1
|
Nihei Y, Kitamura D. Pathogenesis of IgA nephropathy as a tissue-specific autoimmune disease. Int Immunol 2024; 37:75-81. [PMID: 39066568 DOI: 10.1093/intimm/dxae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/26/2024] [Indexed: 07/28/2024] Open
Abstract
Glomerulonephritis (GN) is a group of heterogeneous immune-mediated kidney diseases that causes inflammation within the glomerulus. Autoantibodies (auto-Abs) are considered to be central effectors in the pathogenesis of several types of GN. Immunoglobulin A nephropathy (IgAN) is the most common GN worldwide and is characterized by the deposition of IgA in the glomerular mesangium of the kidneys, which is thought to be mediated by immune complexes containing non-specific IgA. However, we recently reported that IgA auto-Abs specific to mesangial cells (anti-mesangium IgA) were found in the sera of gddY mice, a spontaneous IgAN model, and patients with IgAN. We identified two autoantigens (β2-spectrin and CBX3) that are selectively expressed on the mesangial cell surface and targeted by anti-mesangial IgA. Our findings redefined IgAN as a tissue-specific autoimmune disease. Regarding the mechanisms of production of anti-mesangium IgA, studies using gddY mice have revealed that the production of anti-CBX3 IgA is induced by particular strains of commensal bacteria in the oral cavity, possibly through their molecular mimicry to CBX3. Here, we discuss a new concept of IgAN pathogenesis from the perspective of this disease as autoimmune GN caused by tissue-specific auto-Abs.
Collapse
Affiliation(s)
- Yoshihito Nihei
- Department of Nephrology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Division of Cancer Cell Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | - Daisuke Kitamura
- Division of Cancer Cell Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba 278-0022, Japan
| |
Collapse
|
2
|
Riaz S, Steinsland H, Andersen AZ, Boysen A, Hanevik K. Proportions of IgA antibodies targeting glycosylated epitopes of secreted Escherichia coli mucinase YghJ in initial plasmablast response differ from salivary and intestinally secreted IgA. Med Microbiol Immunol 2024; 214:2. [PMID: 39673573 DOI: 10.1007/s00430-024-00812-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/24/2024] [Indexed: 12/16/2024]
Abstract
Mucosal infections normally cause an immune response including activation of antigen-specific B cells in regional mucosa-associated lymphoid tissue. After recirculation of plasmablasts, and maturation at mucosal surfaces or bone marrow, plasma cells produce secretory or systemic IgA. It remains uncertain to what extent secretory and systemic IgA share the same target specificities. For vaccine candidate optimization, it is important to know whether IgA targeting of glycosylated epitopes of a protein antigen vary between mucosal and systemic sites. We evaluated glycosylated epitope specificity of systemic and mucosally secreted IgA against YghJ, a potential vaccine candidate antigen secreted by most pathogenic Escherichia coli. IgA from intestinal lavage, saliva, serum, and blood-derived antibody in lymphocyte supernatants (ALS) were collected from 21 volunteers following experimental infection with enterotoxigenic E. coli. Methods for preparing IgA from saliva and ALS were developed, and multiplex bead flow cytometric immunoassays were used to determine levels of IgA targeting natively glycosylated YghJ and estimating what proportion of these antibodies specifically targeted glycosylated epitopes. Following infection, anti-YghJ IgA levels increased substantially for most volunteers across all four specimen types. Target specificity of ALS IgA correlated well with serum IgA, but not with mucosally secreted IgA. Furthermore, glycosylation-specific proportion of salivary IgA was higher than, and did not correlate with, intestinally secreted IgA. These results indicate a new degree of complexity to our understanding of epitope-targeting and tissue specificity of mucosal antibody responses. Our findings also suggest that all features of an intestinal IgA response may not be well reflected in serum, saliva, or ALS, which are commonly used proxy specimens for evaluating intestinal immune responses.
Collapse
Affiliation(s)
- Saman Riaz
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Hans Steinsland
- Centre for Intervention Science in Maternal and Child Health (CISMAC), Department of Global Public Health and Primary Care, Centre for International Health, University of Bergen, Bergen, Norway
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | | | - Kurt Hanevik
- Department of Clinical Science, University of Bergen, Bergen, Norway.
- National Centre for Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
3
|
Gao L, Li H, Liu X, Li H, Li P, Lu W, Xie X, Lv J, Jin J. Humoral immune responses primed by the alteration of gut microbiota were associated with galactose-deficient IgA1 production in IgA nephropathy. Front Immunol 2024; 15:1415026. [PMID: 39104521 PMCID: PMC11298704 DOI: 10.3389/fimmu.2024.1415026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/26/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction Galactose-deficient IgA1 (GdIgA1) is critical in the formation of immunodeposits in IgA nephropathy (IgAN), whereas the origin of GdIgA1 is unknown. We focused on the immune response to fecal microbiota in patients with IgAN. Methods By running 16S ribosomal RNA gene sequencing, we compared IgAN samples to the control samples from household-matched or non-related individuals. Levels of plasma GdIgA1 and poly-IgA complexes were measured, and candidate microbes that can either incite IgA-directed antibody response or degrade IgA through specific IgA protease activities were identified. Results The IgAN group showed a distinct composition of fecal microbiota as compared to healthy controls. Particularly, high abundance of Escherichia-Shigella was associated with the disease group based on analyses using receiver operating characteristic (area under curve, 0.837; 95% CI, 0.738-0.914), principle coordinates, and the linear discriminant analysis effect size algorithm (linear discriminant analysis score, 4.56; p < 0.001). Accordingly, the bacterial levels directly correlated with high titers of plasma GdIgA1(r = 0.36, p < 0.001), and patients had higher IgA1 against stx2(2.88 ± 0.46 IU/mL vs. 1.34 ± 0.35 IU/mL, p = 0.03), the main antigen of Escherichia-Shigella. Conversely, the healthy controls showed relatively higher abundance of the commensal bacteria that produce IgA-degrading proteases. Particularly, the abundance of some intestinal bacteria expressing IgA proteases showed an inverse correlation with the levels of plasma GdIgA1 in IgAN. Conclusion Our data suggest that mucosal IgA production, including those of GdIgA1, is potentially linked to the humoral response to gut Escherichia-Shigella as one of the sources of plasma GdIgA1. Conversely, the IgA protease-producing microbiota in the gut are suppressed in patients with IgAN.
Collapse
Affiliation(s)
- Li Gao
- Department of Nephrology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Cardiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Huixian Li
- Department of Nephrology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoling Liu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Haiyun Li
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Peiqi Li
- Department of Cardiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wanhong Lu
- Department of Nephrology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xinfang Xie
- Department of Nephrology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jicheng Lv
- Renal Division, Peking University First Hospital; Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Jing Jin
- Department of Medicine-Nephrology and Hypertension, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
4
|
Morys J, Małecki A, Nowacka-Chmielewska M. Stress and the gut-brain axis: an inflammatory perspective. Front Mol Neurosci 2024; 17:1415567. [PMID: 39092201 PMCID: PMC11292226 DOI: 10.3389/fnmol.2024.1415567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/24/2024] [Indexed: 08/04/2024] Open
Abstract
The gut-brain axis (GBA) plays a dominant role in maintaining homeostasis as well as contributes to mental health maintenance. The pathways that underpin the axis expand from macroscopic interactions with the nervous system, to the molecular signals that include microbial metabolites, tight junction protein expression, or cytokines released during inflammation. The dysfunctional GBA has been repeatedly linked to the occurrence of anxiety- and depressive-like behaviors development. The importance of the inflammatory aspects of the altered GBA has recently been highlighted in the literature. Here we summarize current reports on GBA signaling which involves the immune response within the intestinal and blood-brain barrier (BBB). We also emphasize the effect of stress response on altering barriers' permeability, and the therapeutic potential of microbiota restoration by probiotic administration or microbiota transplantation, based on the latest animal studies. Most research performed on various stress models showed an association between anxiety- and depressive-like behaviors, dysbiosis of gut microbiota, and disruption of intestinal permeability with simultaneous changes in BBB integrity. It could be postulated that under stress conditions impaired communication across BBB may therefore represent a significant mechanism allowing the gut microbiota to affect brain functions.
Collapse
Affiliation(s)
| | | | - Marta Nowacka-Chmielewska
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
| |
Collapse
|
5
|
Ziaka M, Exadaktylos A. Gut-derived immune cells and the gut-lung axis in ARDS. Crit Care 2024; 28:220. [PMID: 38965622 PMCID: PMC11225303 DOI: 10.1186/s13054-024-05006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024] Open
Abstract
The gut serves as a vital immunological organ orchestrating immune responses and influencing distant mucosal sites, notably the respiratory mucosa. It is increasingly recognized as a central driver of critical illnesses, with intestinal hyperpermeability facilitating bacterial translocation, systemic inflammation, and organ damage. The "gut-lung" axis emerges as a pivotal pathway, where gut-derived injurious factors trigger acute lung injury (ALI) through the systemic circulation. Direct and indirect effects of gut microbiota significantly impact immune responses. Dysbiosis, particularly intestinal dysbiosis, termed as an imbalance of microbial species and a reduction in microbial diversity within certain bodily microbiomes, influences adaptive immune responses, including differentiating T regulatory cells (Tregs) and T helper 17 (Th17) cells, which are critical in various lung inflammatory conditions. Additionally, gut and bone marrow immune cells impact pulmonary immune activity, underscoring the complex gut-lung interplay. Moreover, lung microbiota alterations are implicated in diverse gut pathologies, affecting local and systemic immune landscapes. Notably, lung dysbiosis can reciprocally influence gut microbiota composition, indicating bidirectional gut-lung communication. In this review, we investigate the pathophysiology of ALI/acute respiratory distress syndrome (ARDS), elucidating the role of immune cells in the gut-lung axis based on recent experimental and clinical research. This exploration aims to enhance understanding of ALI/ARDS pathogenesis and to underscore the significance of gut-lung interactions in respiratory diseases.
Collapse
Affiliation(s)
- Mairi Ziaka
- Clinic of Geriatric Medicine, Center of Geriatric Medicine and Rehabilitation, Kantonsspital Baselland, Bruderholz, Switzerland.
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland.
| | - Aristomenis Exadaktylos
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Diez-Martin E, Hernandez-Suarez L, Muñoz-Villafranca C, Martin-Souto L, Astigarraga E, Ramirez-Garcia A, Barreda-Gómez G. Inflammatory Bowel Disease: A Comprehensive Analysis of Molecular Bases, Predictive Biomarkers, Diagnostic Methods, and Therapeutic Options. Int J Mol Sci 2024; 25:7062. [PMID: 39000169 PMCID: PMC11241012 DOI: 10.3390/ijms25137062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/15/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
In inflammatory bowel diseases (IBDs), such as Crohn's disease (CD) and ulcerative colitis (UC), the immune system relentlessly attacks intestinal cells, causing recurrent tissue damage over the lifetime of patients. The etiology of IBD is complex and multifactorial, involving environmental, microbiota, genetic, and immunological factors that alter the molecular basis of the organism. Among these, the microbiota and immune cells play pivotal roles; the microbiota generates antigens recognized by immune cells and antibodies, while autoantibodies target and attack the intestinal membrane, exacerbating inflammation and tissue damage. Given the altered molecular framework, the analysis of multiple molecular biomarkers in patients proves exceedingly valuable for diagnosing and prognosing IBD, including markers like C reactive protein and fecal calprotectin. Upon detection and classification of patients, specific treatments are administered, ranging from conventional drugs to new biological therapies, such as antibodies to neutralize inflammatory molecules like tumor necrosis factor (TNF) and integrin. This review delves into the molecular basis and targets, biomarkers, treatment options, monitoring techniques, and, ultimately, current challenges in IBD management.
Collapse
Affiliation(s)
- Eguzkiñe Diez-Martin
- Research and Development Department, IMG Pharma Biotech S.L., 48170 Zamudio, Spain
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Leidi Hernandez-Suarez
- Research and Development Department, IMG Pharma Biotech S.L., 48170 Zamudio, Spain
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Carmen Muñoz-Villafranca
- Department of Gastroenterology, University Hospital of Basurto, Avda Montevideo 18, 48013 Bilbao, Spain
| | - Leire Martin-Souto
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Egoitz Astigarraga
- Research and Development Department, IMG Pharma Biotech S.L., 48170 Zamudio, Spain
| | - Andoni Ramirez-Garcia
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | | |
Collapse
|
7
|
Harris JR, Zoccoli-Rodriguez V, Delaney MS, Cruz TN, Gaudette BT, Wilmore JR. Gut commensals require Peyer's patches to induce protective systemic IgA responses. RESEARCH SQUARE 2024:rs.3.rs-4220532. [PMID: 38798510 PMCID: PMC11118714 DOI: 10.21203/rs.3.rs-4220532/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Gut educated IgA secreting plasma cells that disseminate beyond the mucosa and into systemic tissues have been described as providing beneficial effects from disease in several contexts. Several bacteria have been implicated in the induction of systemic IgA, however the mechanisms that result in differential levels of induction by each bacterial species are still unknown. Here we show, the commensal bacteria, Bacteroides fragilis (Bf), is an efficient inducer of systemic IgA responses. The ability of Bf to induce the production of bone marrow IgA plasma cells and high levels of serum IgA relied on high levels of gut colonization in a dose-dependent manner. Colonization induced Bf-specific IgA responses were severely diminished in the absence of Peyer's patches, but not the murine cecal patch. Colonization of mice with Bf, a natural human commensal, resulted in few changes within the microbiome and the host transcriptional profile in the gut, suggesting a commensal relationship with the host. Bf colonization did benefit the mice by inducing systemic IgA that led to increased protection in a bowel perforation model resulting in lower peritoneal abscess formation. These findings demonstrate a critical role for bacterial colonization and Peyer's patches in the induction of robust systemic IgA responses that confer protection from bacterial dissemination outside of the gut.
Collapse
Affiliation(s)
- Joshua R. Harris
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY
| | | | - Mara S. Delaney
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY
| | - Tania N. Cruz
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY
| | - Brian T. Gaudette
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Joel R. Wilmore
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY
- Sepsis Interdisciplinary Research Center, SUNY Upstate Medical University, Syracuse, NY
| |
Collapse
|
8
|
Scheurer S, Junker AC, He C, Schülke S, Toda M. The Role of IgA in the Manifestation and Prevention of Allergic Immune Responses. Curr Allergy Asthma Rep 2023; 23:589-600. [PMID: 37610671 PMCID: PMC10506939 DOI: 10.1007/s11882-023-01105-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2023] [Indexed: 08/24/2023]
Abstract
PURPOSE OF REVIEW Immunoglobulin A (IgA) mediates immune exclusion of antigens in the gut. Notably, IgA plays also a role in the prevention of IgE-mediated allergies and induction of immune tolerance. The present review addresses the role of IgA in the manifestation of IgE-mediated allergies, including allergen-specific immunotherapy (AIT), the regulation of IgA production, and the mechanism of IgA in immune cell activation. RECENT FINDINGS The majority of studies report an association of IgA with the induction of immune tolerance in IgE-mediated allergies. However, reports on the involvement of humoral and mucosal IgA, IgA subtypes, monomeric and polymeric IgA, and the mechanism of IgA-mediated immune cell activation are confounding. Effects by IgA are likely mediated by alteration of microbiota, IgE-blocking capacity, or activation of inhibitory signaling pathways. However, the precise mechanism of IgA-regulation, the contribution of serum and/or mucosal IgA, and IgA1/2 subtypes, on the manifestation of IgE-mediated allergies, and the underlying immune modulatory mechanism are still elusive.
Collapse
Affiliation(s)
- Stephan Scheurer
- Federal Institute for Vaccines and Biomedicines, Molecular Allergology, Paul-Ehrlich-Institut, Paul-Ehrlich Str., 51-58, 63225, Langen, Germany.
| | - Ann-Christine Junker
- Federal Institute for Vaccines and Biomedicines, Molecular Allergology, Paul-Ehrlich-Institut, Paul-Ehrlich Str., 51-58, 63225, Langen, Germany
| | - Chaoqi He
- Laboratory of Food and Biomolecular Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Stefan Schülke
- Federal Institute for Vaccines and Biomedicines, Molecular Allergology, Paul-Ehrlich-Institut, Paul-Ehrlich Str., 51-58, 63225, Langen, Germany
- Division of Allergology, Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Masako Toda
- Laboratory of Food and Biomolecular Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
9
|
Niemelä O, Bloigu A, Bloigu R, Nivukoski U, Kultti J, Pohjasniemi H. Patterns of IgA Autoantibody Generation, Inflammatory Responses and Extracellular Matrix Metabolism in Patients with Alcohol Use Disorder. Int J Mol Sci 2023; 24:13124. [PMID: 37685930 PMCID: PMC10487441 DOI: 10.3390/ijms241713124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Recent data have emphasized the role of inflammation and intestinal immunoglobulin A (IgA) responses in the pathogenesis of alcoholic liver disease (ALD). In order to further explore such associations, we compared IgA titers against antigens targeted to ethanol metabolites and tissue transglutaminase with pro- and anti-inflammatory mediators of inflammation, markers of liver status, transferrin protein desialylation and extracellular matrix metabolism in alcohol-dependent patients with or without liver disease and in healthy controls. Serum IgAs against protein adducts with acetaldehyde (HbAch-IgA), the first metabolite of ethanol, and tissue transglutaminase (tTG-IgA), desialylated transferrin (CDT), pro- and anti-inflammatory cytokines, markers of liver status (GT, ALP) and extracellular matrix metabolism (PIIINP, PINP, hyaluronic acid, ICTP and CTx) were measured in alcohol-dependent patients with (n = 83) or without (n = 105) liver disease and 88 healthy controls representing either moderate drinkers or abstainers. In ALD patients, both tTG-IgA and HbAch-IgA titers were significantly higher than those in the alcoholics without liver disease (p < 0.0005 for tTG-IgA, p = 0.006 for Hb-Ach-IgA) or in healthy controls (p < 0.0005 for both comparisons). The HbAch-IgA levels in the alcoholics without liver disease also exceeded those found in healthy controls (p = 0.0008). In ROC analyses, anti-tTG-antibodies showed an excellent discriminative value in differentiating between ALD patients and healthy controls (AUC = 0.95, p < 0.0005). Significant correlations emerged between tTG-IgAs and HbAch-IgAs (rs = 0.462, p < 0.0005), CDT (rs = 0.413, p < 0.0001), GT (rs = 0.487, p < 0.0001), alkaline phosphatase (rs = 0.466, p < 0.0001), serum markers of fibrogenesis: PIIINP (rs = 0.634, p < 0.0001), hyaluronic acid (rs = 0.575, p < 0.0001), ICTP (rs = 0.482, p < 0.0001), pro-inflammatory cytokines IL-6 (rs = 0.581, p < 0.0001), IL-8 (rs = 0.535, p < 0.0001) and TNF-α (rs = 0.591, p < 0.0001), whereas significant inverse correlations were observed with serum TGF-β (rs = -0.366, p < 0.0001) and CTx, a marker of collagen degradation (rs = -0.495, p < 0.0001). The data indicate that the induction of IgA immune responses toward ethanol metabolites and tissue transglutaminaseis a characteristic feature of patients with AUD and coincides with the activation of inflammation, extracellular matrix remodeling and the generation of aberrantly glycosylated proteins. These processes appear to work in concert in the sequence of events leading from heavy drinking to ALD.
Collapse
Affiliation(s)
- Onni Niemelä
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital, 60220 Seinäjoki, Finland; (U.N.); (J.K.); (H.P.)
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| | - Aini Bloigu
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, 90220 Oulu, Finland;
| | - Risto Bloigu
- Infrastructure of Population Studies, Faculty of Medicine, University of Oulu, 90220 Oulu, Finland;
| | - Ulla Nivukoski
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital, 60220 Seinäjoki, Finland; (U.N.); (J.K.); (H.P.)
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| | - Johanna Kultti
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital, 60220 Seinäjoki, Finland; (U.N.); (J.K.); (H.P.)
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| | - Heidi Pohjasniemi
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital, 60220 Seinäjoki, Finland; (U.N.); (J.K.); (H.P.)
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| |
Collapse
|
10
|
Kuzumi A, Ebata S, Fukasawa T, Matsuda KM, Kotani H, Yoshizaki-Ogawa A, Sato S, Yoshizaki A. Long-term Outcomes After Rituximab Treatment for Patients With Systemic Sclerosis: Follow-up of the DESIRES Trial With a Focus on Serum Immunoglobulin Levels. JAMA Dermatol 2023; 159:374-383. [PMID: 36790794 PMCID: PMC9932943 DOI: 10.1001/jamadermatol.2022.6340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/11/2022] [Indexed: 02/16/2023]
Abstract
Importance Rituximab is emerging as a promising therapeutic option for systemic sclerosis (SSc), but its long-term outcomes and response markers are unknown. Objective To evaluate the long-term outcomes after rituximab treatment for SSc and identify potential response markers. Design, Setting, and Participants In this single-center cohort study, patients with SSc who continued to receive rituximab after the DESIRES trial were analyzed with a median follow-up of 96 weeks. Among the 43 patients who completed the DESIRES trial, 31 continued to receive rituximab, of which 29 with complete data were included in this study. Exposures Rituximab treatment. Main Outcomes and Measures A post hoc analysis of the clinical and laboratory data. Results In 29 patients with SSc (27 female [93%]; median [IQR] age, 48 [35-45] years), significant improvement in modified Rodnan skin score (MRSS) and percentage of predicted forced vital capacity (FVC%) were observed after 1 (median [IQR] change in MRSS, -7 [-8.5 to -4]; P < .001) and 3 (median [IQR] change in FVC% predicted, 1.85 [0.13-5.68]; P < .001) courses of rituximab, respectively, both of which were sustained during follow-up. High responders (MRSS improvement of ≥9; n = 16) experienced a greater decrease in serum levels of IgG (median [IQR] change in IgG, -125 [-207 to -83] vs 7 [-120 to 43]; P = .008) and IgA (median [IQR] change in IgA, -45 [-96 to -32] vs -11 [-20 to 3]; P < .001) compared with low responders (MRSS improvement of ≤8; n = 13). In particular, decrease in serum IgA levels significantly correlated with the improvement in MRSS (r = 0.64; P < .001). At the last follow-up, low IgM, low IgA, and low IgG was observed in 7, 1, and 1 patient, respectively, of which low IgM was associated with greater improvement in FVC% predicted (median [IQR] change in FVC% predicted, 7.2 [3.8-8.9] vs 3.6 [1.4-6.2]; P = .003). Conclusions and Relevance In this cohort study, rituximab treatment was associated with significantly improved skin and lung fibrosis in SSc in a long-term follow-up. Decrease in serum immunoglobulins was associated with greater clinical response.
Collapse
Affiliation(s)
- Ai Kuzumi
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Satoshi Ebata
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takemichi Fukasawa
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Kazuki M. Matsuda
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Hirohito Kotani
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Asako Yoshizaki-Ogawa
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Ayumi Yoshizaki
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
11
|
Gholami H, Chmiel JA, Burton JP, Maleki Vareki S. The Role of Microbiota-Derived Vitamins in Immune Homeostasis and Enhancing Cancer Immunotherapy. Cancers (Basel) 2023; 15:1300. [PMID: 36831641 PMCID: PMC9954268 DOI: 10.3390/cancers15041300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Not all cancer patients who receive immunotherapy respond positively and emerging evidence suggests that the gut microbiota may be linked to treatment efficacy. Though mechanisms of microbial contributions to the immune response have been postulated, one likely function is the supply of basic co-factors to the host including selected vitamins. Bacteria, fungi, and plants can produce their own vitamins, whereas humans primarily obtain vitamins from exogenous sources, yet despite the significance of microbial-derived vitamins as crucial immune system modulators, the microbiota is an overlooked source of these nutrients in humans. Microbial-derived vitamins are often shared by gut bacteria, stabilizing bioenergetic pathways amongst microbial communities. Compositional changes in gut microbiota can affect metabolic pathways that alter immune function. Similarly, the immune system plays a pivotal role in maintaining the gut microbiota, which parenthetically affects vitamin biosynthesis. Here we elucidate the immune-interactive mechanisms underlying the effects of these microbially derived vitamins and how they can potentially enhance the activity of immunotherapies in cancer.
Collapse
Affiliation(s)
- Hasti Gholami
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - John A. Chmiel
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada
- Canadian Research and Development Centre for Probiotics, Lawson Research Health Research Institute, London, ON N6A 5W9, Canada
| | - Jeremy P. Burton
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada
- Canadian Research and Development Centre for Probiotics, Lawson Research Health Research Institute, London, ON N6A 5W9, Canada
- Division of Urology, Department of Surgery, Western University, London, ON N6A 3K7, Canada
| | - Saman Maleki Vareki
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
- London Regional Cancer Program, Lawson Health Research Institute, London, ON N6A 5W9, Canada
- Department of Oncology, Western University, London, ON N6A 3K7, Canada
- Department of Medical Biophysics, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
12
|
Nihei Y, Suzuki H, Suzuki Y. Current understanding of IgA antibodies in the pathogenesis of IgA nephropathy. Front Immunol 2023; 14:1165394. [PMID: 37114051 PMCID: PMC10126238 DOI: 10.3389/fimmu.2023.1165394] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Immunoglobulin A (IgA) is the most abundant isotype of antibodies, provides a first line of defense at mucosal surfaces against pathogens, and thereby contributes to mucosal homeostasis. IgA is generally considered as a non-inflammatory antibody because of its main function, neutralizing pathogenic virus or bacteria. Meanwhile, IgA can induce IgA-mediated diseases, such as IgA nephropathy (IgAN) and IgA vasculitis. IgAN is characterized by the deposition of IgA and complement C3, often with IgG and/or IgM, in the glomerular mesangial region, followed by mesangial cell proliferation and excessive synthesis of extracellular matrix in glomeruli. Almost half a century has passed since the first report of patients with IgAN; it remains debatable about the mechanism how IgA antibodies selectively bind to mesangial region-a hallmark of IgAN-and cause glomerular injuries in IgAN. Previous lectin- and mass-spectrometry-based analysis have revealed that IgAN patients showed elevated serum level of undergalactosylated IgA1 in O-linked glycans of its hinge region, called galactose-deficient IgA1 (Gd-IgA1). Thereafter, numerous studies have confirmed that the glomerular IgA from IgAN patients are enriched with Gd-IgA1; thus, the first hit of the current pathogenesis of IgAN has been considered to increase circulating levels of Gd-IgA1. Recent studies, however, demonstrated that this aberrant glycosylation alone is not sufficient to disease onset and progression, suggesting that several additional factors are required for the selective deposition of IgA in the mesangial region and induce nephritis. Herein, we discuss the current understanding of the characteristics of pathogenic IgA and its mechanism of inducing inflammation in IgAN.
Collapse
Affiliation(s)
- Yoshihito Nihei
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Hitoshi Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
- Department of Nephrology, Juntendo University Urayasu Hospital, Chiba, Japan
- *Correspondence: Yusuke Suzuki, ; Hitoshi Suzuki,
| | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
- *Correspondence: Yusuke Suzuki, ; Hitoshi Suzuki,
| |
Collapse
|
13
|
Pracht K, Wittner J, Kagerer F, Jäck HM, Schuh W. The intestine: A highly dynamic microenvironment for IgA plasma cells. Front Immunol 2023; 14:1114348. [PMID: 36875083 PMCID: PMC9977823 DOI: 10.3389/fimmu.2023.1114348] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
To achieve longevity, IgA plasma cells require a sophisticated anatomical microenvironment that provides cytokines, cell-cell contacts, and nutrients as well as metabolites. The intestinal epithelium harbors cells with distinct functions and represents an important defense line. Anti-microbial peptide-producing paneth cells, mucus-secreting goblet cells and antigen-transporting microfold (M) cells cooperate to build a protective barrier against pathogens. In addition, intestinal epithelial cells are instrumental in the transcytosis of IgA to the gut lumen, and support plasma cell survival by producing the cytokines APRIL and BAFF. Moreover, nutrients are sensed through specialized receptors such as the aryl hydrocarbon receptor (AhR) by both, intestinal epithelial cells and immune cells. However, the intestinal epithelium is highly dynamic with a high cellular turn-over rate and exposure to changing microbiota and nutritional factors. In this review, we discuss the spatial interplay of the intestinal epithelium with plasma cells and its potential contribution to IgA plasma cell generation, homing, and longevity. Moreover, we describe the impact of nutritional AhR ligands on intestinal epithelial cell-IgA plasma cell interaction. Finally, we introduce spatial transcriptomics as a new technology to address open questions in intestinal IgA plasma cell biology.
Collapse
Affiliation(s)
- Katharina Pracht
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jens Wittner
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Fritz Kagerer
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Wolfgang Schuh
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
14
|
Grant MB, Bernstein PS, Boesze-Battaglia K, Chew E, Curcio CA, Kenney MC, Klaver C, Philp NJ, Rowan S, Sparrow J, Spaide RF, Taylor A. Inside out: Relations between the microbiome, nutrition, and eye health. Exp Eye Res 2022; 224:109216. [PMID: 36041509 DOI: 10.1016/j.exer.2022.109216] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022]
Abstract
Age-related macular degeneration (AMD) is a complex disease with increasing numbers of individuals being afflicted and treatment modalities limited. There are strong interactions between diet, age, the metabolome, and gut microbiota, and all of these have roles in the pathogenesis of AMD. Communication axes exist between the gut microbiota and the eye, therefore, knowing how the microbiota influences the host metabolism during aging could guide a better understanding of AMD pathogenesis. While considerable experimental evidence exists for a diet-gut-eye axis from murine models of human ocular diseases, human diet-microbiome-metabolome studies are needed to elucidate changes in the gut microbiome at the taxonomic and functional levels that are functionally related to ocular pathology. Such studies will reveal new ways to diminish risk for progression of- or incidence of- AMD. Current data suggest that consuming diets rich in dark fish, fruits, vegetables, and low in glycemic index are most retina-healthful during aging.
Collapse
Affiliation(s)
- Maria B Grant
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Paul S Bernstein
- Department of Ophthalmology, Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | | | - Emily Chew
- Division of Epidemiology and Clinical Applications, National Eye Institute, Bethesda, MD, USA
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - M Cristina Kenney
- Department of Ophthalmology, University of California at Irvine, Irvine, CA, USA
| | - Caroline Klaver
- Department of Ophthalmology, Department of Epidemiology, Erasmus Medical Center Rotterdam, the Netherlands; Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands; Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Nancy J Philp
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sheldon Rowan
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Janet Sparrow
- Department of Ophthalmology, Columbia University, New York City, NY, USA
| | - Richard F Spaide
- Vitreous, Retina, Macula Consultants of New York, New York, NY, USA
| | - Allen Taylor
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA.
| |
Collapse
|
15
|
Swidergall M, LeibundGut-Landmann S. Immunosurveillance of Candida albicans commensalism by the adaptive immune system. Mucosal Immunol 2022; 15:829-836. [PMID: 35778599 PMCID: PMC9385492 DOI: 10.1038/s41385-022-00536-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 02/04/2023]
Abstract
The fungal microbiota (mycobiota) is an integral part of the microbial community colonizing the body surfaces and is involved in many key aspects of human physiology, while an imbalance of the fungal communities, termed fungal dysbiosis, has been described in pathologies ranging from infections to inflammatory bowel disease. Commensal organisms, such as the fungus Candida albicans, induce antigen-specific immune responses that maintain immune homeostasis. Adaptive immune mechanisms are vital in this process, while deficiencies in adaptive immunity are linked to fungal infections. We start to understand the mechanisms by which a shift in mycobiota composition, in particular in C. albicans abundance, is linked to immunopathological conditions. This review discusses the mechanisms that ensure continuous immunosurveillance of C. albicans during mucosal colonization, how these protective adaptive immune responses can also promote immunopathology, and highlight therapeutic advances against C. albicans-associated disease.
Collapse
Affiliation(s)
- Marc Swidergall
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Salomé LeibundGut-Landmann
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland.
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
16
|
Buckley MW, McGavern DB. Immune dynamics in the CNS and its barriers during homeostasis and disease. Immunol Rev 2022; 306:58-75. [PMID: 35067941 PMCID: PMC8852772 DOI: 10.1111/imr.13066] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022]
Abstract
The central nervous system (CNS) has historically been viewed as an immunologically privileged site, but recent studies have uncovered a vast landscape of immune cells that reside primarily along its borders. While microglia are largely responsible for surveying the parenchyma, CNS barrier sites are inhabited by a plethora of different innate and adaptive immune cells that participate in everything from the defense against microbes to the maintenance of neural function. Static and dynamic imaging studies have revolutionized the field of neuroimmunology by providing detailed maps of CNS immune cells as well as information about how these cells move, organize, and interact during steady-state and inflammatory conditions. These studies have also redefined our understanding of neural-immune interactions at a cellular level and reshaped our conceptual view of immune privilege in this specialized compartment. This review will focus on insights gained using imaging techniques in the field of neuroimmunology, with an emphasis on anatomy and CNS immune dynamics during homeostasis, infectious diseases, injuries, and aging.
Collapse
Affiliation(s)
- Monica W. Buckley
- Viral Immunology and Intravital Imaging Section National Institute of Neurological Disorders and Stroke National Institutes of Health Bethesda Maryland USA
| | - Dorian B. McGavern
- Viral Immunology and Intravital Imaging Section National Institute of Neurological Disorders and Stroke National Institutes of Health Bethesda Maryland USA
| |
Collapse
|
17
|
Huang RY, Lee CN, Moochhala S. Circulating Antibodies to Skin Bacteria Detected by Serological Lateral Flow Immunoassays Differentially Correlated With Bacterial Abundance. Front Microbiol 2021; 12:709562. [PMID: 34867837 PMCID: PMC8635989 DOI: 10.3389/fmicb.2021.709562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
The serological lateral flow immunoassay (LFIA) was used to detect circulating antibodies to skin bacteria. Next-generation sequencing analysis of the skin microbiome revealed a high relative abundance of Cutibacterium acnes but low abundance of Staphylococcus aureus and Corynebacterium aurimucosum on human facial samples. Yet, results from both LFIA and antibody titer quantification in 96-well microplates illustrated antibody titers that were not correspondent, and instead negatively correlated, to their respective abundance with human blood containing higher concentrations of antibodies to both S. aureus and C. aurimucosum than C. acnes. Acne vulgaris develops several unique microbial and cellular features, but its correlation with circulating antibodies to bacteria in the pilosebaceous unit remains unknown. Results here revealed that antibodies to C. acnes and S. aureus were approximately 3-fold higher and 1.5-fold lower, respectively, in acne patients than in healthy subjects. Although the results can be further validated by larger sample sizes, the proof-of-concept study demonstrates a newfound discrepancy between the abundance of skin bacteria and amounts of their corresponding antibodies. And in light of acne-correlated amplified titers of specific anticommensal antibodies, we highlight that profiling these antibodies in the pilosebaceous unit by LFIAs may provide a unique signature for monitoring acne vulgaris.
Collapse
Affiliation(s)
| | - Chuen Neng Lee
- Department of Surgery, National University of Singapore, Singapore, Singapore
| | - Shabbir Moochhala
- Department of Surgery, National University of Singapore, Singapore, Singapore
| |
Collapse
|
18
|
Seikrit C, Pabst O. The immune landscape of IgA induction in the gut. Semin Immunopathol 2021; 43:627-637. [PMID: 34379174 PMCID: PMC8551147 DOI: 10.1007/s00281-021-00879-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/09/2021] [Indexed: 12/14/2022]
Abstract
Antibodies are key elements of protective immunity. In the mucosal immune system in particular, secretory immunoglobulin A (SIgA), the most abundantly produced antibody isotype, protects against infections, shields the mucosal surface from toxins and environmental factors, and regulates immune homeostasis and a peaceful coexistence with our microbiota. However, the dark side of IgA biology promotes the formation of immune complexes and provokes pathologies, e.g., IgA nephropathy (IgAN). The precise mechanisms of how IgA responses become deregulated and pathogenic in IgAN remain unresolved. Yet, as the field of microbiota research moved into the limelight, our basic understanding of IgA biology has been taking a leap forward. Here, we discuss the structure of IgA, the anatomical and cellular foundation of mucosal antibody responses, and current concepts of how we envision the interaction of SIgA and the microbiota. We center on key concepts in the field while taking account of both historic findings and exciting new observations to provide a comprehensive groundwork for the understanding of IgA biology from the perspective of a mucosal immunologist.
Collapse
Affiliation(s)
- Claudia Seikrit
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Oliver Pabst
- Institute of Molecular Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany.
| |
Collapse
|