1
|
Dai X, Fan Y, Zhao X. Systemic lupus erythematosus: updated insights on the pathogenesis, diagnosis, prevention and therapeutics. Signal Transduct Target Ther 2025; 10:102. [PMID: 40097390 PMCID: PMC11914703 DOI: 10.1038/s41392-025-02168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/26/2024] [Accepted: 01/26/2025] [Indexed: 03/19/2025] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic inflammatory illness with heterogeneous clinical manifestations covering multiple organs. Diversified types of medications have been shown effective for alleviating SLE syndromes, ranging from cytokines, antibodies, hormones, molecular inhibitors or antagonists, to cell transfusion. Drugs developed for treating other diseases may benefit SLE patients, and agents established as SLE therapeutics may be SLE-inductive. Complexities regarding SLE therapeutics render it essential and urgent to identify the mechanisms-of-action and pivotal signaling axis driving SLE pathogenesis, and to establish innovative SLE-targeting approaches with desirable therapeutic outcome and safety. After introducing the research history of SLE and its epidemiology, we categorized primary determinants driving SLE pathogenesis by their mechanisms; combed through current knowledge on SLE diagnosis and grouped them by disease onset, activity and comorbidity; introduced the genetic, epigenetic, hormonal and environmental factors predisposing SLE; and comprehensively categorized preventive strategies and available SLE therapeutics according to their functioning mechanisms. In summary, we proposed three mechanisms with determinant roles on SLE initiation and progression, i.e., attenuating the immune system, restoring the cytokine microenvironment homeostasis, and rescuing the impaired debris clearance machinery; and provided updated insights on current understandings of SLE regarding its pathogenesis, diagnosis, prevention and therapeutics, which may open an innovative avenue in the fields of SLE management.
Collapse
Affiliation(s)
- Xiaofeng Dai
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China.
| | - Yuting Fan
- Tissue Engineering and Stem Cell Experiment Center, Tumor Immunotherapy Technology Engineering Research Center, Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550004, P. R. China
- Department of Gastroenterology, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, P. R. China
| | - Xing Zhao
- Tissue Engineering and Stem Cell Experiment Center, Tumor Immunotherapy Technology Engineering Research Center, Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550004, P. R. China.
| |
Collapse
|
2
|
Parodi E, Novi M, Bottino P, La Porta E, Merlotti G, Castello LM, Gotta F, Rocchetti A, Quaglia M. The Complex Role of Gut Microbiota in Systemic Lupus Erythematosus and Lupus Nephritis: From Pathogenetic Factor to Therapeutic Target. Microorganisms 2025; 13:445. [PMID: 40005809 PMCID: PMC11858628 DOI: 10.3390/microorganisms13020445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/07/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
The role of gut microbiota (GM) and intestinal dysbiosis in triggering the onset and/or modulating the severity and progression of lupus nephritis (LN) has been the object of intense research over the last few years. Some alterations at the phyla level, such as the abundance of Proteobacteria and reduction in Firmicutes/Bacteroidetes (F/B) ratio and in α-diversity have been consistently reported in systemic lupus erythematosus (SLE), whereas a more specific role has been ascribed to some species (Bacteroides thetaiotaomicron and Ruminococcus gnavus) in LN. Underlying mechanisms include microbial translocation through a "leaky gut" and subsequent molecular mimicry, immune dysregulation (alteration of IFNγ levels and of balance between Treg and Th17 subsets), and epigenetic interactions. Levels of bacterial metabolites, such as butyrate and other short-chain fatty acids (SCFAs), appear to play a key role in modulating LN. Beyond bacterial components of GM, virome and mycobiome are also increasingly recognized as important players in the modulation of an immune response. On the other hand, microbiota-based therapy appears promising and includes diet, prebiotics, probiotics, symbiotics, and fecal microbiota transplantation (FMT). The modulation of microbiota could correct critical alterations, such as F/B ratio and Treg/Th17 imbalance, and blunt production of autoantibodies and renal damage. Despite current limits, GM is emerging as a powerful environmental factor that could be harnessed to interfere with key mechanisms leading to SLE, preventing flares and organ damage, including LN. The aim of this review is to provide a state-of-the-art analysis of the role of GM in triggering and modulating SLE and LN on the one hand, while exploring possible therapeutic manipulation of GM to control the disease on the other hand.
Collapse
Affiliation(s)
- Emanuele Parodi
- Nephrology and Dialysis Unit, SS. Antonio e Biagio e Cesare Arrigo University Hospital, 15121 Alessandria, Italy;
| | - Marialuisa Novi
- Gastroenterology Unit, SS. Antonio e Biagio e Cesare Arrigo University Hospital, 15121 Alessandria, Italy;
| | - Paolo Bottino
- Microbiology Unit, SS. Antonio e Biagio e Cesare Arrigo University Hospital, 15121 Alessandria, Italy; (F.G.); (A.R.)
| | - Edoardo La Porta
- Nephrology and Dialysis Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Guido Merlotti
- Department of Primary Care, Azienda Socio Sanitaria Territoriale (ASST) of Pavia, 27100 Pavia, Italy;
| | - Luigi Mario Castello
- Internal Medicine Unit, SS. Antonio e Biagio e Cesare Arrigo University Hospital, 15121 Alessandria, Italy;
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Franca Gotta
- Microbiology Unit, SS. Antonio e Biagio e Cesare Arrigo University Hospital, 15121 Alessandria, Italy; (F.G.); (A.R.)
| | - Andrea Rocchetti
- Microbiology Unit, SS. Antonio e Biagio e Cesare Arrigo University Hospital, 15121 Alessandria, Italy; (F.G.); (A.R.)
| | - Marco Quaglia
- Nephrology and Dialysis Unit, SS. Antonio e Biagio e Cesare Arrigo University Hospital, 15121 Alessandria, Italy;
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
| |
Collapse
|
3
|
Yi C, Huang S, Zhang W, Guo L, Xia T, Huang F, Yan Y, Li H, Yu B. Synergistic interactions between gut microbiota and short chain fatty acids: Pioneering therapeutic frontiers in chronic disease management. Microb Pathog 2025; 199:107231. [PMID: 39681288 DOI: 10.1016/j.micpath.2024.107231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 12/18/2024]
Abstract
Microorganisms in the gut play a pivotal role in human health, influencing various pathophysiological processes. Certain microorganisms are particularly essential for maintaining intestinal homeostasis, reducing inflammation, supporting nervous system function, and regulating metabolic processes. Short-chain fatty acids (SCFAs) are a subset of fatty acids produced by the gut microbiota (GM) during the fermentation of indigestible polysaccharides. The interaction between GM and SCFAs is inherently bidirectional: the GM not only shapes SCFAs composition and metabolism but SCFAs also modulate microbiota's diversity, stability, growth, proliferation, and metabolism. Recent research has shown that GM and SCFAs communicate through various pathways, mainly involving mechanisms related to inflammation and immune responses, intestinal barrier function, the gut-brain axis, and metabolic regulation. An imbalance in GM and SCFA homeostasis can lead to the development of several chronic diseases, including inflammatory bowel disease, colorectal cancer, systemic lupus erythematosus, Alzheimer's disease, and type 2 diabetes mellitus. This review explores the synergistic interactions between GM and SCFAs, and how these interactions directly or indirectly influence the onset and progression of various diseases through the regulation of the mechanisms mentioned above.
Collapse
Affiliation(s)
- Chunmei Yi
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shanshan Huang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wenlan Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lin Guo
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tong Xia
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Fayin Huang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yijing Yan
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Huhu Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Bin Yu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
4
|
Lin X, Yu Z, Liu Y, Li C, Hu H, Hu J, Liu M, Yang Q, Gu P, Li J, Nandakumar KS, Hu G, Zhang Q, Chen X, Ma H, Huang W, Wang G, Wang Y, Huang L, Wu W, Liu N, Zhang C, Liu X, Zheng L, Chen P. Gut-X axis. IMETA 2025; 4:e270. [PMID: 40027477 PMCID: PMC11865426 DOI: 10.1002/imt2.270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 03/05/2025]
Abstract
Recent advances in understanding the modulatory functions of gut and gut microbiota on human diseases facilitated our focused attention on the contribution of the gut to the pathophysiological alterations of many extraintestinal organs, including the liver, heart, brain, lungs, kidneys, bone, skin, reproductive, and endocrine systems. In this review, we applied the "gut-X axis" concept to describe the linkages between the gut and other organs and discussed the latest findings related to the "gut-X axis," including the underlying modulatory mechanisms and potential clinical intervention strategies.
Collapse
Affiliation(s)
- Xu Lin
- Department of Endocrinology and MetabolismShunde Hospital of Southern Medical University (The First People's Hospital of Shunde)Foshan City528308China
| | - Zuxiang Yu
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Yang Liu
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Changzhou Li
- Department of Plastic and Aesthetic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Hui Hu
- Department of Laboratory Medicine, Shanghai East HospitalTongji University School of MedicineShanghai200123China
| | - Jia‐Chun Hu
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical CollegeBeijing100050China
| | - Mian Liu
- Department of Obstetrics and Gynecology, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Qin Yang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Peng Gu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Jiaxin Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Kutty Selva Nandakumar
- Department of Medical Biochemistry and BiophysicsKarolinska InstituteStockholm17177Sweden
| | - Gaofei Hu
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Qi Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Xinyu Chen
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Huihui Ma
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Wenye Huang
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Gaofeng Wang
- Department of Plastic and Aesthetic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical CollegeBeijing100050China
| | - Liping Huang
- Department of Obstetrics and Gynecology, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Wenjuan Wu
- Department of Laboratory Medicine, Shanghai East HospitalTongji University School of MedicineShanghai200123China
| | - Ning‐Ning Liu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200240China
| | - Xingyin Liu
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
- School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Leming Zheng
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| |
Collapse
|
5
|
Yadav S, Sapra L, Srivastava RK. Polysaccharides to postbiotics: Nurturing bone health via modulating "gut-immune axis". Int J Biol Macromol 2024; 278:134655. [PMID: 39128750 DOI: 10.1016/j.ijbiomac.2024.134655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
The increasing prevalence of individuals affected by bone pathologies globally has sparked catastrophic concerns. Ankylosing spondylitis, osteoporosis, rheumatoid arthritis, osteoarthritis, and fractures alone impact an estimated 1.71 billion people worldwide. The gut microbiota plays a crucial role in interacting with the host through the synthesis of a diverse range of metabolites called gut-associated metabolites (GAMs), which originate from external dietary substrates or endogenous host compounds. Many metabolic disorders have been linked to alterations in the gut microbiota's activity and composition. The development of metabolic illnesses has been linked to certain microbiota-derived metabolites, such as branched-chain amino acids, bile acids, short-chain fatty acids, tryptophan, trimethylamine N-oxide, and indole derivatives. Moreover, the modulation of gut microbiota through biotics (prebiotics, probiotics and postbiotics) presents a promising avenue for therapeutic intervention. Biotics selectively promote the growth of beneficial gut bacteria, thereby enhancing the production of GAMs with potential beneficial effects on bone metabolism. Understanding the intricate interplay between GAMs, and bone-associated genes through molecular informatics holds significant promise for early diagnosis, prognosis, and novel treatment strategies for various bone disorders.
Collapse
Affiliation(s)
- Sumedha Yadav
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Leena Sapra
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Rupesh K Srivastava
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India.
| |
Collapse
|
6
|
Choi MY, Costenbader KH, Fritzler MJ. Environment and systemic autoimmune rheumatic diseases: an overview and future directions. Front Immunol 2024; 15:1456145. [PMID: 39318630 PMCID: PMC11419994 DOI: 10.3389/fimmu.2024.1456145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/16/2024] [Indexed: 09/26/2024] Open
Abstract
Introduction Despite progress in our understanding of disease pathogenesis for systemic autoimmune rheumatic diseases (SARD), these diseases are still associated with high morbidity, disability, and mortality. Much of the strongest evidence to date implicating environmental factors in the development of autoimmunity has been based on well-established, large, longitudinal prospective cohort studies. Methods Herein, we review the current state of knowledge on known environmental factors associated with the development of SARD and potential areas for future research. Results The risk attributable to any particular environmental factor ranges from 10-200%, but exposures are likely synergistic in altering the immune system in a complex interplay of epigenetics, hormonal factors, and the microbiome leading to systemic inflammation and eventual organ damage. To reduce or forestall the progression of autoimmunity, a better understanding of disease pathogenesis is still needed. Conclusion Owing to the complexity and multifactorial nature of autoimmune disease, machine learning, a type of artificial intelligence, is increasingly utilized as an approach to analyzing large datasets. Future studies that identify patients who are at high risk of developing autoimmune diseases for prevention trials are needed.
Collapse
Affiliation(s)
- May Y Choi
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, Calgary, AB, Canada
| | - Karen H Costenbader
- Department of Medicine, Div of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, United States
- Medicine, Harvard Medical School, Boston, MA, United States
| | - Marvin J Fritzler
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
7
|
Chasov V, Zmievskaya E, Ganeeva I, Gilyazova E, Davletshin D, Filimonova M, Valiullina A, Kudriaeva A, Bulatov E. Systemic lupus erythematosus therapeutic strategy: From immunotherapy to gut microbiota modulation. J Biomed Res 2024; 38:1-16. [PMID: 38828853 PMCID: PMC11629155 DOI: 10.7555/jbr.38.20240009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 06/05/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is characterized by a systemic dysfunction of the innate and adaptive immune systems, leading to an attack on healthy tissues of the body. During the development of SLE, pathogenic features, such as the formation of autoantibodies to self-nuclear antigens, caused tissue damage including necrosis and fibrosis, with an increased expression of type Ⅰ interferon (IFN) regulated genes. Treatment of lupus with immunosuppressants and glucocorticoids, which are used as the standard therapy, is not effective enough and causes side effects. As an alternative, more effective immunotherapies have been developed, including monoclonal and bispecific antibodies that target B cells, T cells, co-stimulatory molecules, cytokines or their receptors, and signaling molecules. Encouraging results have been observed in clinical trials with some of these therapies. Furthermore, a chimeric antigen receptor T cells (CAR-T) therapy has emerged as the most effective, safe, and promising treatment option for SLE, as demonstrated by successful pilot studies. Additionally, emerging evidence suggests that gut microbiota dysbiosis may play a significant role in the severity of SLE, and the use of methods to normalize the gut microbiota, particularly fecal microbiota transplantation (FMT), opens up new opportunities for effective treatment of SLE.
Collapse
Affiliation(s)
- Vitaly Chasov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Ekaterina Zmievskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Irina Ganeeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Elvina Gilyazova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Damir Davletshin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Maria Filimonova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Aygul Valiullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Anna Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Emil Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| |
Collapse
|
8
|
Wu X. Association between weight-adjusted-waist index and periodontitis risk: A cross-sectional study. PLoS One 2024; 19:e0302137. [PMID: 38753859 PMCID: PMC11098519 DOI: 10.1371/journal.pone.0302137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/28/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND There may be an association between obesity and periodontitis, yet no studies have investigated the correlation between the new obesity indicator, the weight-adjusted-waist Index (WWI), and periodontitis. OBJECTIVE This study aims to investigate the association between the novel obesity index, weight-adjusted-waist index, and periodontitis. SUBJECTS AND METHODS WWI was utilized to assess obesity, through measuring waist circumference (WC) and body weight. We analyzed cross-sectional NHANES data from 2009 to 2014 (1) using multivariate logistic regression to explore WWI's association with moderate/severe periodontitis; (2) conducting subgroup analyses and interaction tests; and (3) fitting smoothed curves to the age-stratified logistic regression model. RESULTS The study involved 11,256 individuals, with 48.55% having moderate/severe periodontitis. Upon adjusting for all relevant variables, a significant correlation between WWI and moderate/severe periodontitis was observed (OR = 1.08, 95% CI: 1.01-1.17). Compared to the lowest quartile of WWI, there was a significant increase in the likelihood of moderate/severe periodontitis in Quartile 2 (OR = 1.21, 95% CI: 1.06-1.39) and Quartile 3 (OR = 1.23, 95% CI: 1.07-1.42). Subgroup analyses for gender, age, education, smoking, and diabetes highlighted a positive association between WWI and moderate/severe periodontitis in all subgroups, except for the diabetic population and individuals aged 65 years and older. CONCLUSION The analysis revealed a positive correlation between WWI, a novel obesity index, and moderate/severe periodontitis prevalence through diverse modeling approaches.
Collapse
Affiliation(s)
- Xinyu Wu
- School of Stomatology, Jinan University, Guangzhou, China
| |
Collapse
|
9
|
Xia P, Zheng Y, Sun L, Chen W, Shang L, Li J, Hou T, Li B. Regulation of glycose and lipid metabolism and application based on the colloidal nutrition science properties of konjac glucomannan: A comprehensive review. Carbohydr Polym 2024; 331:121849. [PMID: 38388033 DOI: 10.1016/j.carbpol.2024.121849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
The physicochemical properties of dietary fiber in the gastrointestinal tract, such as hydration properties, adsorption properties, rheological properties, have an important influence on the physiological process of host digestion and absorption, leading to the differences in satiety and glucose and lipid metabolisms. Based on the diversified physicochemical properties of konjac glucomannan (KGM), it is meaningful to review the relationship of structural characteristics, physicochemical properties and glycose and lipid metabolism. Firstly, this paper bypassed the category of intestinal microbes, and explained the potential of dietary fiber in regulating glucose and lipid metabolism during nutrient digestion and absorption from the perspective of colloidal nutrition. Secondly, the modification methods of KGM to regulate its physicochemical properties were discussed and the relationship between KGM's molecular structure types and glycose and lipid metabolism were summarized. Finally, based on the characteristics of KGM, the application of KGM in the main material and ingredients of fat reduction food was reviewed. We hope this work could provide theoretical basis for the study of dietary fiber colloid nutrition science.
Collapse
Affiliation(s)
- Pengkui Xia
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Zheng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Sun
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenxin Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Longchen Shang
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China.
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
10
|
Lupu VV, Lupu A, Jechel E, Starcea IM, Stoleriu G, Ioniuc I, Azoicai A, Danielescu C, Knieling A, Borka-Balas R, Salaru DL, Revenco N, Fotea S. The role of vitamin D in pediatric systemic lupus erythematosus - a double pawn in the immune and microbial balance. Front Immunol 2024; 15:1373904. [PMID: 38715605 PMCID: PMC11074404 DOI: 10.3389/fimmu.2024.1373904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/08/2024] [Indexed: 05/23/2024] Open
Abstract
Having increased popularity during the Covid-19 pandemic, vitamin D3 is currently impressing thanks to the numerous researches aimed at its interactions with the body's homeostasis. At the same time, there is a peak in terms of recommendations for supplementation with it. Some of the studies focus on the link between autoimmune diseases and nutritional deficiencies, especially vitamin D3. Since the specialized literature aimed at children (patients between 0-18 years old) is far from equal to the informational diversity of the adult-centered branch, this review aims to bring up to date the relationship between the microbial and nutritional balance and the activity of pediatric systemic lupus erythematosus (pSLE). The desired practical purpose resides in a better understanding and an adequate, individualized management of the affected persons to reduce morbidity. The center of the summary is to establish the impact of hypovitaminosis D in the development and evolution of pediatric lupus erythematosus. We will address aspects related to the two entities of the impact played by vitamin D3 in the pathophysiological cascade of lupus, but also the risk of toxicity and its effects when the deficiency is over supplemented (hypervitaminosis D). We will debate the relationship of hypovitaminosis D with the modulation of immune function, the potentiation of inflammatory processes, the increase of oxidative stress, the perfusion of cognitive brain areas, the seasonal incidence of SLE and its severity. Finally, we review current knowledge, post-pandemic, regarding the hypovitaminosis D - pSLE relationship.
Collapse
Affiliation(s)
- Vasile Valeriu Lupu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ancuta Lupu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Elena Jechel
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | | | - Gabriela Stoleriu
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, Galati, Romania
| | - Ileana Ioniuc
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Alice Azoicai
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ciprian Danielescu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Anton Knieling
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Reka Borka-Balas
- Pediatrics, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania
| | - Delia Lidia Salaru
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ninel Revenco
- Pediatrics, “Nicolae Testemitanu” State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Silvia Fotea
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, Galati, Romania
| |
Collapse
|
11
|
Bekar C, Ozmen O, Ozkul C, Ayaz A. Inulin protects against the harmful effects of dietary emulsifiers on mice gut microbiome. PeerJ 2024; 12:e17110. [PMID: 38525281 PMCID: PMC10961058 DOI: 10.7717/peerj.17110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/23/2024] [Indexed: 03/26/2024] Open
Abstract
Background The prevalence of inflammatory bowel diseases is increasing, especially in developing countries, with adoption of Western-style diet. This study aimed to investigate the effects of two emulsifiers including lecithin and carboxymethyl cellulose (CMC) on the gut microbiota, intestinal inflammation and the potential of inulin as a means to protect against the harmful effects of emulsifiers. Methods In this study, male C57Bl/6 mice were divided into five groups (n:6/group) (control, CMC, lecithin, CMC+inulin, and lecithin+inulin). Lecithin and CMC were diluted in drinking water (1% w/v) and inulin was administered daily at 5 g/kg for 12 weeks. Histological examination of the ileum and colon, serum IL-10, IL-6, and fecal lipocalin-2 levels were analyzed. 16S rRNA gene V3-V4 region amplicon sequencing was performed on stool samples. Results In the CMC and lecithin groups, shortening of the villus and a decrease in goblet cells were observed in the ileum and colon, whereas inulin reversed this effect. The lipocalin level, which was 9.7 ± 3.29 ng in the CMC group, decreased to 4.1 ± 2.98 ng with the administration of inulin. Bifidobacteria and Akkermansia were lower in the CMC group than the control, while they were higher in the CMC+inulin group. In conclusion, emulsifiers affect intestinal health negatively by disrupting the epithelial integrity and altering the composition of the microbiota. Inulin is protective on their harmful effects. In addition, it was found that CMC was more detrimental to microbiota composition than lecithin.
Collapse
Affiliation(s)
- Cansu Bekar
- Department of Nutrition and Dietetics, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Ozlem Ozmen
- Department of Pathology, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Ceren Ozkul
- Department of Pharmaceutical Microbiology, Hacettepe University, Ankara, Turkey
| | - Aylin Ayaz
- Department of Nutrition and Dietetics, Hacettepe University, Ankara, Turkey
| |
Collapse
|
12
|
Ali Q, Ma S, Liu B, Niu J, Liu M, Mustafa A, Li D, Wang Z, Sun H, Cui Y, Shi Y. Supplementing Ryegrass Ameliorates Commercial Diet-Induced Gut Microbial Dysbiosis-Associated Spleen Dysfunctions by Gut-Microbiota-Spleen Axis. Nutrients 2024; 16:747. [PMID: 38474875 DOI: 10.3390/nu16050747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/24/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
The type and composition of food strongly affect the variation and enrichment of the gut microbiota. The gut-microbiota-spleen axis has been developed, incorporating the spleen's function and maturation. However, how short-chain fatty-acid-producing gut microbiota can be considered to recover spleen function, particularly in spleens damaged by changed gut microbiota, is unknown in geese. Therefore, the gut microbial composition of the caecal chyme of geese was assessed by 16S rRNA microbial genes, and a Tax4Fun analysis identified the enrichment of KEGG orthologues involved in lipopolysaccharide production. The concentrations of LPS, reactive oxygen species, antioxidant/oxidant enzymes, and immunoglobulins were measured from serum samples and spleen tissues using ELISA kits. Quantitative reverse transcription PCR was employed to detect the Kelch-like-ECH-associated protein 1-Nuclear factor erythroid 2-related factor 2 (Keap1-Nrf2), B cell and T cell targeting markers, and anti-inflammatory/inflammatory cytokines from the spleen tissues of geese. The SCFAs were determined from the caecal chyme of geese by using gas chromatography. In this study, ryegrass-enriched gut microbiota such as Eggerthellaceae, Oscillospiraceae, Rikenellaceae, and Lachnospiraceae attenuated commercial diet-induced gut microbial alterations and spleen dysfunctions in geese. Ryegrass significantly improved the SCFAs (acetic, butyric, propionic, isovaleric, and valeric acids), AMPK pathway-activated Nrf2 redox signaling cascades, B cells (B220, CD19, and IgD), and T cells (CD3, CD4, CD8, and IL-2, with an exception of IL-17 and TGF-β) to activate anti-inflammatory cytokines (IL-4 and IL-10) and immunoglobulins (IgA, IgG, and IgM) in geese. In conclusion, ryegrass-improved reprogramming of the gut microbiota restored the spleen functions by attenuating LPS-induced oxidative stress and systemic inflammation through the gut-microbiota-spleen axis in geese.
Collapse
Affiliation(s)
- Qasim Ali
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Sen Ma
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Herbage Engineering Technology Research Center, Zhengzhou 450001, China
| | - Boshuai Liu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Herbage Engineering Technology Research Center, Zhengzhou 450001, China
| | - Jiakuan Niu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Mengqi Liu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Ahsan Mustafa
- Department of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Defeng Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Herbage Engineering Technology Research Center, Zhengzhou 450001, China
| | - Zhichang Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Herbage Engineering Technology Research Center, Zhengzhou 450001, China
| | - Hao Sun
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Herbage Engineering Technology Research Center, Zhengzhou 450001, China
| | - Yalei Cui
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Herbage Engineering Technology Research Center, Zhengzhou 450001, China
| | - Yinghua Shi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Herbage Engineering Technology Research Center, Zhengzhou 450001, China
| |
Collapse
|
13
|
Silva Lagos L, Klostermann CE, López-Velázquez G, Fernández-Lainez C, Leemhuis H, Oudhuis AACML, Buwalda P, Schols HA, de Vos P. Crystal type, chain length and polydispersity impact the resistant starch type 3 immunomodulatory capacity via Toll-like receptors. Carbohydr Polym 2024; 324:121490. [PMID: 37985084 DOI: 10.1016/j.carbpol.2023.121490] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 11/22/2023]
Abstract
Food ingredients that can activate and improve immunological defense, against e.g., pathogens, have become a major field of research. Resistant starches (RSs) can resist enzymes in the upper gastrointestinal (GI) tract and induce health benefits. RS-3 physicochemical characteristics such as chain length (DP), A- or B-type crystal, and polydispersity index (PI) might be crucial for immunomodulation by activating human toll-like receptors (hTLRs). We hypothesize that crystal type, DP and PI, alone or in combination, impact the recognition of RS-3 preparations by hTLRs leading to different RS-3 immunomodulatory effects. We studied the activation of hTLR2, hTLR4, and hTLR5 by 0.5, 1 and 2 mg/mL of RS-3. We found strong activation of hTLR2-dependent NF-kB activation with PI <1.25, DP 18 as an A- or B-type crystal. At different doses, NF-kB activation was increased from 6.8 to 7.1 and 10-fold with A-type and 6.2 to 10.2 and 14.4-fold with B-type. This also resulted in higher cytokine production in monocytes. Molecular docking, using amylose-A and B, demonstrated that B-crystals bind hTLR2 promoting hTLR2-1 dimerization, supporting the stronger effects of B-type crystals. Immunomodulatory effects of RS-3 are predominantly hTLR2-dependent, and activation can be tailored by managing crystallinity, chain length, and PI.
Collapse
Affiliation(s)
- Luis Silva Lagos
- Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, the Netherlands.
| | - Cynthia E Klostermann
- Biobased Chemistry and Technology, Wageningen University & Research, Wageningen, the Netherlands
| | - Gabriel López-Velázquez
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Cuidad de México, Mexico
| | - Cynthia Fernández-Lainez
- Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, the Netherlands; Laboratorio de Errores innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatría, Ciudad de México, Mexico
| | - Hans Leemhuis
- Innovation Center, Royal Avebe, Groningen, the Netherlands
| | | | - Piet Buwalda
- Biobased Chemistry and Technology, Wageningen University & Research, Wageningen, the Netherlands; Innovation Center, Royal Avebe, Groningen, the Netherlands
| | - Henk A Schols
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Paul de Vos
- Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
14
|
Wang K, Deng M, Wu J, Luo L, Chen R, Liu F, Nie J, Tao F, Li Q, Luo X, Xia F. Associations of oxidative balance score with total abdominal fat mass and visceral adipose tissue mass percentages among young and middle-aged adults: findings from NHANES 2011-2018. Front Nutr 2023; 10:1306428. [PMID: 38115885 PMCID: PMC10728272 DOI: 10.3389/fnut.2023.1306428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/07/2023] [Indexed: 12/21/2023] Open
Abstract
Objective This study aimed to explore the association of the oxidative balance score (OBS) with total abdominal fat mass (TAFM) and visceral adipose tissue mass (VATM) percentages among young and middle-aged U.S. adults. Methods Young and middle-aged adults in the National Health and Nutrition Examination Survey (NHANES) from 2011 to 2018 were included. Analysis of variance and Rao-Scott adjusted chi-square tests were used to compare the characteristics across quartiles of OBS. Univariate and multivariate weighted logistic regression models were employed to explore the relationship between OBS and the risks of high TAFM or high VATM percentage in the general population and subgroups, while the interaction effects were tested with a likelihood test. Weighted restricted cubic spline analyses were utilized to assess the non-linear association of OBS with TAFM and VATM percentages. Results The final sample included 8,734 young and middle-aged non-institutionalized U.S. adults representing 134.7 million adults. Compared with adults in the first quartile of OBS, those with higher OBS were less likely to have a high TAFM percentage; the ORs and 95% CI for adults in the second, third, and highest quartiles of OBS were 0.70 (0.53-0.94), 0.49 (0.36-0.60), and 0.25 (0.18-0.36), respectively. Similar trends were observed in the association between OBS and VATM percentages. Moreover, similar effects were confirmed in the sensitivity analyses and subgroup analyses according to demographic characteristics. Regarding the OBS subclass, higher dietary OBS and lifestyle OBS were also correlated with decreased ORs of high TAFM and VATM percentages. Conclusion This study strongly suggests that higher OBS, as well as higher dietary OBS and lifestyle OBS, are significantly correlated with lower risks of abdominal obesity and visceral fat accumulation. The findings highlight the importance of an antioxidant-rich diet and maintaining a healthy lifestyle in reducing the risks.
Collapse
Affiliation(s)
- Kai Wang
- Department of Public Health, Wuhan Fourth Hospital, Wuhan, China
| | - Minggang Deng
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, China
- Department of Psychiatry, Wuhan Hospital for Psychotherapy, Wuhan, China
| | - Jinyi Wu
- Department of Public Health, Wuhan Fourth Hospital, Wuhan, China
| | - Lingli Luo
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Chen
- School of Public Health, Wuhan University, Wuhan, China
| | - Fang Liu
- School of Public Health, Wuhan University, Wuhan, China
| | - Jiaqi Nie
- Department of Health Promotion, XiaoGan Center for Disease Control and Pervention, Xiaogan, China
| | - Fengxi Tao
- Department of Public Health, Wuhan Fourth Hospital, Wuhan, China
| | - Qingwen Li
- Department of Public Health, Wuhan Fourth Hospital, Wuhan, China
| | - Xin Luo
- Department of Public Health, Wuhan Fourth Hospital, Wuhan, China
| | - Fang Xia
- Department of Public Health, Wuhan Fourth Hospital, Wuhan, China
| |
Collapse
|
15
|
Moleón J, González-Correa C, Miñano S, Robles-Vera I, de la Visitación N, Barranco AM, Gómez-Guzmán M, Sánchez M, Riesco P, Guerra-Hernández E, Toral M, Romero M, Duarte J. Protective effect of microbiota-derived short chain fatty acids on vascular dysfunction in mice with systemic lupus erythematosus induced by toll like receptor 7 activation. Pharmacol Res 2023; 198:106997. [PMID: 37972724 DOI: 10.1016/j.phrs.2023.106997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Our objective was to investigate whether short-chain fatty acids (SCFAs), specifically acetate and butyrate, could prevent vascular dysfunction and elevated blood pressure (BP) in mice with systemic lupus erythematosus (SLE) induced by TLR7 activation using imiquimod (IMQ). Treatment with both SCFAs and dietary fibers rich in resistant starch (RS) or inulin-type fructans (ITF) effectively prevented the development of hypertension and cardiac hypertrophy. Additionally, these treatments improved aortic relaxation induced by acetylcholine and mitigated vascular oxidative stress. Acetate and butyrate treatments also contributed to the maintenance of colonic integrity, reduced endotoxemia, and decreased the proportion of helper T (Th)17 cells in mesenteric lymph nodes (MLNs), blood, and aorta in TLR7-induced SLE mice. The observed changes in MLNs were correlated with increased levels of GPR43 mRNA in mice treated with acetate and increased GPR41 levels along with decreased histone deacetylase (HDAC)- 3 levels in mice treated with butyrate. Notably, the effects attributed to acetate, but not butyrate, were nullified when co-administered with the GPR43 antagonist GLPG-0974. T cell priming and differentiation into Th17 cells in MLNs, as well as increased Th17 cell infiltration, were linked to aortic endothelial dysfunction and hypertension subsequent to the transfer of faecal microbiota from IMQ-treated mice to germ-free (GF) mice. These effects were counteracted in GF mice through treatment with either acetate or butyrate. To conclude, these findings underscore the potential of SCFA consumption in averting hypertension by restoring balance to the interplay between the gut, immune system, and vascular wall in SLE induced by TLR7 activation.
Collapse
Affiliation(s)
- Javier Moleón
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Cristina González-Correa
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Sofía Miñano
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
| | - Iñaki Robles-Vera
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| | - Néstor de la Visitación
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Antonio Manuel Barranco
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Manuel Gómez-Guzmán
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Manuel Sánchez
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Pedro Riesco
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
| | | | - Marta Toral
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain; Ciber de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Miguel Romero
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain; Ciber de Enfermedades Cardiovasculares (CIBERCV), Spain.
| |
Collapse
|
16
|
Moleón J, González-Correa C, Robles-Vera I, Miñano S, de la Visitación N, Barranco AM, Martín-Morales N, O’Valle F, Mayo-Martínez L, García A, Toral M, Jiménez R, Romero M, Duarte J. Targeting the gut microbiota with dietary fibers: a novel approach to prevent the development cardiovascular complications linked to systemic lupus erythematosus in a preclinical study. Gut Microbes 2023; 15:2247053. [PMID: 37615336 PMCID: PMC10453983 DOI: 10.1080/19490976.2023.2247053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/04/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023] Open
Abstract
This study is to investigate whether dietary fiber intake prevents vascular and renal damage in a genetic mouse model of systemic lupus erythematosus (SLE), and the contribution of gut microbiota in the protective effects. Female NZBWF1 (SLE) mice were treated with resistant-starch (RS) or inulin-type fructans (ITF). In addition, inoculation of fecal microbiota from these experimental groups to recipient normotensive female C57Bl/6J germ-free (GF) mice was performed. Both fiber treatments, especially RS, prevented the development of hypertension, renal injury, improved the aortic relaxation induced by acetylcholine, and the vascular oxidative stress. RS and ITF treatments increased the proportion of acetate- and butyrate-producing bacteria, respectively, improved colonic inflammation and integrity, endotoxemia, and decreased helper T (Th)17 proportion in mesenteric lymph nodes (MLNs), blood, and aorta in SLE mice. However, disease activity (splenomegaly and anti-ds-DNA) was unaffected by both fibers. T cell priming and Th17 differentiation in MLNs and increased Th17 infiltration was linked to aortic endothelial dysfunction and hypertension after inoculation of fecal microbiota from SLE mice to GF mice, without changes in proteinuria and autoimmunity. All these effects were lower in GF mice after fecal inoculation from fiber-treated SLE mice. In conclusion, these findings support that fiber consumption prevented the development of hypertension by rebalancing of dysfunctional gut-immune system-vascular wall axis in SLE.
Collapse
Affiliation(s)
- Javier Moleón
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Cristina González-Correa
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Iñaki Robles-Vera
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Sofía Miñano
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Néstor de la Visitación
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Antonio Manuel Barranco
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Natividad Martín-Morales
- Department of Pathology, School of Medicine, Instituto de Biopatología y Medicina Regenerativa (IBIMER) University of Granada, Granada, Spain
| | - Francisco O’Valle
- Department of Pathology, School of Medicine, Instituto de Biopatología y Medicina Regenerativa (IBIMER) University of Granada, Granada, Spain
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Laura Mayo-Martínez
- Centre for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo CEU, CEU Universities. Campus Monteprincipe, Boadilla del Monte, San Pablo, Spain
| | - Antonia García
- Centre for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo CEU, CEU Universities. Campus Monteprincipe, Boadilla del Monte, San Pablo, Spain
| | - Marta Toral
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Rosario Jiménez
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Miguel Romero
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
17
|
Ji X, Wu L, Marion T, Luo Y. Lipid metabolism in regulation of B cell development and autoimmunity. Cytokine Growth Factor Rev 2023; 73:40-51. [PMID: 37419766 DOI: 10.1016/j.cytogfr.2023.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
B cells play an important role in adaptive immunity and participate in the process of humoral immunity mainly by secreting antibodies. The entire development and differentiation process of B cells occurs in multiple microenvironments and is regulated by a variety of environmental factors and immune signals. Differentiation biases or disfunction of B cells participate in the process of many autoimmune diseases. Emerging studies report the impact of altered metabolism in B cell biology, including lipid metabolism. Here, we discuss how extracellular lipid environment and metabolites, membrane lipid-related components, and lipid synthesis and catabolism programs coordinate B cell biology and describe the crosstalk of lipid metabolic programs with signal transduction pathways and transcription factors. We conclude with a summary of therapeutic targets for B cell lipid metabolism and signaling in autoimmune diseases and discuss important future directions.
Collapse
Affiliation(s)
- Xing Ji
- Laboratory of Rheumatology and Immunology, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liang Wu
- Laboratory of Rheumatology and Immunology, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tony Marion
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yubin Luo
- Laboratory of Rheumatology and Immunology, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
18
|
Li DB, Hao QQ, Hu HRL. The relationship between dietary fibre and stroke: A meta-analysis. J Stroke Cerebrovasc Dis 2023; 32:107144. [PMID: 37196565 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107144] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/19/2023] Open
Abstract
OBJECTIVE An analysis was conducted to explore the relationship between dietary fibre intake and stroke risk. METHODS PubMed, EMBASE, Cochrane Library, China National Knowledge Infrastructure (CNKI) and WanFang and Weipu databases were systematically searched to obtain peer-reviewed literature on the relationship between dietary fibre and stroke risk. The search time was as of 1 April 2023. Newcastle-Ottawa Scale (NOS) was used to evaluate the quality of the included studies. The pooled hazard ratio (HR) and 95% confidence interval (CI) were calculated using Stata 16.0. The Q test and I2 statistics were used to evaluate the heterogeneity and sensitivity analysis to explore potential bias. Meta-regression analysis was conducted to explore the relationship between total dietary intake quality and stroke risk. RESULTS Sixteen high-quality studies, involving 855,671 subjects, met the inclusion criteria and were involved in the final meta-analysis. The results showed that higher total dietary fibre (HR: 0.81; 95% CI: 0.75-0.88), fruit fibre (HR: 0.88; 95% CI: 0.82-0.93), vegetable fibre (HR: 0.85; 95% CI: 0.81-0.89), soluble fibre (HR: 0.82; 95% CI: 0.72-0.93) and insoluble fibre (HR: 0.77; 95% CI: 0.66-0.89) had a positive effect on reducing the risk of stroke. However, cereal fibre (HR: 0.90; 95% CI: 0.81-1.00) was not statistically significant in reducing the risk of stroke. For different stroke types, higher total dietary fibre was associated with ischemic stroke (HR: 0.83; 95% CI: 0.79-0.88) and had a similar positive effect but was not found in haemorrhagic stroke (HR: 0.91; 95% CI: 0.80-1.03). Stroke risk decreased with increased total dietary fibre intake (β=-0.006189, P=0.001). No potential bias from the individual study was found from sensitivity analysis. CONCLUSION Increasing dietary fibre intake had a positive effect on reducing the risk of stroke. Different dietary fibres have various effects on stroke.
Collapse
Affiliation(s)
- Di-Bin Li
- Department of Neurointensive Care Unit, Beijing Chaoyang Integrative Medicine Emergency Medical Hospital, Beijing, China
| | - Qian-Qian Hao
- Department of Neurointensive Care Unit, Beijing Chaoyang Integrative Medicine Emergency Medical Hospital, Beijing, China
| | - Hai-Rui Ling Hu
- Department of Neurointensive Care Unit, Beijing Chaoyang Integrative Medicine Emergency Medical Hospital, Beijing, China.
| |
Collapse
|
19
|
Lupu VV, Butnariu LI, Fotea S, Morariu ID, Badescu MC, Starcea IM, Salaru DL, Popp A, Dragan F, Lupu A, Mocanu A, Chisnoiu T, Pantazi AC, Jechel E. The Disease with a Thousand Faces and the Human Microbiome-A Physiopathogenic Intercorrelation in Pediatric Practice. Nutrients 2023; 15:3359. [PMID: 37571295 PMCID: PMC10420997 DOI: 10.3390/nu15153359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/18/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Numerous interrelationships are known in the literature that have the final effect of unmasking or influencing various pathologies. Among these, the present article aims to discuss the connection between systemic lupus erythematosus (SLE) and the human microbiome. The main purpose of this work is to popularize information about the impact of dysbiosis on the pathogenesis and evolutionary course of pediatric patients with SLE. Added to this is the interest in knowledge and awareness of adjunctive therapeutic means that has the ultimate goal of increasing the quality of life. The means by which this can be achieved can be briefly divided into prophylactic or curative, depending on the phase of the condition in which the patient is. We thus reiterate the importance of the clinician acquiring an overview of SLE and the human microbiome, doubled by in-depth knowledge of the physio-pathogenic interactions between the two (in part achieved through the much-studied gut-target organ axes-brain, heart, lung, skin), with the target objective being that of obtaining individualized, multimodal and efficient management for each individual patient.
Collapse
Affiliation(s)
- Vasile Valeriu Lupu
- Pediatrics Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | | | - Silvia Fotea
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania
| | - Ionela Daniela Morariu
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Minerva Codruta Badescu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Iuliana Magdalena Starcea
- Pediatrics Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Delia Lidia Salaru
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Alina Popp
- Pediatrics Department, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Felicia Dragan
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Ancuta Lupu
- Pediatrics Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Adriana Mocanu
- Pediatrics Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Tatiana Chisnoiu
- Pediatrics Department, Faculty of Medicine, Ovidius University, 900470 Constanta, Romania
| | | | - Elena Jechel
- Pediatrics Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
20
|
Rasouli-Saravani A, Jahankhani K, Moradi S, Gorgani M, Shafaghat Z, Mirsanei Z, Mehmandar A, Mirzaei R. Role of microbiota short-chain fatty acid chains in the pathogenesis of autoimmune diseases. Biomed Pharmacother 2023; 162:114620. [PMID: 37004324 DOI: 10.1016/j.biopha.2023.114620] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
There is emerging evidence that microbiota and its metabolites play an important role in helath and diseases. In this regard, gut microbiota has been found as a crucial component that influences immune responses as well as immune-related disorders such as autoimmune diseases. Gut bacterial dysbiosis has been shown to cause disease and altered microbiota metabolite synthesis, leading to immunological and metabolic dysregulation. Of note, microbiota in the gut produce short-chain fatty acids (SCFAs) such as acetate, butyrate, and propionate, and remodeling in these microbiota metabolites has been linked to the pathophysiology of a number of autoimmune disorders such as type 1 diabetes, multiple sclerosis, inflammatory bowel disease, rheumatoid arthritis, celiac disease, and systemic lupus erythematosus. In this review, we will address the most recent findings from the most noteworthy studies investigating the impact of microbiota SCFAs on various autoimmune diseases.
Collapse
Affiliation(s)
- Ashkan Rasouli-Saravani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Jahankhani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shadi Moradi
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Melika Gorgani
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Shafaghat
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Mirsanei
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirreza Mehmandar
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
21
|
Lei Y, Liu Q, Li Q, Zhao C, Zhao M, Lu Q. Exploring the Complex Relationship Between Microbiota and Systemic Lupus Erythematosus. Curr Rheumatol Rep 2023; 25:107-116. [PMID: 37083877 DOI: 10.1007/s11926-023-01102-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2023] [Indexed: 04/22/2023]
Abstract
PURPOSE OF REVIEW Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by various autoantibodies and multi-organ. Microbiota dysbiosis in the gut, skin, oral, and other surfaces has a significant impact on SLE development. This article summarizes relevant research and provides new microbiome-related strategies for exploring the mechanisms and treating patients with SLE. RECENT FINDINGS SLE patients have disruptions in multiple microbiomes, with the gut microbiota (bacteria, viruses, and fungi) and their metabolites being the most thoroughly researched. This dysbiosis can promote SLE progression through mechanisms such as the leaky gut, molecular mimicry, and epigenetic regulation. Notwithstanding study constraints on the relationship between microbiota and SLE, specific interventions targeting the gut microbiota, such as probiotics, dietary management, and fecal microbiota transplantation, have emerged as promising SLE therapeutics.
Collapse
Affiliation(s)
- Yu Lei
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
- Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qianmei Liu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Qilin Li
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
- Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Cheng Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
- Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China.
- Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China.
- Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
22
|
Kim CH. Complex regulatory effects of gut microbial short-chain fatty acids on immune tolerance and autoimmunity. Cell Mol Immunol 2023; 20:341-350. [PMID: 36854801 PMCID: PMC10066346 DOI: 10.1038/s41423-023-00987-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/10/2023] [Indexed: 03/02/2023] Open
Abstract
Immune tolerance deletes or suppresses autoreactive lymphocytes and is established at multiple levels during the development, activation and effector phases of T and B cells. These mechanisms are cell-intrinsically programmed and critical in preventing autoimmune diseases. We have witnessed the existence of another type of immune tolerance mechanism that is shaped by lifestyle choices, such as diet, microbiome and microbial metabolites. Short-chain fatty acids (SCFAs) are the most abundant microbial metabolites in the colonic lumen and are mainly produced by the microbial fermentation of prebiotics, such as dietary fiber. This review focuses on the preventive and immunomodulatory effects of SCFAs on autoimmunity. The tissue- and disease-specific effects of dietary fiber, SCFAs and SCFA-producing microbes on major types of autoimmune diseases, including type I diabetes, multiple sclerosis, rheumatoid arthritis and lupus, are discussed. Additionally, their key regulatory mechanisms for lymphocyte development, tissue barrier function, host metabolism, immunity, autoantibody production, and inflammatory effector and regulatory lymphocytes are discussed. The shared and differential effects of SCFAs on different types and stages of autoimmune diseases are discussed.
Collapse
Affiliation(s)
- Chang H Kim
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA.
- Mary H. Weiser Food Allergy Center, Center for Gastrointestinal Research, and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
23
|
Liu T, Zheng M, Jia L, Wang M, Tang L, Wen Z, Zhang M, Yuan F. Deficient leptin receptor signaling in T cells of human SLE. Front Immunol 2023; 14:1157731. [PMID: 37006245 PMCID: PMC10063787 DOI: 10.3389/fimmu.2023.1157731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease mainly mediated by IgG autoantibody. While follicular helper T (Tfh) cells are crucial for supporting IgG autoantibody generation in human SLE, underlying mechanisms for Tfh cell mal-differentiation remain unclear. METHODS In total, 129 SLE patients and 37 healthy donors were recruited for this study. Circulating leptin was determined by ELISA from patients with SLE and healthy individuals. CD4 T cells isolated from SLE patients and healthy donors were activated with anti-CD3/CD28 beads under cytokine-unbiased conditions in the presence or absence of recombinant leptin protein, followed by detection for Tfh cell differentiation by quantifying intracellular transcription factor Bcl-6 and cytokine IL-21. AMPK activation was assessed by analyzing phosphor-AMPK using phosflow cytometry and immunoblots. Leptin receptor expression was determined using flow cytometry and its overexpression was achieved by transfection with an expression vector. Humanized SLE chimeras were induced by injecting patients' immune cells into immune-deficient NSG mice and used for translational studies. RESULTS Circulating leptin was elevated in patients with SLE, inversely associated with disease activity. In healthy individuals, leptin efficiently inhibited Tfh cell differentiation through inducing AMPK activation. Meanwhile, leptin receptor deficiency was a feature of CD4 T cells in SLE patients, impairing the inhibitory effect of leptin on the differentiation of Tfh cells. As a result, we observed the coexistence of high circulating leptin and increased Tfh cell frequencies in SLE patients. Accordingly, overexpression of leptin receptor in SLE CD4 T cells abrogated Tfh cell mal-differentiation and IgG anti-dsDNA generation in humanized lupus chimeras. CONCLUSION Leptin receptor deficiency blocks the inhibitory effect of leptin on SLE Tfh cell differentiation, serving as a promising therapeutic target for lupus management.
Collapse
Affiliation(s)
- Ting Liu
- Department of Rheumatology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Zheng
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Li Jia
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Mingyuan Wang
- Department of Research Center, Suzhou Blood Center, Suzhou, China
| | - Longhai Tang
- Department of Research Center, Suzhou Blood Center, Suzhou, China
| | - Zhenke Wen
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Miaojia Zhang
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fenghong Yuan
- Department of Rheumatology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| |
Collapse
|
24
|
Tan LJ, Yun YR, Hong SW, Shin S. Effect of kimchi intake on body weight of general community dwellers: a prospective cohort study. Food Funct 2023; 14:2162-2171. [PMID: 36752575 DOI: 10.1039/d2fo03900a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The impact of kimchi intake on weight management has been a topic of interest. We aimed to conduct an epidemiological study to investigate the association between kimchi intake and weight loss. Participants were selected from the Health Examinees cohort study. Kimchi intake was assessed by a 106-item semi-quantitative food frequency questionnaire, including four types of kimchi. Obesity was defined according to the Korean Society for the Study of Obesity guidelines. We performed a correlation analysis among all participants (N = 58 290) and conducted a prospective risk assessment analysis among participants with a baseline BMI value ≥25 kg m-2 (N = 20 066). In the correlation analysis, higher kimchi consumption was found to be associated with a lower increment in BMI change (men, β 0.169, 95% CI (0.025, 0.313); women, β 0.140, 95% CI (0.046, 0.236)) compared with the lower group. The risk assessment analysis indicated that moderate kimchi consumption is associated with normal weight development in men (Q3, hazard ratio, 1.28, 95% CI (1.06, 1.54)). Baechu [cabbage] kimchi intake also showed a significant association among men participants (all p for trend <0.05). In conclusion, moderate kimchi intake was associated with weight loss among middle-aged and older Koreans, especially in men.
Collapse
Affiliation(s)
- Li-Juan Tan
- Department of Food and Nutrition, Chung-Ang University, Gyeonggi-do 17546, South Korea.
| | - Ye-Rang Yun
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, South Korea.
| | - Sung Wook Hong
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, South Korea.
| | - Sangah Shin
- Department of Food and Nutrition, Chung-Ang University, Gyeonggi-do 17546, South Korea.
| |
Collapse
|
25
|
Ali Q, Ma S, Farooq U, Niu J, Li F, Li D, Wang Z, Sun H, Cui Y, Shi Y. Pasture intake protects against commercial diet-induced lipopolysaccharide production facilitated by gut microbiota through activating intestinal alkaline phosphatase enzyme in meat geese. Front Immunol 2022; 13:1041070. [PMID: 36569878 PMCID: PMC9774522 DOI: 10.3389/fimmu.2022.1041070] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Diet strongly affects gut microbiota composition, and gut bacteria can influence the intestinal barrier functions and systemic inflammation through metabolic endotoxemia. In-house feeding system (IHF, a low dietary fiber source) may cause altered cecal microbiota composition and inflammatory responses in meat geese via increased endotoxemia (lipopolysaccharides) with reduced intestinal alkaline phosphatase (ALP) production. The effects of artificial pasture grazing system (AGF, a high dietary fiber source) on modulating gut microbiota architecture and gut barrier functions have not been investigated in meat geese. Therefore, this study aimed to investigate whether intestinal ALP could play a critical role in attenuating reactive oxygen species (ROS) generation and ROS facilitating NF-κB pathway-induced systemic inflammation in meat geese. Methods The impacts of IHF and AGF systems on gut microbial composition via 16 sRNA sequencing were assessed in meat geese. The host markers analysis through protein expression of serum and cecal tissues, hematoxylin and eosin (H&E) staining, localization of NF-қB and Nrf2 by immunofluorescence analysis, western blotting analysis of ALP, and quantitative PCR of cecal tissues was evaluated. Results and Discussion In the gut microbiota analysis, meat geese supplemented with pasture showed a significant increase in commensal microbial richness and diversity compared to IHF meat geese demonstrating the antimicrobial, antioxidant, and anti-inflammatory ability of the AGF system. A significant increase in intestinal ALP-induced Nrf2 signaling pathway was confirmed representing LPS dephosphorylation mediated TLR4/MyD88 induced ROS reduction mechanisms in AGF meat geese. Further, the correlation analysis of top 44 host markers with gut microbiota showed that artificial pasture intake protected gut barrier functions via reducing ROS-mediated NF-κB pathway-induced gut permeability, systemic inflammation, and aging phenotypes. In conclusion, the intestinal ALP functions to regulate gut microbial homeostasis and barrier function appear to inhibit pro-inflammatory cytokines by reducing LPS-induced ROS production in AGF meat geese. The AGF system may represent a novel therapy to counteract the chronic inflammatory state leading to low dietary fiber-related diseases in animals.
Collapse
Affiliation(s)
- Qasim Ali
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Sen Ma
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China,Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Henan Agricultural University, Zhengzhou, Henan, China,Henan Herbage Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, Henan, China
| | - Umar Farooq
- Department of Poultry Science, University of Agriculture Faisalabad, Toba Tek Singh, Pakistan
| | - Jiakuan Niu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Fen Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Defeng Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China,Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Henan Agricultural University, Zhengzhou, Henan, China,Henan Herbage Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhichang Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China,Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Henan Agricultural University, Zhengzhou, Henan, China,Henan Herbage Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, Henan, China
| | - Hao Sun
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China,Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Henan Agricultural University, Zhengzhou, Henan, China,Henan Herbage Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yalei Cui
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China,Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Henan Agricultural University, Zhengzhou, Henan, China,Henan Herbage Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yinghua Shi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China,Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Henan Agricultural University, Zhengzhou, Henan, China,Henan Herbage Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, Henan, China,*Correspondence: Yinghua Shi,
| |
Collapse
|
26
|
van Mourik DJM, Salet DM, Middeldorp S, Nieuwdorp M, van Mens TE. The role of the intestinal microbiome in antiphospholipid syndrome. Front Immunol 2022; 13:954764. [PMID: 36505427 PMCID: PMC9732728 DOI: 10.3389/fimmu.2022.954764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/01/2022] [Indexed: 11/27/2022] Open
Abstract
The antiphospholipid syndrome (APS) is a thrombotic autoimmune disease in which the origin of the disease-characterizing autoantibodies is unknown. Increased research effort into the role of the intestinal microbiome in autoimmunity has produced new insights in this field. This scoping review focusses on the gut microbiome in its relation to APS. EMBASE and MEDLINE were searched for original studies with relevance to the relation between the gut microbiome and APS. Thirty studies were included. Work on systemic lupus erythematosus, which strongly overlaps with APS, has shown that patients often display an altered gut microbiome composition, that the disease is transferable with the microbiome, and that microbiome manipulation affects disease activity in murine lupus models. The latter has also been shown for APS, although data on microbiome composition is less consistent. APS patients do display an altered intestinal IgA response. Evidence has accrued for molecular mimicry as an explanatory mechanism for these observations in APS and other autoimmune diseases. Specific gut microbes express proteins with homology to immunodominant APS autoantigens. The disease phenotype appears to be dependent on these mimicking proteins in an APS mouse model, and human APS B- and T-cells indeed cross-react with these mimics. Pre-clinical evidence furthermore suggests that diet may influence autoimmunity through the microbiome, as may microbial short chain fatty acid production, though this has not been studied in APS. Lastly, the microbiome has been shown to affect key drivers of thrombosis, and may thus affect APS severity through non-immunological mechanisms. Overall, these observations demonstrate the impact of the intestinal microbiome on autoimmunity and the importance of understanding its role in APS.
Collapse
Affiliation(s)
- Dagmar J. M. van Mourik
- Amsterdam UMC location University of Amsterdam, Department of (Experimental) Vascular Medicine, Amsterdam, Netherlands,Amsterdam Cardiovascular Sciences, Pulmonary hypertension & thrombosis, Amsterdam, Netherlands,*Correspondence: Dagmar J. M. van Mourik, ; Thijs E. van Mens,
| | - Dorien M. Salet
- Amsterdam UMC location University of Amsterdam, Department of (Experimental) Vascular Medicine, Amsterdam, Netherlands,Amsterdam Cardiovascular Sciences, Pulmonary hypertension & thrombosis, Amsterdam, Netherlands,Department of Internal Medicine & Radboud Institute of Health Sciences (RIHS), Radboud University Medical Center, Nijmegen, Netherlands
| | - Saskia Middeldorp
- Department of Internal Medicine & Radboud Institute of Health Sciences (RIHS), Radboud University Medical Center, Nijmegen, Netherlands
| | - Max Nieuwdorp
- Amsterdam UMC location University of Amsterdam, Department of (Experimental) Vascular Medicine, Amsterdam, Netherlands
| | - Thijs E. van Mens
- Amsterdam UMC location University of Amsterdam, Department of (Experimental) Vascular Medicine, Amsterdam, Netherlands,Amsterdam Cardiovascular Sciences, Pulmonary hypertension & thrombosis, Amsterdam, Netherlands,Amsterdam Reproduction & Development, Pregnancy & Birth, Amsterdam, Netherlands,*Correspondence: Dagmar J. M. van Mourik, ; Thijs E. van Mens,
| |
Collapse
|
27
|
Kraemer AN, Schäfer AL, Sprenger DTL, Sehnert B, Williams JP, Luo A, Riechert L, Al-Kayyal Q, Dumortier H, Fauny JD, Winter Z, Heim K, Hofmann M, Herrmann M, Heine G, Voll RE, Chevalier N. Impact of dietary vitamin D on immunoregulation and disease pathology in lupus-prone NZB/W F1 mice. Front Immunol 2022; 13:933191. [PMID: 36505422 PMCID: PMC9730823 DOI: 10.3389/fimmu.2022.933191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 10/17/2022] [Indexed: 11/27/2022] Open
Abstract
Vitamin D (VD) deficiency is a highly prevalent worldwide phenomenon and is extensively discussed as a risk factor for the development of systemic lupus erythematosus (SLE) and other immune-mediated diseases. In addition, it is now appreciated that VD possesses multiple immunomodulatory effects. This study aims to explore the impact of dietary VD intake on lupus manifestation and pathology in lupus-prone NZB/W F1 mice and identify the underlying immunological mechanisms modulated by VD. Here, we show that low VD intake accelerates lupus progression, reflected in reduced overall survival and an earlier onset of proteinuria, as well higher concentrations of anti-double-stranded DNA autoantibodies. This unfavorable effect gained statistical significance with additional low maternal VD intake during the prenatal period. Among examined immunological effects, we found that low VD intake consistently hampered the adoption of a regulatory phenotype in lymphocytes, significantly reducing both IL-10-expressing and regulatory CD4+ T cells. This goes along with a mildly decreased frequency of IL-10-expressing B cells. We did not observe consistent effects on the phenotype and function of innate immune cells, including cytokine production, costimulatory molecule expression, and phagocytic capacity. Hence, our study reveals that low VD intake promotes lupus pathology, likely via the deviation of adaptive immunity, and suggests that the correction of VD deficiency might not only exert beneficial functions by preventing osteoporosis but also serve as an important module in prophylaxis and as an add-on in the treatment of lupus and possibly other immune-mediated diseases. Further research is required to determine the most appropriate dosage, as too-high VD serum levels may also induce adverse effects, possibly also on lupus pathology.
Collapse
Affiliation(s)
- Antoine N. Kraemer
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anna-Lena Schäfer
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dalina T. L. Sprenger
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bettina Sehnert
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Johanna P. Williams
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Aileen Luo
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Laura Riechert
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Qusai Al-Kayyal
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hélène Dumortier
- Centre national de la recherche scientifique (CNRS) UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, Institute of Molecular and Cellular Biology, Strasbourg, France
| | - Jean-Daniel Fauny
- Centre national de la recherche scientifique (CNRS) UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, Institute of Molecular and Cellular Biology, Strasbourg, France
| | - Zoltan Winter
- Institute of Radiology, Preclinical Imaging Platform Erlangen (PIPE), Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Kathrin Heim
- Department of Gastroenterology, Hepatology, Endocrinology and Infectious Diseases, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maike Hofmann
- Department of Gastroenterology, Hepatology, Endocrinology and Infectious Diseases, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3, and Deutsches Zentrum Immuntherapie (DZI), University Medical Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Guido Heine
- Division of Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Reinhard E. Voll
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nina Chevalier
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
28
|
Liu JL, Woo JMP, Parks CG, Costenbader KH, Jacobsen S, Bernatsky S. Systemic Lupus Erythematosus Risk: The Role of Environmental Factors. Rheum Dis Clin North Am 2022; 48:827-843. [PMID: 36332998 DOI: 10.1016/j.rdc.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Systemic lupus erythematosus (SLE) is a complex, chronic autoimmune disease. The etiology of SLE is multifactorial and includes potential environmental triggers, which may occur sequentially (the "multi-hit" hypothesis). This review focuses on SLE risk potentially associated with environmental factors including infections, the microbiome, diet, respirable exposures (eg, crystalline silica, smoking, air pollution), organic pollutants, heavy metals, and ultraviolet radiation.
Collapse
Affiliation(s)
- Jia Li Liu
- McGill University, Montreal, Quebec, Canada
| | - Jennifer M P Woo
- Epidemiology Branch, Department of Health and Human Services, National Institutes of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Christine G Parks
- Epidemiology Branch, Department of Health and Human Services, National Institutes of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Karen H Costenbader
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Søren Jacobsen
- Copenhagen Lupus and Vasculitis Clinic, Rigshospitalet, Copenhagen University Hospital, Denmark
| | - Sasha Bernatsky
- Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
| |
Collapse
|
29
|
Zhang F, Fan D, Huang JL, Zuo T. The gut microbiome: linking dietary fiber to inflammatory diseases. MEDICINE IN MICROECOLOGY 2022. [DOI: 10.1016/j.medmic.2022.100070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
|
30
|
Zhan Y, Liu Q, Zhang B, Huang X, Lu Q. Recent advances in systemic lupus erythematosus and microbiota: from bench to bedside. Front Med 2022; 16:686-700. [DOI: 10.1007/s11684-022-0957-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 08/18/2022] [Indexed: 11/19/2022]
|
31
|
Chen Y, Lin J, Xiao L, Zhang X, Zhao L, Wang M, Li L. Gut microbiota in systemic lupus erythematosus: A fuse and a solution. J Autoimmun 2022; 132:102867. [PMID: 35932662 DOI: 10.1016/j.jaut.2022.102867] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 12/13/2022]
Abstract
Gut commensals help shape and mold host immune system and deeply influence human health. The disease spectrum of mankind that gut microbiome may associate with is ever-growing, but the mechanisms are still enigmas. Characterized by loss of self-tolerance and sustained self-attack, systemic lupus erythematosus (SLE) is labeled with chronic inflammation, production of autoantibodies and multisystem injury, which so far are mostly incurable. Gut microbiota and their metabolites, now known as important environmental triggers of local/systemic immune responses, have been proposed to be involved in SLE development and progression probably through the following mechanisms: translocation beyond their niches; molecular mimicry to cross-activate immune response targeting self-antigens; epitope spreading to expand autoantibodies spectrum; and bystander activation to promote systemic inflammation. Gut microbiota which varies between individuals may also influence the metabolism and bio-transformation of disease-modifying anti-rheumatic drugs, thus associated with the efficacy and toxicity of these drugs, adding another explanation for heterogenic therapeutic responses. Modulation of gut microbiota via diet, probiotics/prebiotics, antibiotics/phages, fecal microbiota transplantation, or helminth to restore immune tolerance and homeostasis is expected to be a promising neoadjuvant therapy for SLE. We reviewed the advances in this territory and discussed the application prospect of modulating gut microbiota in controlling SLE.
Collapse
Affiliation(s)
- Yanfei Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, China; Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Jin Lin
- Department of Rheumatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, China
| | - Lanlan Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, China; Department of Rheumatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences & Peking Union Medical College, NO.1 Da Hua Road, Dong Dan, Beijing, 100730, China
| | - Lidan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, 100730, China
| | - Min Wang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences & Peking Union Medical College, NO.1 Da Hua Road, Dong Dan, Beijing, 100730, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, China; Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China.
| |
Collapse
|
32
|
Terrell M, Morel L. The Intersection of Cellular and Systemic Metabolism: Metabolic Syndrome in Systemic Lupus Erythematosus. Endocrinology 2022; 163:bqac067. [PMID: 35560001 PMCID: PMC9155598 DOI: 10.1210/endocr/bqac067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Indexed: 11/19/2022]
Abstract
A high prevalence of metabolic syndrome (MetS) has been reported in multiple cohorts of systemic lupus erythematosus (SLE) patients, most likely as one of the consequences of autoimmune pathogenesis. Although MetS has been associated with inflammation, its consequences on the lupus immune system and on disease manifestations are largely unknown. The metabolism of immune cells is altered and overactivated in mouse models as well as in patients with SLE, and several metabolic inhibitors have shown therapeutic benefits. Here we review recent studies reporting these findings, as well as the effect of dietary interventions in clinical and preclinical studies of SLE. We also explore potential causal links between systemic and immunometabolism in the context of lupus, and the knowledge gap that needs to be addressed.
Collapse
Affiliation(s)
- Morgan Terrell
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
33
|
Choi MY, Costenbader KH. Understanding the Concept of Pre-Clinical Autoimmunity: Prediction and Prevention of Systemic Lupus Erythematosus: Identifying Risk Factors and Developing Strategies Against Disease Development. Front Immunol 2022; 13:890522. [PMID: 35720390 PMCID: PMC9203849 DOI: 10.3389/fimmu.2022.890522] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/04/2022] [Indexed: 12/27/2022] Open
Abstract
There is growing evidence that preceding the diagnosis or classification of systemic lupus erythematosus (SLE), patients undergo a preclinical phase of disease where markers of inflammation and autoimmunity are already present. Not surprisingly then, even though SLE management has improved over the years, many patients will already have irreversible disease-related organ damage by time they have been diagnosed with SLE. By gaining a greater understanding of the pathogenesis of preclinical SLE, we can potentially identify patients earlier in the disease course who are at-risk of transitioning to full-blown SLE and implement preventative strategies. In this review, we discuss the current state of knowledge of SLE preclinical pathogenesis and propose a screening and preventative strategy that involves the use of promising biomarkers of early disease, modification of lifestyle and environmental risk factors, and initiation of preventative therapies, as examined in other autoimmune diseases such as rheumatoid arthritis and type 1 diabetes.
Collapse
Affiliation(s)
- May Y. Choi
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Department of Medicine, University of Calgary, Calgary, AB, Canada
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, Calgary, AB, Canada
| | - Karen H. Costenbader
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
34
|
Woo JMP, Parks CG, Jacobsen S, Costenbader KH, Bernatsky S. The role of environmental exposures and gene-environment interactions in the etiology of systemic lupus erythematous. J Intern Med 2022; 291:755-778. [PMID: 35143075 DOI: 10.1111/joim.13448] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Systemic lupus erythematosus (SLE) is a complex, chronic autoimmune disease, whose etiology includes both genetic and environmental factors. Individual genetic risk factors likely only account for about one-third of observed heritability among individuals with a family history of SLE. A large portion of the remaining risk may be attributable to environmental exposures and gene-environment interactions. This review focuses on SLE risk associated with environmental factors, ranging from chemical and physical environmental exposures to lifestyle behaviors, with the weight of evidence supporting positive associations between SLE and occupational exposure to crystalline silica, current smoking, and exogenous estrogens (e.g., oral contraceptives and postmenopausal hormones). Other risk factors may include lifestyle behaviors (e.g., dietary intake and sleep) and other exposures (e.g., ultraviolet [UV] radiation, air pollution, solvents, pesticides, vaccines and medications, and infections). Alcohol use may be associated with decreased SLE risk. We also describe the more limited body of knowledge on gene-environment interactions and SLE risk, including IL-10, ESR1, IL-33, ITGAM, and NAT2 and observed interactions with smoking, UV exposure, and alcohol. Understanding genetic and environmental risk factors for SLE, and how they may interact, can help to elucidate SLE pathogenesis and its clinical heterogeneity. Ultimately, this knowledge may facilitate the development of preventive interventions that address modifiable risk factors in susceptible individuals and vulnerable populations.
Collapse
Affiliation(s)
- Jennifer M P Woo
- Epidemiology Branch, National Institutes of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Christine G Parks
- Epidemiology Branch, National Institutes of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Søren Jacobsen
- Copenhagen Lupus and Vasculitis Clinic, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Karen H Costenbader
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sasha Bernatsky
- Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
35
|
Darlenski R, Mihaylova V, Handjieva-Darlenska T. The Link Between Obesity and the Skin. Front Nutr 2022; 9:855573. [PMID: 35369048 PMCID: PMC8965625 DOI: 10.3389/fnut.2022.855573] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity as a multi-organ disease that affects the entire human organism. Notably, the skin is no exclusion from this postulate. Skin changes in obese patients have been widely studied with regards to mechanical friction, skin infections, and skin hypertrophic conditions, such as acanthosis nigricans and, most commonly, fibromas (skin tags). Almost 60–70% of obese patients present with a variety of skin changes. Herein, we discuss our own experience and review the complex skin changes in obesity. The role of metabolic syndrome and obesity are responsible for the epidemiological prevalence and are involved in the pathogenesis of chronic inflammatory skin diseases, such as psoriasis, atopic dermatitis, and skin malignancies. Here, we comment on the role of nutritional interventions in these patients as it has been proven that low-calorie diet and weight loss is related to improvement of inflammatory skin diseases. The readership of this paper will receive up-to-date overview on the connection between obesity and the skin that is of a practical importance to any clinician working in the field.
Collapse
Affiliation(s)
- Razvigor Darlenski
- Department of Dermatology and Venereology, Acibadem Cityclinic Tokuda Hospital, Sofia, Bulgaria
- Department of Dermatology and Venereology, Trakia University, Stara Zagora, Bulgaria
- *Correspondence: Razvigor Darlenski,
| | - Vesselina Mihaylova
- Department of Pharmacology and Toxicology, Medical Faculty, Medical University, Sofia, Bulgaria
| | | |
Collapse
|
36
|
Hu Q, Niu Y, Yang Y, Mao Q, Lu Y, Ran H, Zhang H, Li X, Gu H, Su Q. Polydextrose Alleviates Adipose Tissue Inflammation and Modulates the Gut Microbiota in High-Fat Diet-Fed Mice. Front Pharmacol 2022; 12:795483. [PMID: 35185543 PMCID: PMC8848743 DOI: 10.3389/fphar.2021.795483] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/22/2021] [Indexed: 12/13/2022] Open
Abstract
The soluble dietary fiber polydextrose (PDX) is a randomly linked glucose oligomer containing small amounts of sorbitol and citric acid and is widely used in the food industry. However, whether PDX can prevent and treat obesity in high-fat diet (HFD)-fed mice has not been directly investigated, and further studies are needed to better understand the complex interactions among PDX, adipose tissue inflammation and the gut microbiota. In the present study, PDX reduced body weight, fasting blood glucose (FBG), adipose tissue accumulation, adipocyte hypertrophy, serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) levels in HFD-fed mice. Moreover, PDX alleviated serum lipopolysaccharide (LPS) levels and macrophage infiltration in epididymal adipose tissue and resulted in macrophage polarization toward the M2 phenotype. Gut microbiota analysis revealed that PDX promoted the growth of beneficial microbes such as Bacteroides, Parabacteroides, Alloprevotella, Muribaculum, Akkermansia, Ruminococcaceae_UCG-014 and UBA1819 in obese mice, which were negatively correlated with subcutaneous fat, epididymal fat, body weight, FBG, serum TC, HDL-C, LDL-C and LPS levels. Our results indicates that PDX can prevent and treat obesity in HFD-fed mice, specifically in alleviating glucolipid metabolism disorders and adipose tissue inflammation, which may be mediated by modulating the structure of the gut microbiota. Therefore, PDX may become a promising nondrug therapy for obesity.
Collapse
Affiliation(s)
- Qiuyue Hu
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixin Niu
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanxia Yang
- Department of Endocrinology, Xinhua Hospital Chongming Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianyun Mao
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Lu
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Ran
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongmei Zhang
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyong Li
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongxia Gu
- Department of Endocrinology, Xinhua Hospital Chongming Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Su
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
37
|
Pan Q, Guo F, Huang Y, Li A, Chen S, Chen J, Liu HF, Pan Q. Gut Microbiota Dysbiosis in Systemic Lupus Erythematosus: Novel Insights into Mechanisms and Promising Therapeutic Strategies. Front Immunol 2021; 12:799788. [PMID: 34925385 PMCID: PMC8677698 DOI: 10.3389/fimmu.2021.799788] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that was traditionally thought to be closely related to genetic and environmental risk factors. Although treatment options for SLE with hormones, immunosuppressants, and biologic drugs are now available, the rates of clinical response and functional remission of these drugs are still not satisfactory. Currently, emerging evidence suggests that gut microbiota dysbiosis may play crucial roles in the occurrence and development of SLE, and manipulation of targeting the gut microbiota holds great promises for the successful treatment of SLE. The possible mechanisms of gut microbiota dysbiosis in SLE have not yet been well identified to date, although they may include molecular mimicry, impaired intestinal barrier function and leaky gut, bacterial biofilms, intestinal specific pathogen infection, gender bias, intestinal epithelial cells autophagy, and extracellular vesicles and microRNAs. Potential therapies for modulating gut microbiota in SLE include oral antibiotic therapy, fecal microbiota transplantation, glucocorticoid therapy, regulation of intestinal epithelial cells autophagy, extracellular vesicle-derived miRNA therapy, mesenchymal stem cell therapy, and vaccination. This review summarizes novel insights into the mechanisms of microbiota dysbiosis in SLE and promising therapeutic strategies, which may help improve our understanding of the pathogenesis of SLE and provide novel therapies for SLE.
Collapse
Affiliation(s)
- Quanren Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Fengbiao Guo
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yanyan Huang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Aifen Li
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shuxian Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiaxuan Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hua-Feng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qingjun Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|