1
|
Meyer C, Jackson VLN, Harrison K, Fouskari I, Bolhuis H, Artzy-Randrup YA, Huisman J, Monier A, Brussaard CPD. Temperature modulates dominance of a superinfecting Arctic virus in its unicellular algal host. THE ISME JOURNAL 2024; 18:wrae161. [PMID: 39173010 PMCID: PMC11370638 DOI: 10.1093/ismejo/wrae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/30/2024] [Accepted: 08/21/2024] [Indexed: 08/24/2024]
Abstract
Complex virus-virus interactions can arise when multiple viruses coinfect the same host, impacting infection outcomes with broader ecological and evolutionary significance for viruses and host. Yet, our knowledge regarding virus competition is still limited, especially for single-celled eukaryotic host-virus systems. Here, we report on mutual interference of two dsDNA viruses, MpoV-45T and MpoV-46T, competing for their Arctic algal host Micromonas polaris. Both viruses affected each other's gene expression and displayed reduced genome replication during coinfection. MpoV-45T was the dominant virus, likely due to interference in the DNA replication of is competitor. Even when its coinfection was delayed, the dominant virus still prevailed while genome production of the other virus was strongly suppressed. This contrasts with typical superinfection exclusion, where the primary infection prevents secondary infection by other viruses. Higher temperature made the suppressed virus a stronger competitor, signifying that global warming is likely to alter virus-virus interactions in Arctic waters.
Collapse
Affiliation(s)
- Claudia Meyer
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, 1790AB Den Burg, Texel, The Netherlands
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, PO Box 94240, 1090 GE Amsterdam, The Netherlands
| | - Victoria L N Jackson
- Living Systems Institute, University of Exeter, Exeter, Devon EX4 4QD, United Kingdom
| | - Keith Harrison
- Living Systems Institute, University of Exeter, Exeter, Devon EX4 4QD, United Kingdom
| | - Ioanna Fouskari
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, 1790AB Den Burg, Texel, The Netherlands
| | - Henk Bolhuis
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, 1790AB Den Burg, Texel, The Netherlands
| | - Yael A Artzy-Randrup
- Department of Theoretical and Computational Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, PO Box 94240, 1090 GE Amsterdam, The Netherlands
| | - Jef Huisman
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, PO Box 94240, 1090 GE Amsterdam, The Netherlands
| | - Adam Monier
- Living Systems Institute, University of Exeter, Exeter, Devon EX4 4QD, United Kingdom
| | - Corina P D Brussaard
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, 1790AB Den Burg, Texel, The Netherlands
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, PO Box 94240, 1090 GE Amsterdam, The Netherlands
| |
Collapse
|
2
|
Chida T, Ishida Y, Morioka S, Sugahara G, Han C, Lam B, Yamasaki C, Sugahara R, Li M, Tanaka Y, Liang TJ, Tateno C, Saito T. Persistent hepatic IFN system activation in HBV-HDV infection determines viral replication dynamics and therapeutic response. JCI Insight 2023; 8:162404. [PMID: 37154158 DOI: 10.1172/jci.insight.162404] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 03/22/2023] [Indexed: 05/10/2023] Open
Abstract
Hepatitis delta virus (HDV), a satellite virus of HBV, is regarded as the most severe type of hepatitis virus because of the substantial morbidity and mortality. The IFN system is the first line of defense against viral infections and an essential element of antiviral immunity; however, the role of the hepatic IFN system in controlling HBV-HDV infection remains poorly understood. Herein, we showed that HDV infection of human hepatocytes induced a potent and persistent activation of the IFN system whereas HBV was inert in triggering hepatic antiviral response. Moreover, we demonstrated that HDV-induced constitutive activation of the hepatic IFN system resulted in a potent suppression of HBV while modestly inhibiting HDV. Thus, these pathogens are equipped with distinctive immunogenicity and varying sensitivity to the antiviral effectors of IFN, leading to the establishment of a paradoxical mode of viral interference wherein HDV, the superinfectant, outcompetes HBV, the primary pathogen. Furthermore, our study revealed that HDV-induced constitutive IFN system activation led to a state of IFN refractoriness, rendering therapeutic IFNs ineffective. The present study provides potentially novel insights into the role of the hepatic IFN system in regulating HBV-HDV infection dynamics and its therapeutic implications through elucidating the molecular basis underlying the inefficacy of IFN-based antiviral strategies against HBV-HDV infection.
Collapse
Affiliation(s)
- Takeshi Chida
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
| | - Yuji Ishida
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
- PhoenixBio, Co., Ltd., Higashi-Hiroshima, Hiroshima, Japan
| | - Sho Morioka
- PhoenixBio, Co., Ltd., Higashi-Hiroshima, Hiroshima, Japan
| | - Go Sugahara
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
- PhoenixBio, Co., Ltd., Higashi-Hiroshima, Hiroshima, Japan
| | - Christine Han
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
| | - Bill Lam
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
| | | | - Remi Sugahara
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
| | - Meng Li
- Bioinformatics Service, Norris Medical Library, USC, Los Angeles, California, USA
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - T Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Chise Tateno
- PhoenixBio, Co., Ltd., Higashi-Hiroshima, Hiroshima, Japan
| | - Takeshi Saito
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
- Department of Molecular Microbiology & Immunology
- Department of Pathology, and
- USC Research Center for Liver Diseases, Keck School of Medicine, USC, Los Angeles, California, USA
| |
Collapse
|
3
|
Vidal-Quist JC, Declercq J, Vanhee S, Lambrecht BN, Gómez-Rial J, Vidal C, Aydogdu E, Rombauts S, Hernández-Crespo P. RNA viruses alter house dust mite physiology and allergen production with no detected consequences for allergenicity. INSECT MOLECULAR BIOLOGY 2023; 32:173-186. [PMID: 36511188 DOI: 10.1111/imb.12822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
RNA viruses have recently been detected in association with house dust mites, including laboratory cultures, dust samples, and mite-derived pharmaceuticals used for allergy diagnosis. This study aimed to assess the incidence of viral infection on Dermatophagoides pteronyssinus physiology and on the allergenic performance of extracts derived from its culture. Transcriptional changes between genetically identical control and virus-infected mite colonies were analysed by RNAseq with the support of a new D. pteronyssinus high-quality annotated genome (56.8 Mb, 108 scaffolds, N50 = 2.73 Mb, 96.7% BUSCO-completeness). Extracts of cultures and bodies from both colonies were compared by inspecting major allergen accumulation by enzyme-linked immunosorbent assay (ELISA), allergen-related enzymatic activities by specific assays, airway inflammation in a mouse model of allergic asthma, and binding to allergic patient's sera IgE by ImmunoCAP. Viral infection induced a significant transcriptional response, including several immunity and stress-response genes, and affected the expression of seven allergens, putative isoallergens and allergen orthologs. Major allergens were unaffected except for Der p 23 that was upregulated, increasing ELISA titers up to 29% in infected-mite extracts. By contrast, serine protease allergens Der p 3, 6 and 9 were downregulated, being trypsin and chymotrypsin enzymatic activities reduced up to 21% in extracts. None of the parameters analysed in our mouse model, nor binding to human IgE were significantly different when comparing control and infected-mite extracts. Despite the described physiological impact of viral infection on the mites, no significant consequences for the allergenicity of derived extracts or their practical use in allergy diagnosis have been detected.
Collapse
Affiliation(s)
- José Cristian Vidal-Quist
- Entomología Aplicada a la Agricultura y la Salud, Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain
| | - Jozefien Declercq
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Stijn Vanhee
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - José Gómez-Rial
- Laboratorio de Inmunogenética, Unidad de Inmunología, Complejo Hospitalario Universitario de Santiago (CHUS), Santiago de Compostela, Spain
| | - Carmen Vidal
- Servicio de Alergología, Complejo Hospitalario Universitario de Santiago (CHUS), Santiago de Compostela, Spain
| | - Eylem Aydogdu
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Stephane Rombauts
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Pedro Hernández-Crespo
- Entomología Aplicada a la Agricultura y la Salud, Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain
| |
Collapse
|
4
|
Gao Y, Sridhar A, Bernard N, He B, Zhang H, Pirotte S, Desmecht S, Vancsok C, Boutier M, Suárez NM, Davison AJ, Donohoe O, Vanderplasschen AFC. Virus-induced interference as a means for accelerating fitness-based selection of cyprinid herpesvirus 3 single-nucleotide variants in vitro and in vivo. Virus Evol 2023; 9:vead003. [PMID: 36816049 PMCID: PMC9936792 DOI: 10.1093/ve/vead003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/16/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Cyprinid herpesvirus 3 (CyHV-3) is the archetype of fish alloherpesviruses and is advantageous to research because, unlike many herpesviruses, it can be studied in the laboratory by infection of the natural host (common and koi carp). Previous studies have reported a negative correlation among CyHV-3 strains between viral growth in vitro (in cell culture) and virulence in vivo (in fish). This suggests the existence of genovariants conferring enhanced fitness in vitro but reduced fitness in vivo and vice versa. Here, we identified the syncytial plaque formation in vitro as a common trait of CyHV-3 strains adapted to cell culture. A comparison of the sequences of virion transmembrane protein genes in CyHV-3 strains, and the use of various recombinant viruses, demonstrated that this trait is linked to a single-nucleotide polymorphism (SNP) in the open reading frame (ORF) 131 coding sequence (C225791T mutation) that results in codon 183 encoding either an alanine (183A) or a threonine (183T) residue. In experiments involving infections with recombinant viruses differing only by this SNP, the 183A genovariant associated with syncytial plaque formation was the more fit in vitro but the less fit in vivo. In experiments involving coinfection with both viruses, the more fit genovariant contributed to the purifying selection of the less fit genovariant by outcompeting it. In addition, this process appeared to be accelerated by viral stimulation of interference at a cellular level and stimulation of resistance to superinfection at a host level. Collectively, this study illustrates how the fundamental biological properties of some viruses and their hosts may have a profound impact on the degree of diversity that arises within viral populations.
Collapse
Affiliation(s)
- Yuan Gao
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège B-4000, Belgium
| | - Arun Sridhar
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège B-4000, Belgium
| | - Noah Bernard
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège B-4000, Belgium
| | - Bo He
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège B-4000, Belgium
| | - Haiyan Zhang
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège B-4000, Belgium
| | - Sébastien Pirotte
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège B-4000, Belgium
| | - Salomé Desmecht
- Laboratory of Animal Genomics, GIGA-Medical Genomics, GIGA-Institute, University of Liège, Liège B-4000, Belgium
| | - Catherine Vancsok
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège B-4000, Belgium
| | - Maxime Boutier
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège B-4000, Belgium
| | - Nicolás M Suárez
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Andrew J Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Owen Donohoe
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège B-4000, Belgium.,Bioscience Research Institute, Technological University of the Shannon, Midlands Midwest, Athlone, Co. Westmeath N37HD68, Ireland
| | - Alain F C Vanderplasschen
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège B-4000, Belgium
| |
Collapse
|
5
|
Fuse T, Ikuse T, Aizawa Y, Fuse M, Goto F, Okazaki M, Iwaya A, Saitoh A. Decline in pediatric admission on an isolated island in the COVID-19 pandemic. Pediatr Int 2022; 64:e15326. [PMID: 36331232 PMCID: PMC9538257 DOI: 10.1111/ped.15326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND A decrease in pediatric hospitalizations during the COVID-19 pandemic has been reported worldwide; however, few studies have examined areas with a limited number of COVID-19 cases, where influenced by viral interference by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is minimum. METHODS We conducted an epidemiological study of pediatric hospitalizations on Sado, an isolated island in Niigata, Japan, that was unique environment with few COVID-19 cases and reliable pediatric admissions monitoring. We compared numbers of monthly hospitalizations and associated diagnoses for the periods April 2016 to March 2020 (pre-pandemic period) and April 2020 to March 2021 (pandemic period). RESULTS Data were analyzed for 1,144 and 128 patients in the pre-pandemic and pandemic periods, respectively. We observed only three adults and no pediatric COVID-19 cases during the pandemic period. The number of monthly admissions was significantly lower in the pandemic period (median [interquartile ranges (IQR)]: 11.0 [7.0-14.0]) than in the pre-pandemic period (23.0 [20.8-28.3]; P < 0.001). Similar decreases were observed for hospitalizations due to respiratory tract infection (P < 0.01), but not for asthma exacerbation (P = 0.15), and gastrointestinal tract infection (P = 0.33). CONCLUSIONS Pediatric hospitalizations during the pandemic significantly decreased on an isolated Japanese island where COVID-19 was not endemic and all pediatric admissions were ascertainable. This observation highlights the impact of decreased travel and increased awareness of infection control measures on pediatric hospitalizations due to infectious diseases, not by the SARS-CoV-2 viral interference.
Collapse
Affiliation(s)
- Takuya Fuse
- Department of Pediatrics, JA Niigata Kouseiren Sado General Hospital, Niigata, Japan
| | - Tatsuki Ikuse
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yuta Aizawa
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Michiko Fuse
- Department of Pediatrics, JA Niigata Kouseiren Sado General Hospital, Niigata, Japan
| | - Fumihiro Goto
- Department of Pediatrics, JA Niigata Kouseiren Sado General Hospital, Niigata, Japan
| | - Minoru Okazaki
- Department of Pediatrics, JA Niigata Kouseiren Sado General Hospital, Niigata, Japan
| | - Atsushi Iwaya
- Department of Pediatrics, Ryotsu Hospital, Niigata, Japan
| | - Akihiko Saitoh
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|