1
|
Carbone F, Colamatteo A, La Rocca C, Lepore MT, Russo C, De Rosa G, Matarese A, Procaccini C, Matarese G. Metabolic Plasticity of Regulatory T Cells in Health and Autoimmunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1859-1866. [PMID: 38830147 DOI: 10.4049/jimmunol.2400079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/05/2024] [Indexed: 06/05/2024]
Abstract
Immunometabolism has been demonstrated to control immune tolerance and the pathogenic events leading to autoimmunity. Compelling experimental evidence also suggests that intracellular metabolic programs influence differentiation, phenotype, proliferation, and effector functions of anti-inflammatory CD4+CD25+Foxp3+ regulatory T (Treg) cells. Indeed, alterations in intracellular metabolism associate with quantitative and qualitative impairments of Treg cells in several pathological conditions. In this review, we summarize the most recent advances linking how metabolic pathways control Treg cell homeostasis and their alterations occurring in autoimmunity. Also, we analyze how metabolic manipulations could be employed to restore Treg cell frequency and function with the aim to create novel therapeutic opportunities to halt immune-mediated disorders.
Collapse
Grants
- 2022LNHZAP Ministero dell''''Istruzione, dell''''Università e della Ricerca (MIUR)
- PE00000007 Ministero dell''''Istruzione, dell''''Università e della Ricerca (MIUR)
- PE00000006 Ministero dell''''Istruzione, dell''''Università e della Ricerca (MIUR)
- RF-2019-12371111 Italy Ministry of Health | Agenzia Italiana del Farmaco, Ministero della Salute (AIFA)
- PNRR-MAD-2022-12375634 Italy Ministry of Health | Agenzia Italiana del Farmaco, Ministero della Salute (AIFA)
- GR-2018-12366154 Italy Ministry of Health | Agenzia Italiana del Farmaco, Ministero della Salute (AIFA)
- 2022-PRsingle/013 Fondazione Italiana Sclerosi Multipla (FISM)
- P2022T4PKT Ministero dell''''Istruzione, dell''''Università e della Ricerca (MIUR)
- PNRR-MAD-2022-12376126 Italy Ministry of Health | Agenzia Italiana del Farmaco, Ministero della Salute (AIFA)
- GR-2021-12373337 Italy Ministry of Health | Agenzia Italiana del Farmaco, Ministero della Salute (AIFA)
- 2022YMJXYT Ministero dell''''Istruzione, dell''''Università e della Ricerca (MIUR)
- P2022CMK43 Ministero dell''''Istruzione, dell''''Università e della Ricerca (MIUR)
- 20225KH7BZ Ministero dell''''Istruzione, dell''''Università e della Ricerca (MIUR)
Collapse
Affiliation(s)
- Fortunata Carbone
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore," Consiglio Nazionale delle Ricerche, Napoli, Italy
- Unità di Neuroimmunologia, IRCCS-Fondazione Santa Lucia, Roma, Italy
| | - Alessandra Colamatteo
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II," Napoli, Italy
| | - Claudia La Rocca
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore," Consiglio Nazionale delle Ricerche, Napoli, Italy
| | - Maria Teresa Lepore
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore," Consiglio Nazionale delle Ricerche, Napoli, Italy
| | - Claudia Russo
- D.A.I. Medicina di Laboratorio e Trasfusionale, Azienda Ospedaliera Universitaria "Federico II," Napoli, Italy
| | - Giusy De Rosa
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II," Napoli, Italy
| | - Alessandro Matarese
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli "Federico II," Napoli, Italy
| | - Claudio Procaccini
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore," Consiglio Nazionale delle Ricerche, Napoli, Italy
- Unità di Neuroimmunologia, IRCCS-Fondazione Santa Lucia, Roma, Italy
| | - Giuseppe Matarese
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore," Consiglio Nazionale delle Ricerche, Napoli, Italy
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II," Napoli, Italy
| |
Collapse
|
2
|
Wang Q, Ye X, Tan S, Jiang Q, Su G, Pan S, Li H, Cao Q, Yang P. 4-Octyl Itaconate Inhibits Proinflammatory Cytokine Production in Behcet's Uveitis and Experimental Autoimmune Uveitis. Inflammation 2024; 47:909-920. [PMID: 38183531 DOI: 10.1007/s10753-023-01950-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/08/2024]
Abstract
4-octyl itaconate (4-OI) is an anti-inflammatory metabolite that activates the nuclear-factor-E2-related factor 2 (NRF2) signaling. In the current work, we investigated whether 4-OI could affect the production of proinflammatory cytokines in Behcet's uveitis (BU) and experimental autoimmune uveitis (EAU). Peripheral blood mononuclear cells (PBMCs) of active BU patients and healthy individuals with in vitro 4-OI treatment were performed to assess the influence of 4-OI on the proinflammatory cytokine production. EAU was induced and used for investigating the influence of 4-OI on the proinflammatory cytokine production in vivo. The flow cytometry, qPCR, and ELISA were performed to detect proinflammatory cytokine expression. NRF2 signaling activation was evaluated by qPCR and western blotting (WB). Splenic lymphocyte transcriptome was performed by RNA sequencing. The NRF2 expression by BU patients-derived PBMCs was lower than that by healthy individuals. After treatment with 4-OI, the proportion of Th17 cells, along with the expression of proinflammatory cytokines (IL-17, TNF-α, MCP-1, and IL-6) by PBMCs, were downregulated, and anti-inflammatory cytokine (IL-10) expression was upregulated, although IFN-γ expression was unaffected. The EAU severity was ameliorated by 4-OI in association with a lower splenic Th1/Th17 cell proportion and increased nuclear NRF2 expression. Additionally, 4-OI downregulated a set of 248 genes, which were enriched in pathways of positive regulation of immune responses. The present study shows an inhibitory effect of 4-OI on the proinflammatory cytokine production in active BU patients and EAU mice, possibly mediated through activating NRF2 signaling. These findings suggest that 4-OI could act as a potential therapeutic drug for the treatment and prevention of BU in the future study.
Collapse
Affiliation(s)
- Qingfeng Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Xingsheng Ye
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Shiyao Tan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Qingyan Jiang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Guannan Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Su Pan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Hongxi Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Qingfeng Cao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China.
| |
Collapse
|
3
|
Yi T, Zhang W, Hua Y, Xin X, Wu Z, Li Y, Wen C, Fan Y, Ji J, Xu L. Rutin alleviates lupus nephritis by inhibiting T cell oxidative stress through PPARγ. Chem Biol Interact 2024; 394:110972. [PMID: 38555047 DOI: 10.1016/j.cbi.2024.110972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by complex clinical symptoms and multi-organ damage. One of the most prevalent complications of SLE is lupus nephritis (LN). Rutin, a natural flavonoid compound found in various plants used in traditional Chinese medicine, has shown promising anti-inflammatory, antioxidant, and renal protective effects. In our study, we treated MRL/lpr mice, a model known for spontaneously developing LN, with Rutin. Our findings reveal that Rutin markedly reduced serum cytokine and autoantibody levels and decreased inflammatory cell infiltration in renal tissues, thereby ameliorating kidney pathology. In vitro experiments indicated that Rutin's therapeutic effect on LN is linked to its significant reduction of oxidative stress in T cells. Further investigations suggest that Rutin enhances oxidative stress management through the modulation of Peroxisome proliferator-activated receptor gamma (PPARγ). We observed that Rutin modulates PPARγ activity, leading to reduced transcriptional activity of NF-κB and STAT3, which in turn inhibits the secretion of inflammatory cytokines such as IL-6, TNF-α, and IL-17. In summary, Rutin can exert an antioxidant effect by regulating PPARγ and shows therapeutic action against LN.
Collapse
Affiliation(s)
- Tongtong Yi
- College of Basic Medical, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310051, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310051, China
| | - Wei Zhang
- College of Basic Medical, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310051, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310051, China
| | - Ying Hua
- College of Basic Medical, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310051, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310051, China
| | - Xingpan Xin
- College of Basic Medical, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310051, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310051, China
| | - Zhenyu Wu
- College of Basic Medical, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310051, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310051, China
| | - Ying Li
- College of Basic Medical, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310051, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310051, China
| | - Chengping Wen
- College of Basic Medical, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310051, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310051, China
| | - Yongsheng Fan
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310051, China; Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinjun Ji
- College of Basic Medical, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310051, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310051, China.
| | - Li Xu
- College of Basic Medical, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310051, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310051, China.
| |
Collapse
|
4
|
Li J, Guo Q, Wei X, Zhu Y, Luo M, Luo P. Association of serum Nrf2 protein levels with disease activity and renal impairment in lupus nephritis. Front Immunol 2024; 15:1304167. [PMID: 38304428 PMCID: PMC10830626 DOI: 10.3389/fimmu.2024.1304167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
Introduction We aimed to investigate the relationship between nuclear factor erythroid 2-related factor 2 (Nrf2) protein expression levels, lupus nephritis (LN) disease activity, and the degree of renal injury (based on the estimated glomerular filtration rate [eGFR]) in patients with LN. Methods We selected 40 healthy control participants and 102 patients with LN who were treated in the Second Hospital of Jilin University, China, for inclusion in this study. Patients with LN were classified into LN with high-eGFR and LN with low-eGFR groups. Nrf2 protein levels were measured in the serum and renal tissues of the participants in both groups to assess the correlation between Nrf2 protein levels and different LN disease states. Results There was a significantly positive correlation between serum Nrf2 protein levels, the degree of renal injury, and systemic lupus erythematosus disease activity index (SLEDAI) scores in patients with LN. Nrf2 protein levels were higher in the LN with high-eGFR group than in the healthy control and LN with low-eGFR groups. In follow-up patients in the LN high eGFR group, Nrf2 protein levels decreased significantly after remission of disease activity. Conclusion Nrf2 protein expression has a dual role in patients with LN. Nrf2 protein levels not only correlate with disease activity in patients with LN, but also with the degree of kidney injury. Before implementing targeted therapy for Nrf2, evaluating both Nrf2 protein expression and the disease state in patients with LN is necessary to better identify and place each patient in an appropriate patient group.
Collapse
Affiliation(s)
- Jicui Li
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Qiaoyan Guo
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Xianping Wei
- Department of Clinical Research, The Second Hospital of Jilin University, Changchun, China
| | - Yuexin Zhu
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Manyu Luo
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Ping Luo
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Boothby M, Cho SH. Hypoxia and the Hypoxia-Inducible Factors in Lymphocyte Differentiation and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:115-141. [PMID: 39017842 DOI: 10.1007/978-3-031-62731-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Molecular oxygen doubles as a biomolecular building block and an element required for energy generation and metabolism in aerobic organisms. A variety of systems in mammalian cells sense the concentration of oxygen to which they are exposed and are tuned to the range present in our blood and tissues. The ability to respond to insufficient O2 in tissues is central to regulation of erythroid lineage cells, but challenges also are posed for immune cells by a need to adjust to very different oxygen concentrations. Hypoxia-inducible factors (HIFs) provide a major means of making such adjustments. For adaptive immunity, lymphoid lineages are initially defined in bone marrow niches; T lineage cells arise in the thymus, and B cells complete maturation in the spleen. Lymphocytes move from these first stops into microenvironments (bloodstream, lymphatics, and tissues) with distinct oxygenation in each. Herein, evidence pertaining to functions of the HIF transcription factors (TFs) in lymphocyte differentiation and function is reviewed. For the CD4+ and CD8+ subsets of T cells, the case is very strong that hypoxia and HIFs regulate important differentiation events and functions after the naïve lymphocytes emerge from the thymus. In the B lineage, the data indicate that HIF1 contributes to a balanced regulation of B-cell fates after antigen (Ag) activation during immunity. A model synthesized from the aggregate literature is that HIF in lymphocytes generally serves to modulate function in a manner dependent on the molecular context framed by other TFs and signals.
Collapse
Affiliation(s)
- Mark Boothby
- Departments of Pathology, Microbiology, Immunology (Molecular Pathogenesis Division), Vanderbilt University Medical Center, Nashville, TN, USA.
- Medicine (Rheumatology and Immunology Division), Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Inflammation, Immunity (VI4), Nashville, TN, USA.
| | - Sung Hoon Cho
- Departments of Pathology, Microbiology, Immunology (Molecular Pathogenesis Division), Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Inflammation, Immunity (VI4), Nashville, TN, USA
| |
Collapse
|
6
|
Ates I, Yılmaz AD, Buttari B, Arese M, Saso L, Suzen S. A Review of the Potential of Nuclear Factor [Erythroid-Derived 2]-like 2 Activation in Autoimmune Diseases. Brain Sci 2023; 13:1532. [PMID: 38002492 PMCID: PMC10669303 DOI: 10.3390/brainsci13111532] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 11/26/2023] Open
Abstract
An autoimmune disease is the consequence of the immune system attacking healthy cells, tissues, and organs by mistake instead of protecting them. Inflammation and oxidative stress (OS) are well-recognized processes occurring in association with acute or chronic impairment of cell homeostasis. The transcription factor Nrf2 (nuclear factor [erythroid-derived 2]-like 2) is of major importance as the defense instrument against OS and alters anti-inflammatory activities related to different pathological states. Researchers have described Nrf2 as a significant regulator of innate immunity. Growing indications suggest that the Nrf2 signaling pathway is deregulated in numerous diseases, including autoimmune disorders. The advantageous outcome of the pharmacological activation of Nrf2 is an essential part of Nrf2-based chemoprevention and intervention in other chronic illnesses, such as neurodegeneration, cardiovascular disease, autoimmune diseases, and chronic kidney and liver disease. Nevertheless, a growing number of investigations have indicated that Nrf2 is already elevated in specific cancer and disease steps, suggesting that the pharmacological agents developed to mitigate the potentially destructive or transformative results associated with the protracted activation of Nrf2 should also be evaluated. The activators of Nrf2 have revealed an improvement in the progress of OS-associated diseases, resulting in immunoregulatory and anti-inflammatory activities; by contrast, the depletion of Nrf2 worsens disease progression. These data strengthen the growing attention to the biological properties of Nrf2 and its possible healing power on diseases. The evidence supporting a correlation between Nrf2 signaling and the most common autoimmune diseases is reviewed here. We focus on the aspects related to the possible effect of Nrf2 activation in ameliorating pathologic conditions based on the role of this regulator of antioxidant genes in the control of inflammation and OS, which are processes related to the progression of autoimmune diseases. Finally, the possibility of Nrf2 activation as a new drug development strategy to target pathogenesis is proposed.
Collapse
Affiliation(s)
- Ilker Ates
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ankara University, Degol Str. No. 4, 06560 Ankara, Turkey
| | - Ayşe Didem Yılmaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Degol Str. No. 4, 06560 Ankara, Turkey; (A.D.Y.); (S.S.)
| | - Brigitta Buttari
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Aging, Italian National Institute of Health, 00161 Rome, Italy;
| | - Marzia Arese
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Piazzae Aldo Moro 5, 00185 Rome, Italy;
| | - Luciano Saso
- Department of Physiology and Pharmacology ‘‘Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Sibel Suzen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Degol Str. No. 4, 06560 Ankara, Turkey; (A.D.Y.); (S.S.)
| |
Collapse
|
7
|
Alrashdan MS, Al-Rawi NH, Hassona Y, Al Kawas S, Cirillo N. Mechanisms underlying sex bias in oral immune-mediated conditions, an insight. J Oral Pathol Med 2023; 52:795-802. [PMID: 37452464 DOI: 10.1111/jop.13466] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
The predilection for women in systemic autoimmune diseases is well established. However, this sex bias in oral autoimmune diseases has been classically reported from an epidemiological perspective without any elaborate attempts to unveil the underlying mechanisms. The unique nature of the oral environment is likely to impose a combination of systemic and local factors that ultimately result in the sex bias in autoimmune diseases of the oral cavity. Variations of immune responses, target organ vulnerability, endocrine and genetic factors, sex chromosomes and modes of parental inheritance are potential systemic factors, while the oral microbiome, oral tolerance, saliva, and oral epithelial stem cells may account for local contributing factors. This review will discuss the preponderance of women in oral immune-mediated diseases, the potential systemic and local mechanisms underlying this predominance and highlight the crucial need for further research in this area.
Collapse
Affiliation(s)
- Mohammad S Alrashdan
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Oral Medicine and Oral Surgery, Faculty of Dentistry, Jordan University of Science and Technology, Irbid, Jordan
| | - Natheer H Al-Rawi
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Yazan Hassona
- Department of Oral and Maxillofacial Surgery, Oral Medicine, and Periodontics, School of Dentistry, The University of Jordan, Amman, Jordan
| | - Sausan Al Kawas
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Nicola Cirillo
- Melbourne Dental School, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Carlton, Victoria, Australia
| |
Collapse
|
8
|
Yudhani RD, Pakha DN, Suyatmi S, Irham LM. Identifying pathogenic variants related to systemic lupus erythematosus by integrating genomic databases and a bioinformatic approach. Genomics Inform 2023; 21:e37. [PMID: 37813633 PMCID: PMC10584638 DOI: 10.5808/gi.23002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/15/2023] [Accepted: 08/09/2023] [Indexed: 10/11/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an inflammatory-autoimmune disease with a complex multi-organ pathogenesis, and it is known to be associated with significant morbidity and mortality. Various genetic, immunological, endocrine, and environmental factors contribute to SLE. Genomic variants have been identified as potential contributors to SLE susceptibility across multiple continents. However, the specific pathogenic variants that drive SLE remain largely undefined. In this study, we sought to identify these pathogenic variants across various continents using genomic and bioinformatic-based methodologies. We found that the variants rs35677470, rs34536443, rs17849502, and rs13306575 are likely damaging in SLE. Furthermore, these four variants appear to affect the gene expression of NCF2, TYK2, and DNASE1L3 in whole blood tissue. Our findings suggest that these genomic variants warrant further research for validation in functional studies and clinical trials involving SLE patients. We conclude that the integration of genomic and bioinformatic-based databases could enhance our understanding of disease susceptibility, including that of SLE.
Collapse
Affiliation(s)
- Ratih Dewi Yudhani
- Department of Pharmacology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta 57126, Indonesia
| | - Dyonisa Nasirochmi Pakha
- Department of Pharmacology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta 57126, Indonesia
| | - Suyatmi Suyatmi
- Department of Histology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta 57126, Indonesia
| | | |
Collapse
|
9
|
Kurzhagen JT, Noel S, Lee K, Sadasivam M, Gharaie S, Ankireddy A, Lee SA, Newman-Rivera A, Gong J, Arend LJ, Hamad AR, Reddy SP, Rabb H. T Cell Nrf2/Keap1 Gene Editing Using CRISPR/Cas9 and Experimental Kidney Ischemia-Reperfusion Injury. Antioxid Redox Signal 2023; 38:959-973. [PMID: 36734409 PMCID: PMC10171956 DOI: 10.1089/ars.2022.0058] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 02/04/2023]
Abstract
Aims: T cells play pathophysiologic roles in kidney ischemia-reperfusion injury (IRI), and the nuclear factor erythroid 2-related factor 2/kelch-like ECH-associated protein 1 (Nrf2/Keap1) pathway regulates T cell responses. We hypothesized that clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated Keap1-knockout (KO) augments Nrf2 antioxidant potential of CD4+ T cells, and that Keap1-KO CD4+ T cell immunotherapy protects from kidney IRI. Results: CD4+ T cell Keap1-KO resulted in significant increase of Nrf2 target genes NAD(P)H quinone dehydrogenase 1, heme oxygenase 1, glutamate-cysteine ligase catalytic subunit, and glutamate-cysteine ligase modifier subunit. Keap1-KO cells displayed no signs of exhaustion, and had significantly lower levels of interleukin 2 (IL2) and IL6 in normoxic conditions, but increased interferon gamma in hypoxic conditions in vitro. In vivo, adoptive transfer of Keap1-KO CD4+ T cells before IRI improved kidney function in T cell-deficient nu/nu mice compared with mice receiving unedited control CD4+ T cells. Keap1-KO CD4+ T cells isolated from recipient kidneys 24 h post IR were less activated compared with unedited CD4+ T cells, isolated from control kidneys. Innovation: Editing Nrf2/Keap1 pathway in murine T cells using CRISPR/Cas9 is an innovative and promising immunotherapy approach for kidney IRI and possibly other solid organ IRI. Conclusion: CRISPR/Cas9-mediated Keap1-KO increased Nrf2-regulated antioxidant gene expression in murine CD4+ T cells, modified responses to in vitro hypoxia and in vivo kidney IRI. Gene editing targeting the Nrf2/Keap1 pathway in T cells is a promising approach for immune-mediated kidney diseases.
Collapse
Affiliation(s)
- Johanna T. Kurzhagen
- Division of Nephrology and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sanjeev Noel
- Division of Nephrology and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kyungho Lee
- Division of Nephrology and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mohanraj Sadasivam
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sepideh Gharaie
- Division of Nephrology and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aparna Ankireddy
- Department of Pediatrics, University of Illinois, Chicago, Illinois, USA
| | - Sul A. Lee
- Division of Nephrology and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrea Newman-Rivera
- Division of Nephrology and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jing Gong
- Division of Nephrology and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lois J. Arend
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Abdel R.A. Hamad
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sekhar P. Reddy
- Department of Pediatrics, University of Illinois, Chicago, Illinois, USA
- Department of Pathology, and University of Illinois, Chicago, Illinois, USA
- University of Illinois Cancer Center, University of Illinois, Chicago, Illinois, USA
| | - Hamid Rabb
- Division of Nephrology and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Yao M, Huang X, Guo Y, Zhao JV, Liu Z. Disentangling the common genetic architecture and causality of rheumatoid arthritis and systemic lupus erythematosus with COVID-19 outcomes: Genome-wide cross trait analysis and bidirectional Mendelian randomization study. J Med Virol 2023; 95:e28570. [PMID: 36762574 DOI: 10.1002/jmv.28570] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
Coronavirus Disease (COVID-19) may cause a dysregulation of the immune system and has complex relationships with multiple autoimmune diseases, including rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). However, little is known about their common genetic architecture. Using the latest data from COVID-19 host genetics consortium and consortia on RA and SLE, we conducted a genome-wide cross-trait analysis to examine the shared genetic etiology between COVID-19 and RA/SLE and evaluated their causal associations using bidirectional Mendelian randomization (MR). The cross-trait meta-analysis identified 23, 28, and 10 shared genetic loci for severe COVID-19, COVID-19 hospitalization, and SARS-CoV-2 infection with RA, and 14, 17, and 7 shared loci with SLE, respectively. Co-localization analysis identified five causal variants in TYK2, IKZF3, PSORS1C1, and COG6 for COVID-19 with RA, and four in CRHR1, FUT2, and NXPE3 for COVID-19 with SLE, involved in immune function, angiogenesis and coagulation. Bidirectional MR analysis suggested RA is associated with a higher risk of COVID-19 hospitalization, and COVID-19 is not related to RA or SLE. Our novel findings improved the understanding of the genetic etiology shared by COVID-19, RA and SLE, and suggested an increased risk of COVID-19 hospitalization in people with higher genetic liability to RA.
Collapse
Affiliation(s)
- Minhao Yao
- Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong, Hong Kong, China
| | - Xin Huang
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong, China
| | - Yunshan Guo
- Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong, Hong Kong, China
| | - Jie V Zhao
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong, China
| | - Zhonghua Liu
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York, USA
| |
Collapse
|
11
|
Zhao X, Wang S, Wang S, Xie J, Cui D. mTOR signaling: A pivotal player in Treg cell dysfunction in systemic lupus erythematosus. Clin Immunol 2022; 245:109153. [DOI: 10.1016/j.clim.2022.109153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/03/2022]
|
12
|
Du L, Feng Y, Wang C, Shi X, Wen C, He Z, Zhang Y. Jieduquyuziyin prescription promotes the efficacy of prednisone via upregulating Nrf2 in MRL/lpr kidneys. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115643. [PMID: 36031105 DOI: 10.1016/j.jep.2022.115643] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/13/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Jieduquyuziyin prescription (JP), a traditional Chinese medicine (TCM) formula, has been used as an approved hospital prescription to improve the efficacy of prednisone (Pred) in systemic lupus erythematosus (SLE) and lupus nephritis (LN) treatment. Although the synergistic effect of JP and Pred is prominent, the underlying mechanisms require further investigation. AIM OF THE STUDY To explore the key therapeutic targets of JP in improving the role of Pred in the treatment of LN. MATERIALS AND METHODS Lupus-prone female MRL/lpr mice were administered JP, Pred, or JP combined with Pred. The effect of JP on LN was estimated by evaluating renal function and inflammation levels in the kidneys. On this basis, RNA sequencing of kidney tissues was performed, and the differentially expressed genes were analyzed and summarized. The role of JP in the expression of nuclear factor erythroid 2-related factor 2 (NFE2L2 or Nrf2) in the kidneys was further confirmed by real-time PCR, immunohistochemistry, and western blotting. RESULTS JP combined with Pred exhibited the most remarkable therapeutic effect compared with JP or Pred alone. Transcriptome analysis indicated that Nrf2, a central mediator of the antioxidative response, was significantly upregulated by JP. Based on these results, we speculated that Nrf2 is a critical factor for JP, improving the efficacy of Pred in treating LN by notably suppressing the oxidative stress level in the kidneys. Furthermore, we found that Nrf2 expression decreased with the exacerbation of LN in MRL/lpr mice. In addition, the downregulated Nrf2 was notably restored after JP treatment, accompanied by suppressed oxidative stress levels in the kidneys. It includes inhibited accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA), restored mitochondrial membrane potential (MMP) levels, and increased antioxidant enzyme activity of superoxide dismutase (SOD). CONCLUSIONS Our findings show that JP increases Pred efficacy by increasing Nrf2 expression, implying that Nrf2 may be a promising therapeutic target for the treatment of LN.
Collapse
Affiliation(s)
- Lijun Du
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science,Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yuxiang Feng
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science,Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Chenxi Wang
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science,Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Xiaowei Shi
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science,Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Chengping Wen
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science,Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Zhixing He
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science,Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yun Zhang
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science,Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
13
|
Quintero-González DC, Muñoz-Urbano M, Vásquez G. Mitochondria as a key player in systemic lupus erythematosus. Autoimmunity 2022; 55:497-505. [PMID: 35978536 DOI: 10.1080/08916934.2022.2112181] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous, multisystemic autoimmune disease with a broad clinical spectrum. Loss of self-tolerance and chronic inflammation are critical markers of SLE pathogenesis. Although alterations in adaptive immunity are widely recognized, increasing reports indicate the role of mitochondrial dysfunction in activating pathogenic pathways involving the innate immune system. Among these, disarrangements in mitochondrial DNA copy number and heteroplasmy percentage are related to SLE activity. Furthermore, increased oxidative stress contributes to post-translational changes in different molecules (proteins, nucleic acids, and lipids), release of oxidized mitochondrial DNA through a pore of voltage-dependent anion channel oligomers, and spontaneous mitochondrial antiviral signaling protein oligomerization. Finally, a reduction in mitophagy, apoptosis induction, and NETosis has been reported in SLE. Most of these pathways lead to persistent and inappropriate exposure to oxidized mitochondrial DNA, which can stimulate plasmacytoid dendritic cells, enhance autoreactive lymphocyte activation, and release increased amounts of interferons through stimulation of toll-like receptors and cytosolic DNA sensors. Likewise, abnormal T-cell receptor activation, decreased regulatory T cells, enhanced Th17 phenotypes, and increased monocyte maturation to dendritic cells have also been observed in SLE. Targeting the players involved in mitochondrial damage can ultimately help.
Collapse
Affiliation(s)
| | - Marcela Muñoz-Urbano
- Rheumatology Section, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - G Vásquez
- Rheumatology Section, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.,Grupo de Inmunología Celular e Inmunogenética (GICIC), Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
14
|
Sun X, Huang X, Sun X, Chen S, Zhang Z, Yu Y, Zhang P. Oxidative Stress-Related lncRNAs Are Potential Biomarkers for Predicting Prognosis and Immune Responses in Patients With LUAD. Front Genet 2022; 13:909797. [PMID: 35754800 PMCID: PMC9214656 DOI: 10.3389/fgene.2022.909797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/04/2022] [Indexed: 12/24/2022] Open
Abstract
Lung adenocarcinoma is increasingly harmful to society and individuals as cancer with an inferior prognosis and insensitive to chemotherapy. Previous studies have demonstrated that oxidative stress and lncRNAs play a vital role in many biological processes. Therefore, we explored the role of lncRNAs associated with oxidative stress in the prognosis and survival of LUAD patients. We examined the expression profiles of lncRNAs and oxidative stress genes in this study. A prognosis prediction model and a nomogram were built based on oxidative stress-related lncRNAs. Functional and drug sensitivity analyses were also performed depending on oxidative stress-related lncRNA signature. Moreover, we investigated the relationship between immune response and immunotherapy. The results showed that a risk scoring model based on 16 critical oxidative stress lncRNAs was able to distinguish the clinical status of LUAD and better predict the prognosis and survival. Additionally, the model demonstrated a close correlation with the tumor immune system, and these key lncRNAs also revealed the relationship between LUAD and chemotherapeutic drug sensitivity. Our work aims to provide new perspectives and new ideas for the treatment and management of LUAD.
Collapse
Affiliation(s)
- Xinti Sun
- Department of Thoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xingqi Huang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaojuan Sun
- Department of Oncology, Qingdao University Affiliated Hospital, Qingdao, China
| | - Si Chen
- Department of Thoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Zeyang Zhang
- Department of Thoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yao Yu
- Department of Thoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Peng Zhang
- Department of Thoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
15
|
Ali Khan MW. Glycation end-products specific auto-antibodies in Systemic Lupus Erythematosus. Bioinformation 2022; 18:127-133. [PMID: 36518128 PMCID: PMC9722438 DOI: 10.6026/97320630018127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/11/2022] [Accepted: 03/31/2022] [Indexed: 09/19/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease, which is highly inflammatory. Compared to a healthy control group, SLE patients exhibit a higher concentration of advanced glycation end products (AGEs) and a lower concentration of receptors for AGEs (RAGE) in serum, however, the exact aetiology is still unclear. In the present study, non-enzymatic glycation induced modification of human serum albumin (HSA) has been studied by biophysical techniques. Glycated HSA (G-HSA) was used as an antigen, and serum autoantibody levels were estimated in SLE and normal humans (NH) against it, using direct binding ELISA and competitive inhibition ELISA. Compared to N-HSA, remarkable structural modifications were observed in G-HSA. Modified HSA also showed increased pentosidine fluorescence (213.7 ± 13.4 AU). Glycation of HSA induced a conversion of α-helix and random coil to β-sheet and β-turns. Serum immuno assays results exhibited significantly (p < 0.001) higher binding of G-HSA with serum autoantibodies from SLE patients when compared with native HSA (N-HSA). Furthermore, competitive ELISA results showed significantly (p < 0.001) high percent inhibition of serum IgG from SLE patients with modified antigen. Chronic inflammation with excessive oxidative stress in SLE patients could be a possible reason for structural alterations in blood proteins, generating highly immunogenic unique new-epitopes. These in turn induce the generation of specific autoantibodies against G-HSA that may serve as a potential biomarker for SLE pathogenesis.
Collapse
Affiliation(s)
- Mohd Wajid Ali Khan
- Department of Chemistry, College of Science, University of Hail, Hail-2440, Saudi Arabia
| |
Collapse
|
16
|
Teng X, Brown J, Morel L. Redox Homeostasis Involvement in the Pharmacological Effects of Metformin in Systemic Lupus Erythematosus. Antioxid Redox Signal 2022; 36:462-479. [PMID: 34619975 PMCID: PMC8982129 DOI: 10.1089/ars.2021.0070] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/13/2021] [Accepted: 10/05/2021] [Indexed: 12/21/2022]
Abstract
Significance: Metformin has been proposed as a treatment for systemic lupus erythematosus (SLE). The primary target of metformin, the electron transport chain complex I in the mitochondria, is associated with redox homeostasis in immune cells, which plays a critical role in the pathogenesis of autoimmune diseases. This review addresses the evidence and knowledge gaps on whether a beneficial effect of metformin in lupus may be due to a restoration of a balanced redox state. Recent Advances: Clinical trials in SLE patients with mild-to-moderate disease activity and preclinical studies in mice have provided encouraging results for metformin. The mechanism by which this therapeutic effect was achieved is largely unknown. Metformin regulates redox homeostasis in a context-specific manner. Multiple cell types contribute to SLE, with evidence of increased mitochondrial oxidative stress in T cells and neutrophils. Critical Issues: The major knowledge gaps are whether the efficacy of metformin is linked to a restored redox homeostasis in the immune system, and if it does, in which cell types it occurs? We also need to know which patients may have a better response to metformin, and whether it corresponds to a specific mechanism? Finally, the identification of biomarkers to predict treatment outcomes would be of great value. Future Directions: Mechanistic studies must address the context-dependent pharmacological effects of metformin. Multiple cell types as well as a complex disease etiology should be considered. These studies must integrate the rapid advances made in understanding how metabolic programs direct the effector functions of immune cells. Antioxid. Redox Signal. 36, 462-479.
Collapse
Affiliation(s)
- Xiangyu Teng
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Josephine Brown
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Laurence Morel
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
17
|
The Potential of Nrf2 Activation as a Therapeutic Target in Systemic Lupus Erythematosus. Metabolites 2022; 12:metabo12020151. [PMID: 35208225 PMCID: PMC8876688 DOI: 10.3390/metabo12020151] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 02/06/2023] Open
Abstract
Inflammation and oxidative stress are well established in systemic lupus erythematosus (SLE) and are critical to the pathogenesis of autoimmune diseases. The transcription factor NF-E2 related factor 2 (Nrf2) is a central regulator of cellular anti-oxidative responses, inflammation, and restoration of redox balance. Accumulating reports support an emerging role for the regulation of Nrf2 in SLE. These include findings on the development of lupus-like autoimmune nephritis and altered immune cell populations in mice lacking Nrf2, as well as decreased Nrf2 abundance in the dendritic cells of patients with SLE. Nrf2-inducing agents have been shown to alleviate oxidative and inflammatory stress and reduce tissue injury in SLE mouse models. Since Nrf2 expression can be increased in activated T cells, the precise role of Nrf2 activation in different immune cell types and their function remains to be defined. However, targeting Nrf2 for the treatment of diseases associated with oxidative stress and inflammation, such as SLE, is promising. As investigation of Nrf2-inducing agents in clinical trials grows, defining the signaling and molecular mechanisms of action and downstream effects in response to different Nrf2-inducing agents in specific cells, tissues, and diseases, will be critical for effective clinical use.
Collapse
|
18
|
Arreola-Diaz R, Majluf-Cruz A, Sanchez-Torres LE, Hernandez-Juarez J. The Pathophysiology of The Antiphospholipid Syndrome: A Perspective From The Blood Coagulation System. Clin Appl Thromb Hemost 2022; 28:10760296221088576. [PMID: 35317658 PMCID: PMC8950029 DOI: 10.1177/10760296221088576] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The antiphospholipid syndrome (APS), a systemic autoimmune disease characterized by a hypercoagulability associated to vascular thrombosis and/or obstetric morbidity, is caused by the presence of antiphospholipid antibodies such as lupus anticoagulant, anti-β-2-glycoprotein 1, and/or anticardiolipin antibodies. In the obstetrical APS, antiphospholipid antibodies induce the production of proinflammatory cytokines and tissue factor by placental tissues and recruited neutrophils. Moreover, antiphospholipid antibodies activate the complement system which, in turn, induces a positive feedback leading to recruitment of neutrophils as well as activation of the placenta. Activation of these cells triggers myometrial contractions and cervical ripening provoking the induction of labor. In thrombotic and obstetrical APS, antiphospholipid antibodies activate endothelial cells, platelets, and neutrophils and they may alter the multimeric pattern and concentration of von Willebrand factor, increase the concentration of thrombospondin 1, reduce the inactivation of factor XI by antithrombin, increase the activation of factor XII, and reduce the activity of tissue plasminogen activator with the subsequent production of plasmin. All these effects result in less permeable clots, denser, thinner, and with more branched fibrin fibers which are more difficult to lysate. As a consequence, thrombosis, the defining clinical criterion of APS, complicates the clinical course of the patient.
Collapse
Affiliation(s)
- R Arreola-Diaz
- Departamento de Inmunologia, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Ciudad de Mexico, Mexico
| | - A Majluf-Cruz
- Unidad de Investigacion Medica en Trombosis, Hemostasia y Aterogenesis, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
| | - L E Sanchez-Torres
- Departamento de Inmunologia, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Ciudad de Mexico, Mexico
| | - J Hernandez-Juarez
- CONACyT-Facultad de Odontologia, Universidad Autonoma Benito Juarez de Oaxaca, Oaxaca de Juarez, Mexico
| |
Collapse
|
19
|
Singh RP, Bischoff DS, Hahn BH. CD8 + T regulatory cells in lupus. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2021; 2:147-156. [PMID: 35880241 PMCID: PMC9242525 DOI: 10.2478/rir-2021-0021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/23/2021] [Indexed: 04/11/2023]
Abstract
T regulatory cells (Tregs) have a key role in the maintenance of immune homeostasis and the regulation of immune tolerance by preventing the inflammation and suppressing the autoimmune responses. Numerical and functional deficits of these cells have been reported in systemic lupus erythematosus (SLE) patients and mouse models of SLE, where their imbalance and dysregulated activities have been reported to significantly influence the disease pathogenesis, progression and outcomes. Most studies in SLE have focused on CD4+ Tregs and it has become clear that a critical role in the control of immune tolerance after the breakdown of self-tolerance is provided by CD8+ Tregs. Here we review the role, cellular and molecular phenotypes, and mechanisms of action of CD8+ Tregs in SLE, including ways to induce these cells for immunotherapeutic modulation in SLE.
Collapse
Affiliation(s)
- Ram P. Singh
- Research Service, Veteran Administration Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- Department of Medicine, Division of Rheumatology, University of California, Los Angeles, USA
| | - David S. Bischoff
- Research Service, Veteran Administration Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bevra H. Hahn
- Department of Medicine, Division of Rheumatology, University of California, Los Angeles, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|