1
|
Sarker PK, Schoffstall BV, Kapuscinski AR, McKuin B, Fitzgerald D, Greenwood C, O’Shelski K, Pasion EN, Gwynne D, Gonzalez Orcajo D, Andrade S, Nocera P, San Pablo AM. Towards Sustainable Aquafeeds: Microalgal ( Nannochloropsis sp. QH25) Co-Product Biomass Can Fully Replace Fishmeal in the Feeds for Rainbow Trout ( Oncorhynchus mykiss). Foods 2025; 14:781. [PMID: 40077485 PMCID: PMC11898812 DOI: 10.3390/foods14050781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/19/2025] [Accepted: 02/22/2025] [Indexed: 03/14/2025] Open
Abstract
Aquaculture, one of the world's most rapidly growing food sectors, faces several concerns about its sustainability. A major concern is using fishmeal and fish oil from ocean-derived small pelagic fish (sardine, anchovy, etc.) in aquaculture feed. The aquafeed industry is seeking new sustainable ingredients to replace fish meal. This study focused on microalgal co-product, Nannochloropsis sp. QH25 co-product (leftover after oil extraction for nutraceuticals) is a novel aquafeed ingredient that can replace fishmeal in rainbow trout diets. A nutritional feeding experiment was conducted and compared fishmeal-containing rainbow trout diets with microalgal co-products that replaced fishmeal as follows: 0% replacement in reference diet (fishmeal, no microalgal co-product) and test diets with 33%, 66%, and 100% replacement of fishmeal using microalgal-product. Results showed the complete replacement diet yielded fish growth, feed conversion, and survival similar to the reference diet. Depositions of macronutrients, amino acids, fatty acids, macro minerals, and several trace elements in the filet were not significantly different across diets. Economic conversion ratio (ECR) analysis showed that the rainbow trout fed the 100% replacement diet had the lowest feed cost per kg of fish produced. Microalgal co-products can fully replace fishmeal in trout feed while maintaining fish performance, flesh composition, and cost-effectiveness.
Collapse
Affiliation(s)
- Pallab K. Sarker
- Environmental Studies Department, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Benjamin V. Schoffstall
- Environmental Studies Department, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Anne R. Kapuscinski
- Environmental Studies Department, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Brandi McKuin
- School of Engineering, University of California Merced, 5200 Lake Rd, Merced, CA 95343, USA
| | - Devin Fitzgerald
- Environmental Studies Department, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Connor Greenwood
- Environmental Studies Department, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Kira O’Shelski
- Environmental Studies Department, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Emily Noelle Pasion
- Environmental Studies Department, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Duncan Gwynne
- Environmental Studies Department, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Diego Gonzalez Orcajo
- Environmental Studies Department, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Sofie Andrade
- Environmental Studies Department, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Pablo Nocera
- Environmental Studies Department, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Angelo M. San Pablo
- Environmental Studies Department, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
2
|
Li M, Liang H, Zhang J, Chen J, Xu S, Zhou W, Ding Q, Yang Y, Zhang Z, Yao Y, Ran C, Zhou Z. Bacillus subtilis HGCC-1 improves growth performance and liver health via regulating gut microbiota in golden pompano. Anim Microbiome 2025; 7:7. [PMID: 39806437 PMCID: PMC11731533 DOI: 10.1186/s42523-024-00372-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/25/2024] [Indexed: 01/16/2025] Open
Abstract
Probiotics as green inputs have been reported to regulate metabolism and immunity of fish. However, the mechanisms by which probiotics improve growth and health of fish are unclear. Therefore, the aim of this study was to investigate the effect of Bacillus subtilis HGCC-1, an indigenous probiotic isolated from fish, on growth performance, host lipid metabolism, liver inflammation and gut microbiota of golden pompano. 160,000 golden pompanos with the initial body weight of 93.6 ± 5.0 g was randomly assigned to two dietary groups: Control and HGCC-1 (control diet supplemented with 0.3 g/kg Bacillus subtilis HGCC-1 fermentation product), and after three weeks of feeding, 26 golden pompanos were randomly collected from each group for gut microbiome and host phenotype analysis. Dietary supplementation with Bacillus subtilis HGCC-1 significantly promoted growth performance (P < 0.05) and enhanced feed utilization. Besides, HGCC-1 improved liver health and alleviated hepatic steatosis and inflammation. Furthermore, Bacillus subtilis HGCC-1 enhanced intestinal lipid absorption, promoted hepatic utilization of dietary fat by improving hepatic lipid uptake/transport and fatty acid β-oxidation to provide energy, and reduced hepatic TG level (P < 0.05), which may be the potential mechanism of Bacillus subtilis HGCC-1-mediated growth promotion. Finally, Bacillus subtilis HGCC-1 significantly altered the structure and function of gut microbiota (P < 0.05), leading to enrichment of beneficial taxa such as Bacillus (P < 0.0001) and increased of the ratio of "Functional Group 2/Functional Group 1" (P = 0.00092). Interestingly, the ratio of "Functional Group 2/Functional Group 1" was linked to the growth traits (Spearman, P < 0.05), while the intestinal abundance of Bacillus was correlated with serum TG in fish (Spearman, R = 0.47, P = 0.00091), suggesting a role of the intestinal microbiota in HGCC-1 mediated effect on growth and lipid metabolism. In summary, Bacillus subtilis HGCC-1 promotes growth performance, alleviate hepatic steatosis and enhances liver health via regulating gut microbiota in golden pompano, which ultimately showed as beneficial effect of fish growth and health.
Collapse
Affiliation(s)
- Ming Li
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hui Liang
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jian Zhang
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jie Chen
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shichang Xu
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenhao Zhou
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qianwen Ding
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yalin Yang
- Biotechnology of the Ministry of Agriculture and Rural Afairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhen Zhang
- Biotechnology of the Ministry of Agriculture and Rural Afairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuanyuan Yao
- Biotechnology of the Ministry of Agriculture and Rural Afairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chao Ran
- Biotechnology of the Ministry of Agriculture and Rural Afairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Zhigang Zhou
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
3
|
Merkin GV, Girons A, Okubamichael MA, Pittman K. Mucosal epithelial homeostasis: Reference intervals for skin, gill lamellae and filament for Atlantic salmon and other fish species. JOURNAL OF FISH DISEASES 2025; 48:e14023. [PMID: 39315613 DOI: 10.1111/jfd.14023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024]
Abstract
Mucosal barriers are gatekeepers of health and exhibit homeostatic variation in relation to habitat and disease. Mucosal Mapping technology provides an in-depth examination of the dynamic mucous cells (MCs) in fish mucosal barriers on tangential sections, about 90° from the view of traditional histology. The method was originally developed and standardized in academia prior to the establishment of QuantiDoc AS to apply mucosal mapping, now trademarked as Veribarr™ for the analysis of skin, gills and gastrointestinal tracts. Veribarr™ uses design-based stereology for the selection and measurement of cell area (size) (μm2), the volumetric density of MCs in the epithelium (MCD, amount of the epithelia occupied by MCs, in %) and the calculated abundance of the MCs (barrier status or defence activity). MC production was mapped across the skin and gill epithelia in 12 species, discovering that gills consistently have two distinct groups of MCs, one on the lamellae where MCs are few and small and one on the filament where MCs are larger and more abundant. MCs were usually much larger in the skin than in the gills, with the latter requiring fewer and smaller cells for adequate respiration. The difference observed between MCs in gill lamella and gill filament is likely a result of functional demands. In addition, our findings also highlight a variation in the mucosal parameters between the species skin, which cannot be explained by the weight differences, and a potential link between MC distribution and species-specific lifestyles in the gill lamella. This diversity necessitates the development of species and tissue site-specific reference intervals for mucosal health evaluation. Mucosal bivariate reference intervals were developed for MC production, including size (trophy) and calculated defence activity (plasia) in the skin and gills of Atlantic salmon, to contrast new measurements against historical data patterns. The application of mucosal reference intervals demonstrates that stress from parasites and treatments can manifest as changes in mucosal architecture, as evidenced by MC hypertrophy and hyperplasia within the gill lamellae. These reference intervals also facilitate comparisons with wild Atlantic salmon, revealing a somewhat higher MC level in farmed salmon gill lamellae. These findings suggest that MC hyperplasia and hypertrophy in the gills are stress/environmental responses in aquaculture. They also advocate for developing specific mucosal bivariate homeostatic reference intervals in aquaculture to improve fish health and welfare across all farmed species.
Collapse
Affiliation(s)
| | | | | | - Karin Pittman
- QuantiDoc AS, Bergen, Norway
- University of Bergen, Bergen, Norway
| |
Collapse
|
4
|
Wu Z, Wu W, Yang S, Cheng F, Lv J, Shao Y, Tang X, Li E, Zhao Q. Safety evaluation and effects of dietary phlorotannins on the growth, health, and intestinal microbiota of Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109569. [PMID: 38641216 DOI: 10.1016/j.fsi.2024.109569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/03/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
Phlorotannins are phenolic compounds with diverse biological activities, yet their efficacy in aquatic animals currently remains unclear. This investigation scrutinized the influence of phlorotannins on the growth, immunity, antioxidant capacity, and intestinal microbiota in Litopenaeus vannamei, concurrently evaluating the potential adverse effects of phlorotannins on L. vannamei. A base diet without phlorotannins supplementation was used as a control, and 4 groups of diets with different concentrations (0, 0.5, 1.0, 2.0 g kg-1) of phlorotannins were formulated and fed to juvenile shrimp (0.25 ± 0.01 g) for 60 days followed by a 24-h challenge with Vibrio parahaemolyticus with triplicate in each group. Compared with the control, dietary 2.0 g kg-1 phlorotannins significantly improved the growth of the shrimp. The activities of enzymes related to cellular immunity, humoral immunity, and antioxidants, along with a notable upregulation in the expression of related genes, significantly increased. After V. parahaemolyticus challenge, the cumulative survival rates of the shrimp demonstrated a positive correlation with elevated concentrations of phlorotannins. In addition, the abundance of Bacteroidetes and functional genes associated with metabolism increased in phlorotannins supplementation groups. Phlorotannins did not elicit any detrimental effects on the biological macromolecules or histological integrity of the hepatopancreas or intestines. Simultaneously, it led to a significant reduction in malondialdehyde content. All results indicated that phlorotannins at concentrations of 2.0 g kg-1 can be used as safe feed additives to promote the growth, stimulate the immune response, improve the antioxidant capacity and intestinal health of L. vannamei, and an protect shrimp from damage caused by oxidative stress.
Collapse
Affiliation(s)
- Zijie Wu
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Biology and Fisheries, Hainan University, Haikou, Hainan, 570228, China
| | - Wenbo Wu
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Biology and Fisheries, Hainan University, Haikou, Hainan, 570228, China
| | - Shouguo Yang
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, Hainan, 571126, China
| | - Fen Cheng
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, Hainan, 571126, China
| | - Jingyi Lv
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Biology and Fisheries, Hainan University, Haikou, Hainan, 570228, China
| | - Yingjin Shao
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Biology and Fisheries, Hainan University, Haikou, Hainan, 570228, China
| | - Xianming Tang
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, Hainan, 571126, China
| | - Erchao Li
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Qun Zhao
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Biology and Fisheries, Hainan University, Haikou, Hainan, 570228, China.
| |
Collapse
|
5
|
Islam SM, Willora FP, Sørensen M, Rbbani G, Siddik MAB, Zatti K, Gupta S, Carr I, Santigosa E, Brinchmann MF, Thompson KD, Vatsos IN. Mucosal barrier status in Atlantic salmon fed rapeseed oil and Schizochytrium oil partly or fully replacing fish oil through winter depression. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109549. [PMID: 38599365 DOI: 10.1016/j.fsi.2024.109549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/05/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
The study was designed to investigate the effects of replacing fish oil by algal oil and rapeseed oil on histomorphology indices of the intestine, skin and gill, mucosal barrier status and immune-related genes of mucin and antimicrobial peptide (AMP) genes in Atlantic salmon (Salmo salar). For these purposes, Atlantic salmon smolts were fed three different diets. The first was a control diet containing fish oil but no Schizochytrium oil. In the second diet, almost 50 % of the fish oil was replaced with algal oil, and in the third diet, fish oil was replaced entirely with algal oil. The algal oil contained mostly docosahexaenoic acid (DHA) and some eicosapentaenoic acid (EPA). The study lasted for 49 days in freshwater (FW), after which some fish from each diet group were transferred to seawater (SW) for a 48-h challenge test at 33 ppt to test their ability to tolerate high salinity. Samples of skin, gills, and mid intestine [both distal (DI) and anterior (AI) portions of the mid intestine] were collected after the feeding trial in FW and after the SW-challenge test to assess the effects of the diets on the structure and immune functions of the mucosal surfaces. The results showed that the 50 % VMO (Veramaris® algal oil) dietary group had improved intestinal, skin, and gill structures. Principal component analysis (PCA) of the histomorphological parameters demonstrated a significant effect of the algal oil on the intestine, skin, and gills. In particular, the mucosal barrier function of the intestine, skin, and gills was enhanced in the VMO 50 % dietary group after the SW challenge, as evidenced by increased mucous cell density. Immunolabelling of heat shock protein 70 (HSP70) in the intestine (both DI and AI) revealed downregulation of the protein expression in the 50 % VMO group and a corresponding upregulation in the 100 % VMO group compared to 0 % VMO. The reactivity of HSP70 in the epithelial cells was higher after the SW challenge compared to the FW phase. Immune-related genes related to mucosal defense, such as mucin genes [muc2, muc5ac1 (DI), muc5ac1 (AI), muc5ac2, muc5b (skin), and muc5ac1 (gills)], and antimicrobial peptide genes [def3 (DI), def3 (AI), and cath1 (skin)] were significantly upregulated in the 50 % VMO group. PCA of gene expression demonstrated the positive influences on gene regulation in the 50 % VMO dietary group. In conclusion, this study demonstrated the positive effect of substituting 50 % of fish oil with algal oil in the diets of Atlantic salmon. The findings of histomorphometry, mucosal mapping, immunohistochemistry, and immune-related genes connected to mucosal responses all support this conclusion.
Collapse
Affiliation(s)
- Sm Majharul Islam
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway
| | | | - Mette Sørensen
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway
| | - Golam Rbbani
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway
| | - Muhammad A B Siddik
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3216, Australia
| | - Kyla Zatti
- Biomar, Havnegata 9, 7010, Trondheim, Norway
| | | | - Ian Carr
- Veramaris, Alexander Fleminglaan 1, 2613 AX Delft, the Netherlands
| | - Ester Santigosa
- DSM Nutritional Products, Wurmisweg 576, 4303, Kaiseraugst, Switzerland
| | | | - Kim D Thompson
- Aquaculture Research Group, Moredun Research Institute, Edinburgh, UK
| | - Ioannis N Vatsos
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway.
| |
Collapse
|
6
|
Sheng X, Lin L, Dalmo RA, Ye J. Editorial: Mucosal barrier in teleost fish: physical, biochemical, and immune nature. Front Immunol 2024; 15:1349071. [PMID: 38292870 PMCID: PMC10825589 DOI: 10.3389/fimmu.2024.1349071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Affiliation(s)
- Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Li Lin
- College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Roy Ambli Dalmo
- Faculty of Biosciences, Fisheries and Economics, UiT Arctic University of Norway, Tromsø, Norway
| | - Jianmin Ye
- School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
7
|
Huo X, Chang J, Zhang Q, Wang W, Wang P, Zhao F, He S, Yang C, Liu X, Liang X, Zhang Y, Su J. Nanopeptide CI20 remarkably enhances growth performance and disease resistances by improving the mucosal structure, antioxidant capacity, and immunity in mandarin fish (Siniperca chuatsi). Int J Biol Macromol 2023; 253:126935. [PMID: 37722638 DOI: 10.1016/j.ijbiomac.2023.126935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/28/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
Soybean meal, excessively used in place of fish meal (FM) in aquaculture, has a detrimental impact on fish. In this study, the nanopeptide CI20, which was created by conjugating antimicrobial peptide gcIFN-20H and CMCS, were evaluated the feeding effect in mandarin fish (Siniperca chuatsi). Compared with the control group, 150 mg/kg C-I20-fed fish showed the second highest growth performance with no significant changes in body composition. C-I20-fed fish showed more goblet cells and thicker mucin after feeding. The 150 mg/kg CI20 diet boosted the antioxidant capacity, immunity, and digestive enzymes. After Aeromonas hydrophila and infection spleen and kidney necrosis virus infection, the survival rates in the 150 mg/kg CI20 group were highest. Meanwhile, many tissues in the 150 mg/kg CI20 group had significantly lower pathogen loads than the other groups. Treatment with 150 mg/kg CI20 was effective in increasing antioxidant capacity and immunity. The minimum tissue lesions were observed in the 150 mg/kg CI20 group. The goblet cell number and mucin thickness were significantly increased by CI20 treatment after infection. The study results herein showed that a reasonable dietary concentration of CI20 feed promoted growth performance and disease resistances in fish, suggesting a prospective nano antimicrobial peptide for the aquaculture.
Collapse
Affiliation(s)
- Xingchen Huo
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jiao Chang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiwei Zhang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Weicheng Wang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Pengxu Wang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Fengxia Zhao
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Shan He
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoling Liu
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xufang Liang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongan Zhang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianguo Su
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
8
|
Xiong Y, Tobler M, Hegemann A, Hasselquist DL. Assessment of avian health status: suitability and constraints of the Zoetis VetScan VS2 blood analyser for ecological and evolutionary studies. Biol Open 2023; 12:bio060009. [PMID: 37485865 PMCID: PMC10399204 DOI: 10.1242/bio.060009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
Biochemical analyses of blood can decipher physiological conditions of living animals and unravel mechanistic underpinnings of life-history strategies and trade-offs. Yet, researchers in ecology and evolution often face constraints in which methods to apply, not least due to blood volume restrictions or field settings. Here, we test the suitability of a portable biochemical analyser (Zoetis VetScan VS2) for ecological and evolutionary studies that may help solve those problems. Using as little as 80 µl of whole-bird blood from free-living Jackdaws (Corvus monedula) and captive Zebra Finches (Taeniopygia guttata), we show that eight (out of 10) blood analytes show high repeatability after short-term storage (approximately 2 h) and six after 12 h storage time. Handling stress had a clear impact on all except two analytes by 16 min after catching. Finally, six analytes showed consistency within individuals over a period of 30 days, and three even showed individual consistency over a year. Taken together, we conclude that the VetScan VS2 captures biologically relevant variation in blood analytes using just 80 µl of whole blood and, thus, provides valuable physiological measurements of (small) birds sampled in semi-field and field conditions.
Collapse
Affiliation(s)
- Ye Xiong
- Department of Biology, Lund University, Ecology Building, SE-223 62 Lund, Sweden
| | - Michael Tobler
- Department of Biology, Lund University, Ecology Building, SE-223 62 Lund, Sweden
| | - Arne Hegemann
- Department of Biology, Lund University, Ecology Building, SE-223 62 Lund, Sweden
| | - Dennis L Hasselquist
- Department of Biology, Lund University, Ecology Building, SE-223 62 Lund, Sweden
| |
Collapse
|
9
|
Huo X, Zhang Q, Chang J, Yang G, He S, Yang C, Liang X, Zhang Y, Su J. Nanopeptide C-I20 as a novel feed additive effectively alleviates detrimental impacts of soybean meal on mandarin fish by improving the intestinal mucosal barrier. Front Immunol 2023; 14:1197767. [PMID: 37435065 PMCID: PMC10331600 DOI: 10.3389/fimmu.2023.1197767] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/13/2023] [Indexed: 07/13/2023] Open
Abstract
Antibacterial peptide has been widely developed in cultivation industry as feed additives. However, its functions in reducing the detrimental impacts of soybean meal (SM) remain unknown. In this study, we prepared nano antibacterial peptide CMCS-gcIFN-20H (C-I20) with excellent sustained-release and anti-enzymolysis, and fed mandarin fish (Siniperca chuatsi) with a SM diet supplemented with different levels of C-I20 (320, 160, 80, 40, 0 mg/Kg) for 10 weeks. 160 mg/Kg C-I20 treatment significantly improved the final body weight, weight gain rate and crude protein content of mandarin fish and reduced feed conversion ratio. 160 mg/Kg C-I20-fed fish maintained appropriate goblet cells number and mucin thickness, as well as improved villus length, intestinal cross-sectional area. Based on these advantageous physiological changes, 160 mg/Kg C-I20 treatment effectively reduced multi-type tissue (liver, trunk kidney, head kidney and spleen) injury. The addition of C-I20 did not change the muscle composition and muscle amino acids composition. Interestingly, dietary 160 mg/Kg C-I20 supplementation prevented the reduction in myofiber diameter and change in muscle texture, and effectively increased polyunsaturated fatty acids (especially DHA + EPA) in muscle. In conclusion, dietary C-I20 in a reasonable concentration supplementation effectively alleviates the negative effects of SM by improving the intestinal mucosal barrier. The application of nanopeptide C-I20 is a prospectively novel strategy for promoting aquaculture development.
Collapse
Affiliation(s)
- Xingchen Huo
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qiwei Zhang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jiao Chang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Gang Yang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Shan He
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xufang Liang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yongan Zhang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jianguo Su
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
10
|
Aidos L, Mirra G, Pallaoro M, Herrera Millar VR, Radaelli G, Bazzocchi C, Modina SC, Di Giancamillo A. How Do Alternative Protein Resources Affect the Intestine Morphology and Microbiota of Atlantic Salmon? Animals (Basel) 2023; 13:1922. [PMID: 37370432 DOI: 10.3390/ani13121922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The availability and cost of fishmeal constitute a bottleneck in Atlantic salmon production expansion. Fishmeal is produced from wild fish species and constitutes the major feed ingredient in carnivorous species such as the Atlantic salmon. These natural stocks are at risk of depletion and it is therefore of major importance to find alternative protein sources that meet the nutritional requirements of the Atlantic salmon, without compromising the animals' health. Terrestrial animal by-products have been used in aquaculture feed, but their use is limited by the lack of several essential amino acids and consumer acceptance. In the case of plant ingredients, it is necessary to take into account both their concentration and the extraction methodologies, since, if not dosed correctly, they can cause macro- and microscopic alterations of the structure of the gastrointestinal tract and can also negatively modulate the microbiota composition. These alterations may compromise the digestive functions, growth of the animal, and, ultimately, its well-being. An updated revision of alternative protein sources is provided, with the respective impact on the intestine health in terms of both morphology and microbiota composition. Such information may constitute the premise for the choice and development of Atlantic salmon feeds that guarantee fish health and growth performance without having a significant impact on the surrounding environment, both in terms of depletion of the fish's natural stocks and in terms of pressure on the terrestrial agriculture. The sustainability of aquaculture should be a priority when choosing next-generation ingredients.
Collapse
Affiliation(s)
- Lucia Aidos
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
| | - Giorgio Mirra
- Department of Comparative Biomedicine and Food Science, University of Padua, 35122 Padova, Italy
| | - Margherita Pallaoro
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
| | | | - Giuseppe Radaelli
- Department of Comparative Biomedicine and Food Science, University of Padua, 35122 Padova, Italy
| | - Chiara Bazzocchi
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
| | - Silvia Clotilde Modina
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
| | | |
Collapse
|
11
|
Krogdahl Å, Chikwati EM, Krasnov A, Dhanasiri A, Berge GM, Aru V, Khakimov B, Engelsen SB, Vinje H, Kortner TM. Dietary Fish Meal Level and a Package of Choline, β-Glucan, and Nucleotides Modulate Gut Function, Microbiota, and Health in Atlantic Salmon ( Salmo salar, L.). AQUACULTURE NUTRITION 2023; 2023:5422035. [PMID: 36860972 PMCID: PMC9973201 DOI: 10.1155/2023/5422035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/27/2022] [Accepted: 12/10/2022] [Indexed: 06/01/2023]
Abstract
Steatosis and inflammation have been common gut symptoms in Atlantic salmon fed plant rich diets. Choline has recently been identified as essential for salmon in seawater, and β-glucan and nucleotides are frequently used to prevent inflammation. The study is aimed at documenting whether increased fishmeal (FM) levels (8 levels from 0 to 40%) and supplementation (Suppl) with a mixture of choline (3.0 g/kg), β-glucan (0.5 g/kg), and nucleotides (0.5 g/kg) might reduce the symptoms. Salmon (186 g) were fed for 62 days in 16 saltwater tanks before samples were taken from 12 fish per tank for observation of biochemical, molecular, metabolome, and microbiome indicators of function and health. Steatosis but no inflammation was observed. Lipid digestibility increased and steatosis decreased with increasing FM levels and supplementation, seemingly related to choline level. Blood metabolites confirmed this picture. Genes in intestinal tissue affected by FM levels are mainly involved in metabolic and structural functions. Only a few are immune genes. The supplement reduced these FM effects. In gut digesta, increasing FM levels increased microbial richness and diversity, and changed the composition, but only for unsupplemented diets. An average choline requirement of 3.5 g/kg was indicated for Atlantic salmon at the present life stage and under the present condition.
Collapse
Affiliation(s)
- Åshild Krogdahl
- Norwegian University of Life Sciences, Department of Paraclinical Sciences, Ås, Norway
| | | | - Aleksei Krasnov
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Anusha Dhanasiri
- Norwegian University of Life Sciences, Department of Paraclinical Sciences, Ås, Norway
| | | | - Violetta Aru
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Bekzod Khakimov
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | | | - Hilde Vinje
- Norwegian University of Life Sciences, Department of Paraclinical Sciences, Ås, Norway
| | - Trond M. Kortner
- Norwegian University of Life Sciences, Department of Paraclinical Sciences, Ås, Norway
| |
Collapse
|
12
|
Fehrmann-Cartes K, Vega M, Vera F, Enríquez R, Feijóo CG, Allende ML, Hernández AJ, Romero A. Aloe vera reduces gut inflammation induced by soybean meal in Atlantic salmon (Salmo salar). FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.1028318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plant-based protein sources, such as soybean, are widely used in fish nutrition due to their market availability, wide distribution and acceptable nutritional quality. However, in some fish species, soybean meal-based diets cause gut inflammation, decreasing both nutrient absorption and growth rates. A suitable alternative to avoid these problems could be the application of additives with anti-inflammatory activity to the diet. In this study, an Aloe vera (Aloe barbadensis Miller, AV) extract was analyzed as a dietary additive to reduce the gut inflammation in Atlantic salmon (Salmo salar) fed with soybean meal (SBM) diet. Fish were distributed in four duplicated groups and fed 28 days with fish meal control diet (FM), AV inclusion diet (AV), FM diet supplemented with AV (FM+AV), SBM diet to induce enteritis and SBM+AV. The fish gut response to these treatments was analyzed in distal intestine by histopathological scores, tissue morphometric measurements and immune gene expression parameters. The score results in fish fed with SBM-based diet clearly showed enteritis, meanwhile fish fed with AV supplemented diet significantly reduced the intestinal SBM signs of damage. These findings were associated to reduction of goblet cells number, lamina propria thickness and sub-epithelial mucosa size, with a significant decrease on pro-inflammatory cytokine il-1β to basal levels, similar to those present in fish fed FM diets. In conclusion, the administration of AV in salmon diet showed a protective intestinal activity against the detrimental effects of SBM, opening the possibility to improve its use as a feed additive in aquafeeds.
Collapse
|
13
|
Black soldier fly full-fat meal in Atlantic salmon nutrition – Part B: Effects on growth performance, feed utilization, selected nutriphysiological traits and production sustainability in pre-smolts. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Black soldier larva meal (BSFM) seems to be a competitive protein and fat source for widely used fish meal (FM) and fish oil. Because of the still present problem of overfished seas and oceans for feed purposes, even a low substitution of the mentioned feed materials could have a positive impact on the environment. Due to the specificity of salmon metabolic processes, with particular attention to smoltification and the various requirements for nutrients related to individual stages, it is important to implement similar dietary inclusion levels of innovative feed materials in different life stages of Atlantic salmon. Thus, a holistic approach was undertaken in the cycle of two studies carried out: on fries and pre-smolts. This study aims to evaluate the effect of FM replacement by full-fat BSFM in Atlantic salmon pre-smolt diets on growth performance, feed utilization, somatic indices, histomorphology of intestines, colorimetric assessment and raw meat quality, as well as environmental sustainability. The following groups were applied: CON – without addition of full-fat BSFM and with 30% FM; BSFM5 – with 5% addition of full-fat BSFM and 27.1% FM; BSFM10 – with 10% full-fat BSFM and 24.3% FM; and BSFM15 – with 15% addition of full-fat BSFM and 21.3% FM. The present study showed satisfactory results of BSFM inclusion up to 15% as a replacement for FM in feeds for Atlantic salmon pre-smolts. The present study showed that BSFM is a suitable feed material for Atlantic salmon proper diet balancing and may be used to decrease FM content. The semi-technical application of BSFM containing diets confirmed their effectiveness during the growth phase of Atlantic salmon. According to our results, BSFM can be recommended as an alternative feed component in Atlantic salmon pre-smolt nutrition at levels up to 15%. Simultaneously, insect inclusion significantly improved the environmental sustainability of the rearing process.
Collapse
|
14
|
Dong YW, Jiang WD, Wu P, Liu Y, Kuang SY, Tang L, Tang WN, Zhou XQ, Feng L. Novel Insight Into Nutritional Regulation in Enhancement of Immune Status and Mediation of Inflammation Dynamics Integrated Study In Vivo and In Vitro of Teleost Grass Carp ( Ctenopharyngodon idella): Administration of Threonine. Front Immunol 2022; 13:770969. [PMID: 35359991 PMCID: PMC8963965 DOI: 10.3389/fimmu.2022.770969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 02/09/2022] [Indexed: 12/02/2022] Open
Abstract
This study aims to investigate the effects of threonine (Thr) on immunoregulation in vivo and in vitro of teleost grass carp (Ctenopharyngodon idella). Juveniles (9.53 ± 0.02 g) were reared for 8 weeks with respective Thr diet (3.99, 7.70, 10.72, 14.10, 17.96, and 21.66 g/kg) and then challenged with Aeromonas hydrophila for in vivo study. Macrophages isolated from head kidney were treated in vitro for 48 h with L-Thr (0, 0.5, 1.0, 2.0, 4.0, and 8.0 mM) after 6 h of lipopolysaccharide induction. The results showed that, compared with Thr deficiency (3.99 g/kg), the optimal dietary Thr (14.10g/kg) affected the immunocyte activation in the head kidney (HK) and spleen (SP) by downregulating the mRNA expressions of MHC-II and upregulating CD4 (not CD8), and it mediated the innate immune by enhancing the activities of lysozyme (LZ), acid phosphatase content of complement 3 (C3) and C4, increasing the mRNA abundances of hepcidin, liver expressed antimicrobial peptide-2A (LEAP-2A), LEAP-2B, β-defensin1, downregulating tumor necrosis factor α (TNF-α), IL-6, IL-1β, IL-12p35, IL-12p40, IL-17AF1, and IL-17D partly by attenuating RORγ1 transcriptional factor and nuclear factor kappa B p65 (NF-κBp65) signaling cascades [IKKβ/IκBα/NF-κBp65] and upregulating transforming growth factor β1 (TGF-β1), IL-4/13A, -4/13B, IL-10, and IL-22 partly by GATA-3. Besides these, the optimal dietary Thr regulated the adaptive immune by upregulating the mRNAs of immunoglobulin M (IgM) and IgZ (not IgD). Moreover, 2 mM Thr downregulated in vitro the mRNA abundances of colony stimulating factor-1, inducible nitric oxide synthase, mannose receptor 1, matrix metalloproteinase2 (MMP-2), and MMP-9 significantly (P < 0.05), indicating that Thr could attenuate the M1-type macrophages’ activation. Moreover, L-Thr downregulated the mRNA transcripts of TNF-α, IL-6, and IL-1β associated with impairing the SOCS1/STAT1 signaling and upregulated IL-10 and TGF-β1 partly by accentuating the SOCS3/STAT3 pathway. The above-mentioned observations suggested that Thr improved the immune status in the immune organs of fish by enhancing the immune defense and mediating the inflammation process. Finally, based on the immune indices of LZ activity in HK and C3 content in SP, the optimal Thr for immune enhancement in juvenile grass carp (9.53–53.43 g) was determined to be 15.70 g/kg diet (4.85 g/100 g protein) and 14.49 g/kg diet (4.47 g/100 g protein), respectively.
Collapse
Affiliation(s)
- Yu-Wen Dong
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
15
|
Key Performance Indicators of Common Carp (Cyprinus carpio L.) Wintering in a Pond and RAS under Different Feeding Schemes. SUSTAINABILITY 2022. [DOI: 10.3390/su14073724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Overwintering impacts common carp performance, yet the nature of changes is not known. The aim of the study was to compare the zootechnical and key performance indicators (KPI) of Cyprinus carpio wintering in a pond with no supplementary feeding (MCF), in a Recirculating Aquaculture System (RAS) fed typical (30% of protein and 8% of fat) carp diet (AFC), and in a RAS fed high protein (42%) and fat (12%) diet (ABF). The analysis showed that ABF fish had the highest final body weight and the Fulton’s condition factor, as well as the lowest food conversion rate compared with AFC and MCF fish. Histomorphological assessment revealed that MCF fish had thinner skin layers, a depleted population of mucous cells in skin, an excessive interlamellar mass in the gills, and no supranuclear vacuoles in the intestine compared to fish from RAS. At the molecular level, higher transcript levels of il-1β and il-6 transcripts were found in the gills of MCF than in fish from RAS. The transcript level of the intestinal muc5b was the highest in ABF fish. Relative expression of il-1β and il-6 in gills were presumably the highest due to lamellar fusions in MCF fish. Described KPIs may assist carp production to ensure sustainability and food security in the European Union.
Collapse
|
16
|
Morales-Lange B, Agboola JO, Hansen JØ, Lagos L, Øyås O, Mercado L, Mydland LT, Øverland M. The Spleen as a Target to Characterize Immunomodulatory Effects of Down-Stream Processed Cyberlindnera jadinii Yeasts in Atlantic Salmon Exposed to a Dietary Soybean Meal Challenge. Front Immunol 2021; 12:708747. [PMID: 34489959 PMCID: PMC8417602 DOI: 10.3389/fimmu.2021.708747] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Aquaculture feeds have changed dramatically from being largely based on fishmeal (FM) towards increased use of plant protein sources, which could impact the fish's immune response. In order to characterize immunomodulatory properties of novel functional ingredients, this study used four diets, one based on FM, a challenging diet with 40% soybean meal (SBM), and two diets containing 40% SBM with 5% of Cyberlindnera jadinii yeast exposed to different down-stream processing conditions: heat-inactivated (ICJ) or autolysation (ACJ). The immunomodulatory effects of the diets were analyzed in the spleen of Atlantic salmon after 37 days of feeding, using a transcriptomic evaluation by RNA sequencing (RNA-seq) and the detection of specific immunological markers at the protein level through indirect Enzyme-linked Immunosorbent Assay (indirect ELISA). The results showed that SBM (compared to FM) induced a down-regulation of pathways related to ion binding and transport, along with an increase at the protein level of pro-inflammatory cytokines such as tumor necrosis factor alpha (TNFα) and interferon gamma (IFNγ). On the other hand, while ICJ (compared to FM-group) maintain the inflammatory response associated with SBM, with higher levels of TNFα and IFNγ, and with an upregulation of creatine kinase activity and phosphagen metabolic process, the inclusion of ACJ was able to modulate the response of Atlantic salmon compared to fish fed the SBM-diet by the activation of biological pathways related to endocytosis, Pattern recognition receptor (PPRs)-signal transduction and transporter activity. In addition, ACJ was also able to control the pro-inflammatory profile of SBM, increasing Interleukin 10 (IL-10) levels and decreasing TNFα production, triggering an immune response similar to that of fish fed an FM-based diet. Finally, we suggest that the spleen is a good candidate to characterize the immunomodulatory effects of functional ingredients in Atlantic salmon. Moreover, the inclusion of ACJ in fish diets, with the ability to control inflammatory processes, could be considered in the formulation of sustainable salmon feed.
Collapse
Affiliation(s)
- Byron Morales-Lange
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Jeleel Opeyemi Agboola
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Jon Øvrum Hansen
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Leidy Lagos
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Ove Øyås
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos en Organismos Acuáticos, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Liv Torunn Mydland
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Margareth Øverland
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
17
|
Growth, Chemical Composition, Histology and Antioxidant Genes of Atlantic Salmon (Salmo salar) Fed Whole or Pre-Processed Nannochloropsis oceanica and Tetraselmis sp. FISHES 2021. [DOI: 10.3390/fishes6030023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
New sustainable feed ingredients are a necessity for the salmon aquaculture industry. In this study, we examined the effect of pre-extrusion processing of two microalgae, Nannochloropsis oceanica and Tetraselmis sp., on the growth, fatty acid content in the flesh and health of Atlantic salmon. The fish were fed one of the following five diets for nine weeks: (1) CO: a fish meal-based control (basal) diet, (2) NU: a Nannochloropsis diet, (3) NE: a pre-extruded Nannochloropsis diet, (4) TU: a Tetraselmis diet, and (5) TE: a pre-extruded Tetraselmis diet. The algae-incorporated diets contained 30% of the respective microalgae. Our results showed that the best growth performance was achieved by the CO diet, followed by the NE diets. Feeding of unprocessed Nannochloropsis and Tetraselmis resulted in a significant reduction in enterocyte vacuolization compared to the CO feeding. A significant effect of processing was noted in the fillet fatty acid content, the intestine and liver structure and the expression of selected genes in the liver. The expression of antioxidant genes in both the liver and intestine, and the accumulation of different fatty acids in the fillet and liver of the extruded algae-fed groups, warrants further investigation. In conclusion, based on the short-term study, 30% inclusion of the microalgae Nannochloropsis oceanica and Tetraselmis sp. can be considered in Atlantic salmon feeds.
Collapse
|