1
|
Lorenz N, McGregor R, Whitcombe AL, Sharma P, Ramiah C, Middleton F, Baker MG, Martin WJ, Wilson NJ, Chung AW, Moreland NJ. An acute rheumatic fever immune signature comprising inflammatory markers, IgG3, and Streptococcus pyogenes-specific antibodies. iScience 2024; 27:110558. [PMID: 39184444 PMCID: PMC11342286 DOI: 10.1016/j.isci.2024.110558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 08/27/2024] Open
Abstract
Understanding the immune profile of acute rheumatic fever (ARF), a serious post-infectious sequelae of Streptococcal pyogenes (group A Streptococcus [GAS]), could inform disease pathogenesis and management. Circulating cytokines, immunoglobulins, and complement were analyzed in participants with first-episode ARF, swab-positive GAS pharyngitis and matched healthy controls. A striking elevation of total IgG3 was observed in ARF (90% > clinical reference range for normal). ARF was also associated with an inflammatory triad with significant correlations between interleukin-6, C-reactive protein, and complement C4 absent in controls. Quantification of GAS-specific antibody responses revealed that subclass polarization was remarkably consistent across the disease spectrum; conserved protein antigens polarized to IgG1, while M-protein responses polarized to IgG3 in all groups. However, the magnitude of responses was significantly higher in ARF. Taken together, these findings emphasize the association of exaggerated GAS antibody responses, IgG3, and inflammatory cytokines in ARF and suggest IgG3 testing could beneficially augment clinical diagnosis.
Collapse
Affiliation(s)
- Natalie Lorenz
- School of Medical Science, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Reuben McGregor
- School of Medical Science, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Alana L. Whitcombe
- School of Medical Science, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Prachi Sharma
- School of Medical Science, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Ciara Ramiah
- School of Medical Science, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Francis Middleton
- School of Medical Science, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Michael G. Baker
- Maurice Wilkins Centre for Biodiscovery, The University of Auckland, Auckland, New Zealand
- Department of Public Health, University of Otago, Wellington, New Zealand
| | | | - Nigel J. Wilson
- Starship Children’s Hospital, Health New Zealand – Te Whatu Ora, Auckland, New Zealand
| | - Amy W. Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Nicole J. Moreland
- School of Medical Science, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Biodiscovery, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Small AM, Yutzey KE, Binstadt BA, Voigts Key K, Bouatia-Naji N, Milan D, Aikawa E, Otto CM, St Hilaire C. Unraveling the Mechanisms of Valvular Heart Disease to Identify Medical Therapy Targets: A Scientific Statement From the American Heart Association. Circulation 2024; 150:e109-e128. [PMID: 38881493 PMCID: PMC11542557 DOI: 10.1161/cir.0000000000001254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Valvular heart disease is a common cause of morbidity and mortality worldwide and has no effective medical therapy. Severe disease is managed with valve replacement procedures, which entail high health care-related costs and postprocedural morbidity and mortality. Robust ongoing research programs have elucidated many important molecular pathways contributing to primary valvular heart disease. However, there remain several key challenges inherent in translating research on valvular heart disease to viable molecular targets that can progress through the clinical trials pathway and effectively prevent or modify the course of these common conditions. In this scientific statement, we review the basic cellular structures of the human heart valves and discuss how these structures change in primary valvular heart disease. We focus on the most common primary valvular heart diseases, including calcific aortic stenosis, bicuspid aortic valves, mitral valve prolapse, and rheumatic heart disease, and outline the fundamental molecular discoveries contributing to each. We further outline potential therapeutic molecular targets for primary valvular heart disease and discuss key knowledge gaps that might serve as future research priorities.
Collapse
|
3
|
Wilson N, Anderson A, Baker MG, Bennett J, Dennison A, McGregor R, Middleton F, Moreland NJ, Webb R. The roles of immuno-modulator treatment and echocardiographic screening in rheumatic fever and rheumatic heart disease control: research from Aotearoa, New Zealand. J R Soc N Z 2024; 55:241-266. [PMID: 39677380 PMCID: PMC11639061 DOI: 10.1080/03036758.2024.2306981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/13/2024] [Indexed: 12/17/2024]
Abstract
This review summarises advances in research from Aotearoa, New Zealand (NZ) that have potential to reduce the inequitable distribution of acute rheumatic fever (ARF) and rheumatic heart disease (RHD). ARF incidence and RHD prevalence are unacceptably inequitable for Māori and Pacifica. Recent qualitative research has demonstrated mismatches between the lived experience of those with ARF/RHD and health service experience they encounter. NZ-led research has contributed knowledge to all stages of disease prevention (primordial, primary and secondary) and for tertiary management. Modifiable risk factors for ARF are racism across health sectors, household crowding, barriers to accessing primary health care, a high intake of sugar-sweetened beverages and preceding sore throat and skin infections. NZ research has evaluated the impact of a large-scale sore throat management programme and Streptococcal A vaccine development. This review highlights two programme domains of research by the authors that have the potential to reduce the burden of chronic RHD: firstly, effective immunomodulation of ARF to reduce the severity of carditis, with current clinical trials of hydroxychloroquine in NZ; secondly, the development of echocardiographic screening of previously undetected RHD. This now meets criteria for an effective screening test and has potential translation for disease control of RHD.
Collapse
Affiliation(s)
- Nigel Wilson
- Green Lane Paediatric and Congenital Cardiac Services, Starship Children’s Hospital, Te Whatu Ora–Health New Zealand, Auckland, New Zealand
- Department of Paediatrics, Child and Youth Health, The University of Auckland
| | - Anneka Anderson
- Te Kupenga Hauora Māori, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
| | - Michael G. Baker
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Julie Bennett
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Adam Dennison
- Department of Paediatrics, KidzFirst Children’s Hospital, Te Whatu Ora–Health New Zealand, Counties Manukau, Auckland, New Zealand
| | - Reuben McGregor
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
| | - Francis Middleton
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
| | - Nicole J. Moreland
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
| | - Rachel Webb
- Department of Paediatric Infectious Diseases, Starship Children’s Hospital, Te Whatu Ora–Health New Zealand, Auckland
- Department of Paediatrics KidzFirst Children’s Hospital, Te Whatu Ora–Health New Zealand, Auckland
- Paediatrics, Child and Youth Health, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Karthikeyan G, Watkins D, Bukhman G, Cunningham MW, Haller J, Masterson M, Mensah GA, Mocumbi A, Muhamed B, Okello E, Sotoodehnia N, Machipisa T, Ralph A, Wyber R, Beaton A. Research priorities for the secondary prevention and management of acute rheumatic fever and rheumatic heart disease: a National Heart, Lung, and Blood Institute workshop report. BMJ Glob Health 2023; 8:e012468. [PMID: 37914183 PMCID: PMC10618973 DOI: 10.1136/bmjgh-2023-012468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/14/2023] [Indexed: 11/03/2023] Open
Abstract
Secondary prevention of acute rheumatic fever (ARF) and rheumatic heart disease (RHD) involves continuous antimicrobial prophylaxis among affected individuals and is recognised as a cornerstone of public health programmes that address these conditions. However, several important scientific issues around the secondary prevention paradigm remain unresolved. This report details research priorities for secondary prevention that were developed as part of a workshop convened by the US National Heart, Lung, and Blood Institute in November 2021. These span basic, translational, clinical and population science research disciplines and are built on four pillars. First, we need a better understanding of RHD epidemiology to guide programmes, policies, and clinical and public health practice. Second, we need better strategies to find and diagnose people affected by ARF and RHD. Third, we urgently need better tools to manage acute RF and slow the progression of RHD. Fourth, new and existing technologies for these conditions need to be better integrated into healthcare systems. We intend for this document to be a reference point for research organisations and research sponsors interested in contributing to the growing scientific community focused on RHD prevention and control.
Collapse
Affiliation(s)
| | - David Watkins
- Division of General Internal Medicine, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Gene Bukhman
- Division of Global Health Equity, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Program in Global Noncommunicable Diseases and Social Change, Harvard Medical School, Boston, Massachusetts, USA
| | | | - John Haller
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Mary Masterson
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - George A Mensah
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Ana Mocumbi
- Non-Communicable Diseases Division, Instituto Nacional de Saúde, Marracuene, Mozambique
- Universidade Eduardo Mondlane, Maputo, Mozambique
| | - Babu Muhamed
- The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Emmy Okello
- Cardiology, Uganda Heart Institute Ltd, Kampala, Uganda
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, University of Washington, Seattle, Washington, USA
| | - Tafadzwa Machipisa
- Cape Heart Institute (CHI), Department of Medicine, University of Cape Town, Rondebosch, South Africa
- Clinical Research Laboratory & Biobank-Genetic & Molecular Epidemiology Laboratory (CRLB-GMEL), Population Health Research Institute, Hamilton, Ontario, Canada
| | - Anna Ralph
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Rosemary Wyber
- END RHD Program, Telethon Kids Institute, Perth, Western Australia, Australia
- National Centre for Aboriginal and Torres Strait Islander Wellbeing Research, Canberra, Australian Capital Territory, Australia
| | - Andrea Beaton
- Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Cardiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
5
|
Troese MJ, Burlet E, Cunningham MW, Alvarez K, Bentley R, Thomas N, Carwell S, Morefield GL. Group A Streptococcus Vaccine Targeting the Erythrogenic Toxins SpeA and SpeB Is Safe and Immunogenic in Rabbits and Does Not Induce Antibodies Associated with Autoimmunity. Vaccines (Basel) 2023; 11:1504. [PMID: 37766180 PMCID: PMC10534881 DOI: 10.3390/vaccines11091504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Group A streptococcus (GAS) is a global pathogen associated with significant morbidity and mortality for which there is currently no licensed vaccine. Vaccine development has been slow, mostly due to safety concerns regarding streptococcal antigens associated with autoimmunity and related complications. For a GAS vaccine to be safe, it must be ensured that the antigens used in the vaccine do not elicit an antibody response that can cross-react with host tissues. In this study, we evaluated the safety of our GAS vaccine candidate called VaxiStrep in New Zealand White rabbits. VaxiStrep is a recombinant fusion protein comprised of streptococcal pyrogenic exotoxin A (SpeA) and exotoxin B (SpeB), also known as erythrogenic toxins, adsorbed to an aluminum adjuvant. The vaccine elicited a robust immune response against the two toxins in the rabbits without any adverse events or toxicity. No signs of autoimmune pathology were detected in the rabbits' brains, hearts, and kidneys via immunohistochemistry, and serum antibodies did not cross-react with cardiac or neuronal tissue proteins associated with rheumatic heart disease or Sydenham chorea (SC). This study further confirms that VaxiStrep does not elicit autoantibodies and is safe to be tested in a first-in-human trial.
Collapse
Affiliation(s)
| | | | - Madeleine W. Cunningham
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Kathy Alvarez
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Rebecca Bentley
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|
6
|
Laudański P, Rogalska G, Warzecha D, Lipa M, Mańka G, Kiecka M, Spaczyński R, Piekarski P, Banaszewska B, Jakimiuk A, Issat T, Rokita W, Młodawski J, Szubert M, Sieroszewski P, Raba G, Szczupak K, Kluz T, Kluza M, Neuman T, Adler P, Peterson H, Salumets A, Wielgos M. Autoantibody screening of plasma and peritoneal fluid of patients with endometriosis. Hum Reprod 2023; 38:629-643. [PMID: 36749097 DOI: 10.1093/humrep/dead011] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 11/26/2022] [Indexed: 02/08/2023] Open
Abstract
STUDY QUESTION Are there specific autoantibody profiles in patients with endometriosis that are different from those in controls? SUMMARY ANSWER This study did not reveal a significantly higher prevalence of autoantibodies in the studied groups of patients. WHAT IS KNOWN ALREADY Various inflammatory factors are postulated to be involved in the pathomechanisms of endometriosis, and a potential link exists with autoimmune diseases, which may also play an important role. As the diagnosis of endometriosis remains invasive, it can only be confirmed using laparoscopy with histopathological examination of tissues. Numerous studies have focused on identifying useful biomarkers to confirm the disease, but without unequivocal effects. Autoantibodies are promising molecules that serve as potential prognostic factors. STUDY DESIGN, SIZE, DURATION A multicentre, cross-sectional study was conducted over 18 months (between 2018 and 2019), at eight Departments of Obstetrics and Gynaecology in several cities across Poland on 137 patients undergoing laparoscopic examination for the diagnosis of endometriosis. PARTICIPANTS/MATERIALS, SETTINGS, METHODS During laparoscopy, we obtained plasma samples from 137 patients and peritoneal fluid (PF) samples from 98 patients. Patients with autoimmune diseases were excluded from the study. Autoantibody profiling was performed using HuProt v3.1 human proteome microarrays. MAIN RESULTS AND THE ROLE OF CHANCE We observed no significant differences in the expression of autoantibodies in the plasma or PF between the endometriosis and control groups. The study revealed that in the PF of women with Stage II endometriosis, compared with other stages, there were significantly higher reactivity signals for ANAPC15 and GABPB1 (adj. P < 0.016 and adj. P < 0.026, respectively; logFC > 1 in both cases). Comparison of the luteal and follicular phases in endometriosis patients revealed that levels of NEIL1 (adj. P < 0.029), MAGEB4 (adj. P < 0.029), and TNIP2 (adj. P < 0.042) autoantibody signals were significantly higher in the luteal phase than in the follicular phase in PF samples of patients with endometriosis. No differences were observed between the two phases of the cycle in plasma or between women with endometriosis and controls. Clustering of PF and plasma samples did not reveal unique autoantibody profiles for endometriosis; however, comparison of PF and plasma in the same patient showed a high degree of concordance. LIMITATIONS, REASONS FOR CAUTION Although this study was performed using the highest-throughput protein array available, it does not cover the entire human proteome and cannot be used to study potentially promising post-translational modifications. Autoantibody levels depend on numerous factors, such as infections; therefore the autoantibody tests should be repeated for more objective results. WIDER IMPLICATIONS OF THE FINDINGS Although endometriosis has been linked to different autoimmune diseases, it is unlikely that autoimmune responses mediated by specific autoantibodies play a pivotal role in the pathogenesis of this inflammatory disease. Our study shows that in searching for biomarkers of endometriosis, it may be more efficient to use higher-throughput proteomic microarrays, which may allow the detection of potentially new biomarkers. Only research on such a scale, and possibly with different technologies, can help discover biomarkers that will change the method of endometriosis diagnosis. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by a grant from the Polish Ministry of Health (grant no. 6/6/4/1/NPZ/2017/1210/1352). It was also funded by the Estonian Research Council (grant PRG1076) and the Horizon 2020 Innovation Grant (ERIN; grant no. EU952516), Enterprise Estonia (grant no. EU48695), and MSCA-RISE-2020 project TRENDO (grant no. 101008193). The authors declare that there is no conflict of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Piotr Laudański
- 1st Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland.,OVIklinika Infertility Center, Warsaw, Poland.,Women's Health Research Institute, Calisia University, Kalisz, Poland.,Department of Obstetrics, Gynecology and Gynecological Oncology, Medical University of Warsaw, Warsaw, Poland
| | - Gabriela Rogalska
- Clinic of Gynecology, Oncological Gynecology and Obstetrics, Municipal Polyclinical Hospital in Olsztyn, Olsztyn, Poland
| | - Damian Warzecha
- 1st Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland
| | - Michał Lipa
- 1st Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland
| | | | | | - Robert Spaczyński
- Center for Gynecology, Obstetrics and Infertility Treatment Pastelova, Poznan, Poland
| | - Piotr Piekarski
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, Poznan, Poland
| | - Beata Banaszewska
- Chair and Department of Laboratory Diagnostics, Poznan University of Medical Sciences, Poznan, Poland
| | - Artur Jakimiuk
- Department of Obstetrics and Gynecology, Institute of Mother and Child, Warsaw, Poland.,Department of Obstetrics and Gynecology, Central Clinical Hospital of the Ministry of Interior, Warsaw, Poland
| | - Tadeusz Issat
- Department of Obstetrics and Gynecology, Institute of Mother and Child, Warsaw, Poland
| | - Wojciech Rokita
- Collegium Medicum Jan Kochanowski University in Kielce, Kielce, Poland.,Clinic of Obstetrics and Gynecology, Provincial Combined Hospital in Kielce, Kielce, Poland
| | - Jakub Młodawski
- Collegium Medicum Jan Kochanowski University in Kielce, Kielce, Poland.,Clinic of Obstetrics and Gynecology, Provincial Combined Hospital in Kielce, Kielce, Poland
| | - Maria Szubert
- Department of Gynecology and Obstetrics Medical, University of Lodz, Lodz, Poland.,Department of Surgical Gynecology and Oncology, Medical University of Lodz, Lodz, Poland
| | - Piotr Sieroszewski
- Department of Gynecology and Obstetrics Medical, University of Lodz, Lodz, Poland.,Department of Fetal Medicine and Gynecology, Medical University of Lodz, Lodz, Poland
| | - Grzegorz Raba
- Clinic of Obstetric and Gynecology in Przemysl, Przemysl, Poland.,University of Rzeszow, Rzeszow, Poland
| | - Kamil Szczupak
- Clinic of Obstetric and Gynecology in Przemysl, Przemysl, Poland.,University of Rzeszow, Rzeszow, Poland
| | - Tomasz Kluz
- Department of Gynecology, Gynecology Oncology and Obstetrics, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland
| | - Marek Kluza
- Department of Gynecology, Gynecology Oncology and Obstetrics, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland
| | | | - Priit Adler
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Hedi Peterson
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia.,Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Miroslaw Wielgos
- 1st Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
7
|
Kirvan CA, Canini H, Swedo SE, Hill H, Veasy G, Jankelow D, Kosanke S, Ward K, Zhao YD, Alvarez K, Hedrick A, Cunningham MW. IgG2 rules: N-acetyl-β-D-glucosamine-specific IgG2 and Th17/Th1 cooperation may promote the pathogenesis of acute rheumatic heart disease and be a biomarker of the autoimmune sequelae of Streptococcus pyogenes. Front Cardiovasc Med 2023; 9:919700. [PMID: 36815140 PMCID: PMC9939767 DOI: 10.3389/fcvm.2022.919700] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/29/2022] [Indexed: 02/09/2023] Open
Abstract
Antecedent group A streptococcal pharyngitis is a well-established cause of acute rheumatic fever (ARF) where rheumatic valvular heart disease (RHD) and Sydenham chorea (SC) are major manifestations. In ARF, crossreactive antibodies and T cells respond to streptococcal antigens, group A carbohydrate, N-acetyl-β-D-glucosamine (GlcNAc), and M protein, respectively, and through molecular mimicry target heart and brain tissues. In this translational human study, we further address our hypothesis regarding specific pathogenic humoral and cellular immune mechanisms leading to streptococcal sequelae in a small pilot study. The aims of the study were to (1) better understand specific mechanisms of pathogenesis in ARF, (2) identify a potential early biomarker of ARF, (3) determine immunoglobulin G (IgG) subclasses directed against GlcNAc, the immunodominant epitope of the group A carbohydrate, by reaction of ARF serum IgG with GlcNAc, M protein, and human neuronal cells (SK-N-SH), and (4) determine IgG subclasses deposited on heart tissues from RHD. In 10 pediatric patients with RHD and 6 pediatric patients with SC, the serum IgG2 subclass reacted significantly with GlcNAc, and distinguished ARF from 7 pediatric patients with uncomplicated pharyngitis. Three pediatric patients who demonstrated only polymigrating arthritis, a major manifestation of ARF and part of the Jones criteria for diagnosis, lacked the elevated IgG2 subclass GlcNAc-specific reactivity. In SC, the GlcNAc-specific IgG2 subclass in cerebrospinal fluid (CSF) selectively targeted human neuronal cells as well as GlcNAc in the ELISA. In rheumatic carditis, the IgG2 subclass preferentially and strongly deposited in valve tissues (n = 4) despite elevated concentrations of IgG1 and IgG3 in RHD sera as detected by ELISA to group A streptococcal M protein. Although our human study of ARF includes a very small limited sample set, our novel research findings suggest a strong IgG2 autoantibody response against GlcNAc in RHD and SC, which targeted heart valves and neuronal cells. Cardiac IgG2 deposition was identified with an associated IL-17A/IFN-γ cooperative signature in RHD tissue which displayed both IgG2 deposition and cellular infiltrates demonstrating these cytokines simultaneously. GlcNAc-specific IgG2 may be an important autoantibody in initial stages of the pathogenesis of group A streptococcal sequelae, and future studies will determine if it can serve as a biomarker for risk of RHD and SC or early diagnosis of ARF.
Collapse
Affiliation(s)
- Christine A. Kirvan
- Department of Biological Sciences, California State University, Sacramento, CA, United States
| | - Heather Canini
- Department of Biological Sciences, California State University, Sacramento, CA, United States
| | - Susan E. Swedo
- Pediatrics and Developmental Neuropsychiatry Branch, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, United States
| | - Harry Hill
- Departments of Pediatrics, Infectious Diseases, Cardiology, and Pathology, University of Utah College of Medicine, Salt Lake City, UT, United States
| | - George Veasy
- Departments of Pediatrics, Infectious Diseases, Cardiology, and Pathology, University of Utah College of Medicine, Salt Lake City, UT, United States
| | - David Jankelow
- Division of Cardiology, University of Witwatersrand, Johannesburg, South Africa
| | - Stanley Kosanke
- Department of Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Kent Ward
- Department of Pediatrics, Division of Cardiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Yan D. Zhao
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Kathy Alvarez
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Andria Hedrick
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Madeleine W. Cunningham
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
8
|
Rafeek RAM, Hamlin AS, Andronicos NM, Lawlor CS, McMillan DJ, Sriprakash KS, Ketheesan N. Characterization of an experimental model to determine streptococcal M protein–induced autoimmune cardiac and neurobehavioral abnormalities. Immunol Cell Biol 2022; 100:653-666. [PMID: 35792671 PMCID: PMC9545610 DOI: 10.1111/imcb.12571] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 11/29/2022]
Abstract
Group A streptococcal (GAS) infection is associated with a spectrum of autoimmune diseases including acute rheumatic fever/rheumatic heart disease (ARF/RHD) and neurobehavioral abnormalities. Antibodies against GAS M proteins cross‐react with host tissue proteins in the heart and brain leading to the symptomatology observed in ARF/RHD. As throat carriage of Streptococcus dysgalactiae subspecies equisimilis (SDSE) has been reported to be relatively high in some ARF/RHD endemic regions compared with GAS, and both SDSE and GAS express coiled‐coil surface protein called M protein, we hypothesized that streptococci other than GAS can also associated with ARF/RHD and neurobehavioral abnormalities. Neurobehavioral assessments and electrocardiography were performed on Lewis rats before and after exposure to recombinant GAS and SDSE M proteins. Histological assessments were performed to confirm inflammatory changes in cardiac and neuronal tissues. ELISA and Western blot analysis were performed to determine the cross‐reactivity of antibodies with host connective, cardiac and neuronal tissue proteins. Lewis rats injected with M proteins either from GAS or SDSE developed significant cardiac functional and neurobehavioral abnormalities in comparison to control rats injected with phosphate‐buffered saline. Antibodies against GAS and SDSE M proteins cross‐reacted with cardiac, connective and neuronal proteins. Serum from rats injected with streptococcal antigens showed higher immunoglobulin G binding to the striatum and cortex of the brain. Cardiac and neurobehavioral abnormalities observed in our experimental model were comparable to the cardinal symptoms observed in patients with ARF/RHD. Here for the first time, we demonstrate in an experimental model that M proteins from different streptococcal species could initiate and drive the autoimmune‐mediated cardiac tissue damage and neurobehavioral abnormalities.
Collapse
Affiliation(s)
- Rukshan AM Rafeek
- School of Science & Technology University of New England Armidale NSW Australia
| | - Adam S Hamlin
- School of Science & Technology University of New England Armidale NSW Australia
| | | | - Craig S Lawlor
- School of Science & Technology University of New England Armidale NSW Australia
| | - David J McMillan
- School of Science & Technology University of New England Armidale NSW Australia
- School of Science, Technology, Engineering and Genecology Research Centre University of the Sunshine Coast Sippy Downs QLDAustralia
| | - Kadaba S Sriprakash
- School of Science & Technology University of New England Armidale NSW Australia
- Infection and Inflammation Laboratory QIMR Berghofer Medical Research Institute Herston QLDAustralia
| | - Natkunam Ketheesan
- School of Science & Technology University of New England Armidale NSW Australia
- School of Science, Technology, Engineering and Genecology Research Centre University of the Sunshine Coast Sippy Downs QLDAustralia
| |
Collapse
|
9
|
Abstract
The goals of acute rheumatic fever therapy are to relieve symptoms, mitigate cardiac valve damage and eradicate streptococcal infection. Preventing future recurrences requires long-term secondary antibiotic prophylaxis and ongoing prevention of Streptococcus pyogenes (group A streptococcus) infections The recommended regimen for secondary prophylaxis comprises benzathine benzylpenicillin G intramuscular injections every four weeks. For patients with non-severe or immediate penicillin hypersensitivity, use erythromycin orally twice daily The goals of therapy for rheumatic heart disease are to prevent progression and optimise cardiac function. Secondary antibiotic prophylaxis can reduce the long-term severity of rheumatic heart disease Patients with rheumatic heart disease, including those receiving benzathine benzylpenicillin G prophylaxis, should receive amoxicillin prophylaxis before undergoing high-risk dental or surgical procedures. If they have recently been treated with a course of penicillin or amoxicillin, or have immediate penicillin hypersensitivity, clindamycin is recommended.
Collapse
Affiliation(s)
- Anna P Ralph
- Menzies School of Health Research, Charles Darwin University, Darwin
- RHDAustralia, Menzies School of Health Research, Darwin
- Department of Infectious Diseases, Royal Darwin and Palmerston Hospitals, Northern Territory Health
| | - Bart J Currie
- Menzies School of Health Research, Charles Darwin University, Darwin
- RHDAustralia, Menzies School of Health Research, Darwin
- Department of Infectious Diseases, Royal Darwin and Palmerston Hospitals, Northern Territory Health
| |
Collapse
|
10
|
Ralph AP, Webb R, Moreland NJ, McGregor R, Bosco A, Broadhurst D, Lassmann T, Barnett TC, Benothman R, Yan J, Remenyi B, Bennett J, Wilson N, Mayo M, Pearson G, Kollmann T, Carapetis JR. Searching for a technology-driven acute rheumatic fever test: the START study protocol. BMJ Open 2021; 11:e053720. [PMID: 34526345 PMCID: PMC8444258 DOI: 10.1136/bmjopen-2021-053720] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION The absence of a diagnostic test for acute rheumatic fever (ARF) is a major impediment in managing this serious childhood condition. ARF is an autoimmune condition triggered by infection with group A Streptococcus. It is the precursor to rheumatic heart disease (RHD), a leading cause of health inequity and premature mortality for Indigenous peoples of Australia, New Zealand and internationally. METHODS AND ANALYSIS: 'Searching for a Technology-Driven Acute Rheumatic Fever Test' (START) is a biomarker discovery study that aims to detect and test a biomarker signature that distinguishes ARF cases from non-ARF, and use systems biology and serology to better understand ARF pathogenesis. Eligible participants with ARF diagnosed by an expert clinical panel according to the 2015 Revised Jones Criteria, aged 5-30 years, will be recruited from three hospitals in Australia and New Zealand. Age, sex and ethnicity-matched individuals who are healthy or have non-ARF acute diagnoses or RHD, will be recruited as controls. In the discovery cohort, blood samples collected at baseline, and during convalescence in a subset, will be interrogated by comprehensive profiling to generate possible diagnostic biomarker signatures. A biomarker validation cohort will subsequently be used to test promising combinations of biomarkers. By defining the first biomarker signatures able to discriminate between ARF and other clinical conditions, the START study has the potential to transform the approach to ARF diagnosis and RHD prevention. ETHICS AND DISSEMINATION The study has approval from the Northern Territory Department of Health and Menzies School of Health Research ethics committee and the New Zealand Health and Disability Ethics Committee. It will be conducted according to ethical standards for research involving Indigenous Australians and New Zealand Māori and Pacific Peoples. Indigenous investigators and governance groups will provide oversight of study processes and advise on cultural matters.
Collapse
Affiliation(s)
- Anna P Ralph
- Global and Tropical Health, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Rachel Webb
- KidzFirst Hospital, Counties Manukau District Health Board, Auckland, New Zealand
- Starship Children's Hospital, Auckland, New Zealand
- Department of Paediatrics; Child and Youth Health, University of Auckland, Auckland, New Zealand
| | - Nicole J Moreland
- School of Medical Sciences and Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
| | - Reuben McGregor
- School of Medical Sciences and Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
| | - Anthony Bosco
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia, Australia
| | - David Broadhurst
- Centre for Integrative Metabolomics and Computational Biology, Edith Cowan University, Perth, Western Australia, Australia
| | - Timo Lassmann
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia, Australia
| | - Timothy C Barnett
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia, Australia
| | - Rym Benothman
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia, Australia
| | - Jennifer Yan
- Global and Tropical Health, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Bo Remenyi
- Global and Tropical Health, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Julie Bennett
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Nigel Wilson
- Starship Children's Hospital, Auckland, New Zealand
| | - Mark Mayo
- Global and Tropical Health, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Glenn Pearson
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia, Australia
| | - Tobias Kollmann
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia, Australia
| | - Jonathan R Carapetis
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia, Australia
- Department of Infectious Diseases, Perth Children's Hospital, Perth, Western Australia, Australia
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|