1
|
Martin S, Peiro JL, Oria M, Forde B. Comparison of Amnio-Exchange With a Novel Synthetic Amniotic Fluid Versus Commercially Used Fluids for Fetal Therapy: An In Vivo Rodent Model. Prenat Diagn 2024; 44:1242-1250. [PMID: 39123304 DOI: 10.1002/pd.6644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/23/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024]
Abstract
OBJECTIVE Normal Saline (NS) and Lactated Ringer's (LR) damage human amniotic epithelium in vitro when compared with a synthetic amniotic fluid (Amnio-well, AW). We sought to evaluate the effect of amnio-exchange with NS, LR, and AW in vivo. METHODS On day E17.5, pregnant rats underwent amnio-exchange with NS, LR, or AW. Fetuses in each pregnant rat that did not undergo amnio-exchange acted as controls. Amnions were harvested at E20.5 and ultrastructure evaluated via electron microscopy. Protein levels of cleaved matrix metalloproteinase 9 (MMP9) and collagen 1 (Col1a) were evaluated via Western Blot. Connexin-43 expression was evaluated via immunofluorescence (IF). RESULTS There was an increase in amnion microfractures and epithelial cellular shrinkage with NS and LR compared with control and AW. The cleaved MMP9/Col1 ratio was increased 3.9-fold in NS (p < 0.001) and 4.5-fold LR (p = 0.0201) relative to control, whereas AW expression was similar to control (p = 0.636). Connexin-43 was also increased on IF in NS and LR relative to AW (mean gray intensity 26.5 ± 4.5, 26.5 ± 6.7, 19.2 ± 3.4, p < 0.001). CONCLUSION Amnio-exchange with NS and LR led to increased amniotic microfractures and collagen degradation compared with synthetic amniotic fluid. Larger models are warranted to validate or refute these findings.
Collapse
Affiliation(s)
- Samuel Martin
- Center for Fetal and Placental Research, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, Ohio, USA
| | - Jose L Peiro
- Center for Fetal and Placental Research, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, Ohio, USA
- Division of General and Thoracic, Department of Pediatric Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Marc Oria
- Department of Radiation Oncology, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Braxton Forde
- Center for Fetal and Placental Research, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, Ohio, USA
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
2
|
Babaei K, Azimi Nezhad M, Sedigh Ziabari SN, Mirzajani E, Mozdarani H, Sharami SH, Farzadi S, Mirhafez SR, Naghdipour Mirsadeghi M, Norollahi SE, Saadatian Z, Samadani AA. TLR signaling pathway and the effects of main immune cells and epigenetics factors on the diagnosis and treatment of infertility and sterility. Heliyon 2024; 10:e35345. [PMID: 39165943 PMCID: PMC11333914 DOI: 10.1016/j.heliyon.2024.e35345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/22/2024] Open
Abstract
Recurrent pregnancy loss (RPL), often known as spontaneous miscarriages occurring two or more times in a row, is a reproductive disease that affects certain couples. The cause of RPL is unknown in many cases, leading to difficulties in therapy and increased psychological suffering in couples. Toll-like receptors (TLR) have been identified as crucial regulators of inflammation in various human tissues. The occurrence of inflammation during parturition indicates that Toll-like receptor activity in tissues related to pregnancy may play a crucial role in the onset and continuation of normal function, as well as in various pregnancy complications like infection-related preterm. TLRs or their signaling molecules may serve as effective therapeutic targets for inhibiting premature activity. At the maternal-fetal interface, TLRs are found in both immune and non-immune cells, such as trophoblasts and decidual cells. TLR expression patterns are influenced by the phases of pregnancy. In this way, translational combinations like epigenetics, have indicated their impact on the TLRs.Importantly, abnormal DNA methylation patterns and histone alterations have an impressive performance in decreasing fertility by influencing gene expression and required molecular and cellular activities which are vital for a normal pregnancy and embryonic process. TLRs, play a central duty in the innate immune system and can regulate epigenetic elements by many different signaling pathways. The potential roles of TLRs in cells, epigenetics factors their ability to identify and react to infections, and their place in the innate immune system will all be covered in this narrative review essay.
Collapse
Affiliation(s)
- Kosar Babaei
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mohsen Azimi Nezhad
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- UMR INSERM U 1122, IGE-PCV, Interactions Gène-Environment En Physiopathologie Cardiovascular Université De Lorraine, Nancy, France
| | - Seyedeh Nafise Sedigh Ziabari
- BSC of Midwifery, Reproductive Health Research Center, Al-Zahra Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Ebrahim Mirzajani
- Department of Biochemistry and Biophysics, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Hossein Mozdarani
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyedeh Hajar Sharami
- Reproductive Health Research Center, Department of Obstetrics and Gynecology, School of Medicine, Al-Zahra Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Sara Farzadi
- Department of Gynecology, School of Medicine, Alzahra Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyed Reza Mirhafez
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Misa Naghdipour Mirsadeghi
- Department of Gynecology, School of Medicine, Reproductive Health Research Center, Alzahra Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Zahra Saadatian
- Department of Physiology, Faculty of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
3
|
Zhang J, Fan C, Xu C, Zhang Y, Liu J, Zhou C, Feng S, Fan Y. Serum calcium level at 32 weeks of gestation could be applied as a predictor of preterm delivery: a retrospective study. Eur J Med Res 2024; 29:400. [PMID: 39090755 PMCID: PMC11293211 DOI: 10.1186/s40001-024-01984-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024] Open
Abstract
Preterm delivery (PTD) is associated with severe adverse maternal and neonatal outcomes and higher medical costs. Therefore, PTD warrants more attention. However, predicting PTD remains a challenge for researchers. This study aimed to investigate potential prenatal predictors of PTD. We retrospectively recruited pregnant women who experienced either PTD or term delivery (TD) and underwent laboratory examinations at 32 weeks of gestation. We compared the test results between the two groups and performed logistic regression analysis and receiver operating characteristic (ROC) curve analysis to identify risk factors and predictive factors for PTD. Our investigation revealed that the PTD cohort exhibited statistically significant elevations in lymphocyte count, mean corpuscular hemoglobin concentration, calcium, uric acid, alkaline phosphatase, triglycerides, and total bile acids. Conversely, the PTD group demonstrated statistically significant reductions in mean corpuscular volume, homocysteine, neutrophil to lymphocyte ratio (NLR), monocyte to lymphocyte ratio (MLR), neutrophils to (white blood cells-neutrophils) ratio (dNLR), and (neutrophils × monocytes) to lymphocyte ratio (SIRI). The ROC curve analysis revealed that calcium had an area under the curve (AUC) of 0.705, with a cut-off value of 2.215. Logistic regression analysis showed that premature rupture of membranes was an independent risk factor for PTD. Our study demonstrated that serum calcium levels, NLR, dNLR, and other laboratory tests conducted at 32 weeks of gestation can serve as predictors for PTD. Furthermore, we identified premature rupture of membranes as a risk factor for PTD.
Collapse
Affiliation(s)
- Jingjing Zhang
- Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, Jiangsu, China
| | - Chong Fan
- Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, Jiangsu, China
| | - Chenyang Xu
- Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, Jiangsu, China
| | - Yuhan Zhang
- Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, Jiangsu, China
| | - Jingyan Liu
- Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, Jiangsu, China
| | - Chunxiu Zhou
- Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, Jiangsu, China.
| | - Shanwu Feng
- Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, Jiangsu, China.
| | - Yuru Fan
- Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, Jiangsu, China.
| |
Collapse
|
4
|
Firouzeh A, Shabani I, Karimi-Soflou R, Shabani A. Osteogenic potential of adipose stem cells on hydroxyapatite-functionalized decellularized amniotic membrane. Colloids Surf B Biointerfaces 2024; 240:113974. [PMID: 38810465 DOI: 10.1016/j.colsurfb.2024.113974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024]
Abstract
Amniotic membrane (AM) is an attractive source for bone tissue engineering because of its low immunogenicity, contains biomolecules and proteins, and osteogenic differentiation properties. Hydroxyapatite is widely used as bone scaffolds due to its biocompatibility and bioactivity properties. The aim of this study is to design and fabricate scaffold based on hydroxyapatite-coated decellularized amniotic membrane (DAM-HA) for bone tissue engineering purpose. So human amniotic membranes were collected from healthy donors and decellularized (DAM). Then a hydroxyapatite-coating was created by immersion in 10X SBF, under variable parameters of pH and incubation time. Hydroxyapatite-coating was characterized and the optimal sample was selected. Human adipose-derived mesenchymal stem cell behaviors were assessed on control, amniotic membrane, and coated amniotic membrane. The results of the SEM, MTT assay, and Live-Dead staining showed that DAM and DAM-HA support cell adhesion, viability and proliferation. Osteogenic differentiation was evaluated by assessment of alkaline phosphatase activity and expression of osteogenic markers. Maximum gene expression values compared to control occurred in 14 days for alkalin phosphatase, while the highest values for osteocalcin and osteopontin in 21 days. These gene expression values in DAM and DAM-HA for alkalin phosphatase is 6.41 and 8.47, for osteocalcin is 3.95 and 5.94 and for osteopontin is 5.59 and 9.9 respectively. The results of this study indicated DAM supports the survival and growth of stem cells. Also, addition of hydroxyapatite component to DAM promotes osteogenic differentiation while maintaining viability. Therefore, hydroxyapatite-coated decellularized amniotic membrane can be a promising choice for bone tissue engineering applications.
Collapse
Affiliation(s)
- Arezoo Firouzeh
- Department of Biomedical Engineering, Amirkabir University of Technology, Amirkabir University of Technology, Tehran, Iran
| | - Iman Shabani
- Department of Biomedical Engineering, Amirkabir University of Technology, Amirkabir University of Technology, Tehran, Iran.
| | - Reza Karimi-Soflou
- Department of Biomedical Engineering, Amirkabir University of Technology, Amirkabir University of Technology, Tehran, Iran
| | - Azadeh Shabani
- Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Matsuguma C, Takahashi K, Okada S, Tokitaka R, Hamano H, Kaneyasu H, Fujimoto Y, Hasegawa S. Clinical utility of gastric fluid cytokine levels in preterm infants for predicting histological chorioamnionitis. Cytokine 2024; 180:156642. [PMID: 38749278 DOI: 10.1016/j.cyto.2024.156642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/25/2024] [Accepted: 05/10/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND The risk of various complications, such as neonatal death, early onset sepsis, and chronic lung disease, is increased in infants born to mothers with chorioamnionitis (CAM). However, predicting the diagnosis of histological CAM (hCAM) in the early postnatal period is challenging for clinicians due to pathological considerations. Therefore, an early diagnostic tool for hCAM is needed. Gastric fluid at birth is considered a suitable biomarker for predicting the intrauterine environment because most of its components are from amniotic fluid, and the sampling technique is less invasive. This study aimed to evaluate the clinical utility of cytokines in the gastric fluid of preterm infants at birth as predictors of hCAM. METHODS We retrieved gastric fluid and serum from 21 preterm infants with a gestational age of ≤ 32 weeks within 1 h after birth and used cytometric bead array to measure the concentrations of interleukin (IL)-2, IL-4, IL-6, IL-10, tumor necrosis factor-alpha, and interferon-gamma. We compared the cytokine concentrations in the gastric fluid and serum of the preterm infants born to mothers with or without hCAM. RESULTS The gastric fluid, serum IL-6, and serum IL-10 concentrations were significantly higher in the hCAM group than that in the non-hCAM group. The best cutoff values for predicting hCAM was > 2,855 pg/mL and > 315 pg/mL for IL-6 in the gastric fluid and serum, respectively. Receiver operating characteristic curves showed that gastric fluid IL-6 concentrations correlated more strongly with the presence of hCAM than serum IL-6 concentrations. CONCLUSION IL-6 in the gastric fluid at birth may be a more promising biomarker for predicting the presence of hCAM than that in serum. IL-6 concentration analysis in the gastric fluid at birth might help to diagnose hCAM immediately after birth and improve the prognosis of preterm infants.
Collapse
Affiliation(s)
- Chie Matsuguma
- Department of Pediatrics, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Kazumasa Takahashi
- Department of Pediatrics, Yamaguchi University Graduate School of Medicine, Ube, Japan.
| | - Seigo Okada
- Department of Pediatrics, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Rui Tokitaka
- Department of Pediatrics, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Hiroki Hamano
- Department of Pediatrics, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Hidenobu Kaneyasu
- Department of Pediatrics, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Yousuke Fujimoto
- Department of Pediatrics, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Shunji Hasegawa
- Department of Pediatrics, Yamaguchi University Graduate School of Medicine, Ube, Japan
| |
Collapse
|
6
|
Amabebe E, Kumar A, Tatiparthy M, Kammala AK, Taylor BD, Menon R. Cargo exchange between human and bacterial extracellular vesicles in gestational tissues: a new paradigm in communication and immune development. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:297-328. [PMID: 39698538 PMCID: PMC11648491 DOI: 10.20517/evcna.2024.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/25/2024] [Accepted: 06/05/2024] [Indexed: 12/20/2024]
Abstract
Host-bacteria and bacteria-bacteria interactions can be facilitated by extracellular vesicles (EVs) secreted by both human and bacterial cells. Human and bacterial EVs (BEVs) propagate and transfer immunogenic cargos that may elicit immune responses in nearby or distant recipient cells/tissues. Hence, direct colonization of tissues by bacterial cells is not required for immunogenic stimulation. This phenomenon is important in the feto-maternal interface, where optimum tolerance between the mother and fetus is required for a successful pregnancy. Though the intrauterine cavity is widely considered sterile, BEVs from diverse sources have been identified in the placenta and amniotic cavity. These BEVs can be internalized by human cells, which may help them evade host immune surveillance. Though it appears logical, whether bacterial cells internalize human EVs or human EV cargo is yet to be determined. However, the presence of BEVs in placental tissues or amniotic cavity is believed to trigger a low-grade immune response that primes the fetal immune system for ex-utero survival, but is insufficient to disrupt the progression of pregnancy or cause immune intolerance required for adverse pregnancy events. Nevertheless, the exchange of bioactive cargos between human and BEVs, and the mechanical underpinnings and health implications of such interactions, especially during pregnancy, are still understudied. Therefore, while focusing on the feto-maternal interface, we discussed how human cells take up BEVs and whether bacterial cells take up human EVs or their cargo, the exchange of cargos between human and BEVs, host cell (feto-maternal) inflammatory responses to BEV immunogenic stimulation, and associations of these interactions with fetal immune priming and adverse reproductive outcomes such as preeclampsia and preterm birth.
Collapse
Affiliation(s)
| | | | | | | | | | - Ramkumar Menon
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| |
Collapse
|
7
|
Riley JS, Luks VL, Berkowitz CL, Dumitru AM, Kus NJ, Dave A, Menon P, De Paepe ME, Jain R, Li L, Dugoff L, Teefey CP, Alameh MG, Zoltick PW, Peranteau WH. Preexisting maternal immunity to AAV but not Cas9 impairs in utero gene editing in mice. J Clin Invest 2024; 134:e179848. [PMID: 38950310 PMCID: PMC11178531 DOI: 10.1172/jci179848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/01/2024] [Indexed: 07/03/2024] Open
Abstract
In utero gene editing (IUGE) is a potential treatment for inherited diseases that cause pathology before or soon after birth. Preexisting immunity to adeno-associated virus (AAV) vectors and Cas9 endonuclease may limit postnatal gene editing. The tolerogenic fetal immune system minimizes a fetal immune barrier to IUGE. However, the ability of maternal immunity to limit fetal gene editing remains a question. We investigated whether preexisting maternal immunity to AAV or Cas9 impairs IUGE. Using a combination of fluorescent reporter mice and a murine model of a metabolic liver disease, we demonstrated that maternal anti-AAV IgG antibodies were efficiently transferred from dam to fetus and impaired IUGE in a maternal titer-dependent fashion. By contrast, maternal cellular immunity was inefficiently transferred to the fetus, and neither maternal cellular nor humoral immunity to Cas9 impaired IUGE. Using human umbilical cord and maternal blood samples collected from mid- to late-gestation pregnancies, we demonstrated that maternal-fetal transmission of anti-AAV IgG was inefficient in midgestation compared with term, suggesting that the maternal immune barrier to clinical IUGE would be less relevant at midgestation. These findings support immunologic advantages for IUGE and inform maternal preprocedural testing protocols and exclusion criteria for future clinical trials.
Collapse
Affiliation(s)
- John S. Riley
- Center for Fetal Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Valerie L. Luks
- Center for Fetal Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cara L. Berkowitz
- Center for Fetal Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ana Maria Dumitru
- Center for Fetal Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Nicole J. Kus
- Center for Fetal Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Apeksha Dave
- Center for Fetal Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Pallavi Menon
- Center for Fetal Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Monique E. De Paepe
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Rajan Jain
- Division of Cardiology, Department of Medicine, and
| | - Li Li
- Division of Cardiology, Department of Medicine, and
| | - Lorraine Dugoff
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Mohamad-Gabriel Alameh
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Philip W. Zoltick
- Center for Fetal Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - William H. Peranteau
- Center for Fetal Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Center for Fetal Diagnosis and Treatment and
| |
Collapse
|
8
|
Flores-Espinosa P, Mancilla-Herrera I, Olmos-Ortiz A, Díaz L, Zaga-Clavellina V. Evaluation of Leukocyte Chemotaxis Induced by Human Fetal Membranes in an In Vitro Model. Methods Mol Biol 2024; 2781:27-37. [PMID: 38502440 DOI: 10.1007/978-1-0716-3746-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Leukocyte infiltration into the maternal-fetal interface is a consequence of the robust inflammation in the gestational tissues during term labor and preterm labor with or without infection. During pregnancy, the fetal membranes act as a physical barrier that isolates the fetus into the amniotic cavity, keeping it in an optimal environment for its development. In addition, the fetal membranes possess immunological competencies such as the secretion of cytokines and chemokines in response to different stimuli. Clinical and experimental evidence indicates that these tissues are involved in the extensive chemotaxis of immune cells in normal or pathological conditions.Few studies have evaluated the chemotactic capacities of the fetal membranes considering that this tissue is composed of two adjacent tissues, the amnion and the chorion, which have different characteristics. Although these tissues function as a unit, their response is complex since there is an interaction between them, where each tissue contributes differently. The protocol described here allows us to evaluate the in vitro chemotactic capacities of fetal membranes in response to various applied stimuli, considering the contribution of each of their components (amnion and choriodecidua) using a Boyden chamber assay and phenotyping the chemo-attracted leukocytes by flow cytometry.
Collapse
Affiliation(s)
- Pilar Flores-Espinosa
- Department of Immunobiochemistry, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico.
| | - Ismael Mancilla-Herrera
- Department of Infectology and Immunology, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Andrea Olmos-Ortiz
- Department of Immunobiochemistry, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, , Mexico City, Mexico
| | - Verónica Zaga-Clavellina
- Department of Immunobiochemistry, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| |
Collapse
|
9
|
Hsu TY, Cheng HH, Lan KC, Hung HN, Lai YJ, Tsai CC, Fan WL, Li SC. The abundances of LTF and SOD2 in amniotic fluid are potential biomarkers of gestational age and preterm birth. Sci Rep 2023; 13:4903. [PMID: 36966172 PMCID: PMC10039869 DOI: 10.1038/s41598-023-31486-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 03/13/2023] [Indexed: 03/27/2023] Open
Abstract
Neonates who are born preterm (PT) are usually characterized by immature physiological development, and preterm birth (PTB) is the leading cause of neonatal morbidity and mortality if intensive medical care is not available to PTB neonates. Early prediction of a PTB enables medical personnel to make preparations in advance, protecting the neonate from the subsequent health risks. Therefore, many studies have worked on identifying invasive or noninvasive PT biomarkers. In this study, we collected amniocentesis-derived (at the second trimester of gestation) amniotic fluid (AF) samples. At delivery, AF samples were classified into PTB or full-term birth (FTB). We first applied protein mass spectrometry technology to globally screen AF proteins, followed by specific protein validation with ELISA. We identified four protein biomarkers of PTB, including lactotransferrin (LTF), glutathione-disulfide reductase (GSR), myeloperoxidase (MPO) and superoxide dismutase 2 (SOD2). Further analyses demonstrated that their abundances were negatively correlated with neonatal weight and gestational age. In addition, by mimicking survival rate analysis widely used in tumor biology, we found that LTF and SOD2 were prognostic factors of gestational age, with higher levels denoting shorter gestational age. Finally, using the abundances of the four protein biomarkers, we developed a prediction model of PTB with an auROC value of 0.935 (sensitivity = 0.94, specificity = 0.89, p value = 0.0001). This study demonstrated that the abundances of specific proteins in amniotic fluid were not only the prognostic factors of gestational age but also the predictive biomarkers of PTB. These four AF proteins enable identification of PTB early in the second trimester of gestation, facilitating medical intervention to be applied in advance.
Collapse
Affiliation(s)
- Te-Yao Hsu
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsin-Hsin Cheng
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kuo-Chung Lan
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and, Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Department of Obstetrics and Gynecology, Jen-Ai Hospital, Taizhong, Taiwan
| | - Hsuan-Ning Hung
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yun-Ju Lai
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Chang Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wen-Lang Fan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 12th Floor, Children's Hospital, No.123, Dapi Rd, Niaosong District, Kaohsiung, 83301, Taiwan.
| | - Sung-Chou Li
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, 4th Floor, No.386, Dazhong 1st Rd, Zuoying District, Kaohsiung, 813414, Taiwan.
| |
Collapse
|
10
|
An L, Li J, Liu B, Hui J, Zhang Q, Zhang X, Wang Q. Amniotic fluid stem cell attenuated necrotizing enterocolitis progression by promoting Rspo3/AMPKα axis. Immunobiology 2023:152336. [PMID: 37173190 DOI: 10.1016/j.imbio.2023.152336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 01/17/2023]
Abstract
R-spondin 3 (Rspo3) is involved in various cellular processes. The alteration of Rspo3 participates in the differentiation of intestinal epithelial cells which are the crucial effector cells during necrotizing enterocolitis (NEC) development. Amniotic fluid stem cells (AFSCs) were recently indicated as a potential approach for NEC therapy. This study aimed to illustrate the regulatory role and mechanism of Rspo3 in the pathogenesis of NEC and whether AFSCs therapy would impact NEC by mediating Rspo3. First, the alteration of Rspo3 was investigated in the serum and tissues of NEC patients, and an in vitro cell model induced by LPS. A gain-of-function assay was conducted to explore the function of Rspo3 in NEC. Through the analysis of adenosine 5'-monophosphate-activated protein kinase α (AMPKα) activation, the mechanism of Rspo3-mediated NEC progression was demonstrated. Finally, AFSCs were used to coculture human intestinal epithelial cells (HIECs) and the impacts on NEC development were also explored. The results found that Rspo3 was dramatically depressed during NEC progression and reversing Rspo3 expression ameliorated LPS-induced injury, inflammation, oxidative stress and tight junction dysregulation in HIECs. Besides, Rspo3 overexpression reversed AMPKα inactivation induced by NEC and an AMPKα inhibitor, Compound C, blocked the effect of Rspo3 overexpression on NEC. AFSCs treatment was beneficial for NEC therapy by restoring Rspo3 expression which was counteracted by exosome inhibitor. Generally, AFSCs attenuated NEC progression by promoting the Rspo3/AMPKα axis which might exert via the secretion of exosomes. Our conclusions might be valuable for NEC diagnosis and therapy.
Collapse
|
11
|
Antimicrobial Peptides in Early-Life Host Defense, Perinatal Infections, and Necrotizing Enterocolitis—An Update. J Clin Med 2022; 11:jcm11175074. [PMID: 36079001 PMCID: PMC9457252 DOI: 10.3390/jcm11175074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Host defense against early-life infections such as chorioamnionitis, neonatal sepsis, or necrotizing enterocolitis (NEC) relies primarily on innate immunity, in which antimicrobial peptides (AMPs) play a major role. AMPs that are important for the fetus and neonate include α and β defensins, cathelicidin LL-37, antiproteases (elafin, SLPI), and hepcidin. They can be produced by the fetus or neonate, the placenta, chorioamniotic membranes, recruited neutrophils, and milk-protein ingestion or proteolysis. They possess antimicrobial, immunomodulating, inflammation-regulating, and tissue-repairing properties. AMPs are expressed as early as the 13th week and increase progressively through gestation. Limited studies are available on AMP expression and levels in the fetus and neonate. Nevertheless, existing evidence supports the role of AMPs in pathogenesis of chorioamnionitis, neonatal sepsis, and NEC, and their association with disease severity. This suggests a potential role of AMPs in diagnosis, prevention, prognosis, and treatment of sepsis and NEC. Herein, we present an overview of the antimicrobial and immunomodulating properties of human AMPs, their sources in the intrauterine environment, fetus, and neonate, and their changes during pre- and post-natal infections and NEC. We also discuss emerging data regarding the potential utility of AMPs in early-life infections, as diagnostic or predictive biomarkers and as therapeutic alternatives or adjuncts to antibiotic therapy considering the increase of antibiotic resistance in neonatal intensive care units.
Collapse
|
12
|
Zakošek Pipan M, Podpečan O, Mrkun J. The fascinating microbes and their impact on neonatal dogs and cats - A review. Acta Vet Hung 2022; 70:175-183. [PMID: 35976733 DOI: 10.1556/004.2022.00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/29/2022] [Indexed: 11/19/2022]
Abstract
Recent literature data indicate that canine and feline neonates are not born in a sterile environment as it was stated previously. The acquisition, colonisation and maintenance of the early life microbiota of healthy fetuses is a rapidly developing research area. In humans, the natural healthy infant microbiome plays an essential role in health and its assembly is determined by the maternal-offspring exchanges of microbes. Even though this topic is becoming more and more important in dogs and cats, the exact role of the neonatal microbiome is not yet fully known in animals. This review summarises the current knowledge of the normal physiological neonatal microbiome in healthy puppies and kittens.
Collapse
Affiliation(s)
- Maja Zakošek Pipan
- Clinic for Reproduction and Large Animals, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Ožbalt Podpečan
- Clinic for Reproduction and Large Animals, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Janko Mrkun
- Clinic for Reproduction and Large Animals, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| |
Collapse
|
13
|
Olmos-Ortiz A, Hernández-Pérez M, Flores-Espinosa P, Sedano G, Helguera-Repetto AC, Villavicencio-Carrisoza Ó, Valdespino-Vazquez MY, Flores-Pliego A, Irles C, Rivas-Santiago B, Moreno-Verduzco ER, Díaz L, Zaga-Clavellina V. Compartmentalized Innate Immune Response of Human Fetal Membranes against Escherichia coli Choriodecidual Infection. Int J Mol Sci 2022; 23:ijms23062994. [PMID: 35328414 PMCID: PMC8949057 DOI: 10.3390/ijms23062994] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/21/2022] [Accepted: 03/02/2022] [Indexed: 12/29/2022] Open
Abstract
An infectious process into the uterine cavity represents a major endangered condition that compromises the immune privilege of the maternal-fetal unit and increases the risk for preterm birth (PTB) and premature rupture of membranes (PROM). Fetal membranes are active secretors of antimicrobial peptides (AMP), which limit bacterial growth, such as Escherichia coli. Nevertheless, the antibacterial responses displayed by chorioamniotic membranes against a choriodecidual E. coli infection have been briefly studied. The objective of this research was to characterize the profile of synthesis, activity, and spatial distribution of a broad panel of AMPs produced by fetal membranes in response to E. coli choriodecidual infection. Term human chorioamniotic membranes were mounted in a two independent compartment model in which the choriodecidual region was infected with live E. coli (1 × 105 CFU/mL). Amnion and choriodecidual AMP tissue levels and TNF-α and IL-1β secretion were measured by the enzyme-linked immunosorbent assay. The passage of bacterium through fetal membranes and their effect on structural continuity was followed for 24 h. Our results showed that E. coli infection caused a progressive mechanical disruption of the chorioamniotic membranes and an activated inflammatory environment. After the challenge, the amnion quickly (2-4 h) induced production of human beta defensins (HBD)-1, HBD-2, and LL-37. Afterwards (8-24 h), the amnion significantly produced HBD-1, HBD-2, HNP-1-3, S100A7, sPLA2, and elafin, whereas the choriodecidua induced LL-37 synthesis. Therefore, we noticed a temporal- and tissue-specific pattern regulation of the synthesis of AMPs by infected fetal membranes. However, fetal membranes were not able to contain the collagen degradation or the bacterial growth and migration despite the battery of produced AMPs, which deeply increases the risk for PTB and PROM. The mixture of recombinant HBDs at low concentrations resulted in increased bactericidal activity compared to each HBD alone in vitro, encouraging further research to study AMP combinations that may offer synergy to control drug-resistant infections in the perinatal period.
Collapse
Affiliation(s)
- Andrea Olmos-Ortiz
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología (INPer), Mexico City 11000, Mexico; (A.O.-O.); (M.H.-P.); (P.F.-E.); (G.S.); (A.C.H.-R.); (Ó.V.-C.); (A.F.-P.)
| | - Mayra Hernández-Pérez
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología (INPer), Mexico City 11000, Mexico; (A.O.-O.); (M.H.-P.); (P.F.-E.); (G.S.); (A.C.H.-R.); (Ó.V.-C.); (A.F.-P.)
| | - Pilar Flores-Espinosa
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología (INPer), Mexico City 11000, Mexico; (A.O.-O.); (M.H.-P.); (P.F.-E.); (G.S.); (A.C.H.-R.); (Ó.V.-C.); (A.F.-P.)
| | - Gabriela Sedano
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología (INPer), Mexico City 11000, Mexico; (A.O.-O.); (M.H.-P.); (P.F.-E.); (G.S.); (A.C.H.-R.); (Ó.V.-C.); (A.F.-P.)
| | - Addy Cecilia Helguera-Repetto
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología (INPer), Mexico City 11000, Mexico; (A.O.-O.); (M.H.-P.); (P.F.-E.); (G.S.); (A.C.H.-R.); (Ó.V.-C.); (A.F.-P.)
| | - Óscar Villavicencio-Carrisoza
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología (INPer), Mexico City 11000, Mexico; (A.O.-O.); (M.H.-P.); (P.F.-E.); (G.S.); (A.C.H.-R.); (Ó.V.-C.); (A.F.-P.)
| | | | - Arturo Flores-Pliego
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología (INPer), Mexico City 11000, Mexico; (A.O.-O.); (M.H.-P.); (P.F.-E.); (G.S.); (A.C.H.-R.); (Ó.V.-C.); (A.F.-P.)
| | - Claudine Irles
- Departamento de Fisiología y Desarrollo Celular, INPer, Mexico City 11000, Mexico;
| | | | | | - Lorenza Díaz
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico;
| | - Verónica Zaga-Clavellina
- Departamento de Fisiología y Desarrollo Celular, INPer, Mexico City 11000, Mexico;
- Correspondence: ; Tel.: +52-55-5520-9900 (ext. 478)
| |
Collapse
|