1
|
Barman P, Pilania RK, Cv G, Thangaraj A, Arora M, Singh S. Treatment intensification in Kawasaki disease - current perspectives. Expert Rev Clin Immunol 2024; 20:1179-1191. [PMID: 38979573 DOI: 10.1080/1744666x.2024.2378900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
INTRODUCTION Intravenous immunoglobulin is the standard of care in Kawasaki disease. However, a subset of patients exhibits resistance to intravenous immunoglobulin treatment, even when Kawasaki disease is promptly diagnosed and managed. While intravenous immunoglobulin reduces the occurrence of coronary artery abnormalities from 15-25% to 3-5%, it does not entirely eliminate the risk. Besides, management guidelines for non-coronary complications of Kawasaki disease, for instance, myocarditis, remain speculative. AREAS COVERED Recent literature suggests that a subset of patients with Kawasaki disease may benefit from treatment intensification with drugs, such as corticosteroids, infliximab, anakinra, and/or ciclosporin. In this manuscript, we have reviewed recent advances in the management of Kawasaki disease, especially with regard to preemptive intensification of therapy in children at high risk of cardiac complications. A comprehensive search was made using Web of Science, Scopus, and PubMed databases to gather English articles published from 1967 to 2023 on the treatment of Kawasaki disease. We incorporated the following words in the search strategy: 'Kawasaki disease,' 'intravenous immunoglobulin/IVIg,' 'intravenous immunoglobulin/IVIg-resistant Kawasaki disease,' 'treatment intensification,' or 'primary intensification of treatment/therapy.' EXPERT OPINION The 'high-risk' group in Kawasaki disease needs to be identified with early intensification of primary therapy for better coronary and myocardial outcomes.
Collapse
Affiliation(s)
- Prabal Barman
- Allergy Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rakesh Kumar Pilania
- Allergy Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Gayathri Cv
- Allergy Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Abarna Thangaraj
- Allergy Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Munish Arora
- Allergy Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Surjit Singh
- Allergy Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
2
|
Zhang L, Shi L, Zhang R, Lin X, Bao Y, Jiang F, Wu C, Wang J. Immune control in Kawasaki disease knowledge mapping: a bibliometric analysis. Cardiol Young 2024; 34:1738-1753. [PMID: 38602085 DOI: 10.1017/s1047951124000763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
BACKGROUND Kawasaki disease is a systemic vascular disease with an unclear pathophysiology that primarily affects children under the age of five. Research on immune control in Kawasaki disease has been gaining attention. This study aims to apply a bibliometric analysis to examine the present and future directions of immune control in Kawasaki disease. METHODS By utilizing the themes "Kawasaki disease," "Kawasaki syndrome," and "immune control," the Web of Science Core Collection database was searched for publications on immune control in Kawasaki disease. This bibliometric analysis was carried out using VOSviewers, CiteSpace, and the R package "bibliometrix." RESULTS In total, 294 studies on immune control in Kawasaki disease were published in Web of Science Core Collection. The three most significant institutions were Chang Gung University, the University of California San Diego, and Kaohsiung Chang Gung Memorial Hospital. China, the United States, and Japan were the three most important countries. In this research field, Clinical and Experimental Immunology was the top-referred journal, while the New England Journal of Medicine was the most co-cited journal. The Web of Science Core Collection document by McCrindle BW et al. published in 2017 was the most cited reference. Additionally, the author keywords concentrated on "COVID-19," "SARS-CoV-2," and "multisystem inflammatory syndrome in children" in recent years. CONCLUSION The research trends and advancements in immune control in Kawasaki disease are thoroughly summarised in this bibliometric analysis, which is the first to do so. The data indicate recent research frontiers and hot directions, making it easier for researchers to study the immune control of Kawasaki disease.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Lifeng Shi
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Ruijie Zhang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Xinao Lin
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yunlei Bao
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Feng Jiang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Chuyan Wu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jimei Wang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
3
|
Noval Rivas M, Kocatürk B, Franklin BS, Arditi M. Platelets in Kawasaki disease: mediators of vascular inflammation. Nat Rev Rheumatol 2024; 20:459-472. [PMID: 38886559 DOI: 10.1038/s41584-024-01119-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 06/20/2024]
Abstract
Kawasaki disease, a systemic vasculitis that affects young children and can result in coronary artery aneurysms, is the leading cause of acquired heart disease among children. A hallmark of Kawasaki disease is increased blood platelet counts and platelet activation, which is associated with an increased risk of developing resistance to intravenous immunoglobulin and coronary artery aneurysms. Platelets and their releasate, including granules, microparticles, microRNAs and transcription factors, can influence innate immunity, enhance inflammation and contribute to vascular remodelling. Growing evidence indicates that platelets also interact with immune and non-immune cells to regulate inflammation. Platelets boost NLRP3 inflammasome activation and IL-1β production by human immune cells by releasing soluble mediators. Activated platelets form aggregates with leukocytes, such as monocytes and neutrophils, enhancing numerous functions of these cells and promoting thrombosis and inflammation. Leukocyte-platelet aggregates are increased in children with Kawasaki disease during the acute phase of the disease and can be used as biomarkers for disease severity. Here we review the role of platelets in Kawasaki disease and discuss progress in understanding the immune-effector role of platelets in amplifying inflammation related to Kawasaki disease vasculitis and therapeutic strategies targeting platelets or platelet-derived molecules.
Collapse
Affiliation(s)
- Magali Noval Rivas
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Guerin Children's, Cedars Sinai Medical Center, Los Angeles, CA, USA
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Begüm Kocatürk
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Bernardo S Franklin
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Moshe Arditi
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Guerin Children's, Cedars Sinai Medical Center, Los Angeles, CA, USA.
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Huang XB, Zhao S, Liu ZY, Xu YY, Deng F. Serum amyloid A as a biomarker for immunoglobulin resistance in Kawasaki disease. Ann Med 2023; 55:2264315. [PMID: 37870383 PMCID: PMC10836278 DOI: 10.1080/07853890.2023.2264315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/21/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Intravenous immunoglobulin (IVIG) resistance is of prime importance in Kawasaki disease (KD). In this study, we examined the value and mechanism of serum amyloid A (SAA) level in predicting IVIG resistance in patients with KD. METHODS SAA levels were measured in 497 consecutive patients with KD before IVIG therapy in the training set. The patients were divided into two groups (IVIG-responsive and IVIG-resistant) according to the American Heart Association (AHA) definition of IVIG resistance. Demographic, echocardiographic, and laboratory data were also retrospectively analyzed and tabulated to predict IVIG resistance. The predictive value of SAA was validated on test sets of prospective data. Cytokine microarrays were analyzed from 4 patients with resistant to IVIG, 4 patients with responsive to IVIG and 4 healthy volunteers. RESULTS During the training set, 409 patients with KD were enrolled, of whom 43 (10.5%) were resistant to initial IVIG treatment and 47 (11.49%) had coronary artery lesions (CALs). Serum levels of SAA were higher in the IVIG resistant group compared to the IVIG responsive group, (380.00 [204.40-547.25] vs 230.85 [105.40-490.00] mg/L; p = .008). The values of total bilirubin, C-reactive protein, neutrophils, alanine aminotransferase, aspartate aminotransferase, interleukin-6(IL-6), and procalcitonin were significantly higher in the IVIG-resistant group than in the IVIG-responsive group (p < .05); however, the lymphocytes, platelets, serum sodium levels, and duration of fever before IVIG therapy were significantly lower (p < .05). There was no significant difference in SAA levels between patients with KD with and without CALs. Binary logistic regression analysis showed that SAA (p = .008), neutrophils (p < .001), total bilirubin (p = .001), platelet count (p = .004), and serum sodium level (p = .019) were independent factors influencing IVIG resistance. The optimal cutoff value of SAA for IVIG resistance prediction was 252.45 mg/L, with a corresponding clinical sensitivity of 69.8% and specificity of 54.4%. Based on receiver operating characteristic (ROC) curve analyses, the area under the curve (AUC) of combined detection with these five indicators was 0.800, clinical sensitivity was 69.8%, and specificity was 76.2%. In the prospective data, the sensitivity, specificity, and accuracy of SAA for identifying IVIG resistance KD were 77.8%,69.0%, and 70.0%, respectively. Compared with IVIG- responsive group and healthy children, the levels of IL-6 was upregulated significantly in IVIG-resistant group through cytokine microarrays. CONCLUSIONS SAA may be a potential biomarker for predicting IVIG responsiveness to KD, Combined detection of SAA levels, total bilirubin, neutrophil count, platelet count, and serum sodium levels is superior to that of any other single indicator for predicting IVIG resistance in KD. And elevated SAA may accompany with IL-6 in KD patients, its use in clinical practice may be helpful for treatment management.
Collapse
Affiliation(s)
- Xiao-bi Huang
- Department of Pediatric Nephrology, Children’s Hospital of Anhui Medical University (Anhui Provincial Children’s Hospital), Hefei, China
- Department of Pediatric Cardiology, Children’s Hospital of Anhui Medical University (Anhui Provincial Children’s Hospital), Hefei, China
| | - Sheng Zhao
- Department of Pediatric Cardiology, Children’s Hospital of Anhui Medical University (Anhui Provincial Children’s Hospital), Hefei, China
| | - Zhi-yuan Liu
- Department of Pediatric Cardiology, Children’s Hospital of Anhui Medical University (Anhui Provincial Children’s Hospital), Hefei, China
| | - Yan-yan Xu
- Department of Pediatric Cardiology, Children’s Hospital of Anhui Medical University (Anhui Provincial Children’s Hospital), Hefei, China
| | - Fang Deng
- Department of Pediatric Nephrology, Children’s Hospital of Anhui Medical University (Anhui Provincial Children’s Hospital), Hefei, China
| |
Collapse
|
5
|
Lin PK, Davis GE. Extracellular Matrix Remodeling in Vascular Disease: Defining Its Regulators and Pathological Influence. Arterioscler Thromb Vasc Biol 2023; 43:1599-1616. [PMID: 37409533 PMCID: PMC10527588 DOI: 10.1161/atvbaha.123.318237] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023]
Abstract
Because of structural and cellular differences (ie, degrees of matrix abundance and cross-linking, mural cell density, and adventitia), large and medium-sized vessels, in comparison to capillaries, react in a unique manner to stimuli that induce vascular disease. A stereotypical vascular injury response is ECM (extracellular matrix) remodeling that occurs particularly in larger vessels in response to injurious stimuli, such as elevated angiotensin II, hyperlipidemia, hyperglycemia, genetic deficiencies, inflammatory cell infiltration, or exposure to proinflammatory mediators. Even with substantial and prolonged vascular damage, large- and medium-sized arteries, persist, but become modified by (1) changes in vascular wall cellularity; (2) modifications in the differentiation status of endothelial cells, vascular smooth muscle cells, or adventitial stem cells (each can become activated); (3) infiltration of the vascular wall by various leukocyte types; (4) increased exposure to critical growth factors and proinflammatory mediators; and (5) marked changes in the vascular ECM, that remodels from a homeostatic, prodifferentiation ECM environment to matrices that instead promote tissue reparative responses. This latter ECM presents previously hidden matricryptic sites that bind integrins to signal vascular cells and infiltrating leukocytes (in coordination with other mediators) to proliferate, invade, secrete ECM-degrading proteinases, and deposit injury-induced matrices (predisposing to vessel wall fibrosis). In contrast, in response to similar stimuli, capillaries can undergo regression responses (rarefaction). In summary, we have described the molecular events controlling ECM remodeling in major vascular diseases as well as the differential responses of arteries versus capillaries to key mediators inducing vascular injury.
Collapse
Affiliation(s)
- Prisca K. Lin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL 33612
| | - George E. Davis
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL 33612
| |
Collapse
|
6
|
Animal models of vasculitis. Curr Opin Rheumatol 2022; 34:10-17. [PMID: 34783711 DOI: 10.1097/bor.0000000000000848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Vasculitis describes a wide spectrum of rare, inflammatory, multisystem disorders. These heterogenous diseases all have inflammation of blood vessels as a central feature. However, they differ in terms of their genetic and environmental risk factors, disease pathogenesis, clinical presentations and treatment strategies. Many animal models of vasculitis exist, each resembling a different human clinical phenotype. This review provides an overview of recently published findings from experimental animal models of vasculitis. RECENT FINDINGS Several new animal models have been described during the review period. New insights gleaned from existing animal models regarding cause, disease effector mechanisms and novel treatments identified in established animal models are discussed. SUMMARY Animal models continue to be an important tool for understanding disease pathogenesis, especially in rare and complex diseases such as vasculitis. They also provide an invaluable platform for development and preclinical testing of new treatments.
Collapse
|