1
|
Cui JY, Ma J, Gao XX, Sheng ZM, Pan ZX, Shi LH, Zhang BG. Unraveling the role of cancer-associated fibroblasts in colorectal cancer. World J Gastrointest Oncol 2024; 16:4565-4578. [DOI: 10.4251/wjgo.v16.i12.4565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 11/12/2024] Open
Abstract
Within the intricate milieu of colorectal cancer (CRC) tissues, cancer-associated fibroblasts (CAFs) act as pivotal orchestrators, wielding considerable influence over tumor progression. This review endeavors to dissect the multifaceted functions of CAFs within the realm of CRC, thereby highlighting their indispensability in fostering CRC malignant microenvironment and indicating the development of CAFs-targeted therapeutic interventions. Through a comprehensive synthesis of current knowledge, this review delineates insights into CAFs-mediated modulation of cancer cell proliferation, invasiveness, immune evasion, and neovascularization, elucidating the intricate web of interactions that sustain the pro-tumor metabolism and secretion of multiple factors. Additionally, recognizing the high level of heterogeneity within CAFs is crucial, as they encompass a range of subtypes, including myofibroblastic CAFs, inflammatory CAFs, antigen-presenting CAFs, and vessel-associated CAFs. Innovatively, the symbiotic relationship between CAFs and the intestinal microbiota is explored, shedding light on a novel dimension of CRC pathogenesis. Despite remarkable progress, the orchestrated dynamic functions of CAFs remain incompletely deciphered, underscoring the need for continued research endeavors for therapeutic advancements in CRC management.
Collapse
Affiliation(s)
- Jia-Yu Cui
- Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Jing Ma
- Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Xin-Xin Gao
- Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Zhi-Mei Sheng
- Affiliated Hospital of Shandong Second Medical University, Department of Pathology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Zi-Xin Pan
- Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Li-Hong Shi
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Bao-Gang Zhang
- Department of Pathology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| |
Collapse
|
2
|
Sung JY, Lee JW. Cancer-Associated Fibroblast Subtypes Reveal Distinct Gene Signatures in the Tumor Immune Microenvironment of Vestibular Schwannoma. Cells 2024; 13:1669. [PMID: 39404431 PMCID: PMC11475780 DOI: 10.3390/cells13191669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/16/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Cancer-associated fibroblast (CAF) composition within the same organ varies across different cancer subtypes. Distinct CAF subtypes exhibit unique features due to interactions with immune cells and the tumor microenvironment. However, data on CAF subtypes in individuals with vestibular schwannoma (VS) are lacking. Therefore, we aimed to distinguish CAF subtypes at the single-cell level, investigate how stem-like CAF characteristics influence the tumor immune microenvironment, and identify CAF subtype-specific metabolic reprogramming pathways that contribute to tumor development. Data were analyzed from three patients with VS, encompassing 33,081 single cells, one bulk transcriptome cohort, and The Cancer Genome Atlas Pan-Cancer database (RNA sequencing and clinical data). Our findings revealed that antigen-presenting CAFs are linked to substantially heightened immune activity, supported by metabolic reprogramming, which differs from tumorigenesis. High expression of the stem-like CAF gene signature correlated with poor prognosis in low-grade gliomas within the pan-cancer database. This is the first study to classify CAF subtypes in VS patients and identify a therapeutic vulnerability biomarker by developing a stem-like CAF gene signature. Personalized treatments tailored to individual patients show promise in advancing precision medicine.
Collapse
Affiliation(s)
- Ji-Yong Sung
- Department of Research & Development, VeraOmics, Seoksanro 138, Namdong-Gu, Incheon 21551, Republic of Korea
| | - Jung Woo Lee
- Department of Orthopedic Surgery, Wonju College of Medicine, Yonsei University, Wonju 26426, Republic of Korea
- Yonsei Institute of Sports Science and Exercise Medicine, Wonju 26426, Republic of Korea
| |
Collapse
|
3
|
Eskandari-Malayeri F, Rezeai M, Narimani T, Esmaeil N, Azizi M. Investigating the effect of Fusobacterium nucleatum on the aggressive behavior of cancer-associated fibroblasts in colorectal cancer. Discov Oncol 2024; 15:292. [PMID: 39030445 PMCID: PMC11264641 DOI: 10.1007/s12672-024-01156-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024] Open
Abstract
Fusobacterium nucleatum, (F. nucleatum) as a known factor in inducing oncogenic, invasive, and inflammatory responses, can lead to an increase in the incidence and progression of colorectal cancer (CRC). Cancer-associated fibroblasts (CAF) are also one of the key components of the tumor microenvironment (TME), which lead to resistance to treatment, metastasis, and disease recurrence with their markers, secretions, and functions. This study aimed to investigate the effect of F. nucleatum on the invasive phenotype and function of fibroblast cells isolated from normal and cancerous colorectal tissue. F. nucleatum bacteria were isolated from deep periodontal pockets and confirmed by various tests. CAF cells from tumor tissue and normal fibroblasts (NF) from a distance of 10 cm of tumor tissue were isolated from 5 patients by the explant method and were exposed to secretions and ghosts of F. nucleatum. The expression level of two markers, fibroblast activation protein (FAP), and α-smooth muscle actin (α-SMA), and the amount of production of two cytokines TGF-β and IL-6 from fibroblast cells were measured by flow cytometry and ELISA test, respectively before and after exposure to different bacterial components. The expression of the FAP marker was significantly higher in CAF cells compared to NF cells (P < 0.05). Also, the expression of IL-6 in CAF cells was higher than that of NF cells. In investigating the effect of bacterial components on the function of fibroblastic cells, after comparing the amount of IL-6 produced between the normal tissue of each patient and his tumoral tissue under 4 treated conditions, it was found that the amount of IL-6 production from the CAF cells of patients in the control group, treated with heat-killed ghosts and treated with paraformaldehyde-fixed ghosts had a significant increase compared to NF cells (P < 0.05). Due to the significant increase in FAP marker expression in fibroblast cells of tumor tissue compared to normal tissue, it seems that FAP can be used as a very good therapeutic marker, especially in patients with high levels of CAF cells. Various components of F. nucleatum could affect fibroblast cells differentially and at least part of the effect of this bacterium in the TME is mediated by CAF cells.
Collapse
Affiliation(s)
| | - Marzieh Rezeai
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Tahmineh Narimani
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nafiseh Esmaeil
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdieh Azizi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Kong F, Lu Z, Xiong Y, Zhou L, Ye Q. A novel cancer-associated fibroblasts risk score model predict survival and immunotherapy in lung adenocarcinoma. Mol Genet Genomics 2024; 299:70. [PMID: 39017768 DOI: 10.1007/s00438-024-02156-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/09/2024] [Indexed: 07/18/2024]
Abstract
Lung adenocarcinoma (LUAD) is the leading cause of cancer-related death worldwide. Cancer-associated fibroblasts (CAFs) are a special type of fibroblasts, which play an important role in the development and immune escape of tumors. Weighted gene co-expression network analysis (WGCNA) was used to construct the co-expression module. In combination with univariate Cox regression and analysis of least absolute shrinkage operator (LASSO), characteristics associated with CAFs were developed for a prognostic model. The migration and proliferation of lung cancer cells were evaluated in vitro. Finally, the expression levels of proteins were analyzed by Western blot. LASSO Cox regression algorithm was then performed to select hub genes. Finally, a total of 2 Genes (COL5A2, COL6A2) were obtained. We then divided LUAD patients into high- and low-risk groups based on CAFs risk scores. Survival analysis, CAFs score correlation analysis and tumor mutation load analysis showed that COL5A2 and COL6A2 were high-risk genes for LUAD. Human Protein Atlas (HPA), western blot and PCR results showed that COL5A2 and COL6A2 were up-regulated in LUAD tissues. When COL5A2 and COL6A2 were knocked down, the proliferation, invasion and migration of lung cancer cells were significantly decreased. Finally, COL5A2 can affect LUAD progression through the Wnt/β-Catenin and TGF-β signaling pathways. Our CAFs risk score model offers a new approach for predicting the prognosis of LUAD patients. Furthermore, the identification of high-risk genes COL5A2 and COL6A2 and drug sensitivity analysis can provide valuable candidate clues for clinical treatment of LUAD.
Collapse
Affiliation(s)
- Fanhua Kong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, Hubei, 430071, China
| | - Zhongshan Lu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, Hubei, 430071, China
| | - Yan Xiong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, Hubei, 430071, China.
| | - Lihua Zhou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, Hubei, 430071, China.
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, Hubei, 430071, China.
- The 3rd Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha, China.
| |
Collapse
|
5
|
Wang M, Jiang M, Xie A, Zhang N, Xu Y. Identification of CAF-related lncRNAs at the pan-cancer level represents a potential carcinogenic risk. Hum Mol Genet 2024; 33:1064-1073. [PMID: 38507061 DOI: 10.1093/hmg/ddae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 02/04/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) are increasingly recognized as playing a crucial role in regulating cancer progression and metastasis. These cells can be activated by long non-coding RNAs (lncRNAs), promoting the malignant biological processes of tumor cells. Therefore, it is essential to understand the regulatory relationship between CAFs and lncRNAs in cancers. Here, we identified CAF-related lncRNAs at the pan-cancer level to systematically predict their potential regulatory functions. The identified lncRNAs were also validated using various external data at both tissue and cellular levels. This study has revealed that these CAF-related lncRNAs exhibit expression perturbations in cancers and are highly correlated with the infiltration of stromal cells, particularly fibroblasts and endothelial cells. By prioritizing a list of CAF-related lncRNAs, we can further distinguish patient subtypes that show survival and molecular differences. In addition, we have developed a web server, CAFLnc (https://46906u5t63.zicp.fun/CAFLnc/), to visualize our results. In conclusion, CAF-related lncRNAs hold great potential as a valuable resource for comprehending lncRNA functions and advancing the identification of biomarkers for cancer progression and therapeutic targets in cancer treatment.
Collapse
Affiliation(s)
- Mingwei Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, BaoJian Road, NanGang District, Harbin, HL 150081, China
| | - Minghui Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, BaoJian Road, NanGang District, Harbin, HL 150081, China
| | - Aimin Xie
- College of Bioinformatics Science and Technology, Harbin Medical University, BaoJian Road, NanGang District, Harbin, HL 150081, China
| | - Nan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, BaoJian Road, NanGang District, Harbin, HL 150081, China
| | - Yan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, BaoJian Road, NanGang District, Harbin, HL 150081, China
| |
Collapse
|
6
|
Akinsipe T, Mohamedelhassan R, Akinpelu A, Pondugula SR, Mistriotis P, Avila LA, Suryawanshi A. Cellular interactions in tumor microenvironment during breast cancer progression: new frontiers and implications for novel therapeutics. Front Immunol 2024; 15:1302587. [PMID: 38533507 PMCID: PMC10963559 DOI: 10.3389/fimmu.2024.1302587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/16/2024] [Indexed: 03/28/2024] Open
Abstract
The breast cancer tumor microenvironment (TME) is dynamic, with various immune and non-immune cells interacting to regulate tumor progression and anti-tumor immunity. It is now evident that the cells within the TME significantly contribute to breast cancer progression and resistance to various conventional and newly developed anti-tumor therapies. Both immune and non-immune cells in the TME play critical roles in tumor onset, uncontrolled proliferation, metastasis, immune evasion, and resistance to anti-tumor therapies. Consequently, molecular and cellular components of breast TME have emerged as promising therapeutic targets for developing novel treatments. The breast TME primarily comprises cancer cells, stromal cells, vasculature, and infiltrating immune cells. Currently, numerous clinical trials targeting specific TME components of breast cancer are underway. However, the complexity of the TME and its impact on the evasion of anti-tumor immunity necessitate further research to develop novel and improved breast cancer therapies. The multifaceted nature of breast TME cells arises from their phenotypic and functional plasticity, which endows them with both pro and anti-tumor roles during tumor progression. In this review, we discuss current understanding and recent advances in the pro and anti-tumoral functions of TME cells and their implications for developing safe and effective therapies to control breast cancer progress.
Collapse
Affiliation(s)
- Tosin Akinsipe
- Department of Biological Sciences, College of Science and Mathematics, Auburn University, Auburn, AL, United States
| | - Rania Mohamedelhassan
- Department of Chemical Engineering, College of Engineering, Auburn University, Auburn, AL, United States
| | - Ayuba Akinpelu
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Satyanarayana R. Pondugula
- Department of Chemical Engineering, College of Engineering, Auburn University, Auburn, AL, United States
| | - Panagiotis Mistriotis
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - L. Adriana Avila
- Department of Biological Sciences, College of Science and Mathematics, Auburn University, Auburn, AL, United States
| | - Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| |
Collapse
|
7
|
Ndlovu H, Lawal IO, Mokoala KMG, Sathekge MM. Imaging Molecular Targets and Metabolic Pathways in Breast Cancer for Improved Clinical Management: Current Practice and Future Perspectives. Int J Mol Sci 2024; 25:1575. [PMID: 38338854 PMCID: PMC10855575 DOI: 10.3390/ijms25031575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Breast cancer is the most frequently diagnosed cancer and leading cause of cancer-related deaths worldwide. Timely decision-making that enables implementation of the most appropriate therapy or therapies is essential for achieving the best clinical outcomes in breast cancer. While clinicopathologic characteristics and immunohistochemistry have traditionally been used in decision-making, these clinical and laboratory parameters may be difficult to ascertain or be equivocal due to tumor heterogeneity. Tumor heterogeneity is described as a phenomenon characterized by spatial or temporal phenotypic variations in tumor characteristics. Spatial variations occur within tumor lesions or between lesions at a single time point while temporal variations are seen as tumor lesions evolve with time. Due to limitations associated with immunohistochemistry (which requires invasive biopsies), whole-body molecular imaging tools such as standard-of-care [18F]FDG and [18F]FES PET/CT are indispensable in addressing this conundrum. Despite their proven utility, these standard-of-care imaging methods are often unable to image a myriad of other molecular pathways associated with breast cancer. This has stimulated interest in the development of novel radiopharmaceuticals targeting other molecular pathways and processes. In this review, we discuss validated and potential roles of these standard-of-care and novel molecular approaches. These approaches' relationships with patient clinicopathologic and immunohistochemical characteristics as well as their influence on patient management will be discussed in greater detail. This paper will also introduce and discuss the potential utility of novel PARP inhibitor-based radiopharmaceuticals as non-invasive biomarkers of PARP expression/upregulation.
Collapse
Affiliation(s)
- Honest Ndlovu
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa; (H.N.); (K.M.G.M.)
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Private Bag X169, Pretoria 0001, South Africa;
| | - Ismaheel O. Lawal
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Private Bag X169, Pretoria 0001, South Africa;
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA 30322, USA
| | - Kgomotso M. G. Mokoala
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa; (H.N.); (K.M.G.M.)
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Private Bag X169, Pretoria 0001, South Africa;
| | - Mike M. Sathekge
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa; (H.N.); (K.M.G.M.)
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Private Bag X169, Pretoria 0001, South Africa;
| |
Collapse
|
8
|
Jalilian E, Abolhasani-Zadeh F, Afgar A, Samoudi A, Zeinalynezhad H, Langroudi L. Neutralizing tumor-related inflammation and reprogramming of cancer-associated fibroblasts by Curcumin in breast cancer therapy. Sci Rep 2023; 13:20770. [PMID: 38008819 PMCID: PMC10679154 DOI: 10.1038/s41598-023-48073-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 11/22/2023] [Indexed: 11/28/2023] Open
Abstract
Tumor-associated inflammation plays a vital role in cancer progression. Among the various stromal cells, cancer-associated fibroblasts are promising targets for cancer therapy. Several reports have indicated potent anti-inflammatory effects attributed to Curcumin. This study aimed to investigate whether inhibiting the inflammatory function of cancer-associated fibroblasts (CAFs) with Curcumin can restore anticancer immune responses. CAFs were isolated from breast cancer tissues, treated with Curcumin, and co-cultured with patients' PBMCs to evaluate gene expression and cytokine production alterations. Blood and breast tumor tissue samples were obtained from 12 breast cancer patients with stage II/III invasive ductal carcinoma. Fibroblast Activation Protein (FAP) + CAFs were extracted from tumor tissue, treated with 10 μM Curcumin, and co-cultured with corresponding PBMCs. The expression of smooth muscle actin-alpha (α-SMA), Cyclooxygenase-2(COX-2), production of PGE2, and immune cell cytokines were evaluated using Real-Time PCR and ELISA, respectively. Analyzes showed that treatment with Curcumin decreased the expression of genes α-SMA and COX-2 and the production of PGE2 in CAFs. In PBMCs co-cultured with Curcumin-treated CAFs, the expression of FoxP3 decreased along with the production of TGF-β, IL-10, and IL-4. An increase in IFN-γ production was observed that followed by increased T-bet expression. According to our results, Curcumin could reprogram the pro-tumor phenotype of CAFs and increase the anti-tumor phenotype in PBMCs. Thus, CAFs, as a component of the tumor microenvironment, are a suitable target for combination immunotherapies of breast cancer.
Collapse
Affiliation(s)
- Elnaz Jalilian
- Department of Medical Immunology, School of Medicine, Kerman University of Medical Sciences, Pajoohesh Sq, Kerman, Iran
| | | | - Ali Afgar
- Departmeny of Parasitology and Mycology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Arash Samoudi
- Department of Medical Immunology, School of Medicine, Kerman University of Medical Sciences, Pajoohesh Sq, Kerman, Iran
| | - Hamid Zeinalynezhad
- Department of Surgery, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ladan Langroudi
- Department of Medical Immunology, School of Medicine, Kerman University of Medical Sciences, Pajoohesh Sq, Kerman, Iran.
| |
Collapse
|
9
|
Liu Y, Liu R, Liu H, Lyu T, Chen K, Jin K, Tian Y. Breast tumor-on-chip: from the tumor microenvironment to medical applications. Analyst 2023; 148:5822-5842. [PMID: 37850340 DOI: 10.1039/d3an01295f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
With the development of microfluidic technology, tumor-on-chip models have gradually become a new tool for the study of breast cancer because they can simulate more key factors of the tumor microenvironment compared with traditional models in vitro. Here, we review up-to-date advancements in breast tumor-on-chip models. We summarize and analyze the breast tumor microenvironment (TME), preclinical breast cancer models for TME simulation, fabrication methods of tumor-on-chip models, tumor-on-chip models for TME reconstruction, and applications of breast tumor-on-chip models and provide a perspective on breast tumor-on-chip models. This review will contribute to the construction and design of microenvironments for breast tumor-on-chip models, even the development of the pharmaceutical field, personalized/precision therapy, and clinical medicine.
Collapse
Affiliation(s)
- Yiying Liu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China.
- Foshan Graduate School of Innovation, Northeastern University, Foshan, 528300, China
| | - Ruonan Liu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China.
| | - He Liu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China.
| | - Tong Lyu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China.
| | - Kun Chen
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China.
| | - Kaiming Jin
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China.
| | - Ye Tian
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China.
- Foshan Graduate School of Innovation, Northeastern University, Foshan, 528300, China
| |
Collapse
|
10
|
Axemaker H, Plesselova S, Calar K, Jorgensen M, Wollman J, de la Puente P. Normal Uterine Fibroblast Are Reprogramed into Ovarian Cancer-Associated Fibroblasts by Ovarian Tumor-derived Conditioned Media. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560158. [PMID: 37873479 PMCID: PMC10592803 DOI: 10.1101/2023.09.29.560158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are key contributors to ovarian cancer (OC) progression and therapeutic resistance through dysregulation of the extracellular matrix (ECM). CAFs are a heterogenous population derived from different cell types through activation and reprogramming. Current studies rely on uncharacterized heterogenous primary CAFs or normal fibroblasts that fail to recapitulate CAF-like tumor behavior. Here, we present a translatable-based approach for the reprogramming of normal uterine fibroblasts into ovarian CAFs using ovarian tumor-derived conditioned media to establish two well-characterized ovarian conditioned CAF lines. Phenotypic and functional characterization demonstrated that the conditioned CAFs expressed a CAF-like phenotype, strengthened proliferation, secretory, contractility, and ECM remodeling properties when compared to resting normal fibroblasts, consistent with an activated fibroblast status. Moreover, conditioned CAFs significantly enhanced drug resistance and tumor progression and resembled a CAF-like subtype associated with worse prognosis. The present study provides a reproducible, cost-effective, and clinically relevant protocol to reprogram normal fibroblasts into CAFs using tumor-derived conditioned media. Using these resources, further development of therapeutics that possess potentiality and specificity towards CAF-mediated chemoresistance in OC are further warranted.
Collapse
|
11
|
Kashyap D, Bal A, Irinike S, Khare S, Bhattacharya S, Das A, Singh G. Heterogeneity of the Tumor Microenvironment Across Molecular Subtypes of Breast Cancer. Appl Immunohistochem Mol Morphol 2023; 31:533-543. [PMID: 37358863 DOI: 10.1097/pai.0000000000001139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 05/23/2023] [Indexed: 06/27/2023]
Abstract
Breast cancer is a heterogenous disease at the molecular level thus, it can be hypothesized that different molecular subtypes differ in their tumor microenvironment (TME) also. Understanding the TME heterogeneity may provide new prognostic biomarkers and new targets for cancer therapy. For deciphering heterogeneity in the TME, immunohistochemistry for immune markers (CD3, CD4, CD8, CD68, CD163, and programmed death-ligand 1), Cancer-associated fibroblast markers [anti-fibroblast activating protein α (FAP-α), platelet-derived growth factor receptor α (PDGFR-α), S100A4, Neuron-glial antigen 2, and Caveolin-1], and angiogenesis (CD31) was performed on tissue microarrays of different molecular subtypes of breast cancer. High CD3 + T cells were noted in the Luminal B subtype ( P =0.002) of which the majority were CD8 + cytotoxic T cells. Programmed death-ligand 1 expression in immune cells was highest in the human epidermal growth factor receptor 2 (Her-2)-positive and Luminal B subtypes compared with the triple-negative breast cancer (TNBC) subtype ( P =0.003). Her-2 subtype is rich in M2 tumor-associated macrophages ( P =0.000) compared with TNBC and Luminal B subtypes. M2 immune microenvironment correlated with high tumor grade and high Ki-67. Her-2 and TNBC subtypes are rich in extracellular matrix remodeling (FAP-α, P =0.003), angiogenesis-promoting (PDGFR-α; P =0.000) and invasion markers (Neuron-glial antigen 2, P =0.000; S100A4, P =0.07) compared with Luminal subtypes. Mean Microvessel density showed an increasing trend: Luminal A>Luminal B>Her-2 positive>TNBC; however, this difference was not statistically significant. The cancer-associated fibroblasts (FAP-α, PDGFR-α, and Neuron-glial antigen 2) showed a positive correlation with lymph node metastasis in specific subtypes. Immune cells, tumor-associated macrophage, and cancer-associated fibroblast-related s tromal markers showed higher expression in Luminal B, Her-2 positive, and TNBC respectively. This differential expression of different components of TME indicates heterogeneity of the TME across molecular subtypes of breast cancer.
Collapse
Affiliation(s)
| | | | | | | | - Shalmoli Bhattacharya
- Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | | | | |
Collapse
|
12
|
Su MC, Nethi SK, Dhanyamraju PK, Prabha S. Nanomedicine Strategies for Targeting Tumor Stroma. Cancers (Basel) 2023; 15:4145. [PMID: 37627173 PMCID: PMC10452920 DOI: 10.3390/cancers15164145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
The tumor stroma, or the microenvironment surrounding solid tumors, can significantly impact the effectiveness of cancer therapies. The tumor microenvironment is characterized by high interstitial pressure, a consequence of leaky vasculature, and dense stroma created by excessive deposition of various macromolecules such as collagen, fibronectin, and hyaluronic acid (HA). In addition, non-cancerous cells such as cancer-associated fibroblasts (CAFs) and the extracellular matrix (ECM) itself can promote tumor growth. In recent years, there has been increased interest in combining standard cancer treatments with stromal-targeting strategies or stromal modulators to improve therapeutic outcomes. Furthermore, the use of nanomedicine, which can improve the delivery and retention of drugs in the tumor, has been proposed to target the stroma. This review focuses on how different stromal components contribute to tumor progression and impede chemotherapeutic delivery. Additionally, this review highlights recent advancements in nanomedicine-based stromal modulation and discusses potential future directions for developing more effective stroma-targeted cancer therapies.
Collapse
Affiliation(s)
- Mei-Chi Su
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Susheel Kumar Nethi
- Nanovaccine Institute, Department of Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA;
| | - Pavan Kumar Dhanyamraju
- Fels Cancer Institute of Personalized Medicine, Lewis-Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Swayam Prabha
- Fels Cancer Institute of Personalized Medicine, Lewis-Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Temple University, Philadelphia, PA 19111, USA
| |
Collapse
|
13
|
Bates ME, Libring S, Reinhart-King CA. Forces exerted and transduced by cancer-associated fibroblasts during cancer progression. Biol Cell 2023; 115:e2200104. [PMID: 37224184 PMCID: PMC10757454 DOI: 10.1111/boc.202200104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/13/2023] [Accepted: 05/22/2023] [Indexed: 05/26/2023]
Abstract
Although it is well-known that cancer-associated fibroblasts (CAFs) play a key role in regulating tumor progression, the effects of mechanical tissue changes on CAFs are understudied. Myofibroblastic CAFs (myCAFs), in particular, are known to alter tumor matrix architecture and composition, heavily influencing the mechanical forces in the tumor microenvironment (TME), but much less is known about how these mechanical changes initiate and maintain the myCAF phenotype. Additionally, recent studies have pointed to the existence of CAFs in circulating tumor cell clusters, indicating that CAFs may be subject to mechanical forces beyond the primary TME. Due to their pivotal role in cancer progression, targeting CAF mechanical regulation may provide therapeutic benefit. Here, we will discuss current knowledge and summarize existing gaps in how CAFs regulate and are regulated by matrix mechanics, including through stiffness, solid and fluid stresses, and fluid shear stress.
Collapse
Affiliation(s)
- Madison E Bates
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Sarah Libring
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | | |
Collapse
|
14
|
Morgan A, Griffin M, Kameni L, Wan DC, Longaker MT, Norton JA. Medical Biology of Cancer-Associated Fibroblasts in Pancreatic Cancer. BIOLOGY 2023; 12:1044. [PMID: 37626931 PMCID: PMC10451924 DOI: 10.3390/biology12081044] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023]
Abstract
Pancreatic cancer is one of the deadliest forms of cancer with one of the lowest 5-year survival rates of all cancer types. A defining characteristic of pancreatic cancer is the existence of dense desmoplastic stroma that, when exposed to stimuli such as cytokines, growth factors, and chemokines, generate a tumor-promoting environment. Cancer-associated fibroblasts (CAFs) are activated during the progression of pancreatic cancer and are a crucial component of the tumor microenvironment (TME). CAFs are primarily pro-tumorigenic in their activated state and function as promoters of cancer invasion, proliferation, metastasis, and immune modulation. Aided by many signaling pathways, cytokines, and chemokines in the tumor microenvironment, CAFs can originate from many cell types including resident fibroblasts, mesenchymal stem cells, pancreatic stellate cells, adipocytes, epithelial cells, endothelial cells, and other cell types. CAFs are a highly heterogeneous cell type expressing a variety of surface markers and performing a wide range of tumor promoting and inhibiting functions. Single-cell transcriptomic analyses have revealed a high degree of specialization among CAFs. Some examples of CAF subpopulations include myofibrotic CAFs (myCAFs), which exhibit a matrix-producing contractile phenotype; inflammatory CAFs (iCAF) that are classified by their immunomodulating, secretory phenotype; and antigen-presenting CAFs (apCAFs), which have antigen-presenting capabilities and express Major Histocompatibility Complex II (MHC II). Over the last several years, various attempts have been undertaken to describe the mechanisms of CAF-tumor cell interaction, as well as CAF-immune cell interaction, that contribute to tumor proliferation, invasion, and metastasis. Although our understanding of CAF biology in cancer has steadily increased, the extent of CAFs heterogeneity and their role in the pathobiology of pancreatic cancer remains elusive. In this regard, it becomes increasingly evident that further research on CAFs in pancreatic cancer is necessary.
Collapse
Affiliation(s)
- Annah Morgan
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.M.); (M.G.); (L.K.); (D.C.W.); (M.T.L.)
| | - Michelle Griffin
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.M.); (M.G.); (L.K.); (D.C.W.); (M.T.L.)
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lionel Kameni
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.M.); (M.G.); (L.K.); (D.C.W.); (M.T.L.)
| | - Derrick C. Wan
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.M.); (M.G.); (L.K.); (D.C.W.); (M.T.L.)
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael T. Longaker
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.M.); (M.G.); (L.K.); (D.C.W.); (M.T.L.)
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jeffrey A. Norton
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.M.); (M.G.); (L.K.); (D.C.W.); (M.T.L.)
- Division of General Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
15
|
Kalaei Z, Manafi-Farid R, Rashidi B, Kiani FK, Zarei A, Fathi M, Jadidi-Niaragh F. The Prognostic and therapeutic value and clinical implications of fibroblast activation protein-α as a novel biomarker in colorectal cancer. Cell Commun Signal 2023; 21:139. [PMID: 37316886 DOI: 10.1186/s12964-023-01151-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/28/2023] [Indexed: 06/16/2023] Open
Abstract
The identification of contributing factors leading to the development of Colorectal Cancer (CRC), as the third fatal malignancy, is crucial. Today, the tumor microenvironment has been shown to play a key role in CRC progression. Fibroblast-Activation Protein-α (FAP) is a type II transmembrane cell surface proteinase expressed on the surface of cancer-associated fibroblasts in tumor stroma. As an enzyme, FAP has di- and endoprolylpeptidase, endoprotease, and gelatinase/collagenase activities in the Tumor Microenvironment (TME). According to recent reports, FAP overexpression in CRC contributes to adverse clinical outcomes such as increased lymph node metastasis, tumor recurrence, and angiogenesis, as well as decreased overall survival. In this review, studies about the expression level of FAP and its associations with CRC patients' prognosis are reviewed. High expression levels of FAP and its association with clinicopathological factors have made as a potential target. In many studies, FAP has been evaluated as a therapeutic target and diagnostic factor into which the current review tries to provide a comprehensive insight. Video Abstract.
Collapse
Affiliation(s)
- Zahra Kalaei
- Department of Biology, Faculty of Natural Sciences, Tabriz University, Tabriz, Iran
| | - Reyhaneh Manafi-Farid
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bentolhoda Rashidi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Karoon Kiani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asieh Zarei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrdad Fathi
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
16
|
Ora M, Soni N, Nazar AH, Dixit M, Singh R, Puri S, Graham MM, Gambhir S. Fibroblast Activation Protein Inhibitor-Based Radionuclide Therapies: Current Status and Future Directions. J Nucl Med 2023:jnumed.123.265594. [PMID: 37268422 DOI: 10.2967/jnumed.123.265594] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/30/2023] [Indexed: 06/04/2023] Open
Abstract
Metastatic malignancies have limited management strategies and variable treatment responses. Cancer cells develop beside and depend on the complex tumor microenvironment. Cancer-associated fibroblasts, with their complex interaction with tumor and immune cells, are involved in various steps of tumorigenesis, such as growth, invasion, metastasis, and treatment resistance. Prooncogenic cancer-associated fibroblasts emerged as attractive therapeutic targets. However, clinical trials have achieved suboptimal success. Fibroblast activation protein (FAP) inhibitor-based molecular imaging has shown encouraging results in cancer diagnosis, making them innovative targets for FAP inhibitor-based radionuclide therapies. This review summarizes the results of preclinical and clinical FAP-based radionuclide therapies. We will describe advances and FAP molecule modification in this novel therapy, as well as its dosimetry, safety profile, and efficacy. This summary may guide future research directions and optimize clinical decision-making in this emerging field.
Collapse
Affiliation(s)
- Manish Ora
- Department of Nuclear Medicine, SGPGIMS, Lucknow, India;
| | - Neetu Soni
- Department of Radiology, University of Rochester Medical Center, Rochester, New York
| | | | - Manish Dixit
- Department of Nuclear Medicine, SGPGIMS, Lucknow, India
| | - Rohit Singh
- Division of Hematology-Oncology, University of Vermont Medical Center, Burlington, Vermont; and
| | - Savita Puri
- Department of Radiology, University of Rochester Medical Center, Rochester, New York
| | - Michael M Graham
- Division of Nuclear Medicine, Department of Radiology, University of Iowa Health Care, Iowa City, Iowa
| | | |
Collapse
|
17
|
Zarodniuk M, Steele A, Lu X, Li J, Datta M. Pan-cancer transcriptomic analysis of CNS tumor stroma identifies a population of perivascular fibroblasts that predict poor immunotherapy response in glioblastoma patients. RESEARCH SQUARE 2023:rs.3.rs-2931886. [PMID: 37292803 PMCID: PMC10246264 DOI: 10.21203/rs.3.rs-2931886/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Excessive deposition of extracellular matrix (ECM) is a hallmark of solid tumors; however, it remains poorly understood which cellular and molecular components contribute to the formation of ECM stroma in central nervous system (CNS) tumors. Here, we undertook a pan-CNS analysis of retrospective gene expression datasets to characterize inter- and intra-tumoral heterogeneity of ECM remodeling signatures in both adult and pediatric CNS disease. We found that CNS lesions - glioblastoma in particular - can be divided into two ECM-based subtypes (ECMhi and ECMlo) that are influenced by the presence of perivascular cells resembling cancer-associated fibroblasts (CAFs). We show that perivascular fibroblasts activate chemoattractant signaling pathways to recruit tumor-associated macrophages, and promote an immune-evasive, stem-like cancer cell phenotype. Our analysis reveals that perivascular fibroblasts are correlated with unfavorable response to immune checkpoint blockade in glioblastoma and poor patient survival across a subset of CNS tumors. We provide insights into novel stroma-driven mechanisms underlying immune evasion and immunotherapy resistance in CNS tumors like glioblastoma, and discuss how targeting these perivascular fibroblasts may prove an effective approach to improving treatment response and patient survival in a variety of CNS tumors.
Collapse
Affiliation(s)
- Maksym Zarodniuk
- Department of Aerospace and Mechanical Engineering, University of Notre Dame
| | | | - Xin Lu
- Department of Biological Sciences, University of Notre Dame
| | - Jun Li
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame
| | - Meenal Datta
- Department of Aerospace and Mechanical Engineering, University of Notre Dame
| |
Collapse
|
18
|
Han J, Dong L, Wu M, Ma F. Dynamic polarization of tumor-associated macrophages and their interaction with intratumoral T cells in an inflamed tumor microenvironment: from mechanistic insights to therapeutic opportunities. Front Immunol 2023; 14:1160340. [PMID: 37251409 PMCID: PMC10219223 DOI: 10.3389/fimmu.2023.1160340] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/20/2023] [Indexed: 05/31/2023] Open
Abstract
Immunotherapy has brought a paradigm shift in the treatment of tumors in recent decades. However, a significant proportion of patients remain unresponsive, largely due to the immunosuppressive tumor microenvironment (TME). Tumor-associated macrophages (TAMs) play crucial roles in shaping the TME by exhibiting dual identities as both mediators and responders of inflammation. TAMs closely interact with intratumoral T cells, regulating their infiltration, activation, expansion, effector function, and exhaustion through multiple secretory and surface factors. Nevertheless, the heterogeneous and plastic nature of TAMs renders the targeting of any of these factors alone inadequate and poses significant challenges for mechanistic studies and clinical translation of corresponding therapies. In this review, we present a comprehensive summary of the mechanisms by which TAMs dynamically polarize to influence intratumoral T cells, with a focus on their interaction with other TME cells and metabolic competition. For each mechanism, we also discuss relevant therapeutic opportunities, including non-specific and targeted approaches in combination with checkpoint inhibitors and cellular therapies. Our ultimate goal is to develop macrophage-centered therapies that can fine-tune tumor inflammation and empower immunotherapy.
Collapse
Affiliation(s)
- Jiashu Han
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, China
| | - Luochu Dong
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, China
| | - Mengwei Wu
- Department of General Surgery, Peking Union Medical College Hospital (CAMS), Beijing, China
| | - Fei Ma
- Center for National Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Starska-Kowarska K. The Role of Different Immunocompetent Cell Populations in the Pathogenesis of Head and Neck Cancer-Regulatory Mechanisms of Pro- and Anti-Cancer Activity and Their Impact on Immunotherapy. Cancers (Basel) 2023; 15:1642. [PMID: 36980527 PMCID: PMC10046400 DOI: 10.3390/cancers15061642] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/10/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most aggressive and heterogeneous groups of human neoplasms. HNSCC is characterized by high morbidity, accounting for 3% of all cancers, and high mortality with ~1.5% of all cancer deaths. It was the most common cancer worldwide in 2020, according to the latest GLOBOCAN data, representing the seventh most prevalent human malignancy. Despite great advances in surgical techniques and the application of modern combinations and cytotoxic therapies, HNSCC remains a leading cause of death worldwide with a low overall survival rate not exceeding 40-60% of the patient population. The most common causes of death in patients are its frequent nodal metastases and local neoplastic recurrences, as well as the relatively low response to treatment and severe drug resistance. Much evidence suggests that the tumour microenvironment (TME), tumour infiltrating lymphocytes (TILs) and circulating various subpopulations of immunocompetent cells, such regulatory T cells (CD4+CD25+Foxp3+Tregs), cytotoxic CD3+CD8+ T cells (CTLs) and CD3+CD4+ T helper type 1/2/9/17 (Th1/Th2/Th9/Th17) lymphocytes, T follicular helper cells (Tfh) and CD56dim/CD16bright activated natural killer cells (NK), carcinoma-associated fibroblasts (CAFs), myeloid-derived suppressor cells (MDSCs), tumour-associated neutrophils (N1/N2 TANs), as well as tumour-associated macrophages (M1/M2 phenotype TAMs) can affect initiation, progression and spread of HNSCC and determine the response to immunotherapy. Rapid advances in the field of immuno-oncology and the constantly growing knowledge of the immunosuppressive mechanisms and effects of tumour cancer have allowed for the use of effective and personalized immunotherapy as a first-line therapeutic procedure or an essential component of a combination therapy for primary, relapsed and metastatic HNSCC. This review presents the latest reports and molecular studies regarding the anti-tumour role of selected subpopulations of immunocompetent cells in the pathogenesis of HNSCC, including HPV+ve (HPV+) and HPV-ve (HPV-) tumours. The article focuses on the crucial regulatory mechanisms of pro- and anti-tumour activity, key genetic or epigenetic changes that favour tumour immune escape, and the strategies that the tumour employs to avoid recognition by immunocompetent cells, as well as resistance mechanisms to T and NK cell-based immunotherapy in HNSCC. The present review also provides an overview of the pre- and clinical early trials (I/II phase) and phase-III clinical trials published in this arena, which highlight the unprecedented effectiveness and limitations of immunotherapy in HNSCC, and the emerging issues facing the field of HNSCC immuno-oncology.
Collapse
Affiliation(s)
- Katarzyna Starska-Kowarska
- Department of Physiology, Pathophysiology and Clinical Immunology, Department of Clinical Physiology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; ; Tel.: +48-604-541-412
- Department of Otorhinolaryngology, EnelMed Center Expert, Drewnowska 58, 91-001 Lodz, Poland
| |
Collapse
|
20
|
Secretome of Stromal Cancer-Associated Fibroblasts (CAFs): Relevance in Cancer. Cells 2023; 12:cells12040628. [PMID: 36831295 PMCID: PMC9953839 DOI: 10.3390/cells12040628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
The cancer secretome reflects the assortment of proteins released by cancer cells. Investigating cell secretomes not only provides a deeper knowledge of the healthy and transformed state but also helps in the discovery of novel biomarkers. Secretomes of cancer cells have been studied in the past, however, the secretome contribution of stromal cells needs to be studied. Cancer-associated fibroblasts (CAFs) are one of the predominantly present cell populations in the tumor microenvironment (TME). CAFs play key role in functions associated with matrix deposition and remodeling, reciprocal exchange of nutrients, and molecular interactions and signaling with neighboring cells in the TME. Investigating CAFs secretomes or CAFs-secreted factors would help in identifying novel CAF-specific biomarkers, unique druggable targets, and an improved understanding for personalized cancer diagnosis and prognosis. In this review, we have tried to include all studies available in PubMed with the keywords "CAFs Secretome". We aim to provide a comprehensive summary of the studies investigating role of the CAF secretome on cancer development, progression, and therapeutic outcome. However, challenges associated with this process have also been addressed in the later sections. We have highlighted the functions and clinical relevance of secretome analysis in stromal CAF-rich cancer types. This review specifically discusses the secretome of stromal CAFs in cancers. A deeper understanding of the components of the CAF secretome and their interactions with cancer cells will help in the identification of personalized biomarkers and a more precise treatment plan.
Collapse
|
21
|
Mao S, Xia A, Tao X, Ye D, Qu J, Sun M, Wei H, Li G. A pan-cancer analysis of the prognostic and immunological roles of matrix metalloprotease-1 (MMP1) in human tumors. Front Oncol 2023; 12:1089550. [PMID: 36727076 PMCID: PMC9885257 DOI: 10.3389/fonc.2022.1089550] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Objective Cancer remains the leading killer of human health worldwide. It has been shown that matrix metalloproteinase-1(MMP1) is related to poor prognosis in cancers such as BRCA, CESC and COAD. However, systematic pan-cancer analysis about the prognostic and immunological roles of MMP1 has not been explored. Here, the purpose of this study was to investigate the prognostic and immunological roles of MMP1 in pan-cancer and confirm cancer-promoting effect in pancreatic cancer. Methods In our study, bioinformatics were first used to analyze data from multiple databases. Then, several bioinformatics tools were utilized to investigate the role of MMP1 in 33 tumor types. Finally, molecular biology experiments were carried out to prove the cancer-promoting effect of MMP1 in pancreatic cancer. Results MMP1 expression was higher in tumor tissues than in control tissues in most tumor types. High expression of MMP1 was associated with poor overall survival (OS) and disease-free survival (DFS) in some tumor types. Further analysis of MMP1 gene mutation data showed that MMP1 mutations significantly influenced the prognosis of STAD. In addition, MMP1 expression was closely related to cancer-associated fibroblast (CAFs) infiltration in a variety of cancers and played an important role on immune infiltration score, tumor mutational burden (TMB) and microsatellite instability (MSI). Gene Ontology enrichment analysis indicated that these 20 genes were mainly related to extracellular structure organization/extracellular matrix organization/extracellular matrix disassembly/collagen metabolic process in the enriched biological processes. Finally, molecular biology experiments confirmed the cancer-promoting effect of MMP1 in pancreatic cancer. Conclusions Our pan-cancer analysis comprehensively proved that MMP1 expression is related with clinical prognosis and tumor immune infiltration, and MMP1 can become a prognostic and immunological biomarker.
Collapse
Affiliation(s)
- Shuai Mao
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Anliang Xia
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Xuewen Tao
- Department of Hepatobiliary Surgery, Medicine School of Southeast University Nanjing Drum Tower Hospital, Nanjing, China
| | - Dingde Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiamu Qu
- Department of Hepatobiliary Surgery, Medicine School of Southeast University Nanjing Drum Tower Hospital, Nanjing, China
| | - Meiling Sun
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Haowei Wei
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Guoqiang Li
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China,*Correspondence: Guoqiang Li,
| |
Collapse
|
22
|
Niwa A, Taniguchi T, Tomita H, Okada H, Kinoshita T, Mizutani C, Matsuo M, Imaizumi Y, Kuroda T, Ichihashi K, Sugiyama T, Kanayama T, Yamaguchi Y, Sugie S, Matsuhashi N, Hara A. Conditional ablation of heparan sulfate expression in stromal fibroblasts promotes tumor growth in vivo. PLoS One 2023; 18:e0281820. [PMID: 36809261 PMCID: PMC9942975 DOI: 10.1371/journal.pone.0281820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 02/02/2023] [Indexed: 02/23/2023] Open
Abstract
Heparan sulfate (HS) is a glycocalyx component present in the extracellular matrix and cell-surface HS proteoglycans (HSPGs). Although HSPGs are known to play functional roles in multiple aspects of tumor development and progression, the effect of HS expression in the tumor stroma on tumor growth in vivo remains unclear. We conditionally deleted Ext1, which encodes a glycosyltransferase essential for the biosynthesis of HS chains, using S100a4-Cre (S100a4-Cre; Ext1f/f) to investigate the role of HS in cancer-associated fibroblasts, which is the main component of the tumor microenvironment. Subcutaneous transplantation experiments with murine MC38 colon cancer and Pan02 pancreatic cancer cells demonstrated substantially larger subcutaneous tumors in S100a4-Cre; Ext1f/f mice. Additionally, the number of myofibroblasts observed in MC38 and Pan02 subcutaneous tumors of S100a4-Cre; Ext1f/f mice decreased. Furthermore, the number of intratumoral macrophages decreased in MC38 subcutaneous tumors in S100a4-Cre; Ext1f/f mice. Finally, the expression of matrix metalloproteinase-7 (MMP-7) markedly increased in Pan02 subcutaneous tumors in S100a4-Cre; Ext1f/f mice, suggesting that it may contribute to rapid growth. Therefore, our study demonstrates that the tumor microenvironment with HS-reduced fibroblasts provides a favorable environment for tumor growth by affecting the function and properties of cancer-associated fibroblasts, macrophages, and cancer cells.
Collapse
Affiliation(s)
- Ayumi Niwa
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Toshiaki Taniguchi
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu City, Japan
- * E-mail:
| | - Hideshi Okada
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Takamasa Kinoshita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu City, Japan
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Chika Mizutani
- Department of Gastroenterological Surgery/Pediatric Surgery, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Mikiko Matsuo
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Yuko Imaizumi
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Takahito Kuroda
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Koki Ichihashi
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Takaaki Sugiyama
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Tomohiro Kanayama
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Yu Yamaguchi
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Shigeyuki Sugie
- Department of Pathology, Asahi University Hospital, Gifu, Japan
| | - Nobuhisa Matsuhashi
- Department of Gastroenterological Surgery/Pediatric Surgery, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu City, Japan
| |
Collapse
|
23
|
Ennis CS, Llevenes P, Qiu Y, Dries R, Denis GV. The crosstalk within the breast tumor microenvironment in type II diabetes: Implications for cancer disparities. Front Endocrinol (Lausanne) 2022; 13:1044670. [PMID: 36531496 PMCID: PMC9751481 DOI: 10.3389/fendo.2022.1044670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/17/2022] [Indexed: 12/04/2022] Open
Abstract
Obesity-driven (type 2) diabetes (T2D), the most common metabolic disorder, both increases the incidence of all molecular subtypes of breast cancer and decreases survival in postmenopausal women. Despite this clear link, T2D and the associated dysfunction of diverse tissues is often not considered during the standard of care practices in oncology and, moreover, is treated as exclusion criteria for many emerging clinical trials. These guidelines have caused the biological mechanisms that associate T2D and breast cancer to be understudied. Recently, it has been illustrated that the breast tumor microenvironment (TME) composition and architecture, specifically the surrounding cellular and extracellular structures, dictate tumor progression and are directly relevant for clinical outcomes. In addition to the epithelial cancer cell fraction, the breast TME is predominantly made up of cancer-associated fibroblasts, adipocytes, and is often infiltrated by immune cells. During T2D, signal transduction among these cell types is aberrant, resulting in a dysfunctional breast TME that communicates with nearby cancer cells to promote oncogenic processes, cancer stem-like cell formation, pro-metastatic behavior and increase the risk of recurrence. As these cells are non-malignant, despite their signaling abnormalities, data concerning their function is never captured in DNA mutational databases, thus we have limited insight into mechanism from publicly available datasets. We suggest that abnormal adipocyte and immune cell exhaustion within the breast TME in patients with obesity and metabolic disease may elicit greater transcriptional plasticity and cellular heterogeneity within the expanding population of malignant epithelial cells, compared to the breast TME of a non-obese, metabolically normal patient. These challenges are particularly relevant to cancer disparities settings where the fraction of patients seen within the breast medical oncology practice also present with co-morbid obesity and metabolic disease. Within this review, we characterize the changes to the breast TME during T2D and raise urgent molecular, cellular and translational questions that warrant further study, considering the growing prevalence of T2D worldwide.
Collapse
Affiliation(s)
- Christina S. Ennis
- Boston University-Boston Medical Center Cancer Center, Boston University School of Medicine, Boston, MA, United States
- Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, United States
| | - Pablo Llevenes
- Boston University-Boston Medical Center Cancer Center, Boston University School of Medicine, Boston, MA, United States
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Yuhan Qiu
- Boston University-Boston Medical Center Cancer Center, Boston University School of Medicine, Boston, MA, United States
| | - Ruben Dries
- Boston University-Boston Medical Center Cancer Center, Boston University School of Medicine, Boston, MA, United States
- Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, United States
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, MA, United States
| | - Gerald V. Denis
- Boston University-Boston Medical Center Cancer Center, Boston University School of Medicine, Boston, MA, United States
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Shipley Prostate Cancer Research Professor, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
24
|
Eskandari-Malayeri F, Rezaei M. Immune checkpoint inhibitors as mediators for immunosuppression by cancer-associated fibroblasts: A comprehensive review. Front Immunol 2022; 13:996145. [PMID: 36275750 PMCID: PMC9581325 DOI: 10.3389/fimmu.2022.996145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
The tumor microenvironment (TME) is a significant contributor to cancer progression containing complex connections between cellular and chemical components and provides a suitable substrate for tumor growth and development. Growing evidence shows targeting tumor cells while ignoring the surrounding TME is not effective enough to overcome the cancer disease. Fibroblasts are essential sentinels of the stroma that due to certain conditions in TME, such as oxidative stress and local hypoxia, become activated, and play the prominent role in the physical support of tumor cells and the enhancement of tumorigenesis. Activated fibroblasts in TME, defined as cancer-associated fibroblasts (CAFs), play a crucial role in regulating the biological behavior of tumors, such as tumor metastasis and drug resistance. CAFs are highly heterogeneous populations that have different origins and, in addition to their role in supporting stromal cells, have multiple immunosuppressive functions via a membrane and secretory patterns. The secretion of different cytokines/chemokines, interactions that mediate the recruitment of regulatory immune cells and the reprogramming of an immunosuppressive function in immature myeloid cells are just a few examples of how CAFs contribute to the immune escape of tumors through various direct and indirect mechanisms on specific immune cell populations. Moreover, CAFs directly abolish the role of cytotoxic lymphocytes. The activation and overexpression of inhibitory immune checkpoints (iICPs) or their ligands in TME compartments are one of the main regulatory mechanisms that inactivate tumor-infiltrating lymphocytes in cancer lesions. CAFs are also essential players in the induction or expression of iICPs and the suppression of immune response in TME. Based on available studies, CAF subsets could modulate immune cell function in TME through iICPs in two ways; direct expression of iICPs by activated CAFs and indirect induction by production soluble and then upregulation of iICPs in TME. With a focus on CAFs’ direct and indirect roles in the induction of iICPs in TME as well as their use in immunotherapy and diagnostics, we present the evolving understanding of the immunosuppressive mechanism of CAFs in TME in this review. Understanding the complete picture of CAFs will help develop new strategies to improve precision cancer therapy.
Collapse
|
25
|
Wu C, Gu J, Gu H, Zhang X, Zhang X, Ji R. The recent advances of cancer associated fibroblasts in cancer progression and therapy. Front Oncol 2022; 12:1008843. [PMID: 36185262 PMCID: PMC9516766 DOI: 10.3389/fonc.2022.1008843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
As an abundant component of tumor microenvironment, cancer-associated fibroblasts (CAFs) are heterogeneous cell populations that play important roles in tumor development, progression and therapeutic resistance. Multiple sources of cells can be recruited and educated to become CAFs, such as fibroblasts, mesenchymal stem cells and adipocytes, which may explain the phenotypic and functional heterogeneity of CAFs. It is widely believed that CAFs regulate tumor progression by remodeling extracellular matrix, promoting angiogenesis, and releasing soluble cytokines, making them a promising cancer therapy target. In this review, we discussed about the origin, subpopulation, and functional heterogeneity of CAFs, with particular attention to recent research advances and clinical therapeutic potential of CAFs in cancer.
Collapse
Affiliation(s)
- Chenxi Wu
- Department of Clinical Laboratory Medicine, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jianmei Gu
- Department of Clinical Laboratory Medicine, Nantong Tumor Hospital, Nantong, China
| | - Hongbing Gu
- Department of Clinical Laboratory Medicine, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - XiaoXin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Runbi Ji
- Department of Clinical Laboratory Medicine, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
- *Correspondence: Runbi Ji,
| |
Collapse
|
26
|
Ritter A, Kreis NN, Hoock SC, Solbach C, Louwen F, Yuan J. Adipose Tissue-Derived Mesenchymal Stromal/Stem Cells, Obesity and the Tumor Microenvironment of Breast Cancer. Cancers (Basel) 2022; 14:3908. [PMID: 36010901 PMCID: PMC9405791 DOI: 10.3390/cancers14163908] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is the most frequently diagnosed cancer and a common cause of cancer-related death in women. It is well recognized that obesity is associated with an enhanced risk of more aggressive breast cancer as well as reduced patient survival. Adipose tissue is the major microenvironment of breast cancer. Obesity changes the composition, structure, and function of adipose tissue, which is associated with inflammation and metabolic dysfunction. Interestingly, adipose tissue is rich in ASCs/MSCs, and obesity alters the properties and functions of these cells. As a key component of the mammary stroma, ASCs play essential roles in the breast cancer microenvironment. The crosstalk between ASCs and breast cancer cells is multilateral and can occur both directly through cell-cell contact and indirectly via the secretome released by ASC/MSC, which is considered to be the main effector of their supportive, angiogenic, and immunomodulatory functions. In this narrative review, we aim to address the impact of obesity on ASCs/MSCs, summarize the current knowledge regarding the potential pathological roles of ASCs/MSCs in the development of breast cancer, discuss related molecular mechanisms, underline the possible clinical significance, and highlight related research perspectives. In particular, we underscore the roles of ASCs/MSCs in breast cancer cell progression, including proliferation and survival, angiogenesis, migration and invasion, the epithelial-mesenchymal transition, cancer stem cell development, immune evasion, therapy resistance, and the potential impact of breast cancer cells on ASCS/MSCs by educating them to become cancer-associated fibroblasts. We conclude that ASCs/MSCs, especially obese ASCs/MSCs, may be key players in the breast cancer microenvironment. Targeting these cells may provide a new path of effective breast cancer treatment.
Collapse
Affiliation(s)
- Andreas Ritter
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | | | | | | | | | - Juping Yuan
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| |
Collapse
|
27
|
Wu J, Liu X, Reeser JAW, Trimboli AJ, Pécot T, Sizemore GM, Naidu SK, Fernandez SA, Yu L, Hallett M, Park M, Leone GW, Hildreth BE, Ostrowski MC. Stromal p53 Regulates Breast Cancer Development, the Immune Landscape, and Survival in an Oncogene-Specific Manner. Mol Cancer Res 2022; 20:1233-1246. [PMID: 35533313 PMCID: PMC9357052 DOI: 10.1158/1541-7786.mcr-21-0960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/16/2022] [Accepted: 05/04/2022] [Indexed: 02/07/2023]
Abstract
Coevolution of tumor cells and adjacent stromal elements is a key feature during tumor progression; however, the precise regulatory mechanisms during this process remain unknown. Here, we show stromal p53 loss enhances oncogenic KrasG12D, but not ErbB2, driven tumorigenesis in murine mammary epithelia. Stroma-specific p53 deletion increases both epithelial and fibroblast proliferation in mammary glands bearing the KrasG12D oncogene in epithelia, while concurrently increasing DNA damage and/or DNA replication stress and decreasing apoptosis in the tumor cells proper. Normal epithelia was not affected by stromal p53 deletion. Tumors with p53-null stroma had a significant decrease in total, cytotoxic, and regulatory T cells; however, there was a significant increase in myeloid-derived suppressor cells, total macrophages, and M2-polarized tumor-associated macrophages, with no impact on angiogenesis or connective tissue deposition. Stroma-specific p53 deletion reprogrammed gene expression in both fibroblasts and adjacent epithelium, with p53 targets and chemokine receptors/chemokine signaling pathways in fibroblasts and DNA replication, DNA damage repair, and apoptosis in epithelia being the most significantly impacted biological processes. A gene cluster in p53-deficient mouse fibroblasts was negatively associated with patient survival when compared with two independent datasets. In summary, stroma-specific p53 loss promotes mammary tumorigenesis in an oncogene-specific manner, influences the tumor immune landscape, and ultimately impacts patient survival. IMPLICATIONS Expression of the p53 tumor suppressor in breast cancer tumor stroma regulates tumorigenesis in an oncogene-specific manner, influences the tumor immune landscape, and ultimately impacts patient survival.
Collapse
Affiliation(s)
- Jinghai Wu
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH,Department of Radiation Oncology and Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Xin Liu
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Julie A. Wallace Reeser
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Anthony J. Trimboli
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Thierry Pécot
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH,Biosit – UMS CNRS 3480, Inserm 018, University of Rennes 1, France
| | - Gina M. Sizemore
- Department of Radiation Oncology and Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Shan K. Naidu
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Soledad A. Fernandez
- Department of Biomedical Informatics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Lianbo Yu
- Department of Biomedical Informatics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Michael Hallett
- Department of Biology, Concordia University, Montréal, QC,Department of Biochemistry and Rosalind and Morris Goodman Cancer Centre, McGill University, Montréal, QC
| | - Morag Park
- Department of Biochemistry and Rosalind and Morris Goodman Cancer Centre, McGill University, Montréal, QC
| | - Gustavo W. Leone
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH,Department of Biochemistry and Cancer Center, Medical College of Wisconsin, Wauwatosa, WI,Co-Corresponding Authors: Michael C. Ostrowski, Hollings Cancer Center, 86 Jonathon Lucas Street, Charleston, SC 29425, , Phone: 843-792-5012; Blake E. Hildreth III, Shelby Biomedical Research Building, 1825 University Blvd, Birmingham, AL 35233, , Phone: 205-934-8697, Gustavo Leone, Clinical Cancer Center, Froedtert Hospital Campus, 8800 W. Doyne Ave, Milwaukee, WI 53226, , Phone: 414-335-1000
| | - Blake E. Hildreth
- Department of Pathology and O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL,Co-Corresponding Authors: Michael C. Ostrowski, Hollings Cancer Center, 86 Jonathon Lucas Street, Charleston, SC 29425, , Phone: 843-792-5012; Blake E. Hildreth III, Shelby Biomedical Research Building, 1825 University Blvd, Birmingham, AL 35233, , Phone: 205-934-8697, Gustavo Leone, Clinical Cancer Center, Froedtert Hospital Campus, 8800 W. Doyne Ave, Milwaukee, WI 53226, , Phone: 414-335-1000
| | - Michael C. Ostrowski
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH,Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC,Co-Corresponding Authors: Michael C. Ostrowski, Hollings Cancer Center, 86 Jonathon Lucas Street, Charleston, SC 29425, , Phone: 843-792-5012; Blake E. Hildreth III, Shelby Biomedical Research Building, 1825 University Blvd, Birmingham, AL 35233, , Phone: 205-934-8697, Gustavo Leone, Clinical Cancer Center, Froedtert Hospital Campus, 8800 W. Doyne Ave, Milwaukee, WI 53226, , Phone: 414-335-1000
| |
Collapse
|
28
|
Zhang L, Billet S, Gonzales G, Rohena-Rivera K, Muranaka H, Chu GCY, Yang Q, Kim H, Bhowmick NA, Smith B. Fatty Acid Signaling Impacts Prostate Cancer Lineage Plasticity in an Autocrine and Paracrine Manner. Cancers (Basel) 2022; 14:3449. [PMID: 35884514 PMCID: PMC9318639 DOI: 10.3390/cancers14143449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 01/27/2023] Open
Abstract
Prostate cancer (PCa) affects an estimated 250,000 men every year and causes 34,000 deaths annually. A high-fat diet and obesity are associated with PCa progression and mortality. This study's premise was the novel observation of crosstalk between PCa epithelia and cancer-associated fibroblasts (CAF) in response to palmitate-mediated lineage plasticity. We found that cholesterol activated canonical Hedgehog (Hh) signaling by increasing cilium Gli activity in PCa cells, while palmitate activated Hh independent of Gli. Exogenous palmitate activated SOX2, a known mediator of lineage plasticity, in PCa cells cocultured with CAF. Stroma-derived Wnt5a was upregulated in CAF while cocultured with PCa cells and treated with palmitate. Wnt5a knockdown in CAF inhibited Hh and SOX2 expression in PCa cells from cocultures. These findings supported our proposed mechanism of a high-fat diet promoting Hh signaling-mediated transformation within the tumor microenvironment. SOX2 and Wnt5a expression were limited by the CD36 neutralizing antibody. Mice xenografted with PCa epithelia and CAF tumors were fed a high-fat diet, leading to elevated SOX2 expression and lineage plasticity reprogramming compared to mice fed an isocaloric rodent diet. CD36 inhibition with enzalutamide elevated apoptosis by TUNEL, but limited proliferation and SOX2 expression compared to enzalutamide alone. This study revealed a mechanism for a high-fat diet to affect prostate cancer progression. We found that saturated fat induced lineage plasticity reprogramming of PCa by interaction with CAF through Wnt5a and Hh signaling.
Collapse
Affiliation(s)
- Le Zhang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (L.Z.); (S.B.); (G.G.); (K.R.-R.); (H.M.); (G.C.-Y.C.); (Q.Y.); (H.K.)
| | - Sandrine Billet
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (L.Z.); (S.B.); (G.G.); (K.R.-R.); (H.M.); (G.C.-Y.C.); (Q.Y.); (H.K.)
| | - Gabrielle Gonzales
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (L.Z.); (S.B.); (G.G.); (K.R.-R.); (H.M.); (G.C.-Y.C.); (Q.Y.); (H.K.)
| | - Krizia Rohena-Rivera
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (L.Z.); (S.B.); (G.G.); (K.R.-R.); (H.M.); (G.C.-Y.C.); (Q.Y.); (H.K.)
| | - Hayato Muranaka
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (L.Z.); (S.B.); (G.G.); (K.R.-R.); (H.M.); (G.C.-Y.C.); (Q.Y.); (H.K.)
| | - Gina Chia-Yi Chu
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (L.Z.); (S.B.); (G.G.); (K.R.-R.); (H.M.); (G.C.-Y.C.); (Q.Y.); (H.K.)
| | - Qian Yang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (L.Z.); (S.B.); (G.G.); (K.R.-R.); (H.M.); (G.C.-Y.C.); (Q.Y.); (H.K.)
| | - Hyung Kim
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (L.Z.); (S.B.); (G.G.); (K.R.-R.); (H.M.); (G.C.-Y.C.); (Q.Y.); (H.K.)
| | - Neil A. Bhowmick
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (L.Z.); (S.B.); (G.G.); (K.R.-R.); (H.M.); (G.C.-Y.C.); (Q.Y.); (H.K.)
- Department of Research, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Bethany Smith
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (L.Z.); (S.B.); (G.G.); (K.R.-R.); (H.M.); (G.C.-Y.C.); (Q.Y.); (H.K.)
| |
Collapse
|
29
|
Gene Expression Profile of Stromal Factors in Cancer-Associated Fibroblasts from Prostate Cancer. Diagnostics (Basel) 2022; 12:diagnostics12071605. [PMID: 35885510 PMCID: PMC9325062 DOI: 10.3390/diagnostics12071605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/07/2022] [Accepted: 06/22/2022] [Indexed: 11/26/2022] Open
Abstract
Recent investigations point at the stromal microenvironment to assess additional diagnostic information and provide new therapeutic targets in cancer. The aim of the study was to contribute to the characterization of the phenotype of cancer-associated fibroblasts (CAFs) in prostate cancer (PCa) compared with normal prostate-associated fibroblasts (NAFs) and fibroblasts from benign prostatic hyperplasia (BPH). Three patient populations were prospectively recruited: 23 patients with new localized PCa, 14 patients with advanced PCa treated with androgenic deprivation therapy (ADT), and 7 patients with BPH. Gene expression of 20 stroma-derived factors, including the androgen receptor (AR), chaperones (HSPA1A and HSF1), growth factors (FGF2, FGF7, FGF10, HGF, PDGFB, and TGFβ), proteins implicated in invasion (MMP2, MMP9, and MMP11), inflammation (IL6, IL17RB, NFκB, and STAT3), and in-stroma/epithelium interaction (CDH11, CXCL12, CXCL14, and FAP), was evaluated. Localized PCa CAFs showed a significant higher expression of FGF7, IL6, MMP2, and MMP11 compared with NAFs or IL17RB compared with BPH fibroblasts, but significantly lower expression of FGF10 and IL17RB compared with NAFs or CXCL14 compared with BPH fibroblasts. In addition, CAFs from ADT-resistant PCa showed significantly higher MMP11 and NFκB but significant lower TGFβ expression compared with CAFs from ADT-sensitive tumors. Our results contribute to defining the CAFs phenotypes associated to PCa progression, which may contribute to the diagnosis and design of alternative therapies in PCa.
Collapse
|
30
|
[ 99mTc]Tc-iFAP/SPECT Tumor Stroma Imaging: Acquisition and Analysis of Clinical Images in Six Different Cancer Entities. Pharmaceuticals (Basel) 2022; 15:ph15060729. [PMID: 35745648 PMCID: PMC9230816 DOI: 10.3390/ph15060729] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
Fibroblast activation protein (FAP) is highly expressed on the cancer-associated fibroblasts (CAF) of the tumor stroma. Recently, we reported the preclinical evaluation and clinical biokinetics of a novel 99mTc-labeled FAP inhibitor radioligand ([99mTc]Tc-iFAP). This research aimed to evaluate [99mTc]Tc-iFAP for the tumor stroma imaging of six different cancerous entities and analyze them from the perspective of stromal heterogeneity. [99mTc]Tc-iFAP was prepared from freeze-dried kits with a radiochemical purity of 98 ± 1%. The study included thirty-two patients diagnosed with glioma (n = 5); adrenal cortex neuroendocrine tumor (n = 1); and breast (n = 21), lung (n = 2), colorectal (n = 1) and cervical (n = 3) cancer. Patients with glioma had been evaluated with a previous cranial MRI scan and the rest of the patients had been involved in a [18F]FDG PET/CT study. All oncological diagnoses were corroborated histopathologically. The patients underwent SPECT/CT brain imaging (glioma) or thoracoabdominal imaging 1 h after [99mTc]Tc-iFAP administration (i.v., 735 ± 63 MBq). The total lesions (n = 111) were divided into three categories: primary tumors (PT), lymph node metastases (LNm), and distant metastases (Dm). [99mTc]Tc-iFAP brain imaging was positive in four high-grade WHO III–IV gliomas and negative in one treatment-naive low-grade glioma. Both [99mTc]Tc-iFAP and [18F]FDG detected 26 (100%) PT, although the number of positive LNm and Dm was significantly higher with [18F]FDG [82 (96%)], in comparison to [99mTc]Tc-iFAP imaging (35 (41%)). Peritoneal carcinomatosis lesions in a patient with recurrent colorectal cancer were only visualized with [99mTc]Tc-iFAP. In patients with breast cancer, a significant positive correlation was demonstrated among [99mTc]Tc-iFAP uptake values (Bq/cm3) of PT and the molecular subtype, being higher for subtypes HER2+ and Luminal B HER2-enriched. Four different CAF subpopulations have previously been described for LNm of breast cancer (from CAF-S1 to CAF-S4). The only subpopulation that expresses FAP is CAF-S1, which is preferentially detected in aggressive subtypes (HER2 and triple-negative), confirming that FAP+ is a marker for poor disease prognosis. The results of this pilot clinical research show that [99mTc]Tc-iFAP SPECT imaging is a promising tool in the prognostic assessment of some solid tumors, particularly breast cancer.
Collapse
|
31
|
Deciphering Tumour Heterogeneity: From Tissue to Liquid Biopsy. Cancers (Basel) 2022; 14:cancers14061384. [PMID: 35326534 PMCID: PMC8946040 DOI: 10.3390/cancers14061384] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Most malignant tumours are highly heterogeneous at molecular and phenotypic levels. Tumour variability poses challenges for the management of patients, as it arises between patients and even evolves in space and time within a single patient. Currently, treatment-decision making usually relies on the molecular characteristics of a limited tumour tissue sample at the time of diagnosis or disease progression but does not take into account the complexity of the bulk tumours and their constant evolution over time. In this review, we explore the extent of tumour heterogeneity and report the mechanisms that promote and sustain this diversity in cancers. We summarise the clinical strikes of tumour diversity in the management of patients with cancer. Finally, we discuss the current material and technological approaches that are relevant to adequately appreciate tumour heterogeneity. Abstract Human solid malignancies harbour a heterogeneous set of cells with distinct genotypes and phenotypes. This heterogeneity is installed at multiple levels. A biological diversity is commonly observed between tumours from different patients (inter-tumour heterogeneity) and cannot be fully captured by the current consensus molecular classifications for specific cancers. To extend the complexity in cancer, there are substantial differences from cell to cell within an individual tumour (intra-tumour heterogeneity, ITH) and the features of cancer cells evolve in space and time. Currently, treatment-decision making usually relies on the molecular characteristics of a limited tumour tissue sample at the time of diagnosis or disease progression but does not take into account the complexity of the bulk tumours and their constant evolution over time. In this review, we explore the extent of tumour heterogeneity with an emphasis on ITH and report the mechanisms that promote and sustain this diversity in cancers. We summarise the clinical strikes of ITH in the management of patients with cancer. Finally, we discuss the current material and technological approaches that are relevant to adequately appreciate ITH.
Collapse
|
32
|
Vokurka M, Lacina L, Brábek J, Kolář M, Ng YZ, Smetana K. Cancer-Associated Fibroblasts Influence the Biological Properties of Malignant Tumours via Paracrine Secretion and Exosome Production. Int J Mol Sci 2022; 23:964. [PMID: 35055153 PMCID: PMC8778626 DOI: 10.3390/ijms23020964] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are an essential component of the tumour microenvironment. They represent a heterogeneous group of cells that are under the control of cancer cells and can reversely influence the cancer cell population. They affect the cancer cell differentiation status, and the migration and formation of metastases. This is achieved through the production of the extracellular matrix and numerous bioactive factors. IL-6 seems to play the central role in the communication of noncancerous and cancer cells in the tumour. This review outlines the role of exosomes in cancer cells and cancer-associated fibroblasts. Available data on the exosomal cargo, which can significantly intensify interactions in the tumour, are summarised. The role of exosomes as mediators of the dialogue between cancer cells and cancer-associated fibroblasts is discussed together with their therapeutic relevance. The functional unity of the paracrine- and exosome-mediated communication of cancer cells with the tumour microenvironment represented by CAFs is worthy of attention.
Collapse
Affiliation(s)
- Martin Vokurka
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic;
| | - Lukáš Lacina
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department of Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Faculty of Science, Charles University, 120 00 Prague 2, Czech Republic;
- BIOCEV, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
| | - Michal Kolář
- Institute of Molecular Genetics, Czech Academy of Sciences, 142 20 Prague 4, Czech Republic;
| | - Yi Zhen Ng
- A*STAR Skin Research Labs (A*SRL)—Biopolis, Skin Research Institute of Singapore, 8A Biomedical Grove #06-06 Immunos Singapore, Singapore 138665, Singapore;
| | - Karel Smetana
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
| |
Collapse
|
33
|
Samarelli AV, Masciale V, Aramini B, Coló GP, Tonelli R, Marchioni A, Bruzzi G, Gozzi F, Andrisani D, Castaniere I, Manicardi L, Moretti A, Tabbì L, Guaitoli G, Cerri S, Dominici M, Clini E. Molecular Mechanisms and Cellular Contribution from Lung Fibrosis to Lung Cancer Development. Int J Mol Sci 2021; 22:12179. [PMID: 34830058 PMCID: PMC8624248 DOI: 10.3390/ijms222212179] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrosing interstitial lung disease (ILD) of unknown aetiology, with a median survival of 2-4 years from the time of diagnosis. Although IPF has unknown aetiology by definition, there have been identified several risks factors increasing the probability of the onset and progression of the disease in IPF patients such as cigarette smoking and environmental risk factors associated with domestic and occupational exposure. Among them, cigarette smoking together with concomitant emphysema might predispose IPF patients to lung cancer (LC), mostly to non-small cell lung cancer (NSCLC), increasing the risk of lung cancer development. To this purpose, IPF and LC share several cellular and molecular processes driving the progression of both pathologies such as fibroblast transition proliferation and activation, endoplasmic reticulum stress, oxidative stress, and many genetic and epigenetic markers that predispose IPF patients to LC development. Nintedanib, a tyrosine-kinase inhibitor, was firstly developed as an anticancer drug and then recognized as an anti-fibrotic agent based on the common target molecular pathway. In this review our aim is to describe the updated studies on common cellular and molecular mechanisms between IPF and lung cancer, knowledge of which might help to find novel therapeutic targets for this disease combination.
Collapse
Affiliation(s)
- Anna Valeria Samarelli
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Valentina Masciale
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Oncology Unit, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, 41100 Modena, Italy;
| | - Beatrice Aramini
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Thoracic Surgery Unit, Department of Diagnostic and Specialty Medicine—DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni—L. Pierantoni Hospital, 34 Carlo Forlanini Street, 47121 Forlì, Italy
| | - Georgina Pamela Coló
- Laboratorio de Biología del Cáncer INIBIBB-UNS-CONICET-CCT, Bahía Blanca 8000, Argentina;
| | - Roberto Tonelli
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41100 Modena, Italy
| | - Alessandro Marchioni
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Giulia Bruzzi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Filippo Gozzi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41100 Modena, Italy
| | - Dario Andrisani
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41100 Modena, Italy
| | - Ivana Castaniere
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41100 Modena, Italy
| | - Linda Manicardi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Antonio Moretti
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Luca Tabbì
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Giorgia Guaitoli
- Oncology Unit, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, 41100 Modena, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41100 Modena, Italy
| | - Stefania Cerri
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Massimo Dominici
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Oncology Unit, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, 41100 Modena, Italy;
| | - Enrico Clini
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
| |
Collapse
|
34
|
Van Hove L, Hoste E. Activation of Fibroblasts in Skin Cancer. J Invest Dermatol 2021; 142:1026-1031. [PMID: 34600919 DOI: 10.1016/j.jid.2021.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
Fibroblasts have emerged as a dominant component of the tumor microenvironment, but despite the surging interest in the activation of fibroblasts and their role in cancer, they remain an elusive and complex cell type. In this perspective, we discuss the phenotypic plasticity of cancer-associated fibroblasts (CAFs) in melanoma and nonmelanoma skin cancer identified by genome-wide transcriptomic studies and focus on the molecular pathways underlying their activation. These studies reveal distinct fibroblast activation profiles depending on tumor type and stage. A better understanding of skin CAF heterogeneity in origin and function will guide novel therapeutic approaches targeting this cell type in clinical cancer care.
Collapse
Affiliation(s)
- Lisette Van Hove
- VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Esther Hoste
- VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent University, Ghent, Belgium.
| |
Collapse
|