1
|
Fenn J, Madon K, Conibear E, Derelle R, Nevin S, Kundu R, Hakki S, Tregoning JS, Koycheva A, Derqui N, Tolosa-Wright M, Jonnerby J, Wang L, Baldwin S, Pillay TD, Thwaites RS, Luca C, Varro R, Badhan A, Parker E, Rosadas C, McClure M, Tedder R, Taylor G, Lalvani A. An ultra-early, transient interferon-associated innate immune response associates with protection from SARS-CoV-2 infection despite exposure. EBioMedicine 2024; 111:105475. [PMID: 39667271 PMCID: PMC11697275 DOI: 10.1016/j.ebiom.2024.105475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND A proportion of individuals exposed to respiratory viruses avoid contracting detectable infection. We tested the hypothesis that early innate immune responses associate with resistance to detectable infection in close contacts of COVID-19 cases. METHODS 48 recently-exposed household contacts of symptomatic COVID-19 cases were recruited in London, UK between May 2020 and March 2021 through a prospective, longitudinal observational study. Blood and nose and throat swabs were collected during the acute period of index case viral shedding and longitudinally thereafter. Magnitude of SARS-CoV-2 exposure was quantified, and serial PCR and serological assays used to determine infection status of contacts. Whole-blood RNA-seq was performed and analysed to identify transcriptomic signatures of early infection and resistance to infection. FINDINGS 24 highly-exposed household contacts became PCR-positive and seropositive whilst 24 remained persistently PCR-negative and seronegative. A 96-gene transcriptomic signature of early SARS-CoV-2 infection was identified using RNA-seq of longitudinal blood samples from PCR-positive contacts. This signature was dominated by interferon-associated genes and expression correlated positively with viral load. Elevated expression of this 96-gene signature was also observed during exposure in 25% (6/24) of persistently PCR-negative, seronegative contacts. PCR-negative contacts with elevated signature expression had higher-magnitude SARS-CoV-2 exposure compared to those with low signature expression. We validated this signature in SARS-CoV-2-infected individuals in two independent cohorts. In naturally-exposed healthcare workers (HCWs) we found that 7/58 (12%) PCR-negative HCWs exhibited elevated signature expression. Comparing gene-signature expression in SARS-CoV-2 Controlled Human Infection Model (CHIM) volunteers pre- and post-inoculation, we observed that 14 signature genes were transiently upregulated as soon as 6 hr post-inoculation in PCR-negative volunteers, while in PCR-positive volunteers gene-signature upregulation did not occur until 3 days later. INTERPRETATION Our interferon-associated signature of early SARS-CoV-2 infection characterises a subgroup of exposed, uninfected contacts in three independent cohorts who may have successfully aborted infection prior to induction of adaptive immunity. The earlier transient upregulation of signature genes in PCR-negative compared to PCR-positive CHIM volunteers suggests that ultra-early interferon-associated innate immune responses correlate with, and may contribute to, protection against SARS-CoV-2 infection. FUNDING This work was supported by the NIHR Health Protection Research Unit in Respiratory Infections, United Kingdom, NIHR Imperial College London, United Kingdom (Grant number: NIHR200927; AL) in partnership with the UK Health Security Agency and the NIHR Medical Research Council (MRC), United Kingdom (Grant number: MR/X004058/1). Support for sequencing was provided by the Imperial BRC Genomics Facility which is funded by the NIHR, United Kingdom. The development of the hybrid DABA assay used for quantification of SARS-CoV-2 anti-Spike RBD antibodies was supported by the MRC (MC_PC_19078).
Collapse
Affiliation(s)
- Joe Fenn
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, London, UK.
| | - Kieran Madon
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Emily Conibear
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Romain Derelle
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Sean Nevin
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Rhia Kundu
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Seran Hakki
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - John S Tregoning
- Department of Infectious Disease, Imperial College London, London, UK
| | - Aleksandra Koycheva
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Nieves Derqui
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, UK; MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
| | - Mica Tolosa-Wright
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Jakob Jonnerby
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Lulu Wang
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Samuel Baldwin
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Timesh D Pillay
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Constanta Luca
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Robert Varro
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Anjna Badhan
- Department of Infectious Disease, Imperial College London, London, UK
| | - Eleanor Parker
- Department of Infectious Disease, Imperial College London, London, UK
| | - Carolina Rosadas
- Department of Infectious Disease, Imperial College London, London, UK
| | - Myra McClure
- Department of Infectious Disease, Imperial College London, London, UK
| | - Richard Tedder
- Department of Infectious Disease, Imperial College London, London, UK
| | - Graham Taylor
- Department of Infectious Disease, Imperial College London, London, UK
| | - Ajit Lalvani
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
2
|
Savin IA, Sen’kova AV, Goncharova EP, Zenkova MA, Markov AV. Novel Core Gene Signature Associated with Inflammation-to-Metaplasia Transition in Influenza A Virus-Infected Lungs. Int J Mol Sci 2024; 25:11958. [PMID: 39596028 PMCID: PMC11594146 DOI: 10.3390/ijms252211958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Respiratory infections caused by RNA viruses are a major contributor to respiratory disease due to their ability to cause annual epidemics with profound public health implications. Influenza A virus (IAV) infection can affect a variety of host signaling pathways that initiate tissue regeneration with hyperplastic and/or dysplastic changes in the lungs. Although these changes are involved in lung recovery after IAV infection, in some cases, they can lead to serious respiratory failure. Despite being ubiquitously observed, there are limited data on the regulation of long-term recovery from IAV infection leading to normal or dysplastic repair represented by inflammation-to-metaplasia transition in mice or humans. To address this knowledge gap, we used integrative bioinformatics analysis with further verification in vivo to elucidate the dynamic molecular changes in IAV-infected murine lung tissue and identified the core genes (Birc5, Cdca3, Plk1, Tpx2, Prc1. Rrm2, Nusap1, Spag5, Top2a, Mcm5) and transcription factors (E2F1, E2F4, NF-YA, NF-YB, NF-YC) involved in persistent lung injury and regeneration processes, which may serve as gene signatures reflecting the long-term effects of IAV proliferation on the lung. Further analysis of the identified core genes revealed their involvement not only in IAV infection but also in COVID-19 and lung neoplasm development, suggesting their potential role as biomarkers of severe lung disease and its complications represented by abnormal epithelial proliferation and oncotransformation.
Collapse
|
3
|
Drury RE, Camara S, Chelysheva I, Bibi S, Sanders K, Felle S, Emary K, Phillips D, Voysey M, Ferreira DM, Klenerman P, Gilbert SC, Lambe T, Pollard AJ, O'Connor D. Multi-omics analysis reveals COVID-19 vaccine induced attenuation of inflammatory responses during breakthrough disease. Nat Commun 2024; 15:3402. [PMID: 38649734 PMCID: PMC11035709 DOI: 10.1038/s41467-024-47463-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
The immune mechanisms mediating COVID-19 vaccine attenuation of COVID-19 remain undescribed. We conducted comprehensive analyses detailing immune responses to SARS-CoV-2 virus in blood post-vaccination with ChAdOx1 nCoV-19 or a placebo. Samples from randomised placebo-controlled trials (NCT04324606 and NCT04400838) were taken at baseline, onset of COVID-19-like symptoms, and 7 days later, confirming COVID-19 using nucleic amplification test (NAAT test) via real-time PCR (RT-PCR). Serum cytokines were measured with multiplexed immunoassays. The transcriptome was analysed with long, short and small RNA sequencing. We found attenuation of RNA inflammatory signatures in ChAdOx1 nCoV-19 compared with placebo vaccinees and reduced levels of serum proteins associated with COVID-19 severity. KREMEN1, a putative alternative SARS-CoV-2 receptor, was downregulated in placebo compared with ChAdOx1 nCoV-19 vaccinees. Vaccination ameliorates reductions in cell counts across leukocyte populations and platelets noted at COVID-19 onset, without inducing potentially deleterious Th2-skewed immune responses. Multi-omics integration links a global reduction in miRNA expression at COVID-19 onset to increased pro-inflammatory responses at the mRNA level. This study reveals insights into the role of COVID-19 vaccines in mitigating disease severity by abrogating pro-inflammatory responses associated with severe COVID-19, affirming vaccine-mediated benefit in breakthrough infection, and highlighting the importance of clinically relevant endpoints in vaccine evaluation.
Collapse
Affiliation(s)
- Ruth E Drury
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Susana Camara
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Irina Chelysheva
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Sagida Bibi
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Katherine Sanders
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Salle Felle
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Katherine Emary
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Daniel Phillips
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Merryn Voysey
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Daniela M Ferreira
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Paul Klenerman
- NIHR Oxford Biomedical Research Centre, Oxford, UK
- Peter Medawar Building for Pathogen Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sarah C Gilbert
- NIHR Oxford Biomedical Research Centre, Oxford, UK
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute, University of Oxford, Oxford, UK
| | - Teresa Lambe
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute, University of Oxford, Oxford, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Daniel O'Connor
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
4
|
Kundura L, Cezar R, Ballongue E, André S, Michel M, Mettling C, Lozano C, Vincent T, Muller L, Lefrant JY, Roger C, Claret PG, Duvnjak S, Loubet P, Sotto A, Tran TA, Estaquier J, Corbeau P. Low Percentage of Perforin-Expressing NK Cells during Severe SARS-CoV-2 Infection: Consumption Rather than Primary Deficiency. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1105-1112. [PMID: 38345346 DOI: 10.4049/jimmunol.2300359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 12/05/2023] [Indexed: 03/20/2024]
Abstract
Genetic defects in the ability to deliver effective perforin have been reported in patients with hemophagocytic lymphohistiocytosis. We tested the hypothesis that a primary perforin deficiency might also be causal in severe SARS-CoV-2 infection. We recruited 54 volunteers confirmed as being SARS-CoV-2-infected by RT-PCR and admitted to intensive care units or non-intensive care units and age- and sex-matched healthy controls. Compared with healthy controls, the percentage of perforin-expressing CD3-CD56+ NK cells quantified by flow cytometry was low in COVID-19 patients (69.9 ± 17.7 versus 78.6 ± 14.6%, p = 0.026). There was no correlation between the proportions of perforin-positive NK cells and T8 lymphocytes. Moreover, the frequency of NK cells producing perforin was neither linked to disease severity nor predictive of death. Although IL-6 is known to downregulate perforin production in NK cells, we did not find any link between perforin expression and IL-6 plasma level. However, we unveiled a negative correlation between the degranulation marker CD107a and perforin expression in NK cells (r = -0.488, p = 10-4). PRF1 gene expression and the frequency of NK cells harboring perforin were normal in patients 1 y after acute SARS-CoV-2 infection. A primary perforin defect does not seem to be a driver of COVID-19 because NK perforin expression is 1) linked neither to T8 perforin expression nor to disease severity, 2) inversely correlated with NK degranulation, and 3) normalized at distance from acute infection. Thus, the cause of low frequency of perforin-positive NK cells appears, rather, to be consumption.
Collapse
Affiliation(s)
- Lucy Kundura
- Institute of Human Genetics, UMR9002, CNRS and Montpellier University, Montpellier, France
| | - Renaud Cezar
- Immunology Department, Nîmes University Hospital, Nîmes, France
| | - Emma Ballongue
- Institute of Human Genetics, UMR9002, CNRS and Montpellier University, Montpellier, France
| | - Sonia André
- INSERM U1124, Université de Paris, Paris, France
| | - Moïse Michel
- Immunology Department, Nîmes University Hospital, Nîmes, France
| | - Clément Mettling
- Institute of Human Genetics, UMR9002, CNRS and Montpellier University, Montpellier, France
| | - Claire Lozano
- Immunology Department, Montpellier University Hospital, Montpellier, France
| | - Thierry Vincent
- Immunology Department, Montpellier University Hospital, Montpellier, France
| | - Laurent Muller
- Surgical Intensive Care Department, Nîmes University Hospital, Nîmes, France
| | - Jean-Yves Lefrant
- Surgical Intensive Care Department, Nîmes University Hospital, Nîmes, France
| | - Claire Roger
- Surgical Intensive Care Department, Nîmes University Hospital, Nîmes, France
| | - Pierre-Géraud Claret
- Medical and Surgical Emergency Department, Nîmes University Hospital, Nîmes, France
| | - Sandra Duvnjak
- Gerontology Department, Nîmes University Hospital, Nîmes, France
| | - Paul Loubet
- *Infectious Diseases Department, Nîmes University Hospital, Nîmes, France
| | - Albert Sotto
- *Infectious Diseases Department, Nîmes University Hospital, Nîmes, France
| | - Tu-Anh Tran
- Pediatrics Department, Nîmes University Hospital, Nîmes, France
| | - Jérôme Estaquier
- INSERM U1124, Université de Paris, Paris, France
- Laval University Research Center; Quebec City, Quebec, Canada
| | - Pierre Corbeau
- Institute of Human Genetics, UMR9002, CNRS and Montpellier University, Montpellier, France
- Immunology Department, Nîmes University Hospital, Nîmes, France
| |
Collapse
|
5
|
Lei H. Hypoxia and Activation of Neutrophil Degranulation-Related Genes in the Peripheral Blood of COVID-19 Patients. Viruses 2024; 16:201. [PMID: 38399976 PMCID: PMC10891603 DOI: 10.3390/v16020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 01/20/2024] [Accepted: 01/21/2024] [Indexed: 02/25/2024] Open
Abstract
Severe COVID-19 is characterized by systematic hyper-inflammation and subsequent damage to various organs. Therefore, it is critical to trace this cascade of hyper-inflammation. Blood transcriptome has been routinely utilized in the interrogation of host immune response in COVID-19 and other infectious conditions. In this study, consensus gene dysregulation in the blood was obtained from 13 independent transcriptome studies on COVID-19. Among the up-regulated genes, the most prominent functional categories were neutrophil degranulation and cell cycle, which is clearly different from the classical activation of interferon signaling pathway in seasonal flu. As for the potential upstream causal factors of the atypical gene dysregulation, systemic hypoxia was further examined because it is much more widely reported in COVID-19 than that in seasonal flu. It was found that both physiological and pathological hypoxia can induce activation of neutrophil degranulation-related genes in the blood. Furthermore, COVID-19 patients with different requirement for oxygen intervention showed distinctive levels of gene expression related to neutrophil degranulation in the whole blood, which was validated in isolated neutrophils. Thus, activation of neutrophil degranulation-related genes in the blood of COVID-19 could be partially attributed to hypoxia. Interestingly, similar pattern was also observed in H1N1 infection (the cause of Spanish flu) and several other severe respiratory viral infections. As for the molecular mechanism, both HIF-dependent and HIF-independent pathways have been examined. Since the activation of neutrophil degranulation-related genes is highly correlated with disease severity in COVID-19, early detection of hypoxia and active intervention may prevent further activation of neutrophil degranulation-related genes and other harmful downstream hyper-inflammation. This common mechanism is applicable to current and future pandemic as well as the severe form of common respiratory infection.
Collapse
Affiliation(s)
- Hongxing Lei
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing 100101, China; ; Tel.: +86-010-84097276
- Cunji Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
- Center of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Beijing 100069, China
| |
Collapse
|
6
|
Muazzen Z, Moghrabi W, Bakheet T, Mahmoud L, Al-Saif M, Khabar KSA, Hitti EG. Global analysis of the abundance of AU-rich mRNAs in response to glucocorticoid treatment. Sci Rep 2024; 14:913. [PMID: 38195703 PMCID: PMC10776588 DOI: 10.1038/s41598-024-51301-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024] Open
Abstract
Glucocorticoids (GC) like dexamethasone (Dex) are potent anti-inflammatory agents with diverse cellular functions including the potentiation of the activity of AU-rich elements (AREs). AREs are cis-acting instability sequence elements located in the 3'UTRs of many inflammatory mediator mRNAs. Here, available RNA-seq data were used to investigate the effect of GCs on the ARE-mRNA-transcriptome. At a global scale, ARE-mRNAs had a tendency to be downregulated after GC-treatment of the A549 lung cancer cell-line, but with notable cases of upregulation. mRNA stability experiments indicated that not only the downregulated, but also the upregulated ARE-mRNAs are destabilized by Dex-treatment. Several of the most upregulated ARE-mRNAs code for anti-inflammatory mediators including the established GC targets DUSP1 and ZFP36; both code for proteins that target ARE-containing mRNAs for destruction. GCs are widely used in the treatment of COVID-19 patients; we show that ARE-mRNAs are more likely to regulate in opposite directions between Dex-treatment and SARS-CoV-2 infections compared to non-ARE mRNAs. The effect of GC treatment on ARE-mRNA abundance was also investigated in blood monocytes of COVID-19 patients. The results were heterogeneous; however, in agreement with in vitro observations, ZFP36 and DUSP1 were often amongst the most differentially expressed mRNAs. The results of this study propose a universal destabilization of ARE-mRNAs by GCs, but a diverse overall outcome in vitro likely due to induced transcription or due to the heterogeneity of COVID-19 patient's responses in vivo.
Collapse
Affiliation(s)
- Zeyad Muazzen
- Molecular BioMedicine Department, Research and Innovation, King Faisal Specialist Hospital and Research Centre, 11211, Riyadh, Saudi Arabia
| | - Walid Moghrabi
- Molecular BioMedicine Department, Research and Innovation, King Faisal Specialist Hospital and Research Centre, 11211, Riyadh, Saudi Arabia
| | - Tala Bakheet
- Molecular BioMedicine Department, Research and Innovation, King Faisal Specialist Hospital and Research Centre, 11211, Riyadh, Saudi Arabia
| | - Linah Mahmoud
- Molecular BioMedicine Department, Research and Innovation, King Faisal Specialist Hospital and Research Centre, 11211, Riyadh, Saudi Arabia
| | - Maher Al-Saif
- Molecular BioMedicine Department, Research and Innovation, King Faisal Specialist Hospital and Research Centre, 11211, Riyadh, Saudi Arabia
| | - Khalid S A Khabar
- Molecular BioMedicine Department, Research and Innovation, King Faisal Specialist Hospital and Research Centre, 11211, Riyadh, Saudi Arabia
| | - Edward G Hitti
- Molecular BioMedicine Department, Research and Innovation, King Faisal Specialist Hospital and Research Centre, 11211, Riyadh, Saudi Arabia.
| |
Collapse
|
7
|
Song Y, Huang T, Pan H, Du A, Wu T, Lan J, Zhou X, Lv Y, Xue S, Yuan K. The influence of COVID-19 on colorectal cancer was investigated using bioinformatics and systems biology techniques. Front Med (Lausanne) 2023; 10:1169562. [PMID: 37457582 PMCID: PMC10348756 DOI: 10.3389/fmed.2023.1169562] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Coronavirus disease 2019 (COVID-19) is a global pandemic and highly contagious, posing a serious threat to human health. Colorectal cancer (CRC) is a risk factor for COVID-19 infection. Therefore, it is vital to investigate the intrinsic link between these two diseases. Methods In this work, bioinformatics and systems biology techniques were used to detect the mutual pathways, molecular biomarkers, and potential drugs between COVID-19 and CRC. Results A total of 161 common differentially expressed genes (DEGs) were identified based on the RNA sequencing datasets of the two diseases. Functional analysis was performed using ontology keywords, and pathway analysis was also performed. The common DEGs were further utilized to create a protein-protein interaction (PPI) network and to identify hub genes and key modules. The datasets revealed transcription factors-gene interactions, co-regulatory networks with DEGs-miRNAs of common DEGs, and predicted possible drugs as well. The ten predicted drugs include troglitazone, estradiol, progesterone, calcitriol, genistein, dexamethasone, lucanthone, resveratrol, retinoic acid, phorbol 12-myristate 13-acetate, some of which have been investigated as potential CRC and COVID-19 therapies. Discussion By clarifying the relationship between COVID-19 and CRC, we hope to provide novel clues and promising therapeutic drugs to treat these two illnesses.
Collapse
Affiliation(s)
- Yujia Song
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Tengda Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hongyuan Pan
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ao Du
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Tian Wu
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jiang Lan
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyi Zhou
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yue Lv
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shuai Xue
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Kefei Yuan
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Ilias I, Vassiliou AG, Keskinidou C, Vrettou CS, Orfanos S, Kotanidou A, Dimopoulou I. Changes in Cortisol Secretion and Corticosteroid Receptors in COVID-19 and Non COVID-19 Critically Ill Patients with Sepsis/Septic Shock and Scope for Treatment. Biomedicines 2023; 11:1801. [PMID: 37509441 PMCID: PMC10376106 DOI: 10.3390/biomedicines11071801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Sepsis is associated with dysregulated cortisol secretion, leading to abnormal levels of cortisol in the blood. In the early stages of the condition, cortisol levels are typically elevated due to increased secretion from the adrenal glands. However, as the disease progresses, cortisol levels may decline due to impaired adrenal function, leading to relative adrenal insufficiency. The latter is thought to be caused by a combination of factors, including impaired adrenal function, decreased production of corticotropin-releasing hormone (CRH) and adrenocorticotropic hormone (ACTH) by the hypothalamus and pituitary gland, and increased breakdown of cortisol. The dysregulation of cortisol secretion in sepsis is thought to contribute to the pathophysiology of the disease by impairing the body's ability to mount an appropriate inflammatory response. Given the dysregulation of cortisol secretion and corticosteroid receptors in sepsis, there has been considerable interest in the use of steroids as a treatment. However, clinical trials have yielded mixed results and corticosteroid use in sepsis remains controversial. In this review, we will discuss the changes in cortisol secretion and corticosteroid receptors in critically ill patients with sepsis/septic shock. We will also make special note of COVID-19 patients, who presented a recent challenge for ICU management, and explore the scope for corticosteroid administration in both COVID-19 and non-COVID-19 septic patients.
Collapse
Affiliation(s)
- Ioannis Ilias
- Department of Endocrinology, Diabetes and Metabolism, Elena Venizelou Hospital, GR-11521 Athens, Greece
| | - Alice G Vassiliou
- 1st Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, GR-10676 Athens, Greece
| | - Chrysi Keskinidou
- 1st Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, GR-10676 Athens, Greece
| | - Charikleia S Vrettou
- 1st Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, GR-10676 Athens, Greece
| | - Stylianos Orfanos
- 1st Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, GR-10676 Athens, Greece
| | - Anastasia Kotanidou
- 1st Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, GR-10676 Athens, Greece
| | - Ioanna Dimopoulou
- 1st Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, GR-10676 Athens, Greece
| |
Collapse
|
9
|
Kim H, Ahn HS, Hwang N, Huh Y, Bu S, Seo KJ, Kwon SH, Lee HK, Kim JW, Yoon BK, Fang S. Epigenomic landscape exhibits interferon signaling suppression in the patient of myocarditis after BNT162b2 vaccination. Sci Rep 2023; 13:8926. [PMID: 37264110 DOI: 10.1038/s41598-023-36070-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/29/2023] [Indexed: 06/03/2023] Open
Abstract
After the outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, a novel mRNA vaccine (BNT162b2) was developed at an unprecedented speed. Although most countries have achieved widespread immunity from vaccines and infections, yet people, even who have recovered from SARS-CoV-2 infection, are recommended to receive vaccination due to their effectiveness in lowering the risk of recurrent infection. However, the BNT162b2 vaccine has been reported to increase the risk of myocarditis. To our knowledge, for the first time in this study, we tracked changes in the chromatin dynamics of peripheral blood mononuclear cells (PBMCs) in the patient who underwent myocarditis after BNT162b2 vaccination. A longitudinal study of chromatin accessibility using concurrent analysis of single-cell assays for transposase-accessible chromatin with sequencing and single-cell RNA sequencing showed downregulation of interferon signaling and upregulated RUNX2/3 activity in PBMCs. Considering BNT162b2 vaccination increases the level of interferon-α/γ in serum, our data highlight the immune responses different from the conventional responses to the vaccination, which is possibly the key to understanding the side effects of BNT162b2 vaccination.
Collapse
Affiliation(s)
- Hyeonhui Kim
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea
- Severance Biomedical Science Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Hyo-Suk Ahn
- Division of Cardiology, Department of Internal Medicine, The Catholic University of Korea, Uijeongbu St. Mary's Hospital, Seoul, 06591, Korea
- Catholic Research Institute for Intractable Cardiovascular Disease (CRID), College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Nahee Hwang
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Yune Huh
- Department of Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Seonghyeon Bu
- Division of Cardiology, Department of Internal Medicine, The Catholic University of Korea, Uijeongbu St. Mary's Hospital, Seoul, 06591, Korea
- Catholic Research Institute for Intractable Cardiovascular Disease (CRID), College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Kyung Jin Seo
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Uijeongbu St. Mary's Hospital, Seoul, South Korea
| | - Se Hwan Kwon
- Department of Radiology, Kyung Hee University Medical Center, Seoul, South Korea
| | - Hae-Kyung Lee
- Severance Biomedical Science Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Jae-Woo Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Bo Kyung Yoon
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, 03722, Korea.
| | - Sungsoon Fang
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea.
- Severance Biomedical Science Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Korea.
| |
Collapse
|
10
|
Li R, Zou J, Pei D, Pan T, Yang B, Liu X, Chen Y, Zhou F, Zhang L. Deciphering dynamic changes of the aging transcriptome with COVID-19 progression and convalescence in the human blood. Signal Transduct Target Ther 2023; 8:206. [PMID: 37211563 DOI: 10.1038/s41392-023-01466-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/23/2023] [Accepted: 04/22/2023] [Indexed: 05/23/2023] Open
Affiliation(s)
- Ran Li
- Hematology Department, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Jing Zou
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Dongling Pei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Ting Pan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, China
| | - Bing Yang
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Xianzhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Yan Chen
- Hematology Department, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China.
| | - Fangfang Zhou
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China.
| | - Long Zhang
- Hematology Department, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China.
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
11
|
Rombauts A, Bódalo Torruella M, Abelenda-Alonso G, Perera-Bel J, Ferrer-Salvador A, Acedo-Terrades A, Gabarrós-Subirà M, Oriol I, Gudiol C, Nonell L, Carratalà J. Dynamics of Gene Expression Profiling and Identification of High-Risk Patients for Severe COVID-19. Biomedicines 2023; 11:biomedicines11051348. [PMID: 37239019 DOI: 10.3390/biomedicines11051348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023] Open
Abstract
The clinical manifestations of SARS-CoV-2 infection vary widely, from asymptomatic infection to the development of acute respiratory distress syndrome (ARDS) and death. The host response elicited by SARS-CoV-2 plays a key role in determining the clinical outcome. We hypothesized that determining the dynamic whole blood transcriptomic profile of hospitalized adult COVID-19 patients and characterizing the subgroup that develops severe disease and ARDS would broaden our understanding of the heterogeneity in clinical outcomes. We recruited 60 hospitalized patients with RT-PCR-confirmed SARS-CoV-2 infection, among whom 19 developed ARDS. Peripheral blood was collected using PAXGene RNA tubes within 24 h of admission and on day 7. There were 2572 differently expressed genes in patients with ARDS at baseline and 1149 at day 7. We found a dysregulated inflammatory response in COVID-19 ARDS patients, with an increased expression of genes related to pro-inflammatory molecules and neutrophil and macrophage activation at admission, in addition to an immune regulation loss. This led, in turn, to a higher expression of genes related to reactive oxygen species, protein polyubiquitination, and metalloproteinases in the latter stages. Some of the most significant differences in gene expression found between patients with and without ARDS corresponded to long non-coding RNA involved in epigenetic control.
Collapse
Affiliation(s)
- Alexander Rombauts
- Department of Infectious Diseases, Hospital Universitari de Bellvitge-IDIBELL, 08908 Barcelona, Spain
| | | | - Gabriela Abelenda-Alonso
- Department of Infectious Diseases, Hospital Universitari de Bellvitge-IDIBELL, 08908 Barcelona, Spain
| | - Júlia Perera-Bel
- MARGenomics, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
| | - Anna Ferrer-Salvador
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | | | - Maria Gabarrós-Subirà
- MARGenomics, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
| | - Isabel Oriol
- Department of Infectious Diseases, Hospital Universitari de Bellvitge-IDIBELL, 08908 Barcelona, Spain
| | - Carlota Gudiol
- Department of Infectious Diseases, Hospital Universitari de Bellvitge-IDIBELL, 08908 Barcelona, Spain
- Department of Medicine, Universitat de Barcelona, 08007 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Lara Nonell
- MARGenomics, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
| | - Jordi Carratalà
- Department of Infectious Diseases, Hospital Universitari de Bellvitge-IDIBELL, 08908 Barcelona, Spain
- Department of Medicine, Universitat de Barcelona, 08007 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
12
|
Momeni M, Rashidifar M, Balam FH, Roointan A, Gholaminejad A. A comprehensive analysis of gene expression profiling data in COVID-19 patients for discovery of specific and differential blood biomarker signatures. Sci Rep 2023; 13:5599. [PMID: 37019895 PMCID: PMC10075178 DOI: 10.1038/s41598-023-32268-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/24/2023] [Indexed: 04/07/2023] Open
Abstract
COVID-19 is a newly recognized illness with a predominantly respiratory presentation. Although initial analyses have identified groups of candidate gene biomarkers for the diagnosis of COVID-19, they have yet to identify clinically applicable biomarkers, so we need disease-specific diagnostic biomarkers in biofluid and differential diagnosis in comparison with other infectious diseases. This can further increase knowledge of pathogenesis and help guide treatment. Eight transcriptomic profiles of COVID-19 infected versus control samples from peripheral blood (PB), lung tissue, nasopharyngeal swab and bronchoalveolar lavage fluid (BALF) were considered. In order to find COVID-19 potential Specific Blood Differentially expressed genes (SpeBDs), we implemented a strategy based on finding shared pathways of peripheral blood and the most involved tissues in COVID-19 patients. This step was performed to filter blood DEGs with a role in the shared pathways. Furthermore, nine datasets of the three types of Influenza (H1N1, H3N2, and B) were used for the second step. Potential Differential Blood DEGs of COVID-19 versus Influenza (DifBDs) were found by extracting DEGs involved in only enriched pathways by SpeBDs and not by Influenza DEGs. Then in the third step, a machine learning method (a wrapper feature selection approach supervised by four classifiers of k-NN, Random Forest, SVM, Naïve Bayes) was utilized to narrow down the number of SpeBDs and DifBDs and find the most predictive combination of them to select COVID-19 potential Specific Blood Biomarker Signatures (SpeBBSs) and COVID-19 versus influenza Differential Blood Biomarker Signatures (DifBBSs), respectively. After that, models based on SpeBBSs and DifBBSs and the corresponding algorithms were built to assess their performance on an external dataset. Among all the extracted DEGs from the PB dataset (from common PB pathways with BALF, Lung and Swab), 108 unique SpeBD were obtained. Feature selection using Random Forest outperformed its counterparts and selected IGKC, IGLV3-16 and SRP9 among SpeBDs as SpeBBSs. Validation of the constructed model based on these genes and Random Forest on an external dataset resulted in 93.09% Accuracy. Eighty-three pathways enriched by SpeBDs and not by any of the influenza strains were identified, including 87 DifBDs. Using feature selection by Naive Bayes classifier on DifBDs, FMNL2, IGHV3-23, IGLV2-11 and RPL31 were selected as the most predictable DifBBSs. The constructed model based on these genes and Naive Bayes on an external dataset was validated with 87.2% accuracy. Our study identified several candidate blood biomarkers for a potential specific and differential diagnosis of COVID-19. The proposed biomarkers could be valuable targets for practical investigations to validate their potential.
Collapse
Affiliation(s)
- Maryam Momeni
- Department of Biotechnology, Faculty of Biological Science and Technology, The University of Isfahan, Isfahan, Iran
| | - Maryam Rashidifar
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Farinaz Hosseini Balam
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Roointan
- Regenerative Medicine Research Center, Faculty of Medicine, Isfahan Univerity of Medical Sciences, Hezar Jarib St, Isfahan, 81746-73461, Iran
| | - Alieh Gholaminejad
- Regenerative Medicine Research Center, Faculty of Medicine, Isfahan Univerity of Medical Sciences, Hezar Jarib St, Isfahan, 81746-73461, Iran.
| |
Collapse
|
13
|
Chan KR, Koh CWT, Ng DHL, Qin S, Ooi JSG, Ong EZ, Zhang SLX, Sam H, Kalimuddin S, Low JGH, Ooi EE. Early peripheral blood MCEMP1 and HLA-DRA expression predicts COVID-19 prognosis. EBioMedicine 2023; 89:104472. [PMID: 36801619 PMCID: PMC9934388 DOI: 10.1016/j.ebiom.2023.104472] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Mass vaccination has dramatically reduced the incidence of severe COVID-19, with most cases now presenting as self-limiting upper respiratory tract infections. However, those with co-morbidities, the elderly and immunocompromised, as well as the unvaccinated, remain disproportionately vulnerable to severe COVID-19 and its sequelae. Furthermore, as the effectiveness of vaccination wanes with time, immune escape SARS-CoV-2 variants could emerge to cause severe COVID-19. Reliable prognostic biomarkers for severe disease could be used as early indicator of re-emergence of severe COVID-19 as well as for triaging of patients for antiviral therapy. METHODS We performed a systematic review and re-analysis of 7 publicly available datasets, analysing a total of 140 severe and 181 mild COVID-19 patients, to determine the most consistent differentially regulated genes in peripheral blood of severe COVID-19 patients. In addition, we included an independent cohort where blood transcriptomics of COVID-19 patients were prospectively and longitudinally monitored previously, to track the time in which these gene expression changes occur before nadir of respiratory function. Single cell RNA-sequencing of peripheral blood mononuclear cells from publicly available datasets was then used to determine the immune cell subsets involved. FINDINGS The most consistent differentially regulated genes in peripheral blood of severe COVID-19 patients were MCEMP1, HLA-DRA and ETS1 across the 7 transcriptomics datasets. Moreover, we found significantly heightened MCEMP1 and reduced HLA-DRA expression as early as four days before the nadir of respiratory function, and the differential expression of MCEMP1 and HLA-DRA occurred predominantly in CD14+ cells. The online platform which we developed is publicly available at https://kuanrongchan-covid19-severity-app-t7l38g.streamlitapp.com/, for users to query gene expression differences between severe and mild COVID-19 patients in these datasets. INTERPRETATION Elevated MCEMP1 and reduced HLA-DRA gene expression in CD14+ cells during the early phase of disease are prognostic of severe COVID-19. FUNDING K.R.C is funded by the National Medical Research Council (NMRC) of Singapore under the Open Fund Individual Research Grant (MOH-000610). E.E.O. is funded by the NMRC Senior Clinician-Scientist Award (MOH-000135-00). J.G.H.L. is funded by the NMRC under the Clinician-Scientist Award (NMRC/CSAINV/013/2016-01). S.K. is funded by the NMRC under the Transition Award. This study was sponsored in part by a generous gift from The Hour Glass.
Collapse
Affiliation(s)
- Kuan Rong Chan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore.
| | - Clara W T Koh
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Dorothy H L Ng
- Department of Infectious Diseases, Singapore General Hospital, Singapore
| | - Shijie Qin
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Justin S G Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Eugenia Z Ong
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Summer L X Zhang
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Huizhen Sam
- Department of Infectious Diseases, Singapore General Hospital, Singapore
| | - Shirin Kalimuddin
- Department of Infectious Diseases, Singapore General Hospital, Singapore
| | - Jenny G H Low
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore; Department of Infectious Diseases, Singapore General Hospital, Singapore; Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore
| | - Eng Eong Ooi
- Department of Infectious Diseases, Singapore General Hospital, Singapore; Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| |
Collapse
|
14
|
An AY, Baghela A, Zhang P, Falsafi R, Lee AH, Trahtemberg U, Baker AJ, dos Santos CC, Hancock REW. Severe COVID-19 and non-COVID-19 severe sepsis converge transcriptionally after a week in the intensive care unit, indicating common disease mechanisms. Front Immunol 2023; 14:1167917. [PMID: 37090709 PMCID: PMC10115984 DOI: 10.3389/fimmu.2023.1167917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/20/2023] [Indexed: 04/25/2023] Open
Abstract
Introduction Severe COVID-19 and non-COVID-19 pulmonary sepsis share pathophysiological, immunological, and clinical features. To what extent they share mechanistically-based gene expression trajectories throughout hospitalization was unknown. Our objective was to compare gene expression trajectories between severe COVID-19 patients and contemporaneous non-COVID-19 severe sepsis patients in the intensive care unit (ICU). Methods In this prospective single-center observational cohort study, whole blood was drawn from 20 COVID-19 patients and 22 non-COVID-19 adult sepsis patients at two timepoints: ICU admission and approximately a week later. RNA-Seq was performed on whole blood to identify differentially expressed genes and significantly enriched pathways. Results At ICU admission, despite COVID-19 patients being almost clinically indistinguishable from non-COVID-19 sepsis patients, COVID-19 patients had 1,215 differentially expressed genes compared to non-COVID-19 sepsis patients. After one week in the ICU, the number of differentially expressed genes dropped to just 9 genes. This drop coincided with decreased expression of antiviral genes and relatively increased expression of heme metabolism genes over time in COVID-19 patients, eventually reaching expression levels seen in non-COVID-19 sepsis patients. Both groups also had similar underlying immune dysfunction, with upregulation of immune processes such as "Interleukin-1 signaling" and "Interleukin-6/JAK/STAT3 signaling" throughout disease compared to healthy controls. Discussion Early on, COVID-19 patients had elevated antiviral responses and suppressed heme metabolism processes compared to non-COVID-19 severe sepsis patients, although both had similar underlying immune dysfunction. However, after one week in the ICU, these diseases became indistinguishable on a gene expression level. These findings highlight the importance of early antiviral treatment for COVID-19, the potential for heme-related therapeutics, and consideration of immunomodulatory therapies for both diseases to treat shared immune dysfunction.
Collapse
Affiliation(s)
- Andy Y. An
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Arjun Baghela
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Peter Zhang
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Reza Falsafi
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Amy H. Lee
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Uriel Trahtemberg
- The Department of Critical Care, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
- Department of Critical Care, Galilee Medical Center, Nahariya, Israel
| | - Andrew J. Baker
- The Department of Critical Care, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
| | - Claudia C. dos Santos
- The Department of Critical Care, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
| | - Robert E. W. Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Robert E. W. Hancock,
| |
Collapse
|
15
|
Lim EHT, van Amstel RBE, de Boer VV, van Vught LA, de Bruin S, Brouwer MC, Vlaar APJ, van de Beek D. Complement activation in COVID-19 and targeted therapeutic options: A scoping review. Blood Rev 2023; 57:100995. [PMID: 35934552 PMCID: PMC9338830 DOI: 10.1016/j.blre.2022.100995] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/07/2022] [Accepted: 07/27/2022] [Indexed: 01/28/2023]
Abstract
Increasing evidence suggests that activation of the complement system plays a key role in the pathogenesis and disease severity of Coronavirus disease 2019 (COVID-19). We used a systematic approach to create an overview of complement activation in COVID-19 based on histopathological, preclinical, multiomics, observational and clinical interventional studies. A total of 1801 articles from PubMed, EMBASE and Cochrane was screened of which 157 articles were included in this scoping review. Histopathological, preclinical, multiomics and observational studies showed apparent complement activation through all three complement pathways and a correlation with disease severity and mortality. The complement system was targeted at different levels in COVID-19, of which C5 and C5a inhibition seem most promising. Adequately powered, double blind RCTs are necessary in order to further investigate the effect of targeting the complement system in COVID-19.
Collapse
Affiliation(s)
- Endry Hartono Taslim Lim
- Amsterdam UMC location University of Amsterdam, Department of Intensive Care Medicine, Meibergdreef 9, Amsterdam, the Netherlands,Amsterdam UMC Location University of Amsterdam, Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Amsterdam, the Netherlands,Amsterdam UMC location University of Amsterdam, Department of Neurology, Meibergdreef 9, Amsterdam, the Netherlands,Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Rombout Benjamin Ezra van Amstel
- Amsterdam UMC location University of Amsterdam, Department of Intensive Care Medicine, Meibergdreef 9, Amsterdam, the Netherlands,Amsterdam UMC Location University of Amsterdam, Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Amsterdam, the Netherlands
| | - Vieve Victoria de Boer
- Amsterdam UMC location University of Amsterdam, Department of Intensive Care Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | - Lonneke Alette van Vught
- Amsterdam UMC location University of Amsterdam, Department of Intensive Care Medicine, Meibergdreef 9, Amsterdam, the Netherlands,Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Amsterdam, the Netherlands
| | - Sanne de Bruin
- Amsterdam UMC location University of Amsterdam, Department of Intensive Care Medicine, Meibergdreef 9, Amsterdam, the Netherlands,Amsterdam UMC Location University of Amsterdam, Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Amsterdam, the Netherlands
| | - Matthijs Christian Brouwer
- Amsterdam UMC location University of Amsterdam, Department of Neurology, Meibergdreef 9, Amsterdam, the Netherlands,Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Alexander Petrus Johannes Vlaar
- Amsterdam UMC location University of Amsterdam, Department of Intensive Care Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Amsterdam, the Netherlands.
| | - Diederik van de Beek
- Amsterdam UMC location University of Amsterdam, Department of Neurology, Meibergdreef 9, Amsterdam, the Netherlands,Amsterdam Neuroscience, Amsterdam, the Netherlands
| |
Collapse
|
16
|
Bakheet T, Khabar KSA, Hitti EG. Differential upregulation of AU-rich element-containing mRNAs in COVID-19. Hum Genomics 2022; 16:59. [PMID: 36380320 PMCID: PMC9665040 DOI: 10.1186/s40246-022-00433-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AU-rich elements (AREs) are located in the 3'UTRs of 22% of human mRNAs, including most transiently expressed inflammatory mediators. By default, AREs mark mRNAs for decay and translational inhibition, but this activity can be temporarily inhibited in case of infection to allow the onset of inflammation. Morbidity and mortality in COVID-19 patients have been associated with dysregulated inflammation, a process that may include aberrant ARE activity. RESULTS RNA-seq data from available transcriptomic studies were analyzed to investigate a possible differential expression of mRNAs that contain AREs in the context of SARS-CoV-2 infections. ARE-mRNAs turned out to be significantly overrepresented among the upregulated mRNAs after SARS-CoV-2 infection (up to 42%). In contrast, ARE-mRNAs were underrepresented (16%) in the downregulated group. Consequently, at a global scale, ARE-mRNAs are significantly more upregulated after SARS-CoV-2 infection compared to non-ARE mRNAs. This observation was apparent in lung cell line models such as A549 and Calu-3 and with infections with other respiratory viruses and cell lines. Most importantly, at the clinical level, the elevated ARE-mRNA response appeared strongest in blood cells of COVID-19 patients with mild disease. It diminished with disease severity and was least apparent in patients in need of intubation and respiratory-related death. Gene function and clustering analysis suggest that the ARE-response is rather global and the upregulated ARE-mRNAs in patients with mild disease do not particularly cluster in specific functional groups. CONCLUSIONS Compared to the rest of the transcriptome, ARE-containing mRNAs are preferentially upregulated in response to viral infections at a global level. In the context of COVID-19, they are most upregulated in mild disease. Due to their large number, their levels measured by RNA-seq may provide a reliable indication of COVID-19 severity.
Collapse
Affiliation(s)
- Tala Bakheet
- grid.415310.20000 0001 2191 4301Molecular BioMedicine Program, Research Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211 Saudi Arabia
| | - Khalid S. A. Khabar
- grid.415310.20000 0001 2191 4301Molecular BioMedicine Program, Research Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211 Saudi Arabia
| | - Edward G. Hitti
- grid.415310.20000 0001 2191 4301Molecular BioMedicine Program, Research Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211 Saudi Arabia
| |
Collapse
|
17
|
Chakraborty S, Hossain A, Cao T, Gnanagobal H, Segovia C, Hill S, Monk J, Porter J, Boyce D, Hall JR, Bindea G, Kumar S, Santander J. Multi-Organ Transcriptome Response of Lumpfish ( Cyclopterus lumpus) to Aeromonas salmonicida Subspecies salmonicida Systemic Infection. Microorganisms 2022; 10:2113. [PMID: 36363710 PMCID: PMC9692985 DOI: 10.3390/microorganisms10112113] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 09/10/2023] Open
Abstract
Lumpfish is utilized as a cleaner fish to biocontrol sealice infestations in Atlantic salmon farms. Aeromonas salmonicida, a Gram-negative facultative intracellular pathogen, is the causative agent of furunculosis in several fish species, including lumpfish. In this study, lumpfish were intraperitoneally injected with different doses of A. salmonicida to calculate the LD50. Samples of blood, head-kidney, spleen, and liver were collected at different time points to determine the infection kinetics. We determined that A. salmonicida LD50 is 102 CFU per dose. We found that the lumpfish head-kidney is the primary target organ of A. salmonicida. Triplicate biological samples were collected from head-kidney, spleen, and liver pre-infection and at 3- and 10-days post-infection for RNA-sequencing. The reference genome-guided transcriptome assembly resulted in 6246 differentially expressed genes. The de novo assembly resulted in 403,204 transcripts, which added 1307 novel genes not identified by the reference genome-guided transcriptome. Differential gene expression and gene ontology enrichment analyses suggested that A. salmonicida induces lethal infection in lumpfish by uncontrolled and detrimental blood coagulation, complement activation, inflammation, DNA damage, suppression of the adaptive immune system, and prevention of cytoskeleton formation.
Collapse
Affiliation(s)
- Setu Chakraborty
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| | - Ahmed Hossain
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| | - Trung Cao
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| | - Hajarooba Gnanagobal
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| | - Cristopher Segovia
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| | - Stephen Hill
- Cold-Ocean Deep-Sea Research Facility, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| | - Jennifer Monk
- Dr. Joe Brown Aquatic Research Building, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| | - Jillian Porter
- Dr. Joe Brown Aquatic Research Building, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| | - Danny Boyce
- Dr. Joe Brown Aquatic Research Building, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| | - Jennifer R. Hall
- Aquatic Research Cluster, CREAIT Network, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| | - Gabriela Bindea
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France
- Equipe Labellisée Ligue Contre Le Cancer, 75013 Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006 Paris, France
| | - Surendra Kumar
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
- Ocean Frontier Institute, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| |
Collapse
|
18
|
Lai G, Liu H, Deng J, Li K, Xie B. A Novel 3-Gene Signature for Identifying COVID-19 Patients Based on Bioinformatics and Machine Learning. Genes (Basel) 2022; 13:genes13091602. [PMID: 36140771 PMCID: PMC9498787 DOI: 10.3390/genes13091602] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 12/15/2022] Open
Abstract
Although many biomarkers associated with coronavirus disease 2019 (COVID-19) were found, a novel signature relevant to immune cells has not been developed. In this work, the “CIBERSORT” algorithm was used to assess the fraction of immune infiltrating cells in GSE152641 and GSE171110. Key modules associated with important immune cells were selected by the “WGCNA” package. The “GO” enrichment analysis was used to reveal the biological function associated with COVID-19. The “Boruta” algorithm was used to screen candidate genes, and the “LASSO” algorithm was used for collinearity reduction. A novel gene signature was developed based on multivariate logistic regression analysis. Subsequently, M0 macrophages (PRAUC = 0.948 in GSE152641 and PRAUC = 0.981 in GSE171110) and neutrophils (PRAUC = 0.892 in GSE152641 and PRAUC = 0.960 in GSE171110) were considered as important immune cells. Forty-three intersected genes from two modules were selected, which mainly participated in some immune-related activities. Finally, a three-gene signature comprising CLEC4D, DUSP13, and UNC5A that can accurately distinguish COVID-19 patients and healthy controls in three datasets was constructed. The ROCAUC was 0.974 in the training set, 0.946 in the internal test set, and 0.709 in the external test set. In conclusion, we constructed a three-gene signature to identify COVID-19, and CLEC4D, DUSP13, and UNC5A may be potential biomarkers for COVID-19 patients.
Collapse
|
19
|
Välikangas T, Junttila S, Rytkönen KT, Kukkonen-Macchi A, Suomi T, Elo LL. COVID-19-specific transcriptomic signature detectable in blood across multiple cohorts. Front Genet 2022; 13:929887. [PMID: 35991542 PMCID: PMC9388772 DOI: 10.3389/fgene.2022.929887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/27/2022] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is spreading across the world despite vast global vaccination efforts. Consequently, many studies have looked for potential human host factors and immune mechanisms associated with the disease. However, most studies have focused on comparing COVID-19 patients to healthy controls, while fewer have elucidated the specific host factors distinguishing COVID-19 from other infections. To discover genes specifically related to COVID-19, we reanalyzed transcriptome data from nine independent cohort studies, covering multiple infections, including COVID-19, influenza, seasonal coronaviruses, and bacterial pneumonia. The identified COVID-19-specific signature consisted of 149 genes, involving many signals previously associated with the disease, such as induction of a strong immunoglobulin response and hemostasis, as well as dysregulation of cell cycle-related processes. Additionally, potential new gene candidates related to COVID-19 were discovered. To facilitate exploration of the signature with respect to disease severity, disease progression, and different cell types, we also offer an online tool for easy visualization of the selected genes across multiple datasets at both bulk and single-cell levels.
Collapse
Affiliation(s)
- Tommi Välikangas
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Sini Junttila
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Kalle T. Rytkönen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Anu Kukkonen-Macchi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Tomi Suomi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Laura L. Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
20
|
Liu P, Fang M, Luo Y, Zheng F, Jin Y, Cheng F, Zhu H, Jin X. Rare Variants in Inborn Errors of Immunity Genes Associated With Covid-19 Severity. Front Cell Infect Microbiol 2022; 12:888582. [PMID: 35694544 PMCID: PMC9184678 DOI: 10.3389/fcimb.2022.888582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/21/2022] [Indexed: 01/08/2023] Open
Abstract
Host genetic factors have been shown to play an important role in SARS-CoV-2 infection and the course of Covid-19 disease. The genetic contributions of common variants influencing Covid-19 susceptibility and severity have been extensively studied in diverse populations. However, the studies of rare genetic defects arising from inborn errors of immunity (IEI) are relatively few, especially in the Chinese population. To fill this gap, we used a deeply sequenced dataset of nearly 500 patients, all of Chinese descent, to investigate putative functional rare variants. Specifically, we annotated rare variants in our call set and selected likely deleterious missense (LDM) and high-confidence predicted loss-of-function (HC-pLoF) variants. Further, we analyzed LDM and HC-pLoF variants between non-severe and severe Covid-19 patients by (a) performing gene- and pathway-level association analyses, (b) testing the number of mutations in previously reported genes mapped from LDM and HC-pLoF variants, and (c) uncovering candidate genes via protein-protein interaction (PPI) network analysis of Covid-19-related genes and genes defined from LDM and HC-pLoF variants. From our analyses, we found that (a) pathways Tuberculosis (hsa:05152), Primary Immunodeficiency (hsa:05340), and Influenza A (hsa:05164) showed significant enrichment in severe patients compared to the non-severe ones, (b) HC-pLoF mutations were enriched in Covid-19-related genes in severe patients, and (c) several candidate genes, such as IL12RB1, TBK1, TLR3, and IFNGR2, are uncovered by PPI network analysis and worth further investigation. These regions generally play an essential role in regulating antiviral innate immunity responses to foreign pathogens and in responding to many inflammatory diseases. We believe that our identified candidate genes/pathways can be potentially used as Covid-19 diagnostic markers and help distinguish patients at higher risk.
Collapse
Affiliation(s)
- Panhong Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Beijing Genomeics Institute At Shenzhen, BGI-Shenzhen, Shenzhen, China
| | - Mingyan Fang
- Beijing Genomeics Institute At Shenzhen, BGI-Shenzhen, Shenzhen, China
- Beijing Genomeics Institute In Singapore, BGI-Singapore, Singapore, Singapore
| | - Yuxue Luo
- Beijing Genomeics Institute At Shenzhen, BGI-Shenzhen, Shenzhen, China
| | - Fang Zheng
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Jin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fanjun Cheng
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huanhuan Zhu
- Beijing Genomeics Institute At Shenzhen, BGI-Shenzhen, Shenzhen, China
- *Correspondence: Xin Jin, ; Huanhuan Zhu,
| | - Xin Jin
- Beijing Genomeics Institute At Shenzhen, BGI-Shenzhen, Shenzhen, China
- Beijing Genomeics Institute In Singapore, BGI-Singapore, Singapore, Singapore
- School of Medicine, South China University of Technology, Guangzhou, China
- *Correspondence: Xin Jin, ; Huanhuan Zhu,
| |
Collapse
|
21
|
Chang JJY, Gleeson J, Rawlinson D, De Paoli-Iseppi R, Zhou C, Mordant FL, Londrigan SL, Clark MB, Subbarao K, Stinear TP, Coin LJM, Pitt ME. Long-Read RNA Sequencing Identifies Polyadenylation Elongation and Differential Transcript Usage of Host Transcripts During SARS-CoV-2 In Vitro Infection. Front Immunol 2022; 13:832223. [PMID: 35464437 PMCID: PMC9019466 DOI: 10.3389/fimmu.2022.832223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/14/2022] [Indexed: 12/04/2022] Open
Abstract
Better methods to interrogate host-pathogen interactions during Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infections are imperative to help understand and prevent this disease. Here we implemented RNA-sequencing (RNA-seq) using Oxford Nanopore Technologies (ONT) long-reads to measure differential host gene expression, transcript polyadenylation and isoform usage within various epithelial cell lines permissive and non-permissive for SARS-CoV-2 infection. SARS-CoV-2-infected and mock-infected Vero (African green monkey kidney epithelial cells), Calu-3 (human lung adenocarcinoma epithelial cells), Caco-2 (human colorectal adenocarcinoma epithelial cells) and A549 (human lung carcinoma epithelial cells) were analyzed over time (0, 2, 24, 48 hours). Differential polyadenylation was found to occur in both infected Calu-3 and Vero cells during a late time point (48 hpi), with Gene Ontology (GO) terms such as viral transcription and translation shown to be significantly enriched in Calu-3 data. Poly(A) tails showed increased lengths in the majority of the differentially polyadenylated transcripts in Calu-3 and Vero cell lines (up to ~101 nt in mean poly(A) length, padj = 0.029). Of these genes, ribosomal protein genes such as RPS4X and RPS6 also showed downregulation in expression levels, suggesting the importance of ribosomal protein genes during infection. Furthermore, differential transcript usage was identified in Caco-2, Calu-3 and Vero cells, including transcripts of genes such as GSDMB and KPNA2, which have previously been implicated in SARS-CoV-2 infections. Overall, these results highlight the potential role of differential polyadenylation and transcript usage in host immune response or viral manipulation of host mechanisms during infection, and therefore, showcase the value of long-read sequencing in identifying less-explored host responses to disease.
Collapse
Affiliation(s)
- Jessie J-Y Chang
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Josie Gleeson
- Centre for Stem Cell Systems, Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC, Australia
| | - Daniel Rawlinson
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Ricardo De Paoli-Iseppi
- Centre for Stem Cell Systems, Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC, Australia
| | - Chenxi Zhou
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
| | - Francesca L Mordant
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Sarah L Londrigan
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Michael B Clark
- Centre for Stem Cell Systems, Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,World Health Organization (WHO) Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Lachlan J M Coin
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia.,Department of Infectious Disease, Imperial College London, London, United Kingdom.,Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Miranda E Pitt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
22
|
Xu S, Zheng Z, Pathak JL, Cheng H, Zhou Z, Chen Y, Wu Q, Wang L, Zeng M, Wu L. The Emerging Role of the Serine Incorporator Protein Family in Regulating Viral Infection. Front Cell Dev Biol 2022; 10:856468. [PMID: 35433679 PMCID: PMC9010877 DOI: 10.3389/fcell.2022.856468] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/09/2022] [Indexed: 11/25/2022] Open
Abstract
Serine incorporator (SERINC) proteins 1–5 (SERINC1-5) are involved in the progression of several diseases. SERINC2-4 are carrier proteins that incorporate the polar amino acid serine into membranes to facilitate the synthesis of phosphatidylserine and sphingolipids. SERINC genes are also differentially expressed in tumors. Abnormal expression of SERINC proteins occurs in human cancers of the breast, lung, colon, liver, and various glands, as well as in mouse testes. SERINC proteins also affect cleft lip and palate and nerve-related diseases, such as seizure Parkinsonism and borderline personality. Moreover, SERINC proteins have garnered significant interest as retroviral restriction factors, spurring efforts to define their function and elucidate the mechanisms through which they operate when associated with viruses. Human SERINC proteins possess antiviral potential against human immunodeficiency virus (HIV), SARS-COV-2, murine leukemia virus (MLV), equine infectious anemia virus (EIAV), and hepatitis B virus (HBV). Furthermore, the crystal structure is known, and the critical residues of SERINC5 that act against HIV have been identified. In this review, we discuss the most prevalent mechanisms by which SERINC3 and SERINC5 antagonize viruses and focus on the potential therapeutic applications of SERINC5/3 against HIV.
Collapse
Affiliation(s)
- Shaofen Xu
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhichao Zheng
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Basic Oral Medicine, Guangzhou Medical University School and Hospital of Stomatology, Guangzhou, China
| | - Janak L. Pathak
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haoyu Cheng
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ziliang Zhou
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanping Chen
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Qiuyu Wu
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lijing Wang
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
- *Correspondence: Lihong Wu, ; Mingtao Zeng, ; Lijing Wang,
| | - Mingtao Zeng
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
- *Correspondence: Lihong Wu, ; Mingtao Zeng, ; Lijing Wang,
| | - Lihong Wu
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Basic Oral Medicine, Guangzhou Medical University School and Hospital of Stomatology, Guangzhou, China
- *Correspondence: Lihong Wu, ; Mingtao Zeng, ; Lijing Wang,
| |
Collapse
|
23
|
Zhang C, Feng YG, Tam C, Wang N, Feng Y. Transcriptional Profiling and Machine Learning Unveil a Concordant Biosignature of Type I Interferon-Inducible Host Response Across Nasal Swab and Pulmonary Tissue for COVID-19 Diagnosis. Front Immunol 2021; 12:733171. [PMID: 34880855 PMCID: PMC8647662 DOI: 10.3389/fimmu.2021.733171] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/28/2021] [Indexed: 12/23/2022] Open
Abstract
Background COVID-19, caused by SARS-CoV-2 virus, is a global pandemic with high mortality and morbidity. Limited diagnostic methods hampered the infection control. Since the direct detection of virus mainly by RT-PCR may cause false-negative outcome, host response-dependent testing may serve as a complementary approach for improving COVID-19 diagnosis. Objective Our study discovered a highly-preserved transcriptional profile of Type I interferon (IFN-I)-dependent genes for COVID-19 complementary diagnosis. Methods Computational language R-dependent machine learning was adopted for mining highly-conserved transcriptional profile (RNA-sequencing) across heterogeneous samples infected by SARS-CoV-2 and other respiratory infections. The transcriptomics/high-throughput sequencing data were retrieved from NCBI-GEO datasets (GSE32155, GSE147507, GSE150316, GSE162835, GSE163151, GSE171668, GSE182569). Mathematical approaches for homological analysis were as follows: adjusted rand index-related similarity analysis, geometric and multi-dimensional data interpretation, UpsetR, t-distributed Stochastic Neighbor Embedding (t-SNE), and Weighted Gene Co-expression Network Analysis (WGCNA). Besides, Interferome Database was used for predicting the transcriptional factors possessing IFN-I promoter-binding sites to the key IFN-I genes for COVID-19 diagnosis. Results In this study, we identified a highly-preserved gene module between SARS-CoV-2 infected nasal swab and postmortem lung tissue regulating IFN-I signaling for COVID-19 complementary diagnosis, in which the following 14 IFN-I-stimulated genes are highly-conserved, including BST2, IFIT1, IFIT2, IFIT3, IFITM1, ISG15, MX1, MX2, OAS1, OAS2, OAS3, OASL, RSAD2, and STAT1. The stratified severity of COVID-19 may also be identified by the transcriptional level of these 14 IFN-I genes. Conclusion Using transcriptional and computational analysis on RNA-seq data retrieved from NCBI-GEO, we identified a highly-preserved 14-gene transcriptional profile regulating IFN-I signaling in nasal swab and postmortem lung tissue infected by SARS-CoV-2. Such a conserved biosignature involved in IFN-I-related host response may be leveraged for COVID-19 diagnosis.
Collapse
Affiliation(s)
- Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yi-Gang Feng
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Chiwing Tam
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
24
|
Charitos P, Heijnen IAFM, Egli A, Bassetti S, Trendelenburg M, Osthoff M. Functional Activity of the Complement System in Hospitalized COVID-19 Patients: A Prospective Cohort Study. Front Immunol 2021; 12:765330. [PMID: 34777382 PMCID: PMC8581394 DOI: 10.3389/fimmu.2021.765330] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/14/2021] [Indexed: 12/19/2022] Open
Abstract
Aims Although the exact factors promoting disease progression in COVID-19 are not fully elucidated, unregulated activation of the complement system (CS) seems to play a crucial role in the pathogenesis of acute lung injury (ALI) induced by SARS-CoV-2. In particular, the lectin pathway (LP) has been implicated in previous autopsy studies. The primary purpose of our study is to investigate the role of the CS in hospitalized COVID-19 patients with varying degrees of disease severity. Methods In a single-center prospective observational study, 154 hospitalized patients with PCR-confirmed SARS-CoV-2 infection were included. Serum samples on admission to the COVID-19 ward were collected for analysis of CS pathway activities and concentrations of LP proteins [mannose-binding lectin (MBL) and ficolin-3 (FCN-3)] & C1 esterase inhibitor (C1IHN). The primary outcome was mechanical ventilation or in-hospital death. Results The patients were predominately male and had multiple comorbidities. ICU admission was required in 16% of the patients and death (3%) or mechanical ventilation occurred in 23 patients (15%). There was no significant difference in LP activity, MBL and FCN-3 concentrations according to different peak disease severities. The median alternative pathway (AP) activity was significantly lower (65%, IQR 50-94) in patients with death/invasive ventilation compared to patients without (87%, IQR 68-102, p=0.026). An optimal threshold of <65.5% for AP activity was derived from a ROC curve resulting in increased odds for death or mechanical ventilation (OR 4,93; 95% CI 1.70-14.33, p=0.003) even after adjustment for confounding factors. Classical pathway (CP) activity was slightly lower in patients with more severe disease (median 101% for death/mechanical ventilation vs 109%, p=0.014). C1INH concentration correlated positively with length of stay, inflammatory markers and disease severity on admission but not during follow-up. Conclusion Our results point to an overactivated AP in critically ill COVID-19 patients in vivo leading to complement consumption and consequently to a significantly reduced AP activity in vitro. The LP does not seem to play a role in the progression to severe COVID-19. Apart from its acute phase reaction the significance of C1INH in COVID-19 requires further studies.
Collapse
Affiliation(s)
| | - Ingmar A F M Heijnen
- Division of Medical Immunology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | - Adrian Egli
- Clinical Bacteriology and Mycology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland.,Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Stefano Bassetti
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
| | - Marten Trendelenburg
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland.,Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Michael Osthoff
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland.,Department of Clinical Research, University of Basel, Basel, Switzerland
| |
Collapse
|