1
|
Roy DG, De M, Bharatiya S, Khedekar DA, Datta K, Bhattacharjee S, Chinnaswamy S. Evidence for a sex-dependent effect modification in the association between IFN-λ DNA polymorphisms and expression of IFN-λ and interferon-stimulated genes in human PBMCs. Cytokine 2024; 184:156779. [PMID: 39423653 DOI: 10.1016/j.cyto.2024.156779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/16/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Human interferon (IFN) lambda (IFNL, IFN-L or IFN-λ) locus has several functional genetic variants but their role in regulating in vivo gene expression, and whether they associate with antiviral states in healthy individuals, is not clear. In this study, we recruited ∼550 healthy individuals belonging to both sexes, genotyped them for several IFNL genetic variants and measured, by qPCR, the expression of IFNL2/3, IFNL4 and four IFN-stimulated genes (ISGs) (MX1, OAS1, ISG15 and RSAD2) from their peripheral blood mononuclear cells (PBMC) both before and after stimulation with a viral mimic, poly I: C. We also measured secreted levels of several cytokines including IFN-λ1 and IFN-λ3 in poly I:C stimulated PBMCs. We found that males secrete higher levels of IFN-λs than females. The IFNL3/4 genetic variants significantly associated with secreted levels of both IFN-λ1 and IFN-λ3 in opposite directions, only in males. While the IFNL3/4 variants significantly associated with ISG expression either in basal or poly I:C induced or in both states, the direction of effect was opposite for the two sexes, suggesting that sex was a strong effect modifier. We did not see this trend in the association of ISG expression with the IFNL1 polymorphism, rs7247086, whose association with ISG expression and secreted IFN-λ3 levels was seen in females but not in males. Further, expression of several genes was associated with the IFN-λ4 activity-modifying variant rs117648444. However, we neither saw any strong correlation between levels of IFN-λ1/3 and ISG expression, nor did we see any strong evidence of IFNL4 expression that could be responsible for the association between ISG expression and IFNL genetic variants. These results suggest that there are complex interactions involving gender, IFN-λs, IFN-λ genetic variants and antiviral states in humans.
Collapse
Affiliation(s)
- Debarati Guha Roy
- Biotechnology Research Innovation Council-National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, India; Regional Centre for Biotechnology, Faridabad, India
| | - Manjarika De
- Biotechnology Research Innovation Council-National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, India
| | - Seema Bharatiya
- Biotechnology Research Innovation Council-National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, India; Regional Centre for Biotechnology, Faridabad, India
| | - Dhanashree A Khedekar
- Biotechnology Research Innovation Council-National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, India; Regional Centre for Biotechnology, Faridabad, India
| | - Kallol Datta
- Biotechnology Research Innovation Council-National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, India; Regional Centre for Biotechnology, Faridabad, India
| | - Samsiddhi Bhattacharjee
- Biotechnology Research Innovation Council-National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, India; Regional Centre for Biotechnology, Faridabad, India
| | - Sreedhar Chinnaswamy
- Biotechnology Research Innovation Council-National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, India; Regional Centre for Biotechnology, Faridabad, India; Biotechnology Research Innovation Council-National Institute of Animal Biotechnology (BRIC-NIAB), Hyderabad, India.
| |
Collapse
|
2
|
Dhalech AH, Condotta SA, Pattnaik A, Corn C, Richer MJ, Robinson CM. Coxsackievirus B3 elicits a sex-specific CD8+ T cell response which protects female mice. PLoS Pathog 2023; 19:e1011465. [PMID: 37669302 PMCID: PMC10503745 DOI: 10.1371/journal.ppat.1011465] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 09/15/2023] [Accepted: 06/06/2023] [Indexed: 09/07/2023] Open
Abstract
Sex is a significant contributor to the outcome of human infections. Males are frequently more susceptible to viral, bacterial, and fungal infections, often attributed to weaker immune responses. In contrast, a heightened immune response in females enables better pathogen elimination but leaves females more predisposed to autoimmune diseases. Unfortunately, the underlying basis for sex-specific immune responses remains poorly understood. Here, we show a sex difference in the CD8+ T cell response to an enteric virus, Coxsackievirus B3 (CVB3). We found that CVB3 induced expansion of CD8+ T cells in female mice but not in male mice. CVB3 also increased the proportion and number of CD11ahiCD62Llo CD8+ T cells in female mice, indicative of activation. This response was independent of the inoculation route and type I interferon. Using a recombinant CVB3 virus expressing a model CD8+ T cell epitope, we found that the expansion of CD8+ T cells in females is viral-specific and not due to bystander activation. Finally, the depletion of CD8+ T cells, prior to infection, led to enhanced mortality, indicating that CD8+ T cells are protective against CVB3 in female mice. These data demonstrate that CVB3 induces a CD8+ T cell response in female mice and highlight the importance of sex-specific immune responses to viral pathogens.
Collapse
Affiliation(s)
- Adeeba H. Dhalech
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Stephanie A. Condotta
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Aryamav Pattnaik
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Caleb Corn
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Martin J. Richer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Christopher M. Robinson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| |
Collapse
|
3
|
Wu Y, Li M, Zhang J, Wang S. Unveiling uterine aging: Much more to learn. Ageing Res Rev 2023; 86:101879. [PMID: 36764360 DOI: 10.1016/j.arr.2023.101879] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/22/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
Uterine aging is an important factor that impacts fertility, reproductive health, and uterus-related diseases; however, it remains poorly explored. Functionally, these disturbances have been associated with an abnormal hormonal response in the endometrium and decreased endometrial receptivity. Based on emerging evidence, these alterations are mediated via the senescence of endometrial stem cells and impaired decidualization of endometrial stromal cells. Multiple molecular activities may participate in uterine aging, including oxidative stress, inflammation, fibrosis, DNA damage response, and cellular senescence. Over the past decade, several protective strategies targeting these biological processes have afforded promising results, including stem cell therapy, anti-aging drugs, and herbal medicines. However, the currently available evidence is fragmented and scattered. Here, we summarize the most recent findings regarding uterine aging, including functional and structural alterations and potential cellular and molecular mechanisms, and discuss potential protective interventions against uterine aging. Thereby, we hope to provide a comprehensive understanding of the pathophysiological processes and underlying mechanisms associated with uterine aging, as well as improve fecundity and reproductive outcomes in females of advanced reproductive age.
Collapse
Affiliation(s)
- Yaling Wu
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Milu Li
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinjin Zhang
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shixuan Wang
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Dhillon HK, Singh T, Goel RK. Ferulic acid inhibits catamenial epilepsy through modulation of female hormones. Metab Brain Dis 2022; 37:2827-2838. [PMID: 35932441 DOI: 10.1007/s11011-022-01054-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 07/18/2022] [Indexed: 11/24/2022]
Abstract
Approximately 40% of women with epilepsy experience perimenstrual seizure exacerbation, referred to as catamenial epilepsy. These seizures result from cyclic changes in circulating progesterone and estradiol levels and there is no effective treatment for this form of intractable epilepsy. We artificially increased progesterone levels and neurosteroid levels (pseudo-pregnancy) in adult Swiss albino female mice (19-23 g) by injecting them with pregnant mares' serum gonadotropin (5 IU s.c.), followed by human chorionic gonadotropin (5 IU s.c.) after 46 h. After this, ferulic acid (25, 50, 100 mg/kg i.p.) treatment was given for 10 days. During treatment, progesterone, estradiol, and corticosterone levels were estimated in blood on days 1, 5, and 10. Neurosteroid withdrawal was induced by finasteride (50 mg/kg, i.p.) on treatment day 9. Twenty-four hours after finasteride administration (day 10 of treatment), seizure susceptibility was evaluated with the sub-convulsant pentylenetetrazol (PTZ) dose (40 mg/kg i.p.). Four to six hours after PTZ, animals were assessed for depression like phenotypes using tail-suspension test (TST). Four to six hours following TST, animals were euthanized, and discrete brain parts (cortex and hippocampus) were separated for estimation of norepinephrine, serotonin, and dopamine as well as glutamic acid decarboxylase (GAD) enzyme activity. PMSG and HCG treatment elevated progesterone and estradiol levels, assessed on days 1, 5, and 10 causing a state of pseudo-pregnancy. Treatment with finasteride increased seizure susceptibility and depression-like characteristics possibly due to decreased progesterone and elevated estrogen levels coupled with decreased monoamine and elevated corticosterone levels. Ferulic acid treatment, on the other hand, significantly decreased seizure susceptibility and depression like behavior, possibly because of increased progesterone, restored estradiol, corticosterone, monoamines, and GAD enzyme activity. We concluded anticonvulsant effect of ferulic acid in a mouse model of catamenial epilepsy, evidenced by favourable seizure attenuation and curative effect on the circulating progesterone, estradiol, and corticosterone levels along with restorative effect on GAD enzyme activity and monoamine levels.
Collapse
Affiliation(s)
- Harleen Kaur Dhillon
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, 147002, Patiala, Punjab, India
| | - Tanveer Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, 147002, Patiala, Punjab, India
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, College Station, United States of America
| | - Rajesh Kumar Goel
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, 147002, Patiala, Punjab, India.
| |
Collapse
|
5
|
Espino A, Gouilly J, Chen Q, Colin P, Guerby P, Izopet J, Amara A, Tabiasco J, Al-Daccak R, El Costa H, Jabrane-Ferrat N. The mechanisms underlying the immune control of Zika virus infection at the maternal-fetal interface. Front Immunol 2022; 13:1000861. [PMID: 36483552 PMCID: PMC9723234 DOI: 10.3389/fimmu.2022.1000861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/28/2022] [Indexed: 11/23/2022] Open
Abstract
Unlike other Flaviviruses, Zika virus (ZIKV) infection during the first trimester of pregnancy causes severe pregnancy outcomes including the devastating microcephaly and diseases associated with placental dysfunctions. We have previously reported that the maternal decidua basalis, the major maternal-fetal interface, serves as a replication platform enabling virus amplification before dissemination to the fetal compartment. However, the rate of congenital infection is quite low, suggesting the presence of a natural barrier against viral infection. Using primary cells from first-trimester pregnancy samples, we investigated in this study how the maternal decidua can interfere with ZIKV infection. Our study reveals that whether through their interactions with dNK cells, the main immune cell population of the first-trimester decidua, or their production of proinflammatory cytokines, decidual stromal cells (DSCs) are the main regulators of ZIKV infection during pregnancy. We also validate the functional role of AXL as a crucial receptor for ZIKV entry in DSCs and demonstrate that targeted inhibition of ligand-receptor interaction at the early stage of the infection is effective in drastically reducing virus pathogenesis at the maternal-fetal interface. Collectively, our results provide insights into the mechanisms through which ZIKV infection and spreading can be limited. The strategy of circumventing viral entry at the maternal-fetus interface limits virus dissemination to fetal tissues, thereby preventing congenital abnormalities.
Collapse
Affiliation(s)
- Ana Espino
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), CNRS UMR5051, INSERM UMR1291, University of Toulouse III, Toulouse, France
| | - Jordi Gouilly
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), CNRS UMR5051, INSERM UMR1291, University of Toulouse III, Toulouse, France
| | - Qian Chen
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), CNRS UMR5051, INSERM UMR1291, University of Toulouse III, Toulouse, France
| | - Philippe Colin
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), CNRS UMR5051, INSERM UMR1291, University of Toulouse III, Toulouse, France
| | - Paul Guerby
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), CNRS UMR5051, INSERM UMR1291, University of Toulouse III, Toulouse, France,Department of Obstetrics and Gynecology, Paule de Viguier Hospital, Toulouse, France
| | - Jacques Izopet
- Department of Virology, Institut Fédératif de Biologie, Toulouse, France
| | - Ali Amara
- CNRS 7212, INSERM U944, University Paris Cité, Hôpital Saint-Louis, Paris, France
| | - Julie Tabiasco
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), CNRS UMR5051, INSERM UMR1291, University of Toulouse III, Toulouse, France
| | - Reem Al-Daccak
- INSERM UMRS976, University Paris Cité, Hôpital Saint-Louis, Paris, France
| | - Hicham El Costa
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), CNRS UMR5051, INSERM UMR1291, University of Toulouse III, Toulouse, France
| | - Nabila Jabrane-Ferrat
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), CNRS UMR5051, INSERM UMR1291, University of Toulouse III, Toulouse, France,*Correspondence: Nabila Jabrane-Ferrat,
| |
Collapse
|
6
|
Alleviation of Severe Skin Insults Following High-Dose Irradiation with Isolated Human Fetal Placental Stromal Cells. Int J Mol Sci 2022; 23:ijms232113321. [DOI: 10.3390/ijms232113321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Skin exposure to high-dose irradiation, as commonly practiced in radiotherapy, affects the different skin layers, causing dry and wet desquamation, hyperkeratosis fibrosis, hard to heal wounds and alopecia and damaged hair follicles. Fetal tissue mesenchymal stromal cells (f-hPSC) were isolated from excised human fetal placental tissue, based on their direct migration from the tissue samples to the tissue dish. The current study follows earlier reports on for the mitigation of acute radiation syndrome following whole body high-dose exposure with remotely injected f-hPSC. Both the head only and a back skin flap of mice were irradiated with 16 &18 Gy, respectively, by 6MeV clinical linear accelerator electron beam. In both locations, the irradiated skin areas developed early and late radiation induced skin damages, including cutaneous fibrosis, lesions, scaring and severe hair follicle loss and reduced hair pigmentation. Injection of 2 × 106 f-hPSC, 3 and 8 weeks following 16 Gy head irradiation, and 1 and 4 weeks following the 18 Gy back skin only irradiation, resulted in significantly faster healing of radiation induced damages, with reduction of wet desquamation as measured by surface moisture level and minor recovery of the skin viscoelasticity. Detailed histological morphometry showed a clear alleviation of radiation induced hyperkeratosis in f-hPSC treated mice, with significant regain of hair follicles density. Following 16 Gy head irradiation, the hair follicles density in the scalp skin was reduced significantly by almost a half relative to the controls. A nearly full recovery of hair density was found in the f-hPSC treated mice. In the 18 Gy irradiated back skin, the hair follicles density dropped in a late stage by ~70% relative to naïve controls. In irradiated f-hPSC treated mice, it was reduced by only ~30% and was significantly higher than the non-treated group. Our results suggest that local injections of xenogeneic f-hPSC could serve as a simple, safe and highly effective non-autologous pro-regenerative treatment for high-dose radiation induced skin insults. We expect that such treatment could also be applied for other irradiated organs.
Collapse
|
7
|
Park Y, Han SJ. Interferon Signaling in the Endometrium and in Endometriosis. Biomolecules 2022; 12:biom12111554. [PMID: 36358904 PMCID: PMC9687697 DOI: 10.3390/biom12111554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/21/2022] [Indexed: 12/04/2022] Open
Abstract
Endometriosis is an estrogen-dependent inflammatory disease that develops in reproductive-aged women who experience pelvic pain and infertility. Even though endometriosis is not a new disease, its molecular etiology has not been clearly elucidated. Defects in the immune system might be one of the factors that promote endometriosis progression. For example, elevated levels of proinflammatory cytokines are associated with endometriosis. Interferon is one of the cytokines that is elevated in endometriotic tissues compared with normal endometrium. Therefore, high interferon levels play a crucial role in endometriosis progression. In addition to endometriosis, however, interferon has a critical role in endometrial function, particularly in the initiation and maintenance of pregnancy. Therefore, this review describes the double-edged sword of interferon signaling in normal endometrial function versus endometriosis progression and also discusses interferon targeting as a new nonhormonal therapy for endometriosis. This approach may increase the efficacy of endometriosis treatment and reduce the adverse effects associated with current hormonal therapy for this disease.
Collapse
Affiliation(s)
- Yuri Park
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sang Jun Han
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
8
|
Song Q, Hou Y, Zhang Y, Liu J, Wang Y, Fu J, Zhang C, Cao M, Cui Y, Zhang X, Wang X, Zhang J, Liu C, Zhang Y, Wang P. Integrated multi-omics approach revealed cellular senescence landscape. Nucleic Acids Res 2022; 50:10947-10963. [PMID: 36243980 PMCID: PMC9638896 DOI: 10.1093/nar/gkac885] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/27/2022] [Accepted: 10/01/2022] [Indexed: 11/14/2022] Open
Abstract
Cellular senescence is a complex multifactorial biological phenomenon that plays essential roles in aging, and aging-related diseases. During this process, the senescent cells undergo gene expression altering and chromatin structure remodeling. However, studies on the epigenetic landscape of senescence using integrated multi-omics approaches are limited. In this research, we performed ATAC-seq, RNA-seq and ChIP-seq on different senescent types to reveal the landscape of senescence and identify the prime regulatory elements. We also obtained 34 key genes and deduced that NAT1, PBX1 and RRM2, which interacted with each other, could be the potential markers of aging and aging-related diseases. In summary, our work provides the landscape to study accessibility dynamics and transcriptional regulations in cellular senescence. The application of this technique in different types of senescence allows us to identify the regulatory elements responsible for the substantial regulation of transcription, providing the insights into molecular mechanisms of senescence.
Collapse
Affiliation(s)
- Qiao Song
- Department of Clinical laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing 100053, PR China
| | - Yuli Hou
- Department of Clinical laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing 100053, PR China
| | - Yiyin Zhang
- Shanghai Jiayin Biotechnology, Shanghai 200092, PR China
| | - Jing Liu
- Department of Clinical laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing 100053, PR China
| | - Yaqi Wang
- Department of Clinical laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing 100053, PR China
| | - Jingxuan Fu
- Department of Clinical laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing 100053, PR China
| | - Chi Zhang
- Department of Clinical laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing 100053, PR China
| | - Min Cao
- Department of Clinical Laboratory, Beijing Huairou Hospital, Beijing 101400, PR China
| | - Yuting Cui
- Department of Clinical laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing 100053, PR China
| | - Xiaomin Zhang
- Department of Clinical laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing 100053, PR China
| | - Xiaoling Wang
- Department of Clinical laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing 100053, PR China
| | - Jingjing Zhang
- Department of Clinical laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing 100053, PR China
| | - Congcong Liu
- Department of Clinical laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing 100053, PR China
| | - Yingzhen Zhang
- Department of Clinical laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing 100053, PR China
| | - Peichang Wang
- Department of Clinical laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing 100053, PR China
| |
Collapse
|
9
|
Averyanova M, Vishnyakova P, Yureneva S, Yakushevskaya O, Fatkhudinov T, Elchaninov A, Sukhikh G. Sex hormones and immune system: Menopausal hormone therapy in the context of COVID-19 pandemic. Front Immunol 2022; 13:928171. [PMID: 35983046 PMCID: PMC9379861 DOI: 10.3389/fimmu.2022.928171] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
The fatal outcomes of COVID-19 are related to the high reactivity of the innate wing of immunity. Estrogens could exert anti-inflammatory effects during SARS-CoV-2 infection at different stages: from increasing the antiviral resistance of individual cells to counteracting the pro-inflammatory cytokine production. A complex relationship between sex hormones and immune system implies that menopausal hormone therapy (MHT) has pleiotropic effects on immunity in peri- and postmenopausal patients. The definite immunological benefits of perimenopausal MHT confirm the important role of estrogens in regulation of immune functionalities. In this review, we attempt to explore how sex hormones and MHT affect immunological parameters of the organism at different level (in vitro, in vivo) and what mechanisms are involved in their protective response to the new coronavirus infection. The correlation of sex steroid levels with severity and lethality of the disease indicates the potential of using hormone therapy to modulate the immune response and increase the resilience to adverse outcomes. The overall success of MHT is based on decades of experience in clinical trials. According to the current standards, MHT should not be discontinued in COVID-19 with the exception of critical cases.
Collapse
Affiliation(s)
- Marina Averyanova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Polina Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
- Peoples’ Friendship University of Russia, Medical Institute, Moscow, Russia
- *Correspondence: Polina Vishnyakova,
| | - Svetlana Yureneva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Oksana Yakushevskaya
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Timur Fatkhudinov
- Peoples’ Friendship University of Russia, Medical Institute, Moscow, Russia
- A. P. Avtsyn Research Institute of Human Morphology, Laboratory of Growth and Development, Moscow, Russia
| | - Andrey Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Gennady Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| |
Collapse
|