wallace H. Coulter Department of Biomedical EngineeringEmory University and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Nichole Orr‐Burks
- Department of Infectious DiseasesCollege of Veterinary MedicineUniversity of GeorgiaAthensGA30602USA
| | - Jae Yeon Joo
- Wallace H. Coulter Department of Biomedical EngineeringEmory University and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Jackelyn Murray
- Department of Infectious DiseasesCollege of Veterinary MedicineUniversity of GeorgiaAthensGA30602USA
| | - Nathan Holladay
- Department of Infectious DiseasesCollege of Veterinary MedicineUniversity of GeorgiaAthensGA30602USA
| | - Ryan A. Hobbs
- Wallace H. Coulter Department of Biomedical EngineeringEmory University and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Younghun Jung
- Wallace H. Coulter Department of Biomedical EngineeringEmory University and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Lorena C. S. Chaves
- Wallace H. Coulter Department of Biomedical EngineeringEmory University and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Laura Rotolo
- Wallace H. Coulter Department of Biomedical EngineeringEmory University and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Aaron W. Lifland
- Wallace H. Coulter Department of Biomedical EngineeringEmory University and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Alicia K. Olivier
- Department of Pathobiology and Population MedicineCollege of Veterinary MedicineMississippi State UniversityStarkvilleMS39762USA
| | - Dapeng Li
- Duke Human Vaccine Institute and the Departments of Medicine and ImmunologyDuke University School of MedicineDurhamNC27710USA
| | - Kevin O. Saunders
- Duke Human Vaccine InstituteDepartments of SurgeryMolecular Genetics and Microbiologyand ImmunologyDuke University School of MedicineDurhamNC27710USA
| | - Gregory D. Sempowski
- Duke Human Vaccine Institute and the Departments of Medicine and ImmunologyDuke University School of MedicineDurhamNC27710USA
| | - James E. Crowe
- Vanderbilt Vaccine CenterVanderbilt University Medical CenterNashvilleTN37232USA
| | - Barton F. Haynes
- Duke Human Vaccine Institute and the Departments of Medicine and ImmunologyDuke University School of MedicineDurhamNC27710USA
| | - Eric R. Lafontaine
- Department of Infectious DiseasesCollege of Veterinary MedicineUniversity of GeorgiaAthensGA30602USA
| | - Robert J. Hogan
- Department of Infectious DiseasesCollege of Veterinary MedicineUniversity of GeorgiaAthensGA30602USA
- Department of Veterinary Biosciences and Diagnostic ImagingCollege of Veterinary MedicineUniversity of GeorgiaAthensGA30602USA
| | - Philip J. Santangelo
- Wallace H. Coulter Department of Biomedical EngineeringEmory University and Georgia Institute of TechnologyAtlantaGA30322USA
| |
Collapse
|
11
|
Martini V, Edmans M, Gubbins S, Jayaraman S, Paudyal B, Morgan S, McNee A, Morin T, Rijal P, Gerner W, Sewell AK, Inoue R, Bailey M, Connelley T, Charleston B, Townsend A, Beverley P, Tchilian E. Spatial, temporal and molecular dynamics of swine influenza virus-specific CD8 tissue resident memory T cells. Mucosal Immunol 2022; 15:428-442. [PMID: 35145208 PMCID: PMC9038527 DOI: 10.1038/s41385-021-00478-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/23/2021] [Accepted: 12/08/2021] [Indexed: 02/04/2023]
Abstract
For the first time we have defined naïve, central memory, effector memory and differentiated effector porcine CD8 T cells and analyzed their distribution in lymphoid and respiratory tissues after influenza infection or immunization, using peptide-MHC tetramers of three influenza nucleoprotein (NP) epitopes. The hierarchy of response to the three epitopes changes during the response in different tissues. Most NP-specific CD8 T cells in broncho-alveolar lavage (BAL) and lung are tissue resident memory cells (TRM) that express CD69 and downregulate CD45RA and CCR7. NP-specific cells isolated from BAL express genes characteristic of TRM, but gene expression differs at 7, 21 and 63 days post infection. In all tissues the frequency of NP-specific CD8 cells declines over 63 days almost to background levels but is best maintained in BAL. The kinetic of influenza specific memory CD8 T cell in this natural host species differs from that in small animal models.
Collapse
Affiliation(s)
- Veronica Martini
- The Pirbright Institute, Pirbright, UK.
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- Institute for Research in Biomedicine, Bellinzona, Switzerland.
| | | | | | | | | | | | | | - Théo Morin
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Pramila Rijal
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | - Andrew K Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Ryo Inoue
- Laboratory of Animal Science, Setsunan University, Osaka, Japan
| | - Mick Bailey
- Bristol Veterinary School, University of Bristol, Langford, UK
| | | | | | - Alain Townsend
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Peter Beverley
- National Heart and Lung Institute, St Mary's Campus, Imperial College, London, UK
| | | |
Collapse
|
12
|
Keep S, Carr BV, Lean FZX, Fones A, Newman J, Dowgier G, Freimanis G, Vatzia E, Polo N, Everest H, Webb I, Mcnee A, Paudyal B, Thakur N, Nunez A, MacLoughlin R, Maier H, Hammond J, Bailey D, Waters R, Charleston B, Tuthill T, Britton P, Bickerton E, Tchilian E. Porcine Respiratory Coronavirus as a Model for Acute Respiratory Coronavirus Disease. Front Immunol 2022; 13:867707. [PMID: 35418984 PMCID: PMC8995773 DOI: 10.3389/fimmu.2022.867707] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/02/2022] [Indexed: 12/11/2022] Open
Abstract
In the light of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, we have developed a porcine respiratory coronavirus (PRCV) model for in depth mechanistic evaluation of the pathogenesis, virology and immune responses of this important family of viruses. Pigs are a large animal with similar physiology and immunology to humans and are a natural host for PRCV. Four PRCV strains were investigated and shown to induce different degrees of lung pathology. Importantly, although all four strains replicated equally well in porcine cell lines in vitro and in the upper respiratory tract in vivo, PRCV strains causing more severe lung pathology were also able to replicate in ex vivo tracheal organ cultures as well as in vivo in the trachea and lung. The time course of infection of PRCV 135, which caused the most severe pulmonary pathology, was investigated. Virus was shed from the upper respiratory tract until day 10 post infection, with infection of the respiratory mucosa, as well as olfactory and sustentacular cells, providing an excellent model to study upper respiratory tract disease in addition to the commonly known lower respiratory tract disease from PRCV. Infected animals made antibody and T cell responses that cross reacted with the four PRCV strains and Transmissible Gastroenteritis Virus. The antibody response was reproduced in vitro in organ cultures. Comparison of mechanisms of infection and immune control in pigs infected with PRCVs of differing pathogenicity with human data from SARS-CoV-2 infection and from our in vitro organ cultures, will enable key events in coronavirus infection and disease pathogenesis to be identified.
Collapse
Affiliation(s)
- Sarah Keep
- The Pirbright Institute, Pirbright, United Kingdom
| | | | - Fabian Z X Lean
- Department of Pathology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Albert Fones
- The Pirbright Institute, Pirbright, United Kingdom
| | | | | | | | - Eleni Vatzia
- The Pirbright Institute, Pirbright, United Kingdom
| | - Noemi Polo
- The Pirbright Institute, Pirbright, United Kingdom
| | | | - Isobel Webb
- The Pirbright Institute, Pirbright, United Kingdom
| | - Adam Mcnee
- The Pirbright Institute, Pirbright, United Kingdom
| | - Basu Paudyal
- The Pirbright Institute, Pirbright, United Kingdom
| | - Nazia Thakur
- The Pirbright Institute, Pirbright, United Kingdom
| | - Alejandro Nunez
- Department of Pathology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Ronan MacLoughlin
- Research and Development, Science and Emerging Technologies, Aerogen, Galway, Ireland
| | - Helena Maier
- The Pirbright Institute, Pirbright, United Kingdom
| | - John Hammond
- The Pirbright Institute, Pirbright, United Kingdom
| | - Dalan Bailey
- The Pirbright Institute, Pirbright, United Kingdom
| | - Ryan Waters
- The Pirbright Institute, Pirbright, United Kingdom
| | | | - Toby Tuthill
- The Pirbright Institute, Pirbright, United Kingdom
| | - Paul Britton
- The Pirbright Institute, Pirbright, United Kingdom
| | | | | |
Collapse
|
13
|
Vatzia E, Allen ER, Manjegowda T, Morris S, McNee A, Martini V, Kaliath R, Ulaszewska M, Boyd A, Paudyal B, Carr VB, Chrun T, Maze E, MacLoughlin R, van Diemen PM, Everett HE, Lambe T, Gilbert SC, Tchilian E. Respiratory and Intramuscular Immunization With ChAdOx2-NPM1-NA Induces Distinct Immune Responses in H1N1pdm09 Pre-Exposed Pigs. Front Immunol 2021; 12:763912. [PMID: 34804053 PMCID: PMC8595216 DOI: 10.3389/fimmu.2021.763912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/13/2021] [Indexed: 01/12/2023] Open
Abstract
There is a critical need to develop superior influenza vaccines that provide broader protection. Influenza vaccines are traditionally tested in naive animals, although humans are exposed to influenza in the first years of their lives, but the impact of prior influenza exposure on vaccine immune responses has not been well studied. Pigs are an important natural host for influenza, are a source of pandemic viruses, and are an excellent model for human influenza. Here, we investigated the immunogenicity of the ChAdOx2 viral vectored vaccine, expressing influenza nucleoprotein, matrix protein 1, and neuraminidase in H1N1pdm09 pre-exposed pigs. We evaluated the importance of the route of administration by comparing intranasal, aerosol, and intramuscular immunizations. Aerosol delivery boosted the local lung T-cell and antibody responses, while intramuscular immunization boosted peripheral blood immunity. These results will inform how best to deliver vaccines in order to harness optimal protective immunity.
Collapse
Affiliation(s)
- Eleni Vatzia
- Enhanced Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | - Elizabeth R Allen
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Tanuja Manjegowda
- Enhanced Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | - Susan Morris
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Adam McNee
- Enhanced Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | - Veronica Martini
- Enhanced Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | - Reshma Kaliath
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Marta Ulaszewska
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Amy Boyd
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Basudev Paudyal
- Enhanced Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | - Veronica B Carr
- Enhanced Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | - Tiphany Chrun
- Enhanced Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | - Emmanuel Maze
- Enhanced Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | | | | | - Helen E Everett
- Animal and Plant Health Agency (APHA)-Weybridge, Addlestone, United Kingdom
| | - Teresa Lambe
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Sarah C Gilbert
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Elma Tchilian
- Enhanced Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| |
Collapse
|
14
|
Opriessnig T, Rawal G, McKeen L, Filippsen Favaro P, Halbur PG, Gauger PC. Evaluation of the intranasal route for porcine reproductive and respiratory disease modified-live virus vaccination. Vaccine 2021; 39:6852-6859. [PMID: 34706840 DOI: 10.1016/j.vaccine.2021.10.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND In pigs, modified live virus (MLV) vaccines against porcine reproductive and respiratory syndrome virus (PRRSV) are commonly used and administered by intramuscular (IM) injection. In contrast, PRRSV, as a primary respiratory pathogen, is mainly transmitted via the intranasal (IN) route. The objective of this study was to evaluate the efficacy of a commonly used commercial PRRSV MLV delivered IN compared to the IM route. METHODS Fifty-four pigs were divided into five treatment groups. All vaccinated groups received the same MLV vaccine but administered via different routes. Group IN-JET-VAC was vaccinated with an automated high pressure prototype nasal jet device (IN-JET-VAC, n = 12), group IN-MAD-VAC was vaccinated with a mucosal atomization device (IN-MAD-VAC, n = 12), group IM-VAC was vaccinated intramuscularly (IM-VAC; n = 12) according to label instructions, while the NEG-CONTROL (n = 6) and the POS-CONTROL (n = 12) groups were both unvaccinated. At 28 days post vaccination all vaccinated groups and the POS-CONTROL pigs were challenged with a pathogenic US PRRSV isolate. Blood and nasal swabs were collected at regular intervals, and all pigs were necropsied at day 10 post challenge (dpc) when gross and microscopic lung lesions were assessed. RESULTS Prior to challenge most vaccinated pigs had seroconverted to PRRSV. Clinical signs (fever, inappetence) were most obvious in the POS-CONTROL group from dpc 7 onwards. The vaccinated groups were not different for PRRSV viremia, seroconversion, or average daily weight gain. However, IN-JET-VAC and IN-MAD-VAC had significantly higher neutralizing antibody levels against the vaccine virus at challenge. CONCLUSIONS Comparable vaccine responses were obtained in IN and IM vaccinated pigs, suggesting the intranasal administration route as an alternative option for PRRSV vaccination.
Collapse
Affiliation(s)
- Tanja Opriessnig
- The Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK; Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| | - Gaurav Rawal
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Lauren McKeen
- Department of Statistics, Iowa State University, Ames, IA, USA
| | | | - Patrick G Halbur
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Phillip C Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| |
Collapse
|
15
|
Gerner W, Mair KH, Schmidt S. Local and Systemic T Cell Immunity in Fighting Pig Viral and Bacterial Infections. Annu Rev Anim Biosci 2021; 10:349-372. [PMID: 34724393 DOI: 10.1146/annurev-animal-013120-044226] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
T cells are an essential component of the adaptive immune system. Over the last 15 years, a constantly growing toolbox with which to study T cell biology in pigs has allowed detailed investigations on these cells in various viral and bacterial infections. This review provides an overview on porcine CD4, CD8, and γδ T cells and the current knowledge on the differentiation of these cells following antigen encounter. Where available, the responses of these cells to viral infections like porcine reproductive and respiratory syndrome virus, classical swine fever virus, swine influenza A virus, and African swine fever virus are outlined. In addition, knowledge on the porcine T cell response to bacterial infections like Actinobacillus pleuropneumoniae and Salmonella Typhimurium is reviewed. For CD4 T cells, the response to the outlined infections is reflected toward the Th1/Th2/Th17/Tfh/Treg paradigm for functional differentiation. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Wilhelm Gerner
- The Pirbright Institute, Pirbright, Woking, United Kingdom; ,
| | - Kerstin H Mair
- Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria; .,Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Selma Schmidt
- The Pirbright Institute, Pirbright, Woking, United Kingdom; ,
| |
Collapse
|
16
|
Comparison of Mycoplasma hyopneumoniae response to infection by route of exposure. Vet Microbiol 2021; 258:109118. [PMID: 34058523 DOI: 10.1016/j.vetmic.2021.109118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/13/2021] [Indexed: 11/23/2022]
Abstract
Mycoplasma hyopneumoniae (MHP) is a concern both for pig well-being and producer economic viability. In the absence of fully protective health interventions, producers rely on controlled exposure to induce an immune response in pigs and minimize the clinical outcomes of MHP infection in pig populations. This study compared the effect of route of exposure on MHP infection, antibody response, clinical signs, and pathology. Six-week-old MHP-negative pigs (n = 78) were allocated to negative control (n = 6) or one of three MHP exposure routes: intratracheal (n = 24, feeding catheter), intranasal (n = 24, atomization device), and aerosol (n = 24, fogger). Body weight, cough indices, and samples (serum, oral fluid, tracheal) were collected weekly through 49 days post-exposure (DPE). Intratrachal exposure produced the highest proportion (24/24) of MHP DNA-positive pigs on DPE 7, as well as earlier and higher serum antibody response. Intranasal and aerosol exposures resulted in infection with MHP DNA detected in tracheal samples from 18/24 and 21/24 pigs on DPE 7, respectively. Aerosol exposure had the least impact on weight gain (0.64 kg/day). No difference was observed among treatment groups in coughing and lung lesions at necropsy. While intratracheal inoculation and seeder animals are frequently used in swine production settings, intranasal or aerosol exposure are viable alternatives to achieve MHP infection. Regardless of the route, steps should be taken to verify the purity of the inoculum and, in the case of aerosol exposure, avert the unintended exposure of personnel and animals to other pathogens.
Collapse
|
17
|
Bertho N, Meurens F. The pig as a medical model for acquired respiratory diseases and dysfunctions: An immunological perspective. Mol Immunol 2021; 135:254-267. [PMID: 33933817 DOI: 10.1016/j.molimm.2021.03.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/04/2021] [Accepted: 03/13/2021] [Indexed: 12/21/2022]
Abstract
By definition no model is perfect, and this also holds for biology and health sciences. In medicine, murine models are, and will be indispensable for long, thanks to their reasonable cost and huge choice of transgenic strains and molecular tools. On the other side, non-human primates remain the best animal models although their use is limited because of financial and obvious ethical reasons. In the field of respiratory diseases, specific clinical models such as sheep and cotton rat for bronchiolitis, or ferret and Syrian hamster for influenza and Covid-19, have been successfully developed, however, in these species, the toolbox for biological analysis remains scarce. In this view the porcine medical model is appearing as the third, intermediate, choice, between murine and primate. Herein we would like to present the pros and cons of pig as a model for acquired respiratory conditions, through an immunological point of view. Indeed, important progresses have been made in pig immunology during the last decade that allowed the precise description of immune molecules and cell phenotypes and functions. These progresses might allow the use of pig as clinical model of human respiratory diseases but also as a species of interest to perform basic research explorations.
Collapse
Affiliation(s)
| | - François Meurens
- Department of Veterinary Microbiology and Immunology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon S7N5E3, Canada
| |
Collapse
|
18
|
Edmans M, McNee A, Porter E, Vatzia E, Paudyal B, Martini V, Gubbins S, Francis O, Harley R, Thomas A, Burt R, Morgan S, Fuller A, Sewell A, Charleston B, Bailey M, Tchilian E. Magnitude and Kinetics of T Cell and Antibody Responses During H1N1pdm09 Infection in Inbred Babraham Pigs and Outbred Pigs. Front Immunol 2021; 11:604913. [PMID: 33603740 PMCID: PMC7884753 DOI: 10.3389/fimmu.2020.604913] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/15/2020] [Indexed: 12/24/2022] Open
Abstract
We have used the pig, a large natural host animal for influenza with many physiological similarities to humans, to characterize αβ, γδ T cell and antibody (Ab) immune responses to the 2009 pandemic H1N1 virus infection. We evaluated the kinetic of virus infection and associated response in inbred Babraham pigs with identical MHC (Swine Leucocyte Antigen) and compared them to commercial outbred animals. High level of nasal virus shedding continued up to days 4 to 5 post infection followed by a steep decline and clearance of virus by day 9. Adaptive T cell and Ab responses were detectable from days 5 to 6 post infection reaching a peak at 9 to 14 days. γδ T cells produced cytokines ex vivo at day 2 post infection, while virus reactive IFNγ producing γδ T cells were detected from day 7 post infection. Analysis of NP tetramer specific and virus specific CD8 and CD4 T cells in blood, lung, lung draining lymph nodes, and broncho-alveolar lavage (BAL) showed clear differences in cytokine production between these tissues. BAL contained the most highly activated CD8, CD4, and γδ T cells producing large amounts of cytokines, which likely contribute to elimination of virus. The weak response in blood did not reflect the powerful local lung immune responses. The immune response in the Babraham pig following H1N1pdm09 influenza infection was comparable to that of outbred animals. The ability to utilize these two swine models together will provide unparalleled power to analyze immune responses to influenza.
Collapse
Affiliation(s)
- Matthew Edmans
- The Pirbright Institute, Enhanced Host Responses, Pirbright, United Kingdom
| | - Adam McNee
- The Pirbright Institute, Enhanced Host Responses, Pirbright, United Kingdom
| | - Emily Porter
- Bristol Veterinary School, University of Bristol, Langford, United Kingdom
| | - Eleni Vatzia
- The Pirbright Institute, Enhanced Host Responses, Pirbright, United Kingdom
| | - Basu Paudyal
- The Pirbright Institute, Enhanced Host Responses, Pirbright, United Kingdom
| | - Veronica Martini
- The Pirbright Institute, Enhanced Host Responses, Pirbright, United Kingdom
| | - Simon Gubbins
- The Pirbright Institute, Enhanced Host Responses, Pirbright, United Kingdom
| | - Ore Francis
- Bristol Veterinary School, University of Bristol, Langford, United Kingdom
| | - Ross Harley
- Bristol Veterinary School, University of Bristol, Langford, United Kingdom
| | - Amy Thomas
- Bristol Veterinary School, University of Bristol, Langford, United Kingdom
| | - Rachel Burt
- Bristol Veterinary School, University of Bristol, Langford, United Kingdom
| | - Sophie Morgan
- The Pirbright Institute, Enhanced Host Responses, Pirbright, United Kingdom
| | - Anna Fuller
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Andrew Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Bryan Charleston
- The Pirbright Institute, Enhanced Host Responses, Pirbright, United Kingdom
| | - Mick Bailey
- Bristol Veterinary School, University of Bristol, Langford, United Kingdom
| | - Elma Tchilian
- The Pirbright Institute, Enhanced Host Responses, Pirbright, United Kingdom
| |
Collapse
|
19
|
T Cell Immunity against Influenza: The Long Way from Animal Models Towards a Real-Life Universal Flu Vaccine. Viruses 2021; 13:v13020199. [PMID: 33525620 PMCID: PMC7911237 DOI: 10.3390/v13020199] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Current flu vaccines rely on the induction of strain-specific neutralizing antibodies, which leaves the population vulnerable to drifted seasonal or newly emerged pandemic strains. Therefore, universal flu vaccine approaches that induce broad immunity against conserved parts of influenza have top priority in research. Cross-reactive T cell responses, especially tissue-resident memory T cells in the respiratory tract, provide efficient heterologous immunity, and must therefore be a key component of universal flu vaccines. Here, we review recent findings about T cell-based flu immunity, with an emphasis on tissue-resident memory T cells in the respiratory tract of humans and different animal models. Furthermore, we provide an update on preclinical and clinical studies evaluating T cell-evoking flu vaccines, and discuss the implementation of T cell immunity in real-life vaccine policies.
Collapse
|