1
|
Lu R, Luo XM. The role of gut microbiota in different murine models of systemic lupus erythematosus. Autoimmunity 2024; 57:2378876. [PMID: 39014962 DOI: 10.1080/08916934.2024.2378876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/07/2024] [Indexed: 07/18/2024]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by immune system dysfunction that can lead to serious health issues and mortality. Recent investigations highlight the role of gut microbiota alterations in modulating inflammation and disease severity in SLE. This review specifically summaries the variations in gut microbiota composition across various murine models of lupus. By focusing on these differences, we aim to elucidate the intricate relationship between gut microbiota dysbiosis and the development and progression of SLE in preclinical settings.
Collapse
Affiliation(s)
- Ran Lu
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Xin M Luo
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
2
|
Wang H, Cai Y, Wu W, Zhang M, Dai Y, Wang Q. Exploring the role of gut microbiome in autoimmune diseases: A comprehensive review. Autoimmun Rev 2024; 23:103654. [PMID: 39384149 DOI: 10.1016/j.autrev.2024.103654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/04/2024] [Accepted: 09/28/2024] [Indexed: 10/11/2024]
Abstract
As the industrialized society advances, there has been a gradual increase in the prevalence of autoimmune disorders. A probe into the fundamental causes has disclosed several factors in modern society that have an influence on the gut microbiome. These dramatic shifts in the gut microbiome are likely to be one of the reasons for the disarray in the immune system, and the relationship between the immune system and the gut microbiome emerging as a perennial hot topic of research. This review enumerates the findings from sequencing studies of gut microbiota on seven autoimmune diseases (ADs): Rheumatoid Arthritis (RA), Systemic Lupus Erythematosus (SLE), Ankylosing Spondylitis (AS), Systemic Sclerosis (SSc), Sjögren's Syndrome (SjS), Juvenile Idiopathic Arthritis (JIA), and Behçet's Disease (BD). It aims to identify commonalities in changes in the gut microbiome within the autoimmune disease cohort and characteristics specific to each disease. The dysregulation of the gut microbiome involves a disruption of the internal balance and the balance between the external environment and the host. This dysregulation impacts the host's immune system, potentially playing a role in the development of ADs. Damage to the gut epithelial barrier allows potential pathogens to translocate to the mucosal layer, contacting epithelial cells, disrupting tight junctions, and being recognized by antigen-presenting cells, which triggers an immune response. Primed T-cells assist B-cells in producing antibodies against pathogens; if antigen mimicry occurs, an immune response is generated in extraintestinal organs during immune cell circulation, clinically manifesting as ADs. However, current research is limited; advancements in sequencing technology, large-scale cohort studies, and fecal microbiota transplantation (FMT) research are expected to propel this field to new peaks.
Collapse
Affiliation(s)
- Hongli Wang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China; The Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China
| | - Yueshu Cai
- Department of Urology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Wenqi Wu
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China; The Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China
| | - Miaomiao Zhang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China; The Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China
| | - Yong Dai
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China; The Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China
| | - Qingwen Wang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China; The Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China.
| |
Collapse
|
3
|
Wang Y, Wu H, Yan C, Huang R, Li K, Du Y, Jin X, Zhu G, Zeng H, Li B. Alterations of the microbiome across body sites in systemic lupus erythematosus: A systematic review and meta-analysis. Lupus 2024; 33:1345-1357. [PMID: 39258896 DOI: 10.1177/09612033241281891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a complex autoimmune disease with unclear etiology. Growing evidence suggests the microbiome plays a role in SLE pathogenesis. However, findings are inconsistent across studies due to factors like small sample sizes and geographical variations. A comprehensive meta-analysis is needed to elucidate microbiome alterations in SLE. OBJECTIVE This study aimed to provide a systematic overview of microbiota dysbiosis across body sites in SLE through a meta-analysis of alpha diversity indices, beta diversity indices, and abundance taxa of microbiome. METHODS A literature search was conducted across four databases to identify relevant studies comparing SLE patients and healthy controls. Extracted data encompassed alpha and beta diversity metrics, as well as bacterial, fungal, and viral abundance across gut, oral, skin, and other microbiota. Study quality was assessed using the Newcastle-Ottawa Scale. Standardized mean differences and pooled effect sizes were calculated through meta-analytical methods. RESULTS The analysis showed reduced alpha diversity and distinct beta diversity in SLE, particularly in the gut microbiota. Taxonomic analysis revealed compositional variations in bacteria from the gut and oral cavity. However, results for fungi, viruses, and bacteria from other sites were inconsistent due to limited studies. CONCLUSIONS This meta-analysis offers a comprehensive perspective on microbiome dysbiosis in SLE patients across diverse body sites and taxa. The observed variations underscore the microbiome's potential role in SLE pathogenesis. Future research should address geographical variations, employ longitudinal designs, and integrate multi-omics approaches.
Collapse
Affiliation(s)
- Yiyu Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, China
| | - Hong Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, China
| | - Chengrui Yan
- Haiheng Community Health Service Center HETDA, Hefei, China
| | - Ronggui Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, China
| | - Kaidi Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, China
| | - Yujie Du
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, China
| | - Xue Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, China
| | - Gaoqi Zhu
- Haiheng Community Health Service Center HETDA, Hefei, China
| | - Hanjun Zeng
- Haiheng Community Health Service Center HETDA, Hefei, China
| | - Baozhu Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, China
- The Second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
4
|
Rajasekaran JJ, Krishnamurthy HK, Bosco J, Jayaraman V, Krishna K, Wang T, Bei K. Oral Microbiome: A Review of Its Impact on Oral and Systemic Health. Microorganisms 2024; 12:1797. [PMID: 39338471 PMCID: PMC11434369 DOI: 10.3390/microorganisms12091797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 09/30/2024] Open
Abstract
PURPOSE OF REVIEW This review investigates the oral microbiome's composition, functions, influencing factors, connections to oral and systemic diseases, and personalized oral care strategies. RECENT FINDINGS The oral microbiome is a complex ecosystem consisting of bacteria, fungi, archaea, and viruses that contribute to oral health. Various factors, such as diet, smoking, alcohol consumption, lifestyle choices, and medical conditions, can affect the balance of the oral microbiome and lead to dysbiosis, which can result in oral health issues like dental caries, gingivitis, periodontitis, oral candidiasis, and halitosis. Importantly, our review explores novel associations between the oral microbiome and systemic diseases including gastrointestinal, cardiovascular, endocrinal, and neurological conditions, autoimmune diseases, and cancer. We comprehensively review the efficacy of interventions like dental probiotics, xylitol, oral rinses, fluoride, essential oils, oil pulling, and peptides in promoting oral health by modulating the oral microbiome. SUMMARY This review emphasizes the critical functions of the oral microbiota in dental and overall health, providing insights into the effects of microbial imbalances on various diseases. It underlines the significant connection between the oral microbiota and general health. Furthermore, it explores the advantages of probiotics and other dental care ingredients in promoting oral health and addressing common oral issues, offering a comprehensive strategy for personalized oral care.
Collapse
Affiliation(s)
- John J. Rajasekaran
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| | | | - Jophi Bosco
- Vibrant America LLC, Santa Clara, CA 95054, USA;
| | - Vasanth Jayaraman
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| | - Karthik Krishna
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| | - Tianhao Wang
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| | - Kang Bei
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| |
Collapse
|
5
|
Bongers KS, Massett A, O'Dwyer DN. The Oral-Lung Microbiome Axis in Connective Tissue Disease-Related Interstitial Lung Disease. Semin Respir Crit Care Med 2024; 45:449-458. [PMID: 38626906 DOI: 10.1055/s-0044-1785673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Connective tissue disease-related interstitial lung disease (CTD-ILD) is a frequent and serious complication of CTD, leading to high morbidity and mortality. Unfortunately, its pathogenesis remains poorly understood; however, one intriguing contributing factor may be the microbiome of the mouth and lungs. The oral microbiome, which is a major source of the lung microbiome through recurrent microaspiration, is altered in ILD patients. Moreover, in recent years, several lines of evidence suggest that changes in the oral and lung microbiota modulate the pulmonary immune response and thus may play a role in the pathogenesis of ILDs, including CTD-ILD. Here, we review the existing data demonstrating oral and lung microbiota dysbiosis and possible contributions to the development of CTD-ILD in rheumatoid arthritis, Sjögren's syndrome, systemic sclerosis, and systemic lupus erythematosus. We identify several areas of opportunity for future investigations into the role of the oral and lung microbiota in CTD-ILD.
Collapse
Affiliation(s)
- Kale S Bongers
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Angeline Massett
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - David N O'Dwyer
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
6
|
Bixio R, Bertelle D, Bertoldo E, Morciano A, Rossini M. The potential pathogenic role of gut microbiota in rheumatic diseases: a human-centred narrative review. Intern Emerg Med 2024; 19:891-900. [PMID: 38141117 DOI: 10.1007/s11739-023-03496-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023]
Abstract
A growing amount of evidence suggests that gut microbiota plays an important role in human health, including a possible role in the pathogenesis of rheumatic and musculoskeletal diseases (RMD). We analysed the current evidence about the role of microbiota in rheumatoid arthritis (RA), spondyloarthritis (SpA), systemic lupus erythematosus (SLE) and systemic sclerosis (SSc). In RA, we found a general consensus regarding a reduction of diversity and a specific bacterial signature, with consistent changes according to the different ethnic and geographical areas. The major pathogenetic role in RA is recognised for P. copri, L. salivarius and Collinsella, even if findings become more heterogeneous when considering established disease. In SpA, we found a relative gut abundance of Akkermansia, Coprococcus, Ruminoccocus and a relative reduction in Bacterioides and Firmicutes spp. Human and preclinical data suggest loss of mucosal barrier, increased permeability and Th1- and Th17-mediated inflammation. Additionally, HLA-B27 seems to play a role in shaping the intestinal microbiota and the consequent inflammation. In SLE, the typical gut microbiota signature was characterised by a reduction in the Firmicutes/Bacteroidetes ratio and by enrichment of Rhodococcus, Eggerthella, Klebsiella, Prevotella, Eubacterium and Flavonifractor, even if their real pathogenic impact remains unclear. In SSc, gastrointestinal dysbiosis is well documented with an increase of pro-inflammatory species (Fusobacterium, Prevotella, Ruminococcus, Akkermansia, γ-Proteobacteria, Erwinia, Trabsulsiella, Bifidobacterium, Lactobacillus, Firmicutes and Actinobacteria) and a reduction of species as Faecalibacterium, Clostridium, Bacteroidetes and Rikenella. In conclusion, seems possible to recognise a distinct gut microbiota profile for each RMD, even if significant differences in bacterial species do exist between different studies and there is a high risk of bias due to the cross-sectional nature of such studies. Therefore longitudinal studies are needed, especially on patients with preclinical and early disease, to investigate the real role of gut microbiota in the pathogenesis of RMD.
Collapse
Affiliation(s)
- Riccardo Bixio
- Rheumatology Section, Department of Medicine, University of Verona, P.Le L.A. Scuro 10, 37134, Verona, Italy.
| | - Davide Bertelle
- Rheumatology Section, Department of Medicine, University of Verona, P.Le L.A. Scuro 10, 37134, Verona, Italy
- Rheumatology Section, Department of Medicine, Azienda Ospedaliera Friuli Occidentale, Pordenone, Italy
| | - Eugenia Bertoldo
- Rheumatology Section, Department of Medicine, University of Verona, P.Le L.A. Scuro 10, 37134, Verona, Italy
- Internal Medicine Unit, Department of Medicine, Mater Salutis Hospital, Legnago, Italy
| | - Andrea Morciano
- Rheumatology Section, Department of Medicine, University of Verona, P.Le L.A. Scuro 10, 37134, Verona, Italy
| | - Maurizio Rossini
- Rheumatology Section, Department of Medicine, University of Verona, P.Le L.A. Scuro 10, 37134, Verona, Italy
| |
Collapse
|
7
|
Lupu VV, Lupu A, Jechel E, Starcea IM, Stoleriu G, Ioniuc I, Azoicai A, Danielescu C, Knieling A, Borka-Balas R, Salaru DL, Revenco N, Fotea S. The role of vitamin D in pediatric systemic lupus erythematosus - a double pawn in the immune and microbial balance. Front Immunol 2024; 15:1373904. [PMID: 38715605 PMCID: PMC11074404 DOI: 10.3389/fimmu.2024.1373904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/08/2024] [Indexed: 05/23/2024] Open
Abstract
Having increased popularity during the Covid-19 pandemic, vitamin D3 is currently impressing thanks to the numerous researches aimed at its interactions with the body's homeostasis. At the same time, there is a peak in terms of recommendations for supplementation with it. Some of the studies focus on the link between autoimmune diseases and nutritional deficiencies, especially vitamin D3. Since the specialized literature aimed at children (patients between 0-18 years old) is far from equal to the informational diversity of the adult-centered branch, this review aims to bring up to date the relationship between the microbial and nutritional balance and the activity of pediatric systemic lupus erythematosus (pSLE). The desired practical purpose resides in a better understanding and an adequate, individualized management of the affected persons to reduce morbidity. The center of the summary is to establish the impact of hypovitaminosis D in the development and evolution of pediatric lupus erythematosus. We will address aspects related to the two entities of the impact played by vitamin D3 in the pathophysiological cascade of lupus, but also the risk of toxicity and its effects when the deficiency is over supplemented (hypervitaminosis D). We will debate the relationship of hypovitaminosis D with the modulation of immune function, the potentiation of inflammatory processes, the increase of oxidative stress, the perfusion of cognitive brain areas, the seasonal incidence of SLE and its severity. Finally, we review current knowledge, post-pandemic, regarding the hypovitaminosis D - pSLE relationship.
Collapse
Affiliation(s)
- Vasile Valeriu Lupu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ancuta Lupu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Elena Jechel
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | | | - Gabriela Stoleriu
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, Galati, Romania
| | - Ileana Ioniuc
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Alice Azoicai
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ciprian Danielescu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Anton Knieling
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Reka Borka-Balas
- Pediatrics, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania
| | - Delia Lidia Salaru
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ninel Revenco
- Pediatrics, “Nicolae Testemitanu” State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Silvia Fotea
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, Galati, Romania
| |
Collapse
|
8
|
Zhu Q, Cui J, Liu S, Wei S, Wu Q, You Y. Synbiotic regulates gut microbiota in patients with lupus nephritis: an analysis using metagenomic and metabolome sequencing. Front Microbiol 2024; 15:1295378. [PMID: 38628865 PMCID: PMC11018942 DOI: 10.3389/fmicb.2024.1295378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
Objective To investigate the changes in gut microbes and their metabolites after administering synbiotics to patients with new-onset lupus nephritis (LN) treated using a conventional method and provide a theoretical basis for finding new targets for the diagnosis and treatment of LN. Methods In this study, a total of 12 participants were divided into the lupus and synbiotic groups. Stool samples and clinical data were collected before and after treatment for metagenomic, nontargeted metabolomic, and statistical analyses. Results The relative abundances of the pathogenic bacteria Prevotella, Bacteroides, and Enterobacteriaceae_unclassified decreased after synbiotic treatment, whereas the abundances of Actinobacteria and Firmicutes increased. Further, the Firmicutes to Bacteroidetes ratio increased; however, the difference was not statistically significant (p > 0.05). α diversity analysis showed no significant differences in the intestinal microbial richness and diversity index of patients with LN between the groups before and after treatment (p > 0.05). β analysis showed the differences in the community structure between the samples of the two groups before and after treatment. Linear discriminant analysis effect size and receiver operating characteristic curve analyses revealed that Negativicutes (AUC = 0.9722) and Enterobacteriaceae_unclassified (AUC = 0.9722) were the best predictors of the lupus and synbiotic groups, respectively, before and after treatment. Joint analyses revealed that amino acid biosynthesis, aminoacyl-tRNA biosynthesis, purine metabolism, and other metabolic pathways may be involved in the changes in the metabolic function of patients with LN after the addition of synbiotics. Spearman's correlation analysis revealed the interaction between clinical features and flora, and flora exhibited a complex biological network regulatory relationship. Conclusion Synbiotics regulate the metabolic functions of intestinal microorganisms in patients with LN and play a role in various biological functions. Synbiotic supplements may be safe and promising candidates for patients with LN.
Collapse
Affiliation(s)
- Qiuyu Zhu
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jiuming Cui
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Sen Liu
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Suosu Wei
- Department of Scientific Cooperation, Guangxi Academy of Medical Sciences, People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qiuxia Wu
- Department of Nephrology, People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yanwu You
- Department of Nephrology, People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
9
|
McPhail MN, Wu M, Tague K, Wajeeh H, Demory Beckler M, Kesselman MM. A Scoping Review of the Positive and Negative Bacteria Associated With the Gut Microbiomes of Systemic Lupus Erythematosus Patients. Cureus 2024; 16:e57512. [PMID: 38707123 PMCID: PMC11067397 DOI: 10.7759/cureus.57512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/03/2024] [Indexed: 05/07/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that affects multiple systems of the body. Recent research on the gut microbiota dysbiosis associated with SLE patients has gained traction and warranted further exploration. It has not been determined whether the change in the gut microbiota is a cause of SLE or a symptom of SLE. However, based on the physiological and pathophysiological role of the bacteria in the gut microbiome, as levels of the bacteria rise or fall, symptomatology in SLE patients could be affected. This review analyzes the recent studies that examined the changes in the gut microbiota of SLE patients and highlights the correlations between gut dysbiosis and the clinical manifestations of SLE. A systematic search strategy was developed by combining the terms "SLE," "systemic lupus erythematosus," and "gut microbiome." Biomedical Reference Collection, CINAHL, Medline ProQuest, and PubMed Central databases were searched by combining the appropriate keywords with "AND." Only full-text, English-language articles were searched. The articles were restricted from 2013 to 2023. Only peer-reviewed controlled studies with both human and animal trials were included in this scoping review. Review articles, non-English articles, editorials, case studies, and duplicate articles from the four databases were excluded. Various species of bacteria were found to be positively or negatively associated with SLE gut microbiomes. Among the bacterial species increased were Clostridium, Lactobacilli, Streptococcus, Enterobacter, and Klebsiella. The bacterial species that decreased were Bifidobacteria, Prevotella, and the Firmicutes/Bacteroidetes ratio. Literature shows that Clostridium is one of several bacteria found in abundance, from pre-disease to the diseased state of SLE. Lachnospiraceae and Ruminococcaceae are both part of the family of butyrate-producing anaerobes that are known for their role in strengthening the skin barrier function and, therefore, may explain the cutaneous manifestations of SLE patients. Studies have also shown that the Firmicutes/Bacteroidetes ratio is significantly depressed, which may lead to appetite changes and weight loss seen in SLE patients. Based on the established role of these bacteria within the gut microbiome, the disruption in the gut ecosystem could explain the symptomatology common in SLE patients. By addressing these changes, our scoping review encourages further research to establish a true causal relationship between the bacterial changes in SLE patients as well as furthering the scope of microbiota changes in other systems and autoimmune diseases.
Collapse
Affiliation(s)
- Marissa N McPhail
- Osteopathic Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Michael Wu
- Osteopathic Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Kelsey Tague
- Osteopathic Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Hassaan Wajeeh
- Osteopathic Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Michelle Demory Beckler
- Microbiology and Immunology, Nova Southeastern University Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, USA
| | - Marc M Kesselman
- Rheumatology, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Davie, USA
| |
Collapse
|
10
|
Luo Z, Chen A, Xie A, Liu X, Jiang S, Yu R. Limosilactobacillus reuteri in immunomodulation: molecular mechanisms and potential applications. Front Immunol 2023; 14:1228754. [PMID: 37638038 PMCID: PMC10450031 DOI: 10.3389/fimmu.2023.1228754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
Frequent use of hormones and drugs may be associated with side-effects. Recent studies have shown that probiotics have effects on the prevention and treatment of immune-related diseases. Limosilactobacillus reuteri (L. reuteri) had regulatory effects on intestinal microbiota, host epithelial cells, immune cells, cytokines, antibodies (Ab), toll-like receptors (TLRs), tryptophan (Try) metabolism, antioxidant enzymes, and expression of related genes, and exhibits antibacterial and anti-inflammatory effects, leading to alleviation of disease symptoms. Although the specific composition of the cell-free supernatant (CFS) of L. reuteri has not been clarified, its efficacy in animal models has drawn increased attention to its potential use. This review summarizes the effects of L. reuteri on intestinal flora and immune regulation, and discusses the feasibility of its application in atopic dermatitis (AD), asthma, necrotizing enterocolitis (NEC), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and multiple sclerosis (MS), and provides insights for the prevention and treatment of immune-related diseases.
Collapse
Affiliation(s)
- Zichen Luo
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Ailing Chen
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Anni Xie
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Xueying Liu
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Shanyu Jiang
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Renqiang Yu
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| |
Collapse
|
11
|
Lupu VV, Butnariu LI, Fotea S, Morariu ID, Badescu MC, Starcea IM, Salaru DL, Popp A, Dragan F, Lupu A, Mocanu A, Chisnoiu T, Pantazi AC, Jechel E. The Disease with a Thousand Faces and the Human Microbiome-A Physiopathogenic Intercorrelation in Pediatric Practice. Nutrients 2023; 15:3359. [PMID: 37571295 PMCID: PMC10420997 DOI: 10.3390/nu15153359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/18/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Numerous interrelationships are known in the literature that have the final effect of unmasking or influencing various pathologies. Among these, the present article aims to discuss the connection between systemic lupus erythematosus (SLE) and the human microbiome. The main purpose of this work is to popularize information about the impact of dysbiosis on the pathogenesis and evolutionary course of pediatric patients with SLE. Added to this is the interest in knowledge and awareness of adjunctive therapeutic means that has the ultimate goal of increasing the quality of life. The means by which this can be achieved can be briefly divided into prophylactic or curative, depending on the phase of the condition in which the patient is. We thus reiterate the importance of the clinician acquiring an overview of SLE and the human microbiome, doubled by in-depth knowledge of the physio-pathogenic interactions between the two (in part achieved through the much-studied gut-target organ axes-brain, heart, lung, skin), with the target objective being that of obtaining individualized, multimodal and efficient management for each individual patient.
Collapse
Affiliation(s)
- Vasile Valeriu Lupu
- Pediatrics Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | | | - Silvia Fotea
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania
| | - Ionela Daniela Morariu
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Minerva Codruta Badescu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Iuliana Magdalena Starcea
- Pediatrics Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Delia Lidia Salaru
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Alina Popp
- Pediatrics Department, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Felicia Dragan
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Ancuta Lupu
- Pediatrics Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Adriana Mocanu
- Pediatrics Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Tatiana Chisnoiu
- Pediatrics Department, Faculty of Medicine, Ovidius University, 900470 Constanta, Romania
| | | | - Elena Jechel
- Pediatrics Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
12
|
Yao K, Xie Y, Wang J, Lin Y, Chen X, Zhou T. Gut microbiota: a newly identified environmental factor in systemic lupus erythematosus. Front Immunol 2023; 14:1202850. [PMID: 37533870 PMCID: PMC10390700 DOI: 10.3389/fimmu.2023.1202850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/27/2023] [Indexed: 08/04/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that predominantly affects women of childbearing age and is characterized by the damage to multiple target organs. The pathogenesis of SLE is complex, and its etiology mainly involves genetic and environmental factors. At present, there is still a lack of effective means to cure SLE. In recent years, growing evidence has shown that gut microbiota, as an environmental factor, triggers autoimmunity through potential mechanisms including translocation and molecular mimicry, leads to immune dysregulation, and contributes to the development of SLE. Dietary intervention, drug therapy, probiotics supplement, fecal microbiome transplantation and other ways to modulate gut microbiota appear to be a potential treatment for SLE. In this review, the dysbiosis of gut microbiota in SLE, potential mechanisms linking gut microbiota and SLE, and immune dysregulation associated with gut microbiota in SLE are summarized.
Collapse
|
13
|
Liu F, Hu L, Sheng J, Sun Y, Xia Q, Tang Y, Jiang P, Wei S, Hu J, Lin H, Xu Z, Guo W, Gu Y, Feng N. Can antibiotics for enteritis or for urinary tract infection disrupt the urinary microbiota in rats? Front Cell Infect Microbiol 2023; 13:1169909. [PMID: 37448775 PMCID: PMC10338079 DOI: 10.3389/fcimb.2023.1169909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/08/2023] [Indexed: 07/15/2023] Open
Abstract
Background To establish antibiotic preregimes and administration routes for studies on urinary microbiota. Methods and materials Antibiotics for enteritis (Abx-enteritis) and UTIs (Abx-UTI) were administered via gavage and/or urinary catheterisation (UC) for 1 and/or 2 weeks. The effects of these Abx on the urinary microbiota of rats were examined via 16S rRNA sequencing and urine culture, including anaerobic and aerobic culture. Additionally, the safety of the Abx was examined. Results Abx-enteritis/Abx-UTI (0.5 g/L and 1 g/L) administered via gavage did not alter the microbial community and bacterial diversity in the urine of rats (FDR > 0.05); however, Abx-UTI (1 g/L) administered via UC for 1 and 2 weeks altered the urinary microbial community (FDR < 0.05). Rats administered Abx-UTI (1 g/L) via UC for 1 week demonstrated a distinct urinary microbiota in culture. Abx-enteritis/Abx-UTI administered via gavage disrupted the microbial community and reduced bacterial diversity in the faeces of rats (FDR < 0.05), and Abx-UTI administered via UC for 2 weeks (FDR < 0.05) altered the fecal microbiota. Abx-UTI (1 g/L) administered via UC did not alter safety considerations. In addition, we noticed that UC did not induce infections and injuries to the bladder and kidney tissues. Conclusions Administration of Abx-UTI via UC for 1 week can be considered a pre-treatment option while investigating the urinary microbiota.
Collapse
Affiliation(s)
- Fengping Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Department of Urology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
- Jiangnan University Medical Center, Wuxi, Jiangsu, China
| | - Lei Hu
- Department of Urology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Jiayi Sheng
- Department of Urology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Yifan Sun
- Department of Urology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Qiang Xia
- Department of Urology, Wuxi 9 People’s Hospital Affiliated to Soochow University, Wuxi, Jiangsu, China
| | - Yifan Tang
- Department of Urology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Peng Jiang
- Department of Urology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Shichao Wei
- Department of Urology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Jialin Hu
- Department of Urology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Hao Lin
- Department of Urology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Zhenyi Xu
- Department of Urology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Wei Guo
- Department of Urology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Yifeng Gu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ninghan Feng
- Department of Urology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
- Jiangnan University Medical Center, Wuxi, Jiangsu, China
| |
Collapse
|
14
|
Lei Y, Liu Q, Li Q, Zhao C, Zhao M, Lu Q. Exploring the Complex Relationship Between Microbiota and Systemic Lupus Erythematosus. Curr Rheumatol Rep 2023; 25:107-116. [PMID: 37083877 DOI: 10.1007/s11926-023-01102-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2023] [Indexed: 04/22/2023]
Abstract
PURPOSE OF REVIEW Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by various autoantibodies and multi-organ. Microbiota dysbiosis in the gut, skin, oral, and other surfaces has a significant impact on SLE development. This article summarizes relevant research and provides new microbiome-related strategies for exploring the mechanisms and treating patients with SLE. RECENT FINDINGS SLE patients have disruptions in multiple microbiomes, with the gut microbiota (bacteria, viruses, and fungi) and their metabolites being the most thoroughly researched. This dysbiosis can promote SLE progression through mechanisms such as the leaky gut, molecular mimicry, and epigenetic regulation. Notwithstanding study constraints on the relationship between microbiota and SLE, specific interventions targeting the gut microbiota, such as probiotics, dietary management, and fecal microbiota transplantation, have emerged as promising SLE therapeutics.
Collapse
Affiliation(s)
- Yu Lei
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
- Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qianmei Liu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Qilin Li
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
- Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Cheng Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
- Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China.
- Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China.
- Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
15
|
Chen YW, Hsu PK, Lin SP, Chen HH. Appendicitis is associated with an increased risk of systemic lupus erythematosus: a nationwide, population-based, case-control study. Clin Rheumatol 2023:10.1007/s10067-023-06585-w. [PMID: 37040052 DOI: 10.1007/s10067-023-06585-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/12/2023]
Abstract
OBJECTIVE To examine the association between appendicitis and the risk of systemic lupus erythematosus (SLE). METHODS Using claims data from the 2003-2013 Taiwanese National Health Insurance Research Database, we selected 6054 patients with newly diagnosed SLE from 2007 to 2012 and 36,324 age-, sex- and year of SLE diagnosis date-matched (1:6) non-SLE controls. After controlling for potential confounders, a multivariable conditional logistic regression model was used to calculate the adjusted odds ratio (aOR) with 95% confidence interval (CI) for the association of appendicitis history with SLE. Sensitivity analyses were conducted using various definitions of appendicitis. Subgroup analyses were conducted to examine possible modification effects by age, gender, level of urbanization, income and Charlson Comorbidity Index (CCI). RESULTS The average age of patients was 38 years old in both groups. The proportion of females was 86.5%. 75 (1.2%) of SLE cases and 205 (0.6%) of non-SLE controls had appendicitis history before the index date. After adjusting for potential confounding factors, appendicitis was associated with a higher risk of SLE (aOR, 1.84; 95% CI, 1.34-2.52), and such association remained robust after variation of appendicitis definition. No significant modification effects were found for the association between appendicitis and SLE by age, gender, urbanization level, income and CCI. CONCLUSION This nationwide, population-based case-control study demonstrates an association between appendicitis and incident SLE. Lack of individual smoking status is a major limitation. Key Points • Appendicitis was significantly associated with an increased risk of SLE. • Such association remained robust using various definitions of appendicitis.
Collapse
Affiliation(s)
- Yun-Wen Chen
- Division of General Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Sect. 4, Taichung, Taiwan, 40705, ROC
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Sect. 4, Taichung, Taiwan, 40705, ROC
- Department of Post-Baccalaureate Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Po-Ke Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Gastroenterology, Changhua Christian Hospital, Changhua, Taiwan
| | - Shih-Ping Lin
- Division of General Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Sect. 4, Taichung, Taiwan, 40705, ROC
- Department of Post-Baccalaureate Medicine, National Chung Hsing University, Taichung, Taiwan
- Division of Infection, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hsin-Hua Chen
- Division of General Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Sect. 4, Taichung, Taiwan, 40705, ROC.
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Sect. 4, Taichung, Taiwan, 40705, ROC.
- Department of Post-Baccalaureate Medicine, National Chung Hsing University, Taichung, Taiwan.
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan.
- Department of Industrial Engineering and Enterprise Information, Tunghai University, 1650 Taiwan Boulevard Sect. 4, Taichung, Taiwan, 40705, ROC.
- Institute of Biomedical Science and Rong Hsing Research Center for Translational Medicine & Big Data Center, National Chung Hsin University, Taichung, Taiwan.
| |
Collapse
|
16
|
Huang X, Huang X, Huang Y, Zheng J, Lu Y, Mai Z, Zhao X, Cui L, Huang S. The oral microbiome in autoimmune diseases: friend or foe? J Transl Med 2023; 21:211. [PMID: 36949458 PMCID: PMC10031900 DOI: 10.1186/s12967-023-03995-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/15/2023] [Indexed: 03/24/2023] Open
Abstract
The human body is colonized by abundant and diverse microorganisms, collectively known as the microbiome. The oral cavity has more than 700 species of bacteria and consists of unique microbiome niches on mucosal surfaces, on tooth hard tissue, and in saliva. The homeostatic balance between the oral microbiota and the immune system plays an indispensable role in maintaining the well-being and health status of the human host. Growing evidence has demonstrated that oral microbiota dysbiosis is actively involved in regulating the initiation and progression of an array of autoimmune diseases.Oral microbiota dysbiosis is driven by multiple factors, such as host genetic factors, dietary habits, stress, smoking, administration of antibiotics, tissue injury and infection. The dysregulation in the oral microbiome plays a crucial role in triggering and promoting autoimmune diseases via several mechanisms, including microbial translocation, molecular mimicry, autoantigen overproduction, and amplification of autoimmune responses by cytokines. Good oral hygiene behaviors, low carbohydrate diets, healthy lifestyles, usage of prebiotics, probiotics or synbiotics, oral microbiota transplantation and nanomedicine-based therapeutics are promising avenues for maintaining a balanced oral microbiome and treating oral microbiota-mediated autoimmune diseases. Thus, a comprehensive understanding of the relationship between oral microbiota dysbiosis and autoimmune diseases is critical for providing novel insights into the development of oral microbiota-based therapeutic approaches for combating these refractory diseases.
Collapse
Affiliation(s)
- Xiaoyan Huang
- Department of Preventive Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, No.366 Jiangnan Da Dao Nan, Guangzhou, 510280, China
| | - Xiangyu Huang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, No.366 Jiangnan Da Dao Nan, Guangzhou, 510280, China
| | - Yi Huang
- Department of Preventive Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, No.366 Jiangnan Da Dao Nan, Guangzhou, 510280, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Ye Lu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, Guangzhou, 510280, China
| | - Zizhao Mai
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Xinyuan Zhao
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, No.366 Jiangnan Da Dao Nan, Guangzhou, 510280, China.
| | - Li Cui
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, Guangzhou, 510280, China.
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, CA, 90095, USA.
| | - Shaohong Huang
- Department of Preventive Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, No.366 Jiangnan Da Dao Nan, Guangzhou, 510280, China.
| |
Collapse
|
17
|
Ling Z, Cheng Y, Gao J, Lei W, Yan X, Hu X, Shao L, Liu X, Kang R. Alterations of the fecal and vaginal microbiomes in patients with systemic lupus erythematosus and their associations with immunological profiles. Front Immunol 2023; 14:1135861. [PMID: 36969178 PMCID: PMC10036376 DOI: 10.3389/fimmu.2023.1135861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
BackgroundExploring the human microbiome in multiple body niches is beneficial for clinicians to determine which microbial dysbiosis should be targeted first. We aimed to study whether both the fecal and vaginal microbiomes are disrupted in SLE patients and whether they are correlated, as well as their associations with immunological features.MethodsA group of 30 SLE patients and 30 BMI-age-matched healthy controls were recruited. Fecal and vaginal samples were collected, the 16S rRNA gene was sequenced to profile microbiomes, and immunological features were examined.ResultsDistinct fecal and vaginal bacterial communities and decreased microbial diversity in feces compared with the vagina were found in SLE patients and controls. Altered bacterial communities were found in the feces and vaginas of patients. Compared with the controls, the SLE group had slightly lower gut bacterial diversity, which was accompanied by significantly higher bacterial diversity in their vaginas. The most predominant bacteria differed between feces and the vagina in all groups. Eleven genera differed in patients’ feces; for example, Gardnerella and Lactobacillus increased, whereas Faecalibacterium decreased. Almost all the 13 genera differed in SLE patients’ vaginas, showing higher abundances except for Lactobacillus. Three genera in feces and 11 genera in the vagina were biomarkers for SLE patients. The distinct immunological features were only associated with patients’ vaginal microbiomes; for example, Escherichia−Shigella was negatively associated with serum C4.ConclusionsAlthough SLE patients had fecal and vaginal dysbiosis, dysbiosis in the vagina was more obvious than that in feces. Additionally, only the vaginal microbiome interacted with patients’ immunological features.
Collapse
Affiliation(s)
- Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
- *Correspondence: Zongxin Ling, ; Runfang Kang,
| | - Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jie Gao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenhui Lei
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
- Department of Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiumei Yan
- Department of Geriatrics, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| | - Xiaogang Hu
- Department of Geriatrics, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| | - Li Shao
- School of Clinical Medicine, Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xia Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Runfang Kang
- Department of Dermatology, Lishui Second People’s Hospital, Lishui, Zhejiang, China
- *Correspondence: Zongxin Ling, ; Runfang Kang,
| |
Collapse
|
18
|
Schinnerling K, Penny HA, Soto JA, Melo-Gonzalez F. Immune Responses at Host Barriers and Their Importance in Systemic Autoimmune Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1408:3-24. [PMID: 37093419 DOI: 10.1007/978-3-031-26163-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Host barriers such as the skin, the lung mucosa, the intestinal mucosa and the oral cavity are crucial at preventing contact with potential threats and are populated by a diverse population of innate and adaptive immune cells. Alterations in antigen recognition driven by genetic and environmental factors can lead to autoimmune systemic diseases such rheumatoid arthritis, systemic lupus erythematosus and food allergy. Here we review how different immune cells residing at epithelial barriers, host-derived signals and environmental signals are involved in the initiation and progression of autoimmune responses in these diseases. We discuss how regulation of innate responses at these barriers and the influence of environmental factors such as the microbiota can affect the susceptibility to develop local and systemic autoimmune responses particularly in the cases of food allergy, systemic lupus erythematosus and rheumatoid arthritis. Induction of pathogenic autoreactive immune responses at host barriers in these diseases can contribute to the initiation and progression of their pathogenesis.
Collapse
Affiliation(s)
| | - Hugo A Penny
- Academic Unit of Gastroenterology, Royal Hallamshire Hospital, Sheffield, S10 2JF, UK
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield, Sheffield, UK
| | - Jorge A Soto
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.
| | - Felipe Melo-Gonzalez
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.
| |
Collapse
|
19
|
Almada-Correia I, Costa-Reis P, Sousa Guerreiro C, Eurico Fonseca J. Let’s review the gut microbiota in systemic lupus erythematosus. EXPLORATION OF MEDICINE 2022. [DOI: 10.37349/emed.2022.00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic, immune-mediated disease associated with significant morbidity and mortality. New evidence suggests that diet, gut microbiota, intestinal permeability, and endotoxemia may modulate chronic inflammation and disease activity in SLE. This review focus on what is known about the gut microbiota in lupus mouse models and SLE patients and the possible mechanisms that connect the gut microbiota with SLE. It included 29 studies (12 animal studies, 15 human studies, and 2 included data on both), with variable results regarding alpha and beta-diversity and gut microbiota composition between lupus-mouse models and SLE patients. Ruminococcus (R.) gnavus was significantly increased in lupus nephritis (LN) in one study, but this was not corroborated by others. Despite the different results, mechanistic lupus mouse model studies have shown that gut microbiota can modulate disease activity. Interestingly, pathobiont translocation in monocolonized and autoimmune-prone mice induced autoantibodies and caused mortality, which could be prevented by a vaccine targeting the pathobiont. Moreover, studies on fecal transplants and diet on different lupus mouse models showed an effect on disease activity. In SLE patients, a higher adherence to the Mediterranean diet was associated with lower disease activity, which may be explained by the connection between diet and gut microbiota. Although gut dysbiosis has been observed in SLE patients and lupus mouse models, it remains to clarify if it is a cause or a consequence of the disease or its treatments. Further studies with larger and well-characterized populations will undoubtedly contribute to deciphering the role of gut microbiota in SLE development, progression, and outcome.
Collapse
Affiliation(s)
- Inês Almada-Correia
- Rheumatology Research Unit, Institute of Molecular Medicine João Lobo Antunes, Faculty of Medicine of the University of Lisbon, Lisbon Academic Medical Centre, 1649-028 Lisbon, Portugal
| | - Patrícia Costa-Reis
- Rheumatology Research Unit, Institute of Molecular Medicine João Lobo Antunes, Faculty of Medicine of the University of Lisbon, Lisbon Academic Medical Centre, 1649-028 Lisbon, Portugal; Pediatric Rheumatology Unit, Santa Maria University Hospital, North Lisbon University Hospital Centre, Lisbon Academic Medical Centre, 1649-028 Lisbon, Portugal
| | - Catarina Sousa Guerreiro
- Nutrition Laboratory, Faculty of Medicine of the University of Lisbon, Lisbon Academic Medical Centre, 1649-028 Lisbon, Portugal
| | - João Eurico Fonseca
- Rheumatology Research Unit, Institute of Molecular Medicine João Lobo Antunes, Faculty of Medicine of the University of Lisbon, Lisbon Academic Medical Centre, 1649-028 Lisbon, Portugal; Serviço de Reumatologia e Doenças Ó� sseas Metabólicas, Santa Maria University Hospital, North Lisbon University Hospital Centre, Lisbon Academic Medical Centre, 1649-028 Lisbon, Portugal
| |
Collapse
|
20
|
Li BZ, Wang H, Li XB, Zhang QR, Huang RG, Wu H, Wang YY, Li KD, Chu XJ, Cao NW, Zhou HY, Fang XY, Leng RX, Fan YG, Tao JH, Shuai ZW, Ye DQ. Altered gut fungi in systemic lupus erythematosus - A pilot study. Front Microbiol 2022; 13:1031079. [PMID: 36545195 PMCID: PMC9760866 DOI: 10.3389/fmicb.2022.1031079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Objective Gut fungi, as symbiosis with the human gastrointestinal tract, may regulate physiology via multiple interactions with host cells. The plausible role of fungi in systemic lupus erythematosus (SLE) is far from clear and need to be explored. Methods A total of 64 subjects were recruited, including SLE, rheumatoid arthritis (RA), undifferentiated connective tissue diseases (UCTDs) patients and healthy controls (HCs). Fecal samples of subjects were collected. Gut fungi and bacteria were detected by ITS sequencing and 16S rRNA gene sequencing, respectively. Alpha and beta diversities of microbiota were analyzed. Linear discriminant analysis effect size analysis was performed to identify abundance of microbiota in different groups. The correlation network between bacterial and fungal microbiota was analyzed based on Spearman correlation. Results Gut fungal diversity and community composition exhibited significant shifts in SLE compared with UCTDs, RA and HCs. Compared with HCs, the alpha and beta diversities of fungal microbiota decreased in SLE patients. According to principal coordinates analysis results, the constitution of fungal microbiota from SLE, RA, UCTDs patients and HCs exhibited distinct differences with a clear separation between fungal microbiota. There was dysbiosis in the compositions of fungal and bacterial microbiota in the SLE patients, compared to HCs. Pezizales, Cantharellales and Pseudaleuria were enriched in SLE compared with HCs, RA and UCTDs. There was a complex relationship network between bacterial and fungal microbiota, especially Candida which was related to a variety of bacteria. Conclusion This study presents a pilot analysis of fungal microbiota with diversity and composition in SLE, and identifies several gut fungi with different abundance patterns taxa among SLE, RA, UCTDs and HCs. Furthermore, the gut bacterial-fungal association network in SLE patients was altered compared with HCs.
Collapse
Affiliation(s)
- Bao-Zhu Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Hua Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Xian-Bao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Qian-Ru Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Rong-Gui Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Hong Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Yi-Yu Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Kai-Di Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Xiu-Jie Chu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Nv-Wei Cao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Hao-Yue Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China,The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Xin-Yu Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Rui-Xue Leng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Yin-Guang Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Jin-Hui Tao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China
| | - Zong-Wen Shuai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China,*Correspondence: Dong-Qing Ye,
| |
Collapse
|
21
|
Akkermansia muciniphila and Faecalibacterium prausnitzii in Immune-Related Diseases. Microorganisms 2022; 10:microorganisms10122382. [PMID: 36557635 PMCID: PMC9782003 DOI: 10.3390/microorganisms10122382] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
Probiotics and synbiotics are used to treat chronic illnesses due to their roles in immune system modulation and anti-inflammatory response. They have been shown to reduce inflammation in a number of immune-related disorders, including systemic lupus erythematosus (SLE), human immunodeficiency virus (HIV), and chronic inflammatory skin conditions such as psoriasis and atopic dermatitis (AD). Akkermansia muciniphila (A. muciniphila) and Faecalibacterium prausnitzii (F. prausnitzii) are two different types of bacteria that play a significant part in this function. It has been established that Akkermansia and Faecalibacterium are abundant in normal populations and have protective benefits on digestive health while also enhancing the immune system, metabolism, and gut barrier of the host. They have the potential to be a therapeutic target in diseases connected to the microbiota, such as immunological disorders and cancer immunotherapy. There has not been a review of the anti-inflammatory effects of Akkermansia and Faecalibacterium, particularly in immunological diseases. In this review, we highlight the most recent scientific findings regarding A. muciniphila and F. prausnitzii as two significant gut microbiota for microbiome alterations and seek to provide cutting-edge insight in terms of microbiome-targeted therapies as promising preventive and therapeutic tools in immune-related diseases and cancer immunotherapy.
Collapse
|
22
|
van Mourik DJM, Salet DM, Middeldorp S, Nieuwdorp M, van Mens TE. The role of the intestinal microbiome in antiphospholipid syndrome. Front Immunol 2022; 13:954764. [PMID: 36505427 PMCID: PMC9732728 DOI: 10.3389/fimmu.2022.954764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/01/2022] [Indexed: 11/27/2022] Open
Abstract
The antiphospholipid syndrome (APS) is a thrombotic autoimmune disease in which the origin of the disease-characterizing autoantibodies is unknown. Increased research effort into the role of the intestinal microbiome in autoimmunity has produced new insights in this field. This scoping review focusses on the gut microbiome in its relation to APS. EMBASE and MEDLINE were searched for original studies with relevance to the relation between the gut microbiome and APS. Thirty studies were included. Work on systemic lupus erythematosus, which strongly overlaps with APS, has shown that patients often display an altered gut microbiome composition, that the disease is transferable with the microbiome, and that microbiome manipulation affects disease activity in murine lupus models. The latter has also been shown for APS, although data on microbiome composition is less consistent. APS patients do display an altered intestinal IgA response. Evidence has accrued for molecular mimicry as an explanatory mechanism for these observations in APS and other autoimmune diseases. Specific gut microbes express proteins with homology to immunodominant APS autoantigens. The disease phenotype appears to be dependent on these mimicking proteins in an APS mouse model, and human APS B- and T-cells indeed cross-react with these mimics. Pre-clinical evidence furthermore suggests that diet may influence autoimmunity through the microbiome, as may microbial short chain fatty acid production, though this has not been studied in APS. Lastly, the microbiome has been shown to affect key drivers of thrombosis, and may thus affect APS severity through non-immunological mechanisms. Overall, these observations demonstrate the impact of the intestinal microbiome on autoimmunity and the importance of understanding its role in APS.
Collapse
Affiliation(s)
- Dagmar J. M. van Mourik
- Amsterdam UMC location University of Amsterdam, Department of (Experimental) Vascular Medicine, Amsterdam, Netherlands,Amsterdam Cardiovascular Sciences, Pulmonary hypertension & thrombosis, Amsterdam, Netherlands,*Correspondence: Dagmar J. M. van Mourik, ; Thijs E. van Mens,
| | - Dorien M. Salet
- Amsterdam UMC location University of Amsterdam, Department of (Experimental) Vascular Medicine, Amsterdam, Netherlands,Amsterdam Cardiovascular Sciences, Pulmonary hypertension & thrombosis, Amsterdam, Netherlands,Department of Internal Medicine & Radboud Institute of Health Sciences (RIHS), Radboud University Medical Center, Nijmegen, Netherlands
| | - Saskia Middeldorp
- Department of Internal Medicine & Radboud Institute of Health Sciences (RIHS), Radboud University Medical Center, Nijmegen, Netherlands
| | - Max Nieuwdorp
- Amsterdam UMC location University of Amsterdam, Department of (Experimental) Vascular Medicine, Amsterdam, Netherlands
| | - Thijs E. van Mens
- Amsterdam UMC location University of Amsterdam, Department of (Experimental) Vascular Medicine, Amsterdam, Netherlands,Amsterdam Cardiovascular Sciences, Pulmonary hypertension & thrombosis, Amsterdam, Netherlands,Amsterdam Reproduction & Development, Pregnancy & Birth, Amsterdam, Netherlands,*Correspondence: Dagmar J. M. van Mourik, ; Thijs E. van Mens,
| |
Collapse
|
23
|
Zhan Y, Liu Q, Zhang B, Huang X, Lu Q. Recent advances in systemic lupus erythematosus and microbiota: from bench to bedside. Front Med 2022; 16:686-700. [DOI: 10.1007/s11684-022-0957-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 08/18/2022] [Indexed: 11/19/2022]
|
24
|
Attur M, Scher JU, Abramson SB, Attur M. Role of Intestinal Dysbiosis and Nutrition in Rheumatoid Arthritis. Cells 2022; 11:2436. [PMID: 35954278 PMCID: PMC9368368 DOI: 10.3390/cells11152436] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/11/2022] Open
Abstract
Rheumatoid arthritis is a chronic systemic immune-mediated disease caused by genetic and environmental factors. It is often characterized by the generation of autoantibodies that lead to synovial inflammation and eventual multi-joint destruction. A growing number of studies have shown significant differences in the gut microbiota composition of rheumatoid arthritis (RA) patients compared to healthy controls. Environmental factors, and changes in diet and nutrition are thought to play a role in developing this dysbiosis. This review aims to summarize the current knowledge of intestinal dysbiosis, the role of nutritional factors, and its implications in the pathogenesis of rheumatoid arthritis and autoimmunity. The future direction focuses on developing microbiome manipulation therapeutics for RA disease management.
Collapse
Affiliation(s)
- Malavikalakshmi Attur
- Drexel University College of Medicine, Drexel University, Philadelphia, PA 19129, USA
| | - Jose U Scher
- Division of Rheumatology, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY 10003, USA
| | - Steven B. Abramson
- Division of Rheumatology, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY 10003, USA
| | - Mukundan Attur
- Division of Rheumatology, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY 10003, USA
| |
Collapse
|
25
|
The Bladder Microbiome, Metabolome, Cytokines, and Phenotypes in Patients with Systemic Lupus Erythematosus. Microbiol Spectr 2022; 10:e0021222. [PMID: 35913213 PMCID: PMC9620774 DOI: 10.1128/spectrum.00212-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Emerging studies reveal unique bacterial communities in the human bladder, with alteration of composition associated to disease states. Systemic lupus erythematosus (SLE) is a complex autoimmune disease that is characterized by frequent impairment of the kidney. Here, we explored the bladder microbiome, metabolome, and cytokine profiles in SLE patients, as well as correlations between microbiome and metabolome, cytokines, and disease profiles. We recruited a group of 50 SLE patients and 50 individually matched asymptomatic controls. We used transurethral catheterization to collect urine samples, 16S rRNA gene sequencing to profile bladder microbiomes, and liquid chromatography-tandem mass spectrometry to perform untargeted metabolomic profiling. Compared to controls, SLE patients possessed unique bladder microbial communities and increased alpha diversity. These differences were accompanied by differences in urinary metabolomes, cytokines, and patients’ disease profiles. The SLE-enriched genera, including Bacteroides, were positively correlated with several SLE-enriched metabolites, including olopatadine. The SLE-depleted genera, such as Pseudomonas, were negatively correlated to SLE-depleted cytokines, including interleukin-8. Alteration of the bladder microbiome was associated with disease profile. For example, the genera Megamonas and Phocaeicola were negatively correlated with serum complement component 3, and Streptococcus was positively correlated with IgG. Our present study reveals associations between the bladder microbiome and the urinary metabolome, cytokines, and disease phenotypes. Our results could help identify biomarkers for SLE. IMPORTANCE Contrary to dogma, the human urinary bladder possesses its own unique bacterial community with alteration of composition associated with disease states. Systemic lupus erythematosus (SLE) is a complex autoimmune disease often characterized by kidney impairment. Here, we explored the bladder microbiome, metabolome, and cytokine profiles in SLE patients, as well as correlations between the microbiome and metabolome, cytokines, and disease profiles. Compared to controls, SLE patients possessed a unique bladder microbial community and elevated alpha diversity. These differences were accompanied by differences in bladder metabolomes, cytokines, and patients’ disease profiles. SLE-enriched genera were positively correlated with several SLE-enriched metabolites. SLE-depleted genera were negatively correlated to SLE-depleted cytokines. Alteration of the bladder microbiome was associated with disease profile. Thus, our study reveals associations between the bladder microbiome and the bladder metabolome, cytokines, and disease phenotypes. These results could help identify biomarkers for SLE.
Collapse
|
26
|
Gao L, Cheng Z, Zhu F, Bi C, Shi Q, Chen X. The Oral Microbiome and Its Role in Systemic Autoimmune Diseases: A Systematic Review of Big Data Analysis. Front Big Data 2022; 5:927520. [PMID: 35844967 PMCID: PMC9277227 DOI: 10.3389/fdata.2022.927520] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/23/2022] [Indexed: 12/30/2022] Open
Abstract
Introduction Despite decades of research, systemic autoimmune diseases (SADs) continue to be a major global health concern and the etiology of these diseases is still not clear. To date, with the development of high-throughput techniques, increasing evidence indicated a key role of oral microbiome in the pathogenesis of SADs, and the alterations of oral microbiome may contribute to the disease emergence or evolution. This review is to present the latest knowledge on the relationship between the oral microbiome and SADs, focusing on the multiomics data generated from a large set of samples. Methodology By searching the PubMed and Embase databases, studies that investigated the oral microbiome of SADs, including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and Sjögren's syndrome (SS), were systematically reviewed according to the PRISMA guidelines. Results One thousand and thirty-eight studies were found, and 25 studies were included: three referred to SLE, 12 referred to RA, nine referred to SS, and one to both SLE and SS. The 16S rRNA sequencing was the most frequent technique used. HOMD was the most common database aligned to and QIIME was the most popular pipeline for downstream analysis. Alterations in bacterial composition and population have been found in the oral samples of patients with SAD compared with the healthy controls. Results regarding candidate pathogens were not always in accordance, but Selenomonas and Veillonella were found significantly increased in three SADs, and Streptococcus was significantly decreased in the SADs compared with controls. Conclusion A large amount of sequencing data was collected from patients with SAD and controls in this systematic review. Oral microbial dysbiosis had been identified in these SADs, although the dysbiosis features were different among studies. There was a lack of standardized study methodology for each study from the inclusion criteria, sample type, sequencing platform, and referred database to downstream analysis pipeline and cutoff. Besides the genomics, transcriptomics, proteomics, and metabolomics technology should be used to investigate the oral microbiome of patients with SADs and also the at-risk individuals of disease development, which may provide us with a better understanding of the etiology of SADs and promote the development of the novel therapies.
Collapse
Affiliation(s)
- Lu Gao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Zijian Cheng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Fudong Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Chunsheng Bi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Qiongling Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Xiaoyan Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
- *Correspondence: Xiaoyan Chen
| |
Collapse
|
27
|
Wang W, Fan Y, Wang X. Lactobacillus: Friend or Foe for Systemic Lupus Erythematosus? Front Immunol 2022; 13:883747. [PMID: 35677055 PMCID: PMC9168270 DOI: 10.3389/fimmu.2022.883747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/26/2022] [Indexed: 12/03/2022] Open
Abstract
The cause of Systemic Lupus Erythematosus (SLE) remains largely unknown, despite the fact that it is well understood that a complex interaction between genes and environment is required for disease development. Microbiota serve as activators and are essential to immune homeostasis. Lactobacillus is thought to be an environmental agent affecting the development of SLE. However, beneficial therapeutic and anti-inflammatory effects of Lactobacillus on SLE were also explored. The discovery of Lactobacillus involvement in SLE will shed light on how SLE develops, as well as finding microbiota-targeted biomarkers and novel therapies. In this review, we attempt to describe the two sides of Lactobacillus in the occurrence, development, treatment and prognosis of SLE. We also discuss the effect of different strains Lactobacillus on immune cells, murine lupus, and patients. Finally, we try to illustrate the potential immunological mechanisms of Lactobacillus on SLE and provide evidence for further microbiota-targeted therapies.
Collapse
Affiliation(s)
- Weijie Wang
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yongsheng Fan
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinchang Wang
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
28
|
Wang Y, Wei J, Zhang W, Doherty M, Zhang Y, Xie H, Li W, Wang N, Lei G, Zeng C. Gut dysbiosis in rheumatic diseases: A systematic review and meta-analysis of 92 observational studies. EBioMedicine 2022; 80:104055. [PMID: 35594658 PMCID: PMC9120231 DOI: 10.1016/j.ebiom.2022.104055] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/21/2022] [Accepted: 04/28/2022] [Indexed: 12/11/2022] Open
Abstract
Background Emerging evidence suggests that dysbiosis in gut microbiota may contribute to the occurrence or development of several rheumatic diseases. Since gut microbiota dysbiosis is potentially modifiable, it has been postulated to be a promising preventive or therapeutic target for rheumatic diseases. However, the current understanding on the potential associations between gut microbiota and rheumatic diseases is still inadequate. Therefore, we aimed to synthesise the accumulating evidence for the relation of gut microbiota to rheumatic diseases. Methods The PubMed, Embase and Cochrane Library were searched from inception to March 11, 2022 to include observational studies evaluating the associations between gut microbiota and rheumatic diseases. Standardised mean difference (SMD) of α-diversity indices between rheumatic diseases and controls were estimated using random-effects model. β-diversity indices and relative abundance of gut microbes were summarised qualitatively. Findings Of the included 92 studies (11,998 participants), 68 provided data for α-diversity. Taken together as a whole, decreases in α-diversity indices were consistently found in rheumatic diseases (observed species: SMD = −0.36, [95%CI = −0.63, −0.09]; Chao1: SMD = −0.57, [95%CI = −0.88, −0.26]; Shannon index: SMD = −0.33, [95%CI = −0.48, −0.17]; Simpson index: SMD = −0.32, [95%CI = −0.49, −0.14]). However, when specific rheumatic diseases were examined, decreases were only observed in rheumatoid arthritis (observed species: SMD = −0.51, [95%CI = −0.78, −0.24]; Shannon index: SMD = −0.31, [95%CI = −0.49, −0.13]; Simpson index: SMD = −0.31, [95%CI = −0.54, −0.08]), systemic lupus erythematosus (Chao1: SMD = −1.60, [95%CI = −2.54, −0.66]; Shannon index: SMD = −0.63, [95%CI = −1.08, −0.18]), gout (Simpson index: SMD = −0.64, [95%CI = −1.07, −0.22]) and fibromyalgia (Simpson index: SMD = −0.28, [95%CI = −0.44, −0.11]), whereas an increase was observed in systemic sclerosis (Shannon index: SMD = 1.25, [95%CI = 0.09, 2.41]). Differences with statistical significance in β-diversity were consistently reported in ankylosing spondylitis and IgG4-related diseases. Although little evidence of disease specificity of gut microbes was found, shared alterations of the depletion of anti-inflammatory butyrate-producing microbe (i.e., Faecalibacterium) and the enrichment of pro-inflammatory microbe (i.e., Streptococcus) were observed in rheumatoid arthritis, Sjögren's syndrome and systemic lupus erythematosus. Interpretation Gut microbiota dysbiosis was associated with rheumatic diseases, principally with potentially non-specific, shared alterations of microbes. Funding National Natural Science Foundation of China (81930071, 81902265, 82072502 and U21A20352).
Collapse
Affiliation(s)
- Yilun Wang
- Department of Orthopaedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China
| | - Jie Wei
- Health Management Center, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, China
| | - Weiya Zhang
- University of Nottingham, Nottingham, UK; Pain Centre Versus Arthritis UK, Nottingham, UK
| | - Michael Doherty
- University of Nottingham, Nottingham, UK; Pain Centre Versus Arthritis UK, Nottingham, UK
| | - Yuqing Zhang
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA; The Mongan Institute, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Haibin Xie
- Department of Orthopaedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China
| | - Wei Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China
| | - Ning Wang
- Department of Orthopaedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China
| | - Guanghua Lei
- Department of Orthopaedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China; Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Chao Zeng
- Department of Orthopaedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China; Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|