1
|
Enemark MH, Hemmingsen JK, Jensen ML, Kridel R, Ludvigsen M. Molecular Biomarkers in Prediction of High-Grade Transformation and Outcome in Patients with Follicular Lymphoma: A Comprehensive Systemic Review. Int J Mol Sci 2024; 25:11179. [PMID: 39456961 PMCID: PMC11508793 DOI: 10.3390/ijms252011179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
Follicular lymphoma (FL) is the most prevalent indolent B-cell lymphoma entity, often characterized by the t(14;18) BCL2-IGH translocation. The malignancy represents a clinically and biologically highly heterogeneous disease. Most patients have favorable prognoses; however, despite therapeutic advancements, the disease remains incurable, with recurrent relapses or early disease progression. Moreover, transformation to an aggressive histology, most often diffuse large-B-cell lymphoma, remains a critical event in the disease course, which is associated with poor outcomes. Understanding the individual patient's risk of transformation remains challenging, which has motivated much research on novel biomarkers within the past four decades. This review systematically assessed the research on molecular biomarkers in FL transformation and outcome. Following the PRISMA guidelines for systemic reviews, the PubMed database was searched for English articles published from January 1984 through September 2024, yielding 6769 results. The identified publications were carefully screened and reviewed, of which 283 original papers met the inclusion criteria. The included studies focused on investigating molecular biomarkers as predictors of transformation or as prognostic markers of time-related endpoints (survival, progression, etc.). The effects of each biomarker were categorized based on their impact on prognosis or risk of transformation as none, favorable, or inferior. The biomarkers included genetic abnormalities, gene expression, microRNAs, markers of B cells/FL tumor cells, markers of the tumor microenvironment, and soluble biomarkers. This comprehensive review provides an overview of the research conducted in the past four decades, underscoring the persistent challenge in risk anticipation of FL patients.
Collapse
Affiliation(s)
- Marie Hairing Enemark
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (M.H.E.); (J.K.H.); (M.L.J.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Jonas Klejs Hemmingsen
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (M.H.E.); (J.K.H.); (M.L.J.)
| | - Maja Lund Jensen
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (M.H.E.); (J.K.H.); (M.L.J.)
| | - Robert Kridel
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2C4, Canada;
| | - Maja Ludvigsen
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (M.H.E.); (J.K.H.); (M.L.J.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
2
|
Mansourabadi Z, Ariafar A, Chenari N, Hakimellahi H, Vahidi Y, Faghih Z. Clinical and prognostic significance of follicular helper and regulatory T cells in bladder cancer draining lymph nodes. Sci Rep 2024; 14:20358. [PMID: 39223192 PMCID: PMC11369110 DOI: 10.1038/s41598-024-70675-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Follicular helper and regulatory T cells (Tfh/TFR) cells are distinct subsets of CD4+ cells that have been recognized for their critical role in regulating cellular reactions within the germinal centers of lymphoid follicles. In the present study, we aimed to determine the presence and the frequency of these cells in draining lymph nodes of patients with bladder cancer (BC). Forty-six patients with BC who had undergone radical cystectomy and pelvic lymph node dissection were enrolled. Following routine pathological examination, a portion of the dissected lymph nodes was minced to obtain a single-cell suspension. Mononuclear cells were then separated using Ficoll-Hypaque gradient centrifugation, and the samples with proper viability (> 95%) were subjected to further analysis. To phenotype the follicular subsets, cells were stained with appropriate fluorochrome-conjugated antibodies specific for CD4, CXCR5, BCL6, and FOXP3. The cells were then acquired on a four-color flow cytometer. The data were analyzed with the FlowJo software version 10.8.1 package. Our analysis indicated that, on average 37.89 ± 16.36% of CD4+ lymphocytes in draining lymph nodes of patients with BC expressed CXCR5. The majority of them were negative for FOXP3, representing helper subsets (28.73 ± 13.66). A small percent simultaneously expressed BCL6 transcription factor (1.65% ± 1.35), designated as Tfh (CD4+BCL6+CXCR5+FOXP3-). While less than 10% of CD4+ lymphocytes expressed CXCR5 and FOXP3, 1.78 ± 2.54 were also positive for BCL6, known as TFR. Statistical analysis revealed that the frequency of both Tfh and TFR cells was higher in draining lymph nodes of patients with tumor-infiltrated nodes (P = 0.035 and P = 0.079, respectively) compared to those with negative ones. The percentage of these cells was also higher in high-grade tumors compared to low-grade ones (P = 0.031 for both). Our data collectively indicated that however approximately one third of CD4+ lymphocytes expressed CXCR5 and accordingly had the capacity to enter the follicles, less than 2% of them represented Tfh and TFR phenotypes. The percentage of these cells increased in progressed tumors and showed an association with negative prognostic factors.
Collapse
Affiliation(s)
- Zahra Mansourabadi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, P.O. Box: 7134845550, Shiraz, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Ariafar
- Department of Urology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nooshafarin Chenari
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, P.O. Box: 7134845550, Shiraz, Iran
| | - Hossein Hakimellahi
- Department of Urology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yasmin Vahidi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, P.O. Box: 7134845550, Shiraz, Iran
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Zahra Faghih
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, P.O. Box: 7134845550, Shiraz, Iran.
| |
Collapse
|
3
|
Mohammad Piri S, Amin Habibi M, Shool S, Khazaeli Najafabadi M, Ahmadpour S, Alemi F, Aria Nejadghaderi S, Shokri P, Abdi M, Asghari N, Amir Asef-Agah S, Tavakolpour S. Role of T follicular helper cells in autoimmune rheumatic Diseases: A systematic review on immunopathogenesis and response to treatment. Hum Immunol 2024; 85:110838. [PMID: 38970880 DOI: 10.1016/j.humimm.2024.110838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/09/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND T follicular helper (Tfh) cells are a subdivision of T helper cells involved in antigen-specific B cell immunity. Tfh cells play an essential role in the interaction of T cells/B cells in the germinal centers (GC), and dysregulation of Tfh actions can offer pathogenic autoantibody formation and lead to the development of autoimmune diseases. This study seeks to evaluate changes in Tfh frequency and its related cytokines in autoimmune disease, its association with disease phase, severity, prognosis, and the effect of immunosuppressive treatment on the Tfh population. METHOD The study adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 Statement. Electronic databases, including PubMed, Scopus, Web of Science, and Embase, were systematically searched for potentially eligible studies up to January 1, 2024. RESULTS We identified 4998 articles in the initial search, from which 1686 similar titles were removed. A total of 3312 articles were initially screened, and 3051 articles were excluded by title/abstract screening. A total of 261 studies were considered for full-text assessment, and 205 articles were excluded by reason. Finally, a total of 56 studies were included in our review. CONCLUSION The population of Tfh cells is generally higher in autoimmune diseases versus Health control. Moreover, the number of Tfh cells is associated with the disease severity and can be considered for determining the prognosis of studies. Also, peripheral blood circulating Tfh (cTfh) cells are an available sample that can be used as an indicator for diagnosing diseases.
Collapse
Affiliation(s)
- Seyed Mohammad Piri
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Amin Habibi
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sina Shool
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Sajjad Ahmadpour
- Patient Safety Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Fakhroddin Alemi
- School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Seyed Aria Nejadghaderi
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Pourya Shokri
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohtaram Abdi
- Student Research Committe, Faculty of Medicine, North Khorasan University of Medical Sciences, Bonjnurd, Iran.
| | - Negin Asghari
- Student Research Committe, Faculty of Medicine, North Khorasan University of Medical Sciences, Bonjnurd, Iran.
| | - Seyed Amir Asef-Agah
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | |
Collapse
|
4
|
Zhao L, Jin S, Wang S, Zhang Z, Wang X, Chen Z, Wang X, Huang S, Zhang D, Wu H. Tertiary lymphoid structures in diseases: immune mechanisms and therapeutic advances. Signal Transduct Target Ther 2024; 9:225. [PMID: 39198425 PMCID: PMC11358547 DOI: 10.1038/s41392-024-01947-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Tertiary lymphoid structures (TLSs) are defined as lymphoid aggregates formed in non-hematopoietic organs under pathological conditions. Similar to secondary lymphoid organs (SLOs), the formation of TLSs relies on the interaction between lymphoid tissue inducer (LTi) cells and lymphoid tissue organizer (LTo) cells, involving multiple cytokines. Heterogeneity is a distinguishing feature of TLSs, which may lead to differences in their functions. Growing evidence suggests that TLSs are associated with various diseases, such as cancers, autoimmune diseases, transplant rejection, chronic inflammation, infection, and even ageing. However, the detailed mechanisms behind these clinical associations are not yet fully understood. The mechanisms by which TLS maturation and localization affect immune function are also unclear. Therefore, it is necessary to enhance the understanding of TLS development and function at the cellular and molecular level, which may allow us to utilize them to improve the immune microenvironment. In this review, we delve into the composition, formation mechanism, associations with diseases, and potential therapeutic applications of TLSs. Furthermore, we discuss the therapeutic implications of TLSs, such as their role as markers of therapeutic response and prognosis. Finally, we summarize various methods for detecting and targeting TLSs. Overall, we provide a comprehensive understanding of TLSs and aim to develop more effective therapeutic strategies.
Collapse
Affiliation(s)
- Lianyu Zhao
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Song Jin
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyao Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Zhe Zhang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Xuan Wang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Zhanwei Chen
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Xiaohui Wang
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyun Huang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Dongsheng Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Haiwei Wu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| |
Collapse
|
5
|
Merkenschlager J, Berz RM, Ramos V, Uhlig M, MacLean AJ, Nowosad CR, Oliveira TY, Nussenzweig MC. Continually recruited naïve T cells contribute to the follicular helper and regulatory T cell pools in germinal centers. Nat Commun 2023; 14:6944. [PMID: 37907454 PMCID: PMC10618265 DOI: 10.1038/s41467-023-41880-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/20/2023] [Indexed: 11/02/2023] Open
Abstract
Follicular helper T cells (TFH) mediate B cell selection and clonal expansion in germinal centers (GCs), and follicular regulatory T cells (TFR) prevent the emergence of self-reactive B cells and help to extinguish the reaction. Here we show that GC reactions continually recruit T cells from both the naïve conventional and naive thymic regulatory T cell (Treg) repertoires. In the early GC, newly recruited T cells develop into TFH, whereas cells entering during the contraction phase develop into TFR cells that contribute to GC dissolution. The TFR fate decision is associated with decreased antigen availability and is modulated by slow antigen delivery or mRNA vaccination. Thus, invasion of ongoing GCs by newly developing TFH and TFR helps remodel the GC based on antigen availability.
Collapse
Affiliation(s)
- Julia Merkenschlager
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA.
| | - Riza-Maria Berz
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Victor Ramos
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Maximilian Uhlig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Andrew J MacLean
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Carla R Nowosad
- Translational Immunology Center, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, 10065, USA
| |
Collapse
|
6
|
Xuan X, Ye C, Zhao J, Shen F, Chen Y, Liu J. Dysregulated Tfr/Tfh2 cells in patients with polycystic ovarian syndrome. J Reprod Immunol 2023; 159:104137. [PMID: 37625338 DOI: 10.1016/j.jri.2023.104137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
Recent research revealed the pathogenic role of B cells in the pathogenesis of polycystic ovary syndrome (PCOS), while the Tfh cell plays a critical role in the B cell mediated autoantibody production and humoral immunity, but had not been investigated in PCOS patients. The frequency of Tfh and B cell subsets (Tfh1, Tfh2, Tfh17, naïve B, memory B, and plasma cells) in the peripheral blood of 21 PCOS patients and 15 healthy controls were investigated by flow cytometry. And the levels of follicle-stimulating hormone, luteinizing hormone, testosterone, prolactin and estradiol progesterone were measured by using the immunoluminescence method. Also, the associations between these hormone levels and Tfh cell subsets or B cell subsets were analyzed. No significant difference was observed in total Tfh cells between 21 PCOS patients and 15 healthy controls (p > 0.05). But the percentages of Tfh2 and plasma cells were significantly higher in 21 PCOS patients compared to 15 healthy controls (p < 0.05). In contrast, the frequency of Tfr cells and Tfr/Tfh2 ratio were significantly lower than healthy controls (p < 0.01). Importantly, among these cells, only the percentage of Tfh2 cells was positively correlated with the levels of testosterone (r = 0.513, p = 0.018). And the percentage of Tfr cells and Tfr/Tfh2 ratio were also positively correlated with the levels of testosterone (r = 0.567, p = 0.007; r = 0.434, p = 0.05) and prolactin (r = 0.511, p = 0.018; r = 0.490, p = 0.024). These new findings provide unique insights into dysregulated Tfh/Tfr cells in mediating the immunopathogenesis of PCOS patients.
Collapse
Affiliation(s)
- Xiaofang Xuan
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Chunmei Ye
- Department of Clinical Laboratory, Jinhua Municipal Central Hospital, Jinhua Hospital of Zhejiang University, Jinhua, China
| | - Jiwei Zhao
- Department of Laboratory Medicine, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Fuping Shen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yanxia Chen
- Department of Rheumatology and Immunology, South China Hospital, Medical School, Shenzhen University, Shenzhen, China.
| | - Jinlin Liu
- Department of Clinical Laboratory, South China Hospital, Medical School, Shenzhen University, Shenzhen, China.
| |
Collapse
|
7
|
Subburayalu J. Immune surveillance and humoral immune responses in kidney transplantation - A look back at T follicular helper cells. Front Immunol 2023; 14:1114842. [PMID: 37503334 PMCID: PMC10368994 DOI: 10.3389/fimmu.2023.1114842] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/22/2023] [Indexed: 07/29/2023] Open
Abstract
T follicular helper cells comprise a specialized, heterogeneous subset of immune-competent T helper cells capable of influencing B cell responses in lymphoid tissues. In physiology, for example in response to microbial challenges or vaccination, this interaction chiefly results in the production of protecting antibodies and humoral memory. In the context of kidney transplantation, however, immune surveillance provided by T follicular helper cells can take a life of its own despite matching of human leukocyte antigens and employing the latest immunosuppressive regiments. This puts kidney transplant recipients at risk of subclinical and clinical rejection episodes with a potential risk for allograft loss. In this review, the current understanding of immune surveillance provided by T follicular helper cells is briefly described in physiological responses to contrast those pathological responses observed after kidney transplantation. Sensitization of T follicular helper cells with the subsequent emergence of detectable donor-specific human leukocyte antigen antibodies, non-human leukocyte antigen antibodies their implication for kidney transplantation and lessons learnt from other transplantation "settings" with special attention to antibody-mediated rejection will be addressed.
Collapse
Affiliation(s)
- Julien Subburayalu
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Center for Regenerative Therapies (CRTD), Technische Universität Dresden, Dresden, Germany
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
8
|
Chen Q, Dent AL. Nonbinary Roles for T Follicular Helper Cells and T Follicular Regulatory Cells in the Germinal Center Response. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:15-22. [PMID: 37339403 DOI: 10.4049/jimmunol.2200953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/28/2023] [Indexed: 06/22/2023]
Abstract
Development of high-affinity Abs in the germinal center (GC) is dependent on a specialized subset of T cells called "T follicular helper" (TFH) cells that help select Ag-specific B cells. A second T cell subset, T follicular regulatory (TFR) cells, can act as repressors of the GC and Ab response but can also provide a helper function for GC B cells in some contexts. Recent studies showed that, apart from their traditional helper role, TFH cells can also act as repressors of the Ab response, particularly for IgE responses. We review how both TFH and TFR cells express helper and repressor factors that coordinately regulate the Ab response and how the line between these two subsets is less clear than initially thought. Thus, TFH and TFR cells are interconnected and have "nonbinary" functions. However, many questions remain about how these critical cells control the Ab response.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Alexander L Dent
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
9
|
Cela L, Brindisi G, Gravina A, Pastore F, Semeraro A, Bringheli I, Marchetti L, Morelli R, Cinicola B, Capponi M, Gori A, Pignataro E, Piccioni MG, Zicari AM, Anania C. Molecular Mechanism and Clinical Effects of Probiotics in the Management of Cow's Milk Protein Allergy. Int J Mol Sci 2023; 24:9781. [PMID: 37372929 DOI: 10.3390/ijms24129781] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Cow's milk protein allergy (CMPA) is the most common food allergy (FA) in infancy, affecting approximately 2% of children under 4 years of age. According to recent studies, the increasing prevalence of FAs can be associated with changes in composition and function of gut microbiota or "dysbiosis". Gut microbiota regulation, mediated by probiotics, may modulate the systemic inflammatory and immune responses, influencing the development of allergies, with possible clinical benefits. This narrative review collects the actual evidence of probiotics' efficacy in the management of pediatric CMPA, with a specific focus on the molecular mechanisms of action. Most studies included in this review have shown a beneficial effect of probiotics in CMPA patients, especially in terms of achieving tolerance and improving symptoms.
Collapse
Affiliation(s)
- Ludovica Cela
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Giulia Brindisi
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Alessandro Gravina
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Francesca Pastore
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Antonio Semeraro
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Ivana Bringheli
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Lavinia Marchetti
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Rebecca Morelli
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Bianca Cinicola
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Martina Capponi
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Alessandra Gori
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Elia Pignataro
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Maria Grazia Piccioni
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Anna Maria Zicari
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Caterina Anania
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
10
|
Yoon YM, Velez TE, Upadhyay V, Vazquez SE, Lee CT, Selvan KC, Law CS, Blaine KM, Hollinger MK, Decker DC, Clark MR, Strek ME, Guzy RD, Adegunsoye A, Noth I, Wolters PJ, Anderson M, DeRisi JL, Shum AK, Sperling AI. Antigenic responses are hallmarks of fibrotic interstitial lung diseases independent of underlying etiologies. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.08.23289640. [PMID: 37214861 PMCID: PMC10197719 DOI: 10.1101/2023.05.08.23289640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Interstitial lung diseases (ILD) are heterogeneous conditions that may lead to progressive fibrosis and death of affected individuals. Despite diversity in clinical manifestations, enlargement of lung-associated lymph nodes (LLN) in fibrotic ILD patients predicts worse survival. Herein, we revealed a common adaptive immune landscape in LLNs of all ILD patients, characterized by highly activated germinal centers and antigen-activated T cells including regulatory T cells (Tregs). In support of these findings, we identified serum reactivity to 17 candidate auto-antigens in ILD patients through a proteome-wide screening using phage immunoprecipitation sequencing. Autoantibody responses to actin binding LIM protein 1 (ABLIM1), a protein highly expressed in aberrant basaloid cells of fibrotic lungs, were correlated with LLN frequencies of T follicular helper cells and Tregs in ILD patients. Together, we demonstrate that end-stage ILD patients have converging immune mechanisms, in part driven by antigen-specific immune responses, which may contribute to disease progression.
Collapse
Affiliation(s)
- Young me Yoon
- University of Chicago, Department of Medicine, Chicago, IL 60637
| | - Tania E. Velez
- University of Virginia, Department of Medicine, Charlottesville, VA 22908
| | - Vaibhav Upadhyay
- University of California San Francisco, Department of Medicine, San Francisco, CA 94143
| | - Sara E. Vazquez
- University of California San Francisco and Chan Zuckerberg Biohub, San Francisco, CA 94158
| | - Cathryn T. Lee
- University of Chicago, Department of Medicine, Chicago, IL 60637
| | | | - Christopher S. Law
- University of California San Francisco, Department of Medicine, San Francisco, CA 94143
| | - Kelly M. Blaine
- University of Chicago, Department of Medicine, Chicago, IL 60637
| | - Maile K. Hollinger
- University of Chicago, Department of Medicine, Chicago, IL 60637
- University of Virginia, Department of Medicine, Charlottesville, VA 22908
| | - Donna C. Decker
- University of Chicago, Department of Medicine, Chicago, IL 60637
| | - Marcus R. Clark
- University of Chicago, Department of Medicine, Chicago, IL 60637
| | - Mary E. Strek
- University of Chicago, Department of Medicine, Chicago, IL 60637
| | - Robert D. Guzy
- University of Wisconsin at Madison, Department of Medicine, Madison, WI 53792
| | | | - Imre Noth
- University of Virginia, Department of Medicine, Charlottesville, VA 22908
| | - Paul J. Wolters
- University of California San Francisco, Department of Medicine, San Francisco, CA 94143
| | - Mark Anderson
- University of California San Francisco, Department of Medicine, San Francisco, CA 94143
| | - Joseph L. DeRisi
- University of California San Francisco and Chan Zuckerberg Biohub, San Francisco, CA 94158
| | - Anthony K. Shum
- University of California San Francisco, Department of Medicine, San Francisco, CA 94143
| | - Anne I. Sperling
- University of Chicago, Department of Medicine, Chicago, IL 60637
- University of Virginia, Department of Medicine, Charlottesville, VA 22908
| |
Collapse
|
11
|
Deligiorgi MV, Trafalis DT. A Concerted Vision to Advance the Knowledge of Diabetes Mellitus Related to Immune Checkpoint Inhibitors. Int J Mol Sci 2023; 24:ijms24087630. [PMID: 37108792 PMCID: PMC10146255 DOI: 10.3390/ijms24087630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The rubric of immune-related (ir) diabetes mellitus (DM) (irDM) encompasses various hyperglycemic disorders related to immune checkpoint inhibitors (ICPis). Beyond sharing similarities with conventional DM, irDM is a distinct, yet important, entity. The present narrative review provides a comprehensive overview of the literature regarding irDM published in major databases from January 2018 until January 2023. Initially considered rare, irDM is increasingly being reported. To advance the knowledge of irDM, the present review suggests a concerted vision comprising two intertwined aspects: a scientific-centered and a patient-centered view. The scientific-centered aspect addresses the pathophysiology of irDM, integrating: (i) ICPi-induced pancreatic islet autoimmunity in genetically predisposed patients; (ii) altered gut microbiome; (iii) involvement of exocrine pancreas; (iv) immune-related acquired generalized lipodystrophy. The patient-centered aspect is both nurtured by and nurturing the four pillars of the scientific-centered aspect: awareness, diagnosis, treatment, and monitoring of irDM. The path forward is a multidisciplinary initiative towards: (i) improved characterization of the epidemiological, clinical, and immunological profile of irDM; (ii) standardization of reporting, management, and surveillance protocols for irDM leveraging global registries; (iii) patient stratification according to personalized risk for irDM; (iv) new treatments for irDM; and (v) uncoupling ICPi efficacy from immunotoxicity.
Collapse
Affiliation(s)
- Maria V Deligiorgi
- Department of Pharmacology-Clinical Pharmacology Unit, Faculty of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios T Trafalis
- Department of Pharmacology-Clinical Pharmacology Unit, Faculty of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
12
|
Long A, Kleiner A, Looney RJ. Immune dysregulation. J Allergy Clin Immunol 2023; 151:70-80. [PMID: 36608984 DOI: 10.1016/j.jaci.2022.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 01/05/2023]
Abstract
The understanding of immune dysregulation in many different diseases continues to grow. There is increasing evidence that altered microbiome and gut barrier dysfunction contribute to systemic inflammation in patients with primary immunodeficiency and in patients with rheumatic disease. Recent research provides insight into the process of induction and maturation of pathogenic age-associated B cells and highlights the role of age-associated B cells in creating tissue inflammation. T follicular regulatory cells are shown to help maintain B-cell tolerance, and therapeutic approaches to increase or promote T follicular regulatory cells may help prevent or decrease immune dysregulation. Meanwhile, novel studies of systemic-onset juvenile idiopathic arthritis reveal a strong HLA association with interstitial lung disease and identify key aspects of the pathogenesis of macrophage activation syndrome. Studies of hyperinflammatory syndromes, including the recently described multisystem inflammatory syndrome of children, characterize similarities and differences in cytokine profiles and T-cell activation. This review focuses on recent advances in the understanding of immune dysregulation and describes potential key factors that may function as biomarkers for disease or targets for therapeutic interventions. Future trials are necessary to address the many remaining questions with regards to pathogenesis, diagnosis, and treatment of autoimmune, inflammatory, and immunodeficiency syndromes.
Collapse
Affiliation(s)
- Andrew Long
- Allergy Immunology Rheumatology Division, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Anatole Kleiner
- Allergy Immunology Rheumatology Division, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - R John Looney
- Allergy Immunology Rheumatology Division, University of Rochester School of Medicine and Dentistry, Rochester, NY.
| |
Collapse
|
13
|
Heinen N, Marheinecke CS, Bessen C, Blazquez-Navarro A, Roch T, Stervbo U, Anft M, Plaza-Sirvent C, Busse S, Klöhn M, Schrader J, Vidal Blanco E, Urlaub D, Watzl C, Hoffmann M, Pöhlmann S, Tenbusch M, Steinmann E, Todt D, Hagenbeck C, Zimmer G, Schmidt WE, Quast DR, Babel N, Schmitz I, Pfänder S. In-depth analysis of T cell immunity and antibody responses in heterologous prime-boost-boost vaccine regimens against SARS-CoV-2 and Omicron variant. Front Immunol 2022; 13:1062210. [PMID: 36618413 PMCID: PMC9811676 DOI: 10.3389/fimmu.2022.1062210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
With the emergence of novel Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) Variants of Concern (VOCs), vaccination studies that elucidate the efficiency and effectiveness of a vaccination campaign are critical to assess the durability and the protective immunity provided by vaccines. SARS-CoV-2 vaccines have been found to induce robust humoral and cell-mediated immunity in individuals vaccinated with homologous vaccination regimens. Recent studies also suggest improved immune response against SARS-CoV-2 when heterologous vaccination strategies are employed. Yet, few data exist on the extent to which heterologous prime-boost-boost vaccinations with two different vaccine platforms have an impact on the T cell-mediated immune responses with a special emphasis on the currently dominantly circulating Omicron strain. In this study, we collected serum and peripheral blood mononuclear cells (PBMCs) from 57 study participants of median 35-year old's working in the health care field, who have received different vaccination regimens. Neutralization assays revealed robust but decreased neutralization of Omicron VOC, including BA.1 and BA.4/5, compared to WT SARS-CoV-2 in all vaccine groups and increased WT SARS-CoV-2 binding and neutralizing antibodies titers in homologous mRNA prime-boost-boost study participants. By investigating cytokine production, we found that homologous and heterologous prime-boost-boost-vaccination induces a robust cytokine response of CD4+ and CD8+ T cells. Collectively, our results indicate robust humoral and T cell mediated immunity against Omicron in homologous and heterologous prime-boost-boost vaccinated study participants, which might serve as a guide for policy decisions.
Collapse
Affiliation(s)
- Natalie Heinen
- Department of Molecular & Medical Virology, Ruhr University Bochum, Bochum, Germany
| | | | - Clara Bessen
- Department of Molecular Immunology, Ruhr University Bochum, Bochum, Germany
| | - Arturo Blazquez-Navarro
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital, University Hospital of the Ruhr University Bochum, Herne, Germany
- BIH Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Toralf Roch
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital, University Hospital of the Ruhr University Bochum, Herne, Germany
- BIH Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Ulrik Stervbo
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital, University Hospital of the Ruhr University Bochum, Herne, Germany
| | - Moritz Anft
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital, University Hospital of the Ruhr University Bochum, Herne, Germany
| | | | - Sandra Busse
- Department of Molecular Immunology, Ruhr University Bochum, Bochum, Germany
| | - Mara Klöhn
- Department of Molecular & Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Jil Schrader
- Department of Molecular & Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Elena Vidal Blanco
- Department of Molecular & Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Doris Urlaub
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors (IfADo) at TU Dortmund, Dortmund, Germany
| | - Carsten Watzl
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors (IfADo) at TU Dortmund, Dortmund, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center, Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, Göttingen, Germany
| | - Matthias Tenbusch
- Institut für klinische und molekulare Virologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Eike Steinmann
- Department of Molecular & Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Daniel Todt
- Department of Molecular & Medical Virology, Ruhr University Bochum, Bochum, Germany
- European Virus Bioinformatics Center, Jena, Germany
| | - Carsten Hagenbeck
- Clinic for Gynecology and Obstetrics, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Gert Zimmer
- Clinic for Gynecology and Obstetrics, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Daniel Robert Quast
- Department of Medicine I, St. Josef-Hospital Bochum, Ruhr University Bochum, Bochum, Germany
| | - Nina Babel
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital, University Hospital of the Ruhr University Bochum, Herne, Germany
- BIH Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Ingo Schmitz
- Department of Molecular Immunology, Ruhr University Bochum, Bochum, Germany
| | - Stephanie Pfänder
- Department of Molecular & Medical Virology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
14
|
Grydziuszko E, Phelps A, Bruton K, Jordana M, Koenig JFE. Heterogeneity, subsets, and plasticity of T follicular helper cells in allergy. J Allergy Clin Immunol 2022; 150:990-998. [PMID: 36070826 DOI: 10.1016/j.jaci.2022.08.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/31/2022] [Accepted: 08/16/2022] [Indexed: 10/14/2022]
Abstract
Antibody responses are critical for protection against pathogens. However, diseases such as allergic rhinitis or food allergy result from aberrant production of IgE antibodies against otherwise innocuous environmental antigens. The production of allergen-specific IgE requires interaction between B cells and CD4+ T cells, and a granular understanding of these interactions is required to develop novel therapies for allergic disease. CD4+ T cells are exceptionally heterogeneous in their transcriptional, epigenetic, and proteomic profiles, which poses significant challenges when attempting to define subsets relevant to the study of allergy among a continuum of cells. Defining subsets such as the T follicular helper (TFH) cell cluster provides a shorthand to understand the functions of CD4+ T cells in antibody production and supports mechanistic experimentation for hypothesis-driven discovery. With a focus on allergic disease, this Rostrum article broadly discusses heterogeneity among CD4+ T cells and provides a rationale for subdividing TFH cells into both functional and cytokine-skewed subsets. Further, it highlights the plasticity demonstrated by TFH cells during the primary response and after recall, and it explores the possibility of harnessing this plasticity to reprogram immunity for therapeutic benefit in allergic disease.
Collapse
Affiliation(s)
- Emily Grydziuszko
- Department of Medicine, Schroeder Allergy and Immunology Research Institute, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Allyssa Phelps
- Department of Medicine, Schroeder Allergy and Immunology Research Institute, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Kelly Bruton
- Department of Medicine, Schroeder Allergy and Immunology Research Institute, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Manel Jordana
- Department of Medicine, Schroeder Allergy and Immunology Research Institute, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Joshua F E Koenig
- Department of Medicine, Schroeder Allergy and Immunology Research Institute, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
15
|
Rossi A, Belmonte B, Carnevale S, Liotti A, De Rosa V, Jaillon S, Piconese S, Tripodo C. Stromal and Immune Cell Dynamics in Tumor Associated Tertiary Lymphoid Structures and Anti-Tumor Immune Responses. Front Cell Dev Biol 2022; 10:933113. [PMID: 35874810 PMCID: PMC9304551 DOI: 10.3389/fcell.2022.933113] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Tertiary lymphoid structures (TLS) are ectopic lymphoid organs that have been observed in chronic inflammatory conditions including cancer, where they are thought to exert a positive effect on prognosis. Both immune and non-immune cells participate in the genesis of TLS by establishing complex cross-talks requiring both soluble factors and cell-to-cell contact. Several immune cell types, including T follicular helper cells (Tfh), regulatory T cells (Tregs), and myeloid cells, may accumulate in TLS, possibly promoting or inhibiting their development. In this manuscript, we propose to review the available evidence regarding specific aspects of the TLS formation in solid cancers, including 1) the role of stromal cell composition and architecture in the recruitment of specific immune subpopulations and the formation of immune cell aggregates; 2) the contribution of the myeloid compartment (macrophages and neutrophils) to the development of antibody responses and the TLS formation; 3) the immunological and metabolic mechanisms dictating recruitment, expansion and plasticity of Tregs into T follicular regulatory cells, which are potentially sensitive to immunotherapeutic strategies directed to costimulatory receptors or checkpoint molecules.
Collapse
Affiliation(s)
- Alessandra Rossi
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care “G. D’Alessandro”, University of Palermo, Palermo, Italy
| | | | - Antonietta Liotti
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche, Naples, Italy
| | - Veronica De Rosa
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche, Naples, Italy
| | - Sebastien Jaillon
- RCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Silvia Piconese
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
- IRCCS Fondazione Santa Lucia, Unità di Neuroimmunologia, Rome, Italy
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Rome, Italy
- *Correspondence: Silvia Piconese,
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care “G. D’Alessandro”, University of Palermo, Palermo, Italy
- Histopathology Unit, FIRC Institute of Molecular Oncology (IFOM), Milan, Italy
| |
Collapse
|
16
|
Akama-Garren EH, Carroll MC. T Cell Help in the Autoreactive Germinal Center. Scand J Immunol 2022; 95:e13192. [PMID: 35587582 DOI: 10.1111/sji.13192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022]
Abstract
The germinal center serves as a site of B cell selection and affinity maturation, critical processes for productive adaptive immunity. In autoimmune disease tolerance is broken in the germinal center reaction, leading to production of autoreactive B cells that may propagate disease. Follicular T cells are crucial regulators of this process, providing signals necessary for B cell survival in the germinal center. Here we review the emerging roles of follicular T cells in the autoreactive germinal center. Recent advances in immunological techniques have allowed study of the gene expression profiles and repertoire of follicular T cells at unprecedented resolution. These studies provide insight into the potential role follicular T cells play in preventing or facilitating germinal center loss of tolerance. Improved understanding of the mechanisms of T cell help in autoreactive germinal centers provides novel therapeutic targets for diseases of germinal center dysfunction.
Collapse
Affiliation(s)
- Elliot H Akama-Garren
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
| | - Michael C Carroll
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Mayberry CL, Logan NA, Wilson JJ, Chang CH. Providing a Helping Hand: Metabolic Regulation of T Follicular Helper Cells and Their Association With Disease. Front Immunol 2022; 13:864949. [PMID: 35493515 PMCID: PMC9047778 DOI: 10.3389/fimmu.2022.864949] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/25/2022] [Indexed: 01/02/2023] Open
Abstract
T follicular helper (Tfh) cells provide support to B cells upon arrival in the germinal center, and thus are critical for the generation of a robust adaptive immune response. Tfh express specific transcription factors and cellular receptors including Bcl6, CXCR5, PD-1, and ICOS, which are critical for homing and overall function. Generally, the induction of an immune response is tightly regulated. However, deviation during this process can result in harmful autoimmunity or the inability to successfully clear pathogens. Recently, it has been shown that Tfh differentiation, activation, and proliferation may be linked with the cellular metabolic state. In this review we will highlight recent discoveries in Tfh differentiation and explore how these cells contribute to functional immunity in disease, including autoimmune-related disorders, cancer, and of particular emphasis, during infection.
Collapse
Affiliation(s)
| | | | | | - Chih-Hao Chang
- The Jackson Laboratory, Bar Harbor, ME, United States
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
- *Correspondence: Chih-Hao Chang,
| |
Collapse
|
18
|
Gowthaman U, Sikder S, Lee D, Fisher C. T follicular helper cells in IgE-mediated pathologies. Curr Opin Immunol 2022; 74:133-139. [DOI: 10.1016/j.coi.2021.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 12/23/2022]
|