1
|
Jarvi N, Hofman K, Venkatesh A, Gorecki E, Balu-Iyer SV. Immunogenicity risk assessment of empty capsids present in adeno-associated viral vectors using predictive innate immune responses. J Pharm Sci 2024; 113:3457-3469. [PMID: 39326842 DOI: 10.1016/j.xphs.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
Immunogenicity of gene therapy and the impacts on safety and efficacy are of increasing interest in the pharmaceutical industry. Unique structural aspects of gene therapy delivery vectors, such as adeno-associated viral (AAV) vectors, are expected to activate the innate immune system. The risk of innate immune activation is critical to understand due to the potential impacts on safety and on subsequent adaptive immune responses. In this study, we investigated the responses of key innate immune players-dendritic cells, natural killer (NK) cells, and the complement system-to AAV8 capsids. Immunogenicity risk was also predicted in the presence empty AAV capsids for AAV gene therapy. Compared to genome-containing "full" AAV8 capsids, empty AAV8 capsids more strongly induced proinflammatory cytokine production and migration by human and mouse dendritic cells, but the "full" capsid increased expression of co-stimulatory markers. Furthermore, in an NK cell degranulation assay, we found mixtures of empty and full AAV8 capsids to activate expression of TNF-α, IFN-γ, and CD107a more strongly in multiple NK cell populations compared to either capsid type alone. Serum complement C3a was also induced more strongly in the presence of mixed empty and full AAV8 capsid formulations. Risk for innate immune activation suggests the importance to determine acceptable limits of empty capsids. Immunogenicity risk assessment of novel biological modalities will benefit from the aforementioned in vitro innate immune activation assays providing valuable mechanistic information.
Collapse
Affiliation(s)
- Nicole Jarvi
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Kirk Hofman
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Aditi Venkatesh
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Emily Gorecki
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Sathy V Balu-Iyer
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA.
| |
Collapse
|
2
|
Goens MM, Howard EL, Warner BM, Susta L, Wootton SK. Rapid Development of Small Rodent Animal Models for Infectious Disease Research Through Vectorized Receptor Molecule Expression. Viruses 2024; 16:1794. [PMID: 39599908 PMCID: PMC11599079 DOI: 10.3390/v16111794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/09/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
The emergence and re-emergence of pathogens with pandemic potential has been a persistent issue throughout history. Recent decades have seen significant outbreaks of zoonotic viruses from members of the Coronaviridae, Filoviridae, Paramyxoviridae, Flaviviridae, and Togaviridae families, resulting in widespread infections. The continual emergence of zoonotic viral pathogens and associated infections highlights the need for prevention strategies and effective treatments. Central to this effort is the availability of suitable animal models, which are essential for understanding pathogenesis and assessing transmission dynamics. These animals are also critical for evaluating the safety and efficacy of novel vaccines or therapeutics and are essential in facilitating regulatory approval of new products. Rapid development of animal models is an integral aspect of pandemic response and preparedness; however, their establishment is fraught by several rate-limiting steps, including selection of a suitable species, the logistical challenges associated with sharing and disseminating transgenic animals (e.g., the time-intensive nature of breeding and maintaining colonies), the availability of technical expertise, as well as ethical and regulatory approvals. A method for the rapid development of relevant animal models that has recently gained traction, in large part due to the COVID-19 pandemic, is the use of gene therapy vectors to express human viral receptors in readily accessible laboratory animals to enable virus infection and development of clinical disease. These models can be developed rapidly on any genetic background, making mechanistic studies and accelerated evaluation of novel countermeasures possible. In this review, we will discuss important considerations for the effective development of animal models using viral vector approaches and review the current vector-based animal models for studying viral pathogenesis and evaluating prophylactic and therapeutic strategies, with an emphasis on models of SARS-CoV-2 infection based on the vectorized expression of human angiotensin-converting enzyme 2.
Collapse
Affiliation(s)
- Melanie M. Goens
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Erin L. Howard
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bryce M. Warner
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Rd, Saskatoon, SK S7N 5E3, Canada;
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK S7N 5E5, Canada
| | - Leonardo Susta
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sarah K. Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
3
|
Chen S, Chen Y, Zhang M, Zhang W, Fu H, Huang Y, Cheng L, Wan C. Specific detection of duck adeno-associated virus using a TaqMan-based real-time PCR assay. Front Vet Sci 2024; 11:1483990. [PMID: 39606664 PMCID: PMC11598926 DOI: 10.3389/fvets.2024.1483990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Duck adeno-associated Virus (DAAV) is a novel pathogen that was recently discovered in ducks. To establish a molecular detection assay for DAAV for further epidemiological investigation and pathogenic mechanism. Here, we designed specific primers and probes according to the sequence characteristics of the newly discovered DAAV and then established a TaqMan real-time PCR method (TaqMan-qPCR) for the detection of DAAV. Our data showed that the established TaqMan-qPCR for detecting DAAV had high sensitivity, with the lowest detection limit of 29.1 copies/μL. No cross reaction was found with duck circovirus (DuCV), H9N2 subtype avian influenza virus (AIV), avian Tembusu virus (ATmV). duck hepatitis A virus 1 and 3 (DHAV-1 and DHAV-3), duck adenovirus A (DAdV-A), duck adenovirus 3 (DAdV-3), or duck enteritis virus (DEV). The repeatability was excellent, with the coefficients of variation of repeated intragroup and intergroup tests ranging from 0.12-0.21% and 0.62-1.42%, respectively. Seventy-eight clinical samples collected from diseased or deceased ducklings were tested. The results showed that the DAAV positive rate was 21.79%, and a triple infection (DAAV+MDPV+GPV) was found. These data provide technical support for further molecular epidemiological surveillance and pathogenic mechanism studies of DAAV infection.
Collapse
Affiliation(s)
- Shuyu Chen
- Fujian Key Laboratory for Avian Diseases Control and Prevention, Fujian Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Fujian Animal Diseases Control Technology Development Centre, Fuzhou, China
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - YuYi Chen
- Fujian Key Laboratory for Avian Diseases Control and Prevention, Fujian Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Fujian Animal Diseases Control Technology Development Centre, Fuzhou, China
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mengyan Zhang
- Fujian Key Laboratory for Avian Diseases Control and Prevention, Fujian Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Fujian Animal Diseases Control Technology Development Centre, Fuzhou, China
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenyu Zhang
- Fujian Key Laboratory for Avian Diseases Control and Prevention, Fujian Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Fujian Animal Diseases Control Technology Development Centre, Fuzhou, China
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huanru Fu
- Fujian Key Laboratory for Avian Diseases Control and Prevention, Fujian Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Fujian Animal Diseases Control Technology Development Centre, Fuzhou, China
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu Huang
- Fujian Key Laboratory for Avian Diseases Control and Prevention, Fujian Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Fujian Animal Diseases Control Technology Development Centre, Fuzhou, China
| | - Longfei Cheng
- Fujian Key Laboratory for Avian Diseases Control and Prevention, Fujian Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Fujian Animal Diseases Control Technology Development Centre, Fuzhou, China
| | - Chunhe Wan
- Fujian Key Laboratory for Avian Diseases Control and Prevention, Fujian Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Fujian Animal Diseases Control Technology Development Centre, Fuzhou, China
| |
Collapse
|
4
|
Wang X, Klann PJ, Wiedtke E, Sano Y, Fischer N, Schiller L, Elfert A, Güttsches AK, Weyen U, Grimm D, Vorgerd M, Bayer W. Seroprevalence of binding and neutralizing antibodies against 18 adeno-associated virus types in patients with neuromuscular disorders. Front Immunol 2024; 15:1450858. [PMID: 39399494 PMCID: PMC11466838 DOI: 10.3389/fimmu.2024.1450858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/27/2024] [Indexed: 10/15/2024] Open
Abstract
High levels of pre-existing antibodies are a major challenge for the application of viral vectors since they can severely limit their efficacy. To identify promising candidates among adeno-associated virus (AAV) based vectors for future gene therapies for the treatment of hereditary neuromuscular disorders (NMDs), we investigated the antibody levels in sera from patients with NMDs against 18 AAV types, including 11 AAVs with wild-type capsids, 5 AAVs with peptide-modified capsids and 2 AAVs with shuffled capsids. With regard to the wild-type capsid AAVs, the lowest binding antibody levels were detected against AAV6, AAV5, AAV12 and AAV9, whereas the highest binding antibody levels were detected against AAV10, AAV8, AAV1, and AAV2. The lowest neutralizing antibody levels against wild-type AAVs were detected against AAV12, AAV5, AAV9, AAV7, AAV8 and AAV10, and the highest neutralizing antibody levels were detected against AAV13, AAV2 and AAV3. Interestingly, the influence of peptide modifications or shuffling of AAV capsids on antibody binding and AAV neutralization seemed to depend on the parental AAV. While the sex of the serum donors had no significant impact on binding or neutralizing antibody levels, we observed a trend to higher binding antibodies in older serum donors against some AAV types and a clear positive correlation of neutralizing antibody titers with the age of the serum donors. The disease status on the other hand did not have a meaningful impact on antibody levels, with no changes in AAV neutralization. Our data indicate that several wild-type or peptide-modified AAV may be good candidates for therapeutic application due to low pre-existing antibody levels, and that the age of potential recipients rather than their health status with regard to NMDs has the biggest impact on vector applicability.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Patrick Julian Klann
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Berufsgenossenschaftliche-Kliniken Bergmannsheil, University Hospital, Heimer Institute for Muscle Research, Ruhr-University Bochum, Bochum, Germany
| | - Ellen Wiedtke
- Department of Infectious Diseases/Virology and Microbiology, Section Viral Vector Technologies, BioQuant, Heidelberg University, Heidelberg, Germany
| | - Yumi Sano
- Department of Infectious Diseases/Virology and Microbiology, Section Viral Vector Technologies, BioQuant, Heidelberg University, Heidelberg, Germany
| | - Nico Fischer
- Department of Infectious Diseases/Virology and Microbiology, Section Viral Vector Technologies, BioQuant, Heidelberg University, Heidelberg, Germany
| | - Lisa Schiller
- Department of Infectious Diseases/Virology and Microbiology, Section Viral Vector Technologies, BioQuant, Heidelberg University, Heidelberg, Germany
| | - Anna Elfert
- Berufsgenossenschaftliche-Kliniken Bergmannsheil, University Hospital, Heimer Institute for Muscle Research, Ruhr-University Bochum, Bochum, Germany
| | - Anne-Katrin Güttsches
- Berufsgenossenschaftliche-Kliniken Bergmannsheil, University Hospital, Heimer Institute for Muscle Research, Ruhr-University Bochum, Bochum, Germany
| | - Ute Weyen
- Berufsgenossenschaftliche-Kliniken Bergmannsheil, University Hospital, Heimer Institute for Muscle Research, Ruhr-University Bochum, Bochum, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology and Microbiology, Section Viral Vector Technologies, BioQuant, Heidelberg University, Heidelberg, Germany
- German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, Heidelberg, Germany
| | - Matthias Vorgerd
- Berufsgenossenschaftliche-Kliniken Bergmannsheil, University Hospital, Heimer Institute for Muscle Research, Ruhr-University Bochum, Bochum, Germany
| | - Wibke Bayer
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
5
|
Shay TF, Jang S, Brittain TJ, Chen X, Walker B, Tebbutt C, Fan Y, Wolfe DA, Arokiaraj CM, Sullivan EE, Ding X, Wang TY, Lei Y, Chuapoco MR, Chou TF, Gradinaru V. Human cell surface-AAV interactomes identify LRP6 as blood-brain barrier transcytosis receptor and immune cytokine IL3 as AAV9 binder. Nat Commun 2024; 15:7853. [PMID: 39245720 PMCID: PMC11381518 DOI: 10.1038/s41467-024-52149-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024] Open
Abstract
Adeno-associated viruses (AAVs) are foundational gene delivery tools for basic science and clinical therapeutics. However, lack of mechanistic insight, especially for engineered vectors created by directed evolution, can hamper their application. Here, we adapt an unbiased human cell microarray platform to determine the extracellular and cell surface interactomes of natural and engineered AAVs. We identify a naturally-evolved and serotype-specific interaction between the AAV9 capsid and human interleukin 3 (IL3), with possible roles in host immune modulation, as well as lab-evolved low-density lipoprotein receptor-related protein 6 (LRP6) interactions specific to engineered capsids with enhanced blood-brain barrier crossing in non-human primates after intravenous administration. The unbiased cell microarray screening approach also allows us to identify off-target tissue binding interactions of engineered brain-enriched AAV capsids that may inform vectors' peripheral organ tropism and side effects. Our cryo-electron tomography and AlphaFold modeling of capsid-interactor complexes reveal LRP6 and IL3 binding sites. These results allow confident application of engineered AAVs in diverse organisms and unlock future target-informed engineering of improved viral and non-viral vectors for non-invasive therapeutic delivery to the brain.
Collapse
Affiliation(s)
- Timothy F Shay
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| | - Seongmin Jang
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Tyler J Brittain
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Xinhong Chen
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Beth Walker
- Charles River Laboratories, High Peak Business Park, Buxton Road, Chinley, SK23 6FJ, UK
| | - Claire Tebbutt
- Charles River Laboratories, High Peak Business Park, Buxton Road, Chinley, SK23 6FJ, UK
| | - Yujie Fan
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Damien A Wolfe
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Cynthia M Arokiaraj
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Erin E Sullivan
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Xiaozhe Ding
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Ting-Yu Wang
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Yaping Lei
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Miguel R Chuapoco
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Tsui-Fen Chou
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Viviana Gradinaru
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
6
|
Sripada SA, Hosseini M, Ramesh S, Wang J, Ritola K, Menegatti S, Daniele MA. Advances and opportunities in process analytical technologies for viral vector manufacturing. Biotechnol Adv 2024; 74:108391. [PMID: 38848795 DOI: 10.1016/j.biotechadv.2024.108391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/14/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
Viral vectors are an emerging, exciting class of biologics whose application in vaccines, oncology, and gene therapy has grown exponentially in recent years. Following first regulatory approval, this class of therapeutics has been vigorously pursued to treat monogenic disorders including orphan diseases, entering hundreds of new products into pipelines. Viral vector manufacturing supporting clinical efforts has spurred the introduction of a broad swath of analytical techniques dedicated to assessing the diverse and evolving panel of Critical Quality Attributes (CQAs) of these products. Herein, we provide an overview of the current state of analytics enabling measurement of CQAs such as capsid and vector identities, product titer, transduction efficiency, impurity clearance etc. We highlight orthogonal methods and discuss the advantages and limitations of these techniques while evaluating their adaptation as process analytical technologies. Finally, we identify gaps and propose opportunities in enabling existing technologies for real-time monitoring from hardware, software, and data analysis viewpoints for technology development within viral vector biomanufacturing.
Collapse
Affiliation(s)
- Sobhana A Sripada
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Mahshid Hosseini
- Joint Department of Biomedical Engineering, North Carolina State University, and University of North Carolina, Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA
| | - Srivatsan Ramesh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Junhyeong Wang
- Joint Department of Biomedical Engineering, North Carolina State University, and University of North Carolina, Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA
| | - Kimberly Ritola
- North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 890 Oval Dr, Raleigh, NC 27695, USA; Neuroscience Center, Brain Initiative Neurotools Vector Core, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA; North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 890 Oval Dr, Raleigh, NC 27695, USA; Biomanufacturing Training and Education Center, North Carolina State University, 890 Main Campus Dr, Raleigh, NC 27695, USA.
| | - Michael A Daniele
- Joint Department of Biomedical Engineering, North Carolina State University, and University of North Carolina, Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA; North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 890 Oval Dr, Raleigh, NC 27695, USA; Department of Electrical and Computer Engineering, North Carolina State University, 890 Oval Dr, Raleigh, NC 27695, USA.
| |
Collapse
|
7
|
Ye D, Chukwu C, Yang Y, Hu Z, Chen H. Adeno-associated virus vector delivery to the brain: Technology advancements and clinical applications. Adv Drug Deliv Rev 2024; 211:115363. [PMID: 38906479 DOI: 10.1016/j.addr.2024.115363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/13/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Adeno-associated virus (AAV) vectors have emerged as a promising tool in the development of gene therapies for various neurological diseases, including Alzheimer's disease and Parkinson's disease. However, the blood-brain barrier (BBB) poses a significant challenge to successfully delivering AAV vectors to the brain. Strategies that can overcome the BBB to improve the AAV delivery efficiency to the brain are essential to successful brain-targeted gene therapy. This review provides an overview of existing strategies employed for AAV delivery to the brain, including direct intraparenchymal injection, intra-cerebral spinal fluid injection, intranasal delivery, and intravenous injection of BBB-permeable AAVs. Focused ultrasound has emerged as a promising technology for the noninvasive and spatially targeted delivery of AAV administered by intravenous injection. This review also summarizes each strategy's current preclinical and clinical applications in treating neurological diseases. Moreover, this review includes a detailed discussion of the recent advances in the emerging focused ultrasound-mediated AAV delivery. Understanding the state-of-the-art of these gene delivery approaches is critical for future technology development to fulfill the great promise of AAV in neurological disease treatment.
Collapse
Affiliation(s)
- Dezhuang Ye
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Chinwendu Chukwu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Yaoheng Yang
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Zhongtao Hu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA; Department of Neurosurgery, Washington University School of Medicine, Saint Louis, MO 63110 USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
8
|
Nishiumi H, Hirohata K, Fukuhara M, Matsushita A, Tsunaka Y, Rocafort MAV, Maruno T, Torisu T, Uchiyama S. Combined 100 keV Cryo-Electron Microscopy and Image Analysis Methods to Characterize the Wider Adeno-Associated Viral Products. J Pharm Sci 2024; 113:1804-1815. [PMID: 38570072 DOI: 10.1016/j.xphs.2024.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Adeno-associated viruses (AAVs) are effective vectors for gene therapy. However, AAV drug products are inevitably contaminated with empty particles (EP), which lack a genome, owing to limitations of the purification steps. EP contamination can reduce the transduction efficiency and induce immunogenicity. Therefore, it is important to remove EPs and to determine the ratio of full genome-containing AAV particles to empty particles (F/E ratio). However, most of the existing methods fail to reliably evaluate F/E ratios that are greater than 90 %. In this study, we developed two approaches based on the image analysis of cryo-electron micrographs to determine the F/E ratios of various AAV products. Using our developed convolutional neural network (CNN) and morphological analysis, we successfully calculated the F/E ratios of various AAV products and determined the slight differences in the F/E ratios of highly purified AAV products (purity > 95 %). In addition, the F/E ratios calculated by analyzing more than 1000 AAV particles had good correlations with theoretical F/E ratios. Furthermore, the CNN reliably determined the F/E ratio with a smaller number of AAV particles than morphological analysis. Therefore, combining 100 keV cryo-EM with the developed image analysis methods enables the assessment of a wide range of AAV products.
Collapse
Affiliation(s)
- Haruka Nishiumi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kiichi Hirohata
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mitsuko Fukuhara
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; U-medico Inc., 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Aoba Matsushita
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuo Tsunaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mark Allen Vergara Rocafort
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takahiro Maruno
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; U-medico Inc., 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tetsuo Torisu
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Susumu Uchiyama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; U-medico Inc., 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
9
|
Schwotzer N, El Sissy C, Desguerre I, Frémeaux-Bacchi V, Servais L, Fakhouri F. Thrombotic Microangiopathy as an Emerging Complication of Viral Vector-Based Gene Therapy. Kidney Int Rep 2024; 9:1995-2005. [PMID: 39081755 PMCID: PMC11284364 DOI: 10.1016/j.ekir.2024.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 08/02/2024] Open
Abstract
Gene therapy has brought tremendous hope for patients with severe life-threatening monogenic diseases. Although studies have shown the efficacy of gene therapy, serious adverse events have also emerged, including thrombotic microangiopathy (TMA) following viral vector-based gene therapy. In this review, we briefly summarize the concept of gene therapy, and the immune response triggered by viral vectors. We also discuss the incidence, presentation, and potential underlying mechanisms, including complement activation, of gene therapy-associated TMA. Further studies are needed to better define the pathogenesis of this severe complication of gene therapy, and the optimal measures to prevent it.
Collapse
Affiliation(s)
- Nora Schwotzer
- Service of Nephrology and Hypertension, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Carine El Sissy
- Department of Immunology, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
- Paris University, Paris, France
| | - Isabelle Desguerre
- Paediatric Neurology Department, Necker Hospital, APHP Centre, Université Paris Cité, Paris, France
| | - Véronique Frémeaux-Bacchi
- Department of Immunology, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
- Paris University, Paris, France
| | - Laurent Servais
- MDUK Oxford Neuromuscular Center and NIHR Oxford Biomedical Research Center, University of Oxford, Oxford, UK
- Neuromuscular Center, Department of Pediatrics, University of Liege and University Hospital of Liege, Belgium
| | - Fadi Fakhouri
- Service of Nephrology and Hypertension, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
10
|
Zeng Z, Li S, Ye X, Wang Y, Wang Q, Chen Z, Wang Z, Zhang J, Wang Q, Chen L, Zhang S, Zou Z, Lin M, Chen X, Zhao G, McAlinden C, Lei H, Zhou X, Huang J. Genome Editing VEGFA Prevents Corneal Neovascularization In Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401710. [PMID: 38582513 PMCID: PMC11220714 DOI: 10.1002/advs.202401710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/17/2024] [Indexed: 04/08/2024]
Abstract
Corneal neovascularization (CNV) is a common clinical finding seen in a range of eye diseases. Current therapeutic approaches to treat corneal angiogenesis, in which vascular endothelial growth factor (VEGF) A plays a central role, can cause a variety of adverse side effects. The technology of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 can edit VEGFA gene to suppress its expression. CRISPR offers a novel opportunity to treat CNV. This study shows that depletion of VEGFA with a novel CRISPR/Cas9 system inhibits proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs) in vitro. Importantly, subconjunctival injection of this dual AAV-SpCas9/sgRNA-VEGFA system is demonstrated which blocks suture-induced expression of VEGFA, CD31, and α-smooth muscle actin as well as corneal neovascularization in mice. This study has established a strong foundation for the treatment of corneal neovascularization via a gene editing approach for the first time.
Collapse
Affiliation(s)
- Zhenhai Zeng
- Eye Institute and Department of OphthalmologyEye & ENT HospitalFudan UniversityKey Laboratory of MyopiaChinese Academy of Medical SciencesShanghai200000China
- Shanghai Key Laboratory of Visual Impairment and RestorationShanghai200000China
| | - Siheng Li
- Eye Institute and Department of OphthalmologyEye & ENT HospitalFudan UniversityKey Laboratory of MyopiaChinese Academy of Medical SciencesShanghai200000China
- School of Ophthalmology and Optometry and Eye HospitalWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Xiuhong Ye
- Key Laboratory for Regenerative MedicineMinistry of EducationJinan UniversityGuangzhou510000China
| | - Yiran Wang
- Eye Institute and Department of OphthalmologyEye & ENT HospitalFudan UniversityKey Laboratory of MyopiaChinese Academy of Medical SciencesShanghai200000China
- Shanghai Key Laboratory of Visual Impairment and RestorationShanghai200000China
| | - Qinmei Wang
- School of Ophthalmology and Optometry and Eye HospitalWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Zhongxing Chen
- Eye Institute and Department of OphthalmologyEye & ENT HospitalFudan UniversityKey Laboratory of MyopiaChinese Academy of Medical SciencesShanghai200000China
- Shanghai Key Laboratory of Visual Impairment and RestorationShanghai200000China
| | - Ziqian Wang
- School of Ophthalmology and Optometry and Eye HospitalWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Jun Zhang
- School of Ophthalmology and Optometry and Eye HospitalWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Qing Wang
- Department of Ophthalmology2nd Affiliated Hospital of Nanchang UniversityNanchang330000China
| | - Lu Chen
- School of Ophthalmology and Optometry and Eye HospitalWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Shuangzhe Zhang
- School of Ophthalmology and Optometry and Eye HospitalWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Zhilin Zou
- School of Ophthalmology and Optometry and Eye HospitalWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Meimin Lin
- School of Ophthalmology and Optometry and Eye HospitalWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Xinyi Chen
- School of Ophthalmology and Optometry and Eye HospitalWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Guoli Zhao
- Eye Institute and Department of OphthalmologyEye & ENT HospitalFudan UniversityKey Laboratory of MyopiaChinese Academy of Medical SciencesShanghai200000China
- Shanghai Key Laboratory of Visual Impairment and RestorationShanghai200000China
| | - Colm McAlinden
- Eye Institute and Department of OphthalmologyEye & ENT HospitalFudan UniversityKey Laboratory of MyopiaChinese Academy of Medical SciencesShanghai200000China
- School of Ophthalmology and Optometry and Eye HospitalWenzhou Medical UniversityWenzhouZhejiang325000China
- Corneo Plastic Unit & Eye BankQueen Victoria HospitalEast GrinsteadRH19 3AXUK
| | - Hetian Lei
- Shenzhen Eye HospitalShenzhen Eye InstituteJinan UniversityShenzhen518000China
| | - Xingtao Zhou
- Eye Institute and Department of OphthalmologyEye & ENT HospitalFudan UniversityKey Laboratory of MyopiaChinese Academy of Medical SciencesShanghai200000China
- Shanghai Key Laboratory of Visual Impairment and RestorationShanghai200000China
| | - Jinhai Huang
- Eye Institute and Department of OphthalmologyEye & ENT HospitalFudan UniversityKey Laboratory of MyopiaChinese Academy of Medical SciencesShanghai200000China
- Shanghai Key Laboratory of Visual Impairment and RestorationShanghai200000China
| |
Collapse
|
11
|
Berman RE, Dampier W, Nonnemacher MR, Wigdahl B. What's in a cure: designing a broad-spectrum HIV gene therapy. Curr Opin HIV AIDS 2024; 19:150-156. [PMID: 38547339 PMCID: PMC11188629 DOI: 10.1097/coh.0000000000000846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
PURPOSE OF REVIEW The leading gene editing strategy for a human immunodeficiency virus type 1 (HIV-1) cure involves the delivery of SaCas9 and two guide RNAs (gRNAs) in an adeno-associated viral (AAV) vector. As a dual-component system, CRISPR is targeted to a genetic locus through the choice of a Cas effector and gRNA protospacer design pair. As CRISPR research has expanded in recent years, these components have been investigated for utilization in cure strategies, which will be discussed in this article. RECENT FINDINGS Type II SpCas9 and SaCas9 have been the leading Cas effectors across gene editing therapeutics to date. Additionally, extensive research has expanded the potential to multiplex gRNAs and target them effectively to the highly genetically diverse HIV-1 provirus. More recently, the Type V family of Cas12 effectors opens a new opportunity to use a smaller Cas protein for packaging into an AAV vector with multiplexed gRNAs. SUMMARY In understanding the individual components of a CRISPR/Cas therapeutic cure for HIV-1, it is important to know that the currently used strategies can be improved upon. Future areas will include alternative smaller Cas effectors, multiplexed gRNAs designs, and/or alternative delivery modalities.
Collapse
Affiliation(s)
- Rachel E. Berman
- Department of Microbiology and Immunology, Drexel University College of Medicine
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine
| | - Will Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine
| | - Michael R. Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Pierce GF, Fong S, Long BR, Kaczmarek R. Deciphering conundrums of adeno-associated virus liver-directed gene therapy: focus on hemophilia. J Thromb Haemost 2024; 22:1263-1289. [PMID: 38103734 DOI: 10.1016/j.jtha.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/07/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
Adeno-associated virus gene therapy has been the subject of intensive investigation for monogenic disease gene addition therapy for more than 25 years, yet few therapies have been approved by regulatory agencies. Most have not progressed beyond phase 1/2 due to toxicity, lack of efficacy, or both. The liver is a natural target for adeno-associated virus since most serotypes have a high degree of tropism for hepatocytes due to cell surface receptors for the virus and the unique liver sinusoidal geometry facilitating high volumes of blood contact with hepatocyte cell surfaces. Recessive monogenic diseases such as hemophilia represent promising targets since the defective proteins are often synthesized in the liver and secreted into the circulation, making them easy to measure, and many do not require precise regulation. Yet, despite initiation of many disease-specific clinical trials, therapeutic windows are often nonexistent, resulting in excess toxicity and insufficient efficacy. Iterative progress built on these attempts is best illustrated by hemophilia, with the first regulatory approvals for factor IX and factor VIII gene therapies eventually achieved 25 years after the first gene therapy studies in humans. Although successful gene transfer may result in the production of sufficient transgenic protein to modify the disease, many emerging questions on durability, predictability, reliability, and variability of response have not been answered. The underlying biology accounting for these heterogeneous responses and the interplay between host and virus is the subject of intense investigation and the subject of this review.
Collapse
Affiliation(s)
- Glenn F Pierce
- World Federation of Hemophilia, Montreal, Quebec, Canada.
| | - Sylvia Fong
- BioMarin Pharmaceutical Inc, Research and Early Development, Novato, California, USA
| | - Brian R Long
- BioMarin Pharmaceutical Inc, Research and Early Development, Novato, California, USA
| | - Radoslaw Kaczmarek
- Department of Pediatrics, Indiana University School of Medicine, Wells Center for Pediatric Research, Indiana, USA; Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| |
Collapse
|
13
|
Zhang Z, Zhang S, Wong HT, Li D, Feng B. Targeted Gene Insertion: The Cutting Edge of CRISPR Drug Development with Hemophilia as a Highlight. BioDrugs 2024; 38:369-385. [PMID: 38489061 PMCID: PMC11055778 DOI: 10.1007/s40259-024-00654-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 03/17/2024]
Abstract
The remarkable advance in gene editing technology presents unparalleled opportunities for transforming medicine and finding cures for hereditary diseases. Human trials of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9)-based therapeutics have demonstrated promising results in disrupting or deleting target sequences to treat specific diseases. However, the potential of targeted gene insertion approaches, which offer distinct advantages over disruption/deletion methods, remains largely unexplored in human trials due to intricate technical obstacles and safety concerns. This paper reviews the recent advances in preclinical studies demonstrating in vivo targeted gene insertion for therapeutic benefits, targeting somatic solid tissues through systemic delivery. With a specific emphasis on hemophilia as a prominent disease model, we highlight advancements in insertion strategies, including considerations of DNA repair pathways, targeting site selection, and donor design. Furthermore, we discuss the complex challenges and recent breakthroughs that offer valuable insights for progressing towards clinical trials.
Collapse
Affiliation(s)
- Zhenjie Zhang
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Room 105A, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Shatin, NT, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Siqi Zhang
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Room 105A, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Shatin, NT, Hong Kong SAR, China
| | - Hoi Ting Wong
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Room 105A, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Shatin, NT, Hong Kong SAR, China
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Bo Feng
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Room 105A, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Shatin, NT, Hong Kong SAR, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
14
|
Gomes CM, Sebastião MJ, Silva G, Moura F, Simão D, Gomes-Alves P, Alves PM, Brito C. Miniaturization of hiPSC-derived 3D neural cultures in stirred-tank bioreactors for parallelized preclinical assessment of rAAV. Front Bioeng Biotechnol 2024; 12:1379597. [PMID: 38737536 PMCID: PMC11082387 DOI: 10.3389/fbioe.2024.1379597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/05/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction: Engineered 3D models employing human induced pluripotent stem cell (hiPSC) derivatives have the potential to recapitulate the cell diversity and structure found in the human central nervous system (CNS). Therefore, these complex cellular systems offer promising human models to address the safety and potency of advanced therapy medicinal products (ATMPs), such as gene therapies. Specifically, recombinant adeno-associated viruses (rAAVs) are currently considered highly attractive for CNS gene therapy due to their broad tropism, low toxicity, and moderate immunogenicity. To accelerate the clinical translation of rAAVs, in-depth preclinical evaluation of efficacy and safety in a human setting is primordial. The integration of hiPSC-derived CNS models in rAAV development will require, amongst other factors, robust, small-scale, high-throughput culture platforms that can feed the preclinical trials. Methods: Herein, we pioneer the miniaturization and parallelization of a 200 mL stirred-tank bioreactor-based 3D brain cell culture derived from hiPSCs. We demonstrate the applicability of the automated miniaturized Ambr® 15 Cell Culture system for the maintenance of hiPSC-derived neurospheroids (iNSpheroids), composed of neuronal and glial cells. Critical process parameters were optimized, namely, cell density and agitation mode. Results: Under optimized conditions, stable iNSpheroid cultures were attained in the microbioreactors for at least 15 days, with high cell viability and astrocytic and neuronal phenotype maintenance. This culture setup allowed the parallelization of different rAAVs, in different multiplicity of infections (MOIs), to address rAAV-host interactions at a preclinical scale. The iNSpheroids were exposed to rAAV2- and rAAV9-eGFP in the microbioreactors. Transgene expression was detected 14 days post-transduction, revealing different astrocyte/neuron tropism of the two serotypes. Discussion: We advocate that the iNSpheroid cultures in miniaturized bioreactors are reliable and reproducible screening tools for addressing rAAV transduction and tropism, compatible with preclinical demands.
Collapse
Affiliation(s)
- Catarina M. Gomes
- iBET, Instituto de Biologia Experimental e Biológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | - Gabriela Silva
- iBET, Instituto de Biologia Experimental e Biológica, Oeiras, Portugal
| | - Filipa Moura
- iBET, Instituto de Biologia Experimental e Biológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Daniel Simão
- iBET, Instituto de Biologia Experimental e Biológica, Oeiras, Portugal
| | | | - Paula M. Alves
- iBET, Instituto de Biologia Experimental e Biológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Catarina Brito
- iBET, Instituto de Biologia Experimental e Biológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
15
|
Chen K, Ernst P, Kim S, Si Y, Varadkar T, Ringel MD, Liu X“M, Zhou L. An Innovative Mitochondrial-targeted Gene Therapy for Cancer Treatment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.24.584499. [PMID: 38585739 PMCID: PMC10996521 DOI: 10.1101/2024.03.24.584499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Targeting cancer cell mitochondria holds great therapeutic promise, yet current strategies to specifically and effectively destroy cancer mitochondria in vivo are limited. Here, we introduce mLumiOpto, an innovative mitochondrial-targeted luminoptogenetics gene therapy designed to directly disrupt the inner mitochondrial membrane (IMM) potential and induce cancer cell death. We synthesize a blue light-gated channelrhodopsin (CoChR) in the IMM and co-express a blue bioluminescence-emitting Nanoluciferase (NLuc) in the cytosol of the same cells. The mLumiOpto genes are selectively delivered to cancer cells in vivo by using adeno-associated virus (AAV) carrying a cancer-specific promoter or cancer-targeted monoclonal antibody-tagged exosome-associated AAV. Induction with NLuc luciferin elicits robust endogenous bioluminescence, which activates mitochondrial CoChR, triggering cancer cell IMM permeability disruption, mitochondrial damage, and subsequent cell death. Importantly, mLumiOpto demonstrates remarkable efficacy in reducing tumor burden and killing tumor cells in glioblastoma or triple-negative breast cancer xenografted mouse models. These findings establish mLumiOpto as a novel and promising therapeutic strategy by targeting cancer cell mitochondria in vivo.
Collapse
Affiliation(s)
- Kai Chen
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Patrick Ernst
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Seulhee Kim
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Yingnan Si
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Tanvi Varadkar
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Matthew D. Ringel
- Department of Molecular Medicine and Therapeutics, The Ohio State University, Columbus, Ohio, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Xiaoguang “Margaret” Liu
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Lufang Zhou
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
16
|
Wessels U, Neff F, Fakhiri J, Mayer K, Brinkmann U, Stubenrauch K. Novel assay format for total anti-adeno-associated virus antibody detection with low capsid consumption and built-in specificity control. Bioanalysis 2024; 16:431-442. [PMID: 38497775 PMCID: PMC11216498 DOI: 10.4155/bio-2023-0254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/23/2024] [Indexed: 03/19/2024] Open
Abstract
Aim: To develop an assay format for detection of total anti-adeno-associated virus 2 (AAV2) antibodies with low capsid material consumption. Methods: An immune complex (IC) assay format was developed. The format is based on the formation of ICs in solution and their subsequent detection using an anti-AAV2 antibody for capture and an antibody against the study species IgG for detection. Results: The feasibility of the IC assay for detection of preexisting and treatment-emergent anti-AAV2 antibodies was demonstrated in cynomolgus monkey and human serum samples, including samples from a preclinical study with AAV2-based therapies. Conclusion: The presented IC assay is an easy-to-perform total anti-AAV2 antibody assay that requires a small amount of unlabeled capsid material and provides an intrinsic specificity control.
Collapse
Affiliation(s)
- Uwe Wessels
- Roche Pharma Research & Early Development, Pharmaceutical Sciences, Roche Innovation Center, Munich, Germany
- Roche Diagnostics GmbH, Nonnenwald 2, Penzberg, 82377, Germany
| | - Florian Neff
- Roche Pharma Research & Early Development, Pharmaceutical Sciences, Roche Innovation Center, Munich, Germany
| | - Julia Fakhiri
- Roche Pharma Research & Early Development, Pharmaceutical Sciences, Roche Innovation Center, Munich, Germany
| | - Klaus Mayer
- Roche Pharma Research & Early Development, Pharmaceutical Sciences, Roche Innovation Center, Munich, Germany
| | - Ulrich Brinkmann
- Roche Pharma Research & Early Development, Pharmaceutical Sciences, Roche Innovation Center, Munich, Germany
| | - Kay Stubenrauch
- Roche Pharma Research & Early Development, Pharmaceutical Sciences, Roche Innovation Center, Munich, Germany
| |
Collapse
|
17
|
Portero V, Deng S, Boink GJJ, Zhang GQ, de Vries A, Pijnappels DA. Optoelectronic control of cardiac rhythm: Toward shock-free ambulatory cardioversion of atrial fibrillation. J Intern Med 2024; 295:126-145. [PMID: 37964404 DOI: 10.1111/joim.13744] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia, progressive in nature, and known to have a negative impact on mortality, morbidity, and quality of life. Patients requiring acute termination of AF to restore sinus rhythm are subjected to electrical cardioversion, which requires sedation and therefore hospitalization due to pain resulting from the electrical shocks. However, considering the progressive nature of AF and its detrimental effects, there is a clear need for acute out-of-hospital (i.e., ambulatory) cardioversion of AF. In the search for shock-free cardioversion methods to realize such ambulatory therapy, a method referred to as optogenetics has been put forward. Optogenetics enables optical control over the electrical activity of cardiomyocytes by targeted expression of light-activated ion channels or pumps and may therefore serve as a means for cardioversion. First proof-of-principle for such light-induced cardioversion came from in vitro studies, proving optogenetic AF termination to be very effective. Later, these results were confirmed in various rodent models of AF using different transgenes, illumination methods, and protocols, whereas computational studies in the human heart provided additional translational insight. Based on these results and fueled by recent advances in molecular biology, gene therapy, and optoelectronic engineering, a basis is now being formed to explore clinical translations of optoelectronic control of cardiac rhythm. In this review, we discuss the current literature regarding optogenetic cardioversion of AF to restore normal rhythm in a shock-free manner. Moreover, key translational steps will be discussed, both from a biological and technological point of view, to outline a path toward realizing acute shock-free ambulatory termination of AF.
Collapse
Affiliation(s)
- Vincent Portero
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Shanliang Deng
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Department of Microelectronics, Delft University of Technology, Delft, The Netherlands
| | - Gerard J J Boink
- Department of Medical Biology, Department of Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Guo Qi Zhang
- Department of Microelectronics, Delft University of Technology, Delft, The Netherlands
| | - Antoine de Vries
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Daniël A Pijnappels
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| |
Collapse
|
18
|
Rouse CJ, Jensen VN, Heldermon CD. Mucopolysaccharidosis type IIIB: a current review and exploration of the AAV therapy landscape. Neural Regen Res 2024; 19:355-359. [PMID: 37488890 PMCID: PMC10503619 DOI: 10.4103/1673-5374.377606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/29/2023] [Accepted: 04/24/2023] [Indexed: 07/26/2023] Open
Abstract
Mucopolysaccharidoses type IIIB is a rare genetic disorder caused by mutations in the gene that encodes for N-acetyl-alpha-glucosaminidase. This results in the aggregation of heparan sulfate polysaccharides within cell lysosomes that leads to progressive and severe debilitating neurological dysfunction. Current treatment options are expensive, limited, and presently there are no approved cures for mucopolysaccharidoses type IIIB. Adeno-associated virus gene therapy has significantly advanced the field forward, allowing researchers to successfully design, enhance, and improve potential cures. Our group recently published an effective treatment using a codon-optimized triple mutant adeno-associated virus 8 vector that restores N-acetyl-alpha-glucosaminidase levels, auditory function, and lifespan in the murine model for mucopolysaccharidoses type IIIB to that seen in healthy mice. Here, we review the current state of the field in relation to the capsid landscape, adeno-associated virus gene therapy and its successes and challenges in the clinic, and how novel adeno-associated virus capsid designs have evolved research in the mucopolysaccharidoses type IIIB field.
Collapse
|
19
|
Morroni F, Caccamo A. Advances and Challenges in Gene Therapy for Alzheimer's Disease. J Alzheimers Dis 2024; 101:S417-S431. [PMID: 39422937 DOI: 10.3233/jad-230783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and behavioral impairments. Despite extensive research efforts, effective treatment options for AD remain limited. Recently, gene therapy has emerged as a promising avenue for targeted intervention in the pathogenesis of AD. This review will provide an overview of clinical and preclinical studies where gene therapy techniques have been utilized in the context of AD, highlighting their potential as novel therapeutic strategies. While challenges remain, ongoing research and technological advancement continue to enhance the potential of gene therapy as a targeted and personalized therapeutic approach for AD.
Collapse
Affiliation(s)
- Fabiana Morroni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Antonella Caccamo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
20
|
Sellier P, Vidal P, Bertin B, Gicquel E, Bertil-Froidevaux E, Georger C, van Wittenberghe L, Miranda A, Daniele N, Richard I, Gross DA, Mingozzi F, Collaud F, Ronzitti G. Muscle-specific, liver-detargeted adeno-associated virus gene therapy rescues Pompe phenotype in adult and neonate Gaa -/- mice. J Inherit Metab Dis 2024; 47:119-134. [PMID: 37204237 DOI: 10.1002/jimd.12625] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/17/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
Pompe disease (PD) is a neuromuscular disorder caused by acid α-glucosidase (GAA) deficiency. Reduced GAA activity leads to pathological glycogen accumulation in cardiac and skeletal muscles responsible for severe heart impairment, respiratory defects, and muscle weakness. Enzyme replacement therapy with recombinant human GAA (rhGAA) is the standard-of-care treatment for PD, however, its efficacy is limited due to poor uptake in muscle and the development of an immune response. Multiple clinical trials are ongoing in PD with adeno-associated virus (AAV) vectors based on liver- and muscle-targeting. Current gene therapy approaches are limited by liver proliferation, poor muscle targeting, and the potential immune response to the hGAA transgene. To generate a treatment tailored to infantile-onset PD, we took advantage of a novel AAV capsid able to increase skeletal muscle targeting compared to AAV9 while reducing liver overload. When combined with a liver-muscle tandem promoter (LiMP), and despite the extensive liver-detargeting, this vector had a limited immune response to the hGAA transgene. This combination of capsid and promoter with improved muscle expression and specificity allowed for glycogen clearance in cardiac and skeletal muscles of Gaa-/- adult mice. In neonate Gaa-/- , complete rescue of glycogen content and muscle strength was observed 6 months after AAV vector injection. Our work highlights the importance of residual liver expression to control the immune response toward a potentially immunogenic transgene expressed in muscle. In conclusion, the demonstration of the efficacy of a muscle-specific AAV capsid-promoter combination for the full rescue of PD manifestation in both neonate and adult Gaa-/- provides a potential therapeutic avenue for the infantile-onset form of this devastating disease.
Collapse
Affiliation(s)
- P Sellier
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | - P Vidal
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | - B Bertin
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | - E Gicquel
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | | | | | | | | | | | - I Richard
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | - D A Gross
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | - F Mingozzi
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | - F Collaud
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | - G Ronzitti
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| |
Collapse
|
21
|
Xu S, Cai J, Cheng H, Wang W. Sustained release of therapeutic gene by injectable hydrogel for hepatocellular carcinoma. Int J Pharm X 2023; 6:100195. [PMID: 37448985 PMCID: PMC10336675 DOI: 10.1016/j.ijpx.2023.100195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/06/2023] [Accepted: 06/24/2023] [Indexed: 07/18/2023] Open
Abstract
Gene therapy has shown remarkable effectiveness in the management of disease like cancer and inflammation as a revolutionary therapeutic. Nonetheless, therapeutic drug target discovery, efficient gene delivery, and gene delivery vehicles continue to be significant obstacles. Due to their effective gene transport capabilities and low immunogenicity, supramolecular polymers have garnered significant interest. Herein, ABHD5 is identified as a potential therapeutic target since it is dysregulated in hepatocellular carcinoma (HCC). Interestingly, the downregulation of ABHD5 could induce programmed death-ligand 1 (PD-L1) expression in liver cancer, which may contribute to the immunosuppression. To overcome the immunosuppression caused by PD-L1, an injectable hydrogel is designed to achieve efficient abhydrolase domain containing 5 (ABHD5) gene delivery via the host-guest interaction with branched polyethyleneimine-g-poly (ethylene glycol), poly (ethylene oxide) and poly (propylene oxide) block copolymers and α-CD (PPA/CD), demonstrating the capability for sustained gene release. The co-assembly hydrogel demonstrates good biocompatibility and enhanced gene transfection efficiency, efficiently triggering tumor cell apoptosis. Overall, the results of this study suggest that ABHD5 is a potential therapeutic target, and that a host-guest-based supramolecular hydrogel could serve as a promising platform for the inhibition of HCC.
Collapse
Affiliation(s)
- Shuangta Xu
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Jianya Cai
- Department of Surgery, Quanzhou Medical College, Quanzhou 362000, China
| | - Hongwei Cheng
- Center of molecular imaging and translational medicine, School of Public Health, Xiamen University, Xiamen 361002, China
| | - Wei Wang
- Department of Hepatic-biliary-pancreatic-Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| |
Collapse
|
22
|
David M, Monteferrario D, Saviane G, Jeanneau C, Marchetti I, Dupont CF, Dumont C, Fontenot JD, Rosa MDL, Fenard D. Production of therapeutic levels of human FIX-R338L by engineered B cells using GMP-compatible medium. Mol Ther Methods Clin Dev 2023; 31:101111. [PMID: 37790246 PMCID: PMC10543988 DOI: 10.1016/j.omtm.2023.101111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/13/2023] [Indexed: 10/05/2023]
Abstract
B cells can differentiate into plasmablast and plasma cells, capable of producing antibodies for decades. Gene editing using zinc-finger nucleases (ZFN) enables the engineering of B cells capable of secreting sustained and high levels of therapeutic proteins. In this study, we established an advanced in vitro good manufacturing practice-compatible culturing system characterized by robust and consistent expansion rate, high viability, and efficient B cell differentiation. Using this process, an optimized B cell editing protocol was developed by combining ZFN/adeno-associated virus 6 technology to achieve site-specific insertion of the human factor IX R338L Padua into the silent TRAC locus. In vitro analysis revealed high levels of secreted human immunoglobulins and human factor IX-Padua. Following intravenous infusion in a mouse model, human plasma cells were detected in spleen and bone marrow, indicating successful and potentially long-term engraftment in vivo. Moreover, high levels of human immunoglobin and therapeutic levels of human factor IX-Padua were detected in mouse plasma, correlating with 15% of normal human factor IX activity. These data suggest that the proposed process promotes the production of functional and differentiated engineered B cells. In conclusion, this study represents an important step toward the development of a manufacturing platform for potential B cell-derived therapeutic products.
Collapse
Affiliation(s)
- Marion David
- Sangamo Therapeutics France, Allée de la Nertière, F-06560 Valbonne Sophia-Antipolis, France
| | - Davide Monteferrario
- Sangamo Therapeutics France, Allée de la Nertière, F-06560 Valbonne Sophia-Antipolis, France
| | - Gaëlle Saviane
- Sangamo Therapeutics France, Allée de la Nertière, F-06560 Valbonne Sophia-Antipolis, France
| | - Caroline Jeanneau
- Sangamo Therapeutics France, Allée de la Nertière, F-06560 Valbonne Sophia-Antipolis, France
| | - Irène Marchetti
- Sangamo Therapeutics France, Allée de la Nertière, F-06560 Valbonne Sophia-Antipolis, France
| | - Coralie F. Dupont
- Sangamo Therapeutics France, Allée de la Nertière, F-06560 Valbonne Sophia-Antipolis, France
| | - Céline Dumont
- Sangamo Therapeutics France, Allée de la Nertière, F-06560 Valbonne Sophia-Antipolis, France
| | - Jason D. Fontenot
- Sangamo Therapeutics, 7000 Marina Boulevard, Brisbane, CA 94005, USA
| | - Maurus de la Rosa
- Sangamo Therapeutics France, Allée de la Nertière, F-06560 Valbonne Sophia-Antipolis, France
| | - David Fenard
- Sangamo Therapeutics France, Allée de la Nertière, F-06560 Valbonne Sophia-Antipolis, France
| |
Collapse
|
23
|
Boedecker-Lips S, Judel A, Holtz S, Mayer M, Klimpke P, Kraus D, Schreiner T, Gerstmayer B, Eulitz K, Mayer MC, Weinmann-Menke J. Efficient removal of antibodies to adeno-associated viruses by immunoadsorption. J Clin Apher 2023; 38:590-601. [PMID: 37415533 DOI: 10.1002/jca.22069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Gene therapies based on adeno-associated viruses (AAV) are a therapeutic option to successfully treat monogenetic diseases. However, the influence of pre-existing immunity to AAV can compromise the application of AAV gene therapy, most notably by the presence of neutralizing antibodies (NAb) to AAV. METHODS In the following study, we investigated to what extent the treatment by immunoadsorption (IA) would reduce the levels of human anti-AAV antibodies to AAV2 and AAV5. To that end, we screened blood sera from 40 patients receiving IA treatment because of underlying autoimmune disease or transplant rejection, with detectable AAV-antibodies in 23 patients (22 by NAb detection, and 1 additionally by anti-AAV5 ELISA analysis). RESULTS Our results show that IA efficiently depleted anti-AAV2 NAb with a mean reduction of 3.92 ± 1.09 log2 titer steps (93.4%) after three to five single IA treatments, 45% of seropositive subjects had an anti-AAV2 titer below the threshold titer of 1:5 after the IA treatment series. Anti-AAV5 NAb were reduced to below the threshold titer of 1:5 in all but one of five seropositive subjects. Analysis of total anti-AAV5 antibodies by ELISA demonstrated an anti-AAV5 antibody reduction over the IA treatment series of 2.67 ± 1.16 log2 titer steps (84.3%). CONCLUSION In summary, IA may represent a safe strategy to precondition patients with pre-existing anti-AAV antibodies to make this population eligible for an effective AAV-based gene therapy.
Collapse
Affiliation(s)
- Simone Boedecker-Lips
- Division of Nephrology, I. Department of Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | | | - Stefan Holtz
- Division of Nephrology, I. Department of Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Magnus Mayer
- Division of Nephrology, I. Department of Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Pascal Klimpke
- Division of Nephrology, I. Department of Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Daniel Kraus
- Division of Nephrology, I. Department of Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | | - Julia Weinmann-Menke
- Division of Nephrology, I. Department of Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
24
|
Logan GJ, Mietzsch M, Khandekar N, D'Silva A, Anderson D, Mandwie M, Hsi J, Nelson AR, Chipman P, Jackson J, Schofield P, Christ D, Goodnow CC, Reed JH, Farrar MA, McKenna R, Alexander IE. Structural and functional characterization of capsid binding by anti-AAV9 monoclonal antibodies from infants after SMA gene therapy. Mol Ther 2023; 31:1979-1993. [PMID: 37012705 PMCID: PMC10362397 DOI: 10.1016/j.ymthe.2023.03.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/02/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Success in the treatment of infants with spinal muscular atrophy (SMA) underscores the potential of vectors based on adeno-associated virus (AAV). However, a major obstacle to the full realization of this potential is pre-existing natural and therapy-induced anti-capsid humoral immunity. Structure-guided capsid engineering is one possible approach to surmounting this challenge but necessitates an understanding of capsid-antibody interactions at high molecular resolution. Currently, only mouse-derived monoclonal antibodies (mAbs) are available to structurally map these interactions, which presupposes that mouse and human-derived antibodies are functionally equivalent. In this study, we have characterized the polyclonal antibody responses of infants following AAV9-mediated gene therapy for SMA and recovered 35 anti-capsid mAbs from the abundance of switched-memory B (smB) cells present in these infants. For 21 of these mAbs, seven from each of three infants, we have undertaken functional and structural analysis measuring neutralization, affinities, and binding patterns by cryoelectron microscopy (cryo-EM). Four distinct patterns were observed akin to those reported for mouse-derived mAbs, but with early evidence of differing binding pattern preference and underlying molecular interactions. This is the first human and largest series of anti-capsid mAbs to have been comprehensively characterized and will prove to be powerful tools for basic discovery and applied purposes.
Collapse
Affiliation(s)
- Grant J Logan
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW, Australia
| | - Mario Mietzsch
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Neeta Khandekar
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW, Australia
| | - Arlene D'Silva
- School of Women's and Children's Health, University of New South Wales Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Daniel Anderson
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW, Australia
| | - Mawj Mandwie
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW, Australia
| | - Jane Hsi
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Austin R Nelson
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Paul Chipman
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jennifer Jackson
- Garvan Institute of Medical Research, UNSW Sydney, Faculty of Medicine, Darlinghurst, NSW, Australia
| | - Peter Schofield
- Garvan Institute of Medical Research, UNSW Sydney, Faculty of Medicine, Darlinghurst, NSW, Australia
| | - Daniel Christ
- Garvan Institute of Medical Research, UNSW Sydney, Faculty of Medicine, Darlinghurst, NSW, Australia
| | - Christopher C Goodnow
- Garvan Institute of Medical Research, UNSW Sydney, Faculty of Medicine, Darlinghurst, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Joanne H Reed
- Westmead Institute for Medical Research, Centre for Immunology and Allergy Research, Westmead, NSW, Australia
| | - Michelle A Farrar
- School of Women's and Children's Health, University of New South Wales Medicine, UNSW Sydney, Sydney, NSW, Australia; Department of Neurology, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ian E Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW, Australia; Discipline of Child and Adolescent Health, University of Sydney, Westmead, NSW, Australia.
| |
Collapse
|
25
|
Shay TF, Sullivan EE, Ding X, Chen X, Ravindra Kumar S, Goertsen D, Brown D, Crosby A, Vielmetter J, Borsos M, Wolfe DA, Lam AW, Gradinaru V. Primate-conserved carbonic anhydrase IV and murine-restricted LY6C1 enable blood-brain barrier crossing by engineered viral vectors. SCIENCE ADVANCES 2023; 9:eadg6618. [PMID: 37075114 PMCID: PMC10115422 DOI: 10.1126/sciadv.adg6618] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The blood-brain barrier (BBB) presents a major challenge for delivering large molecules to study and treat the central nervous system. This is due in part to the scarcity of targets known to mediate BBB crossing. To identify novel targets, we leverage a panel of adeno-associated viruses (AAVs) previously identified through mechanism-agnostic directed evolution for improved BBB transcytosis. Screening potential cognate receptors for enhanced BBB crossing, we identify two targets: murine-restricted LY6C1 and widely conserved carbonic anhydrase IV (CA-IV). We apply AlphaFold-based in silico methods to generate capsid-receptor binding models to predict the affinity of AAVs for these identified receptors. Demonstrating how these tools can unlock target-focused engineering strategies, we create an enhanced LY6C1-binding vector, AAV-PHP.eC, that, unlike our prior PHP.eB, also works in Ly6a-deficient mouse strains such as BALB/cJ. Combined with structural insights from computational modeling, the identification of primate-conserved CA-IV enables the design of more specific and potent human brain-penetrant chemicals and biologicals, including gene delivery vectors.
Collapse
Affiliation(s)
- Timothy F. Shay
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Corresponding author. (T.F.S.); (V.G.)
| | - Erin E. Sullivan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Xiaozhe Ding
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Xinhong Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Sripriya Ravindra Kumar
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - David Goertsen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - David Brown
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Anaya Crosby
- California State Polytechnic University, Pomona, Pomona, CA, USA
| | - Jost Vielmetter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Máté Borsos
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Damien A. Wolfe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Annie W. Lam
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Corresponding author. (T.F.S.); (V.G.)
| |
Collapse
|
26
|
Secco I, Giacca M. Regulation of endogenous cardiomyocyte proliferation: The known unknowns. J Mol Cell Cardiol 2023; 179:80-89. [PMID: 37030487 PMCID: PMC10390341 DOI: 10.1016/j.yjmcc.2023.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/10/2023]
Abstract
Myocardial regeneration in patients with cardiac damage is a long-sought goal of clinical medicine. In animal species in which regeneration occurs spontaneously, as well as in neonatal mammals, regeneration occurs through the proliferation of differentiated cardiomyocytes, which re-enter the cell cycle and proliferate. Hence, the reprogramming of the replicative potential of cardiomyocytes is an achievable goal, provided that the mechanisms that regulate this process are understood. Cardiomyocyte proliferation is under the control of a series of signal transduction pathways that connect extracellular cues to the activation of specific gene transcriptional programmes, eventually leading to the activation of the cell cycle. Both coding and non-coding RNAs (in particular, microRNAs) are involved in this regulation. The available information can be exploited for therapeutic purposes, provided that a series of conceptual and technical barriers are overcome. A major obstacle remains the delivery of pro-regenerative factors specifically to the heart. Improvements in the design of AAV vectors to enhance their cardiotropism and efficacy or, alternatively, the development of non-viral methods for nucleic acid delivery in cardiomyocytes are among the challenges ahead to progress cardiac regenerative therapies towards clinical application.
Collapse
Affiliation(s)
- Ilaria Secco
- School of Cardiovascular and Metabolic Medicine & Sciences and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Mauro Giacca
- School of Cardiovascular and Metabolic Medicine & Sciences and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom.
| |
Collapse
|
27
|
Ohba K, Sehara Y, Enoki T, Mineno J, Ozawa K, Mizukami H. Adeno-associated virus vector system controlling capsid expression improves viral quantity and quality. iScience 2023; 26:106487. [PMID: 37096037 PMCID: PMC10122016 DOI: 10.1016/j.isci.2023.106487] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/13/2023] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
Adeno-associated virus (AAV) vectors are promising tools for gene therapy. The current AAV vector system produces an abundance of empty capsids that are eliminated before clinical use, leading to increased costs for gene therapy. In the present study, we established an AAV production system that regulates the timing of capsid expression using a tetracycline-dependent promoter. Tetracycline-regulating capsid expression increased viral yield and reduced empty capsids in various serotypes without altering AAV vector infectivity in vitro and in vivo. The replicase expression pattern change observed in the developed AAV vector system improved viral quantity and quality, whereas timing control of capsid expression reduced empty capsids. These findings provide a new perspective on the development of AAV vector production systems in gene therapy.
Collapse
Affiliation(s)
- Kenji Ohba
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
- Corresponding author
| | - Yoshihide Sehara
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Tatsuji Enoki
- CDM Center, TAKARA Bio Inc., Kusatsu, Shiga 525-0058, Japan
| | - Junichi Mineno
- CDM Center, TAKARA Bio Inc., Kusatsu, Shiga 525-0058, Japan
| | - Keiya Ozawa
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
- Department of Immuno-Gene & Cell Therapy (Takara Bio), Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Hiroaki Mizukami
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| |
Collapse
|
28
|
Xu QQ, Su ZR, Yang W, Zhong M, Xian YF, Lin ZX. Patchouli alcohol attenuates the cognitive deficits in a transgenic mouse model of Alzheimer's disease via modulating neuropathology and gut microbiota through suppressing C/EBPβ/AEP pathway. J Neuroinflammation 2023; 20:19. [PMID: 36717922 PMCID: PMC9887791 DOI: 10.1186/s12974-023-02704-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/22/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by progressive cognitive dysfunctions and behavioral impairments. Patchouli alcohol (PA), isolated from Pogostemonis Herba, exhibits multiple pharmacological properties, including neuroprotective effects. This study aimed to investigate the therapeutic effects of PA against AD using the TgCRND8 transgenic AD mouse model, and to explore the underlying mechanisms targeting CCAAT/enhancer-binding protein β/asparagine endopeptidase (C/EBPβ/AEP) signaling pathway. METHODS After genotyping to confirm the transgenicity, drug treatments were administered intragastrically once daily to 3-month-old TgCRND8 mice for 4 consecutive months. Several behavioral tests were applied to assess different aspects of neurological functions. Then the brain and colon tissues were harvested for in-depth mechanistic studies. To further verify whether PA exerts anti-AD effects via modulating C/EBPβ/AEP signaling pathway in TgCRND8 mice, adeno-associated virus (AAV) vectors encoding CEBP/β were bilaterally injected into the hippocampal CA1 region in TgCRND8 mice to overexpress C/EBPβ. Additionally, the fecal microbiota transplantation (FMT) experiment was performed to verify the potential role of gut microbiota on the anti-AD effects of PA. RESULTS Our results showed that PA treatment significantly improved activities of daily living (ADL), ameliorated the anxiety-related behavioral deficits and cognitive impairments in TgCRND8 mice. PA modulated the amyloid precursor protein (APP) processing. PA also markedly reduced the levels of beta-amyloid (Aβ) 40 and Aβ42, suppressed Aβ plaque burdens, inhibited tau protein hyperphosphorylation at several sites and relieved neuroinflammation in the brains of TgCRND8 mice. Moreover, PA restored gut dysbiosis and inhibited the activation of the C/EBPβ/AEP signaling pathway in the brain and colon tissues of TgCRND8 mice. Interestingly, PA strikingly alleviated the AD-like pathologies induced by the overexpression of C/EBPβ in TgCRND8 mice. Additionally, the FMT of fecal microbiota from the PA-treated TgCRND8 mice significantly alleviated the cognitive impairments and AD-like pathologies in the germ-free TgCRND8 mice. CONCLUSION All these findings amply demonstrated that PA could ameliorate the cognitive deficits in TgCRND8 mice via suppressing Aβ plaques deposition, hyperphosphorylation of tau protein, neuroinflammation and gut dysbiosis through inhibiting the activation of C/EBPβ/AEP pathway, suggesting that PA is a promising naturally occurring chemical worthy of further development into the pharmaceutical treatment of AD.
Collapse
Affiliation(s)
- Qing-Qing Xu
- grid.10784.3a0000 0004 1937 0482School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People’s Republic of China
| | - Zi-Ren Su
- grid.411866.c0000 0000 8848 7685Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Wen Yang
- grid.10784.3a0000 0004 1937 0482School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People’s Republic of China
| | - Mei Zhong
- grid.10784.3a0000 0004 1937 0482School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People’s Republic of China
| | - Yan-Fang Xian
- grid.10784.3a0000 0004 1937 0482School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People’s Republic of China
| | - Zhi-Xiu Lin
- grid.10784.3a0000 0004 1937 0482School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People’s Republic of China ,grid.10784.3a0000 0004 1937 0482Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People’s Republic of China ,grid.10784.3a0000 0004 1937 0482Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People’s Republic of China
| |
Collapse
|
29
|
Biology, Pathobiology and Gene Therapy of CNG Channel-Related Retinopathies. Biomedicines 2023; 11:biomedicines11020269. [PMID: 36830806 PMCID: PMC9953513 DOI: 10.3390/biomedicines11020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
The visual process begins with the absorption of photons by photopigments of cone and rod photoreceptors in the retina. In this process, the signal is first amplified by a cyclic guanosine monophosphate (cGMP)-based signaling cascade and then converted into an electrical signal by cyclic nucleotide-gated (CNG) channels. CNG channels are purely ligand-gated channels whose activity can be controlled by cGMP, which induces a depolarizing Na+/Ca2+ current upon binding to the channel. Structurally, CNG channels belong to the superfamily of pore-loop cation channels and share structural similarities with hyperpolarization-activated cyclic nucleotide (HCN) and voltage-gated potassium (KCN) channels. Cone and rod photoreceptors express distinct CNG channels encoded by homologous genes. Mutations in the genes encoding the rod CNG channel (CNGA1 and CNGB1) result in retinitis-pigmentosa-type blindness. Mutations in the genes encoding the cone CNG channel (CNGA3 and CNGB3) lead to achromatopsia. Here, we review the molecular properties of CNG channels and describe their physiological and pathophysiological roles in the retina. Moreover, we summarize recent activities in the field of gene therapy aimed at developing the first gene therapies for CNG channelopathies.
Collapse
|
30
|
Li J, Li N, Wei J, Feng C, Chen Y, Chen T, Ai Z, Zhu X, Ji W, Li T. Genetically engineered mesenchymal stem cells with dopamine synthesis for Parkinson's disease in animal models. NPJ Parkinsons Dis 2022; 8:175. [PMID: 36550118 PMCID: PMC9780305 DOI: 10.1038/s41531-022-00440-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Although striatal delivery of three critical genes for dopamine synthesis by viruses is a potential clinical approach for treating Parkinson's disease (PD), the approach makes it difficult to finely control dopamine secretion amounts and brings safety concerns. Here, we generate genetically engineered mesenchymal stem cells encoding three critical genes for dopamine synthesis (DOPA-MSCs). DOPA-MSCs retain their MSC identity and stable ability to secrete dopamine during passaging. Following transplantation, DOPA-MSCs reinstate striatal dopamine levels and correct motor function in PD rats. Importantly, after grafting into the caudate and putamen, DOPA-MSCs provide homotopic reconstruction of midbrain dopamine pathways by restoring striatal dopamine levels, and safely and long-term (up to 51 months) correct motor disorders and nonmotor deficits in acute and chronic PD rhesus monkey models of PD even with advanced PD symptoms. The long-term benefits and safety results support the idea that the development of dopamine-synthesized engineered cell transplantation is an important strategy for treating PD.
Collapse
Affiliation(s)
- Jun Li
- grid.218292.20000 0000 8571 108XState Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, Yunnan China ,grid.218292.20000 0000 8571 108XYunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, Yunnan China
| | - Nan Li
- grid.218292.20000 0000 8571 108XState Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, Yunnan China ,grid.218292.20000 0000 8571 108XYunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, Yunnan China
| | - Jingkuan Wei
- grid.218292.20000 0000 8571 108XState Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, Yunnan China ,grid.218292.20000 0000 8571 108XYunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, Yunnan China
| | - Chun Feng
- grid.218292.20000 0000 8571 108XState Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, Yunnan China ,grid.218292.20000 0000 8571 108XYunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, Yunnan China
| | - Yanying Chen
- grid.218292.20000 0000 8571 108XState Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, Yunnan China ,grid.218292.20000 0000 8571 108XYunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, Yunnan China
| | - Tingwei Chen
- grid.218292.20000 0000 8571 108XState Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, Yunnan China ,grid.218292.20000 0000 8571 108XYunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, Yunnan China
| | - Zongyong Ai
- grid.218292.20000 0000 8571 108XState Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, Yunnan China ,grid.218292.20000 0000 8571 108XYunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, Yunnan China
| | - Xiaoqing Zhu
- grid.218292.20000 0000 8571 108XState Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, Yunnan China ,grid.218292.20000 0000 8571 108XYunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, Yunnan China
| | - Weizhi Ji
- grid.218292.20000 0000 8571 108XState Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, Yunnan China ,grid.218292.20000 0000 8571 108XYunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, Yunnan China
| | - Tianqing Li
- grid.218292.20000 0000 8571 108XState Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, Yunnan China ,grid.218292.20000 0000 8571 108XYunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, Yunnan China
| |
Collapse
|
31
|
Gomez Limia C, Baird M, Schwartz M, Saxena S, Meyer K, Wein N. Emerging Perspectives on Gene Therapy Delivery for Neurodegenerative and Neuromuscular Disorders. J Pers Med 2022; 12:1979. [PMID: 36556200 PMCID: PMC9788053 DOI: 10.3390/jpm12121979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022] Open
Abstract
Neurodegenerative disorders (NDDs), such as Alzheimer's disease (AD) and Parkinson's Disease (PD), are a group of heterogeneous diseases that mainly affect central nervous system (CNS) functions. A subset of NDDs exhibit CNS dysfunction and muscle degeneration, as observed in Gangliosidosis 1 (GM1) and late stages of PD. Neuromuscular disorders (NMDs) are a group of diseases in which patients show primary progressive muscle weaknesses, including Duchenne Muscular Dystrophy (DMD), Pompe disease, and Spinal Muscular Atrophy (SMA). NDDs and NMDs typically have a genetic component, which affects the physiological functioning of critical cellular processes, leading to pathogenesis. Currently, there is no cure or efficient treatment for most of these diseases. More than 200 clinical trials have been completed or are currently underway in order to establish safety, tolerability, and efficacy of promising gene therapy approaches. Thus, gene therapy-based therapeutics, including viral or non-viral delivery, are very appealing for the treatment of NDDs and NMDs. In particular, adeno-associated viral vectors (AAV) are an attractive option for gene therapy for NDDs and NMDs. However, limitations have been identified after systemic delivery, including the suboptimal capacity of these therapies to traverse the blood-brain barrier (BBB), degradation of the particles during the delivery, high reactivity of the patient's immune system during the treatment, and the potential need for redosing. To circumvent these limitations, several preclinical and clinical studies have suggested intrathecal (IT) delivery to target the CNS and peripheral organs via cerebrospinal fluid (CSF). CSF administration can vastly improve the delivery of small molecules and drugs to the brain and spinal cord as compared to systemic delivery. Here, we review AAV biology and vector design elements, different therapeutic routes of administration, and highlight CSF delivery as an attractive route of administration. We discuss the different aspects of neuromuscular and neurodegenerative diseases, such as pathogenesis, the landscape of mutations, and the biological processes associated with the disease. We also describe the hallmarks of NDDs and NMDs as well as discuss current therapeutic approaches and clinical progress in viral and non-viral gene therapy and enzyme replacement strategies for those diseases.
Collapse
Affiliation(s)
- Cintia Gomez Limia
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Megan Baird
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Maura Schwartz
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Smita Saxena
- Department of Neurology, Inselspital, 3010 Bern, Switzerland
| | - Kathrin Meyer
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| | - Nicolas Wein
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
32
|
Intranasal application of adeno-associated viruses: a systematic review. Transl Res 2022; 248:87-110. [PMID: 35597541 DOI: 10.1016/j.trsl.2022.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/12/2022] [Accepted: 05/16/2022] [Indexed: 01/13/2023]
Abstract
Adeno-associated viruses (AAVs) represent some of the most commonly employed vectors for targeted gene delivery and their extensive study has resulted in the approval of multiple gene therapies to treat human diseases. The intranasal route of vector application in gene therapy offers several advantages over traditional ways of administration. In addition to targeting local tissue like the olfactory epithelium, it provides minimally invasive access to various organ systems, including the central nervous system and the respiratory tract. Through a systematic literature review, a total of 53 articles that investigated the intranasal application of AAVs were identified, included, and summarized in this manuscript. Within these studies, AAV-based gene therapy was mainly investigated for its application in various infectious, pulmonary, or neurologic and/or psychiatric diseases. This review gives a comprehensive overview of the current technological state of the art regarding the intranasal application of AAVs for gene transfer and discusses remaining hurdles, which still have to be resolved before this approach can effectively be implemented in the routine clinical setting.
Collapse
|
33
|
El Andari J, Renaud-Gabardos E, Tulalamba W, Weinmann J, Mangin L, Pham QH, Hille S, Bennett A, Attebi E, Bourges E, Leborgne C, Guerchet N, Fakhiri J, Krämer C, Wiedtke E, McKenna R, Guianvarc’h L, Toueille M, Ronzitti G, Hebben M, Mingozzi F, VandenDriessche T, Agbandje-McKenna M, Müller OJ, Chuah MK, Buj-Bello A, Grimm D. Semirational bioengineering of AAV vectors with increased potency and specificity for systemic gene therapy of muscle disorders. SCIENCE ADVANCES 2022; 8:eabn4704. [PMID: 36129972 PMCID: PMC9491714 DOI: 10.1126/sciadv.abn4704] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 08/03/2022] [Indexed: 05/31/2023]
Abstract
Bioengineering of viral vectors for therapeutic gene delivery is a pivotal strategy to reduce doses, facilitate manufacturing, and improve efficacy and patient safety. Here, we engineered myotropic adeno-associated viral (AAV) vectors via a semirational, combinatorial approach that merges AAV capsid and peptide library screens. We first identified shuffled AAVs with increased specificity in the murine skeletal muscle, diaphragm, and heart, concurrent with liver detargeting. Next, we boosted muscle specificity by displaying a myotropic peptide on the capsid surface. In a mouse model of X-linked myotubular myopathy, the best vectors-AAVMYO2 and AAVMYO3-prolonged survival, corrected growth, restored strength, and ameliorated muscle fiber size and centronucleation. In a mouse model of Duchenne muscular dystrophy, our lead capsid induced robust microdystrophin expression and improved muscle function. Our pipeline is compatible with complementary AAV genome bioengineering strategies, as demonstrated here with two promoters, and could benefit many clinical applications beyond muscle gene therapy.
Collapse
Affiliation(s)
- Jihad El Andari
- Medical Faculty, Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Cluster of Excellence CellNetworks, University of Heidelberg, 69120 Heidelberg, Germany
- BioQuant, University of Heidelberg, 69120 Heidelberg, Germany
| | - Edith Renaud-Gabardos
- Genethon, 91000 Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Warut Tulalamba
- Department of Gene Therapy and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Brussels 1090, Belgium
| | - Jonas Weinmann
- Medical Faculty, Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Cluster of Excellence CellNetworks, University of Heidelberg, 69120 Heidelberg, Germany
- BioQuant, University of Heidelberg, 69120 Heidelberg, Germany
| | - Louise Mangin
- Genethon, 91000 Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Quang Hong Pham
- Department of Gene Therapy and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Brussels 1090, Belgium
| | - Susanne Hille
- University Hospital Schleswig-Holstein, Campus Kiel, Innere Medizin III, 24105 Kiel, Germany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Antonette Bennett
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | | | | | - Christian Leborgne
- Genethon, 91000 Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | | | - Julia Fakhiri
- Medical Faculty, Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Cluster of Excellence CellNetworks, University of Heidelberg, 69120 Heidelberg, Germany
- BioQuant, University of Heidelberg, 69120 Heidelberg, Germany
| | - Chiara Krämer
- Medical Faculty, Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Cluster of Excellence CellNetworks, University of Heidelberg, 69120 Heidelberg, Germany
- BioQuant, University of Heidelberg, 69120 Heidelberg, Germany
| | - Ellen Wiedtke
- Medical Faculty, Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Cluster of Excellence CellNetworks, University of Heidelberg, 69120 Heidelberg, Germany
- BioQuant, University of Heidelberg, 69120 Heidelberg, Germany
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | | | | | - Giuseppe Ronzitti
- Genethon, 91000 Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | | | - Federico Mingozzi
- Genethon, 91000 Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Thierry VandenDriessche
- Department of Gene Therapy and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Brussels 1090, Belgium
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven 3000, Belgium
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Oliver J. Müller
- University Hospital Schleswig-Holstein, Campus Kiel, Innere Medizin III, 24105 Kiel, Germany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Marinee K. Chuah
- Department of Gene Therapy and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Brussels 1090, Belgium
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven 3000, Belgium
| | - Ana Buj-Bello
- Genethon, 91000 Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Dirk Grimm
- Medical Faculty, Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Cluster of Excellence CellNetworks, University of Heidelberg, 69120 Heidelberg, Germany
- BioQuant, University of Heidelberg, 69120 Heidelberg, Germany
- German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), partner site Heidelberg, Heidelberg, Germany
| |
Collapse
|
34
|
Becker J, Fakhiri J, Grimm D. Fantastic AAV Gene Therapy Vectors and How to Find Them—Random Diversification, Rational Design and Machine Learning. Pathogens 2022; 11:pathogens11070756. [PMID: 35890005 PMCID: PMC9318892 DOI: 10.3390/pathogens11070756] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Parvoviruses are a diverse family of small, non-enveloped DNA viruses that infect a wide variety of species, tissues and cell types. For over half a century, their intriguing biology and pathophysiology has fueled intensive research aimed at dissecting the underlying viral and cellular mechanisms. Concurrently, their broad host specificity (tropism) has motivated efforts to develop parvoviruses as gene delivery vectors for human cancer or gene therapy applications. While the sum of preclinical and clinical data consistently demonstrates the great potential of these vectors, these findings also illustrate the importance of enhancing and restricting in vivo transgene expression in desired cell types. To this end, major progress has been made especially with vectors based on Adeno-associated virus (AAV), whose capsid is highly amenable to bioengineering, repurposing and expansion of its natural tropism. Here, we provide an overview of the state-of-the-art approaches to create new AAV variants with higher specificity and efficiency of gene transfer in on-target cells. We first review traditional and novel directed evolution approaches, including high-throughput screening of AAV capsid libraries. Next, we discuss programmable receptor-mediated targeting with a focus on two recent technologies that utilize high-affinity binders. Finally, we highlight one of the latest stratagems for rational AAV vector characterization and optimization, namely, machine learning, which promises to facilitate and accelerate the identification of next-generation, safe and precise gene delivery vehicles.
Collapse
Affiliation(s)
- Jonas Becker
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Center for Integrative Infectious Diseases Research (CIID), BioQuant, 69120 Heidelberg, Germany;
- Faculty of Biosciences, University of Heidelberg, 69120 Heidelberg, Germany
| | - Julia Fakhiri
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
- Correspondence: (J.F.); (D.G.); Tel.: +49-174-3486203 (J.F.); +49-6221-5451331 (D.G.)
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Center for Integrative Infectious Diseases Research (CIID), BioQuant, 69120 Heidelberg, Germany;
- German Center for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, 69120 Heidelberg, Germany
- Correspondence: (J.F.); (D.G.); Tel.: +49-174-3486203 (J.F.); +49-6221-5451331 (D.G.)
| |
Collapse
|
35
|
Wang Y, Yang C, Hu H, Chen C, Yan M, Ling F, Wang KC, Wang X, Deng Z, Zhou X, Zhang F, Lin S, Du Z, Zhao K, Xiao X. Directed evolution of adeno-associated virus 5 capsid enables specific liver tropism. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:293-306. [PMID: 35474733 PMCID: PMC9010518 DOI: 10.1016/j.omtn.2022.03.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/18/2022] [Indexed: 02/07/2023]
Abstract
Impressive achievements in clinical trials to treat hemophilia establish a milestone in the development of gene therapy. It highlights the significance of AAV-mediated gene delivery to liver. AAV5 is a unique serotype featured by low neutralizing antibody prevalence. Nevertheless, its liver infectivity is relatively weak. Consequently, it is vital to exploit novel AAV5 capsid mutants with robust liver tropism. To this aim, we performed AAV5-NNK library and barcode screening in mice, from which we identified one capsid variant, called AAVzk2. AAVzk2 displayed a similar yield but divergent post-translational modification sites compared with wild-type serotypes. Mice intravenously injected with AAVzk2 demonstrated a stronger liver transduction than AAV5, roughly comparable with AAV8 and AAV9, with undetectable transduction of other tissues or organs such as heart, lung, spleen, kidney, brain, and skeletal muscle, indicating a liver-specific tropism. Further studies showed a superior human hepatocellular transduction of AAVzk2 to AAV5, AAV8 and AAV9, whereas the seroreactivity of AAVzk2 was as low as AAV5. Overall, we provide a novel AAV serotype that facilitates a robust and specific liver gene delivery to a large population, especially those unable to be treated by AAV8 and AAV9.
Collapse
Affiliation(s)
- Yuqiu Wang
- School of Bioengineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chen Yang
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Hanyang Hu
- School of Bioengineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chen Chen
- School of Bioengineering, East China University of Science and Technology, Shanghai 200237, China
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Mengdi Yan
- School of Bioengineering, East China University of Science and Technology, Shanghai 200237, China
| | - Feixiang Ling
- School of Bioengineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kathy Cheng Wang
- Department of Biology, New York University, 24 Waverly Pl, New York, NY 10003, USA
| | - Xintao Wang
- School of Bioengineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhe Deng
- School of Bioengineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xinyue Zhou
- School of Bioengineering, East China University of Science and Technology, Shanghai 200237, China
| | - Feixu Zhang
- School of Bioengineering, East China University of Science and Technology, Shanghai 200237, China
| | - Sen Lin
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing 400042, China
| | - Zengmin Du
- School of Bioengineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kai Zhao
- School of Bioengineering, East China University of Science and Technology, Shanghai 200237, China
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Corresponding author Kai Zhao, School of Bioengineering and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Xiao Xiao
- School of Bioengineering, East China University of Science and Technology, Shanghai 200237, China
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Corresponding author Xiao Xiao, School of Bioengineering and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
36
|
Abstract
Cardiovascular disease remains the leading cause of morbidity and mortality in the developed world. In recent decades, extraordinary effort has been devoted to defining the molecular and pathophysiological characteristics of the diseased heart and vasculature. Mouse models have been especially powerful in illuminating the complex signaling pathways, genetic and epigenetic regulatory circuits, and multicellular interactions that underlie cardiovascular disease. The advent of CRISPR genome editing has ushered in a new era of cardiovascular research and possibilities for genetic correction of disease. Next-generation sequencing technologies have greatly accelerated the identification of disease-causing mutations, and advances in gene editing have enabled the rapid modeling of these mutations in mice and patient-derived induced pluripotent stem cells. The ability to correct the genetic drivers of cardiovascular disease through delivery of gene editing components in vivo, while still facing challenges, represents an exciting therapeutic frontier. In this review, we provide an overview of cardiovascular disease mechanisms and the potential applications of CRISPR genome editing for disease modeling and correction. We also discuss the extent to which mice can faithfully model cardiovascular disease and the opportunities and challenges that lie ahead.
Collapse
Affiliation(s)
- Ning Liu
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas
| | - Eric N Olson
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
37
|
Matsuzaka Y, Hirai Y, Hashido K, Okada T. Therapeutic Application of Extracellular Vesicles-Capsulated Adeno-Associated Virus Vector via nSMase2/Smpd3, Satellite, and Immune Cells in Duchenne Muscular Dystrophy. Int J Mol Sci 2022; 23:1551. [PMID: 35163475 PMCID: PMC8836108 DOI: 10.3390/ijms23031551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by loss-of-function mutations in the dystrophin gene on chromosome Xp21. Disruption of the dystrophin-glycoprotein complex (DGC) on the cell membrane causes cytosolic Ca2+ influx, resulting in protease activation, mitochondrial dysfunction, and progressive myofiber degeneration, leading to muscle wasting and fragility. In addition to the function of dystrophin in the structural integrity of myofibers, a novel function of asymmetric cell division in muscular stem cells (satellite cells) has been reported. Therefore, it has been suggested that myofiber instability may not be the only cause of dystrophic degeneration, but rather that the phenotype might be caused by multiple factors, including stem cell and myofiber functions. Furthermore, it has been focused functional regulation of satellite cells by intracellular communication of extracellular vesicles (EVs) in DMD pathology. Recently, a novel molecular mechanism of DMD pathogenesis-circulating RNA molecules-has been revealed through the study of target pathways modulated by the Neutral sphingomyelinase2/Neutral sphingomyelinase3 (nSMase2/Smpd3) protein. In addition, adeno-associated virus (AAV) has been clinically applied for DMD therapy owing to the safety and long-term expression of transduction genes. Furthermore, the EV-capsulated AAV vector (EV-AAV) has been shown to be a useful tool for the intervention of DMD, because of the high efficacy of the transgene and avoidance of neutralizing antibodies. Thus, we review application of AAV and EV-AAV vectors for DMD as novel therapeutic strategy.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan;
| | - Yukihiko Hirai
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
| | - Kazuo Hashido
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan;
| | - Takashi Okada
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
| |
Collapse
|
38
|
Wang H, Li C, Obadan A, Frizzell H, Hsiang TY, Gil S, Germond A, Fountain C, Baldessari A, Roffler S, Kiem HP, Fuller D, Lieber A. In vivo HSC gene therapy for SARS-CoV2 infection using a decoy receptor. Hum Gene Ther 2022; 33:389-403. [PMID: 35057635 PMCID: PMC9063208 DOI: 10.1089/hum.2021.295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
While SARS-CoV2 vaccines have shown an unprecedented success, the ongoing emergence of new variants and necessity to adjust vaccines justify the development of alternative prophylaxis and therapy approaches. Hematopoietic stem cell (HSC) gene therapy using a secreted CoV2 decoy receptor protein (sACE2-Ig) would involve a one-time intervention resulting in long-term protection against airway infection, viremia, and extrapulmonary symptoms. We recently developed a technically simple and portable in vivo hematopoietic HSC transduction approach that involves HSC mobilization from the bone marrow into the peripheral blood stream and the intravenous injection of an integrating, helper-dependent adenovirus (HDAd5/35++) vector system. Considering the abundance of erythrocytes, in this study, we directed sACE2-Ig expression to erythroid cells using strong β-globin transcriptional regulatory elements. We performed in vivo HSC transduction of CD46-transgenic mice with an HDAd-sACE2-Ig vector. Serum sACE2-Ig levels reached 500–1,300 ng/mL after in vivo selection. At 22 weeks, we used genetically modified HSCs from these mice to substitute the hematopoietic system in human ACE2-transgenic mice, thus creating a model that is susceptible to SARS-CoV2 infection. Upon challenge with a lethal dose of CoV2 (WA-1), sACE2-Ig expressed from erythroid cells of test mice diminishes infection sequelae. Treated mice lost significantly less weight, had less viremia, and displayed reduced cytokine production and lung pathology. The second objective of this study was to assess the safety of in vivo HSC transduction and long-term sACE2-Ig expression in a rhesus macaque. With appropriate cytokine prophylaxis, intravenous injection of HDAd-sACE2-Ig into the mobilized animal was well tolerated. In vivo transduced HSCs preferentially localized to and survived in the spleen. sACE2-Ig expressed from erythroid cells did not affect erythropoiesis and the function of erythrocytes. While these pilot studies are promising, the antiviral efficacy of the approach has to be improved, for example, by using of decoy receptors with enhanced neutralizing capacity and/or expression of multiple antiviral effector proteins.
Collapse
Affiliation(s)
- Hongjie Wang
- University of Washington, 7284, Seattle, Washington, United States
| | - chang Li
- University of Washington, 7284, Medicine, 1959 NE Pacific Street, HSB K-263, Box357720, Seattle, Washington, United States, 98195
| | - Adebimpe Obadan
- University of Washington, 7284, Department of Microbiology, Seattle, Washington, United States
| | - Hannah Frizzell
- University of Washington, 7284, Department of Microbiology, Seattle, Washington, United States
| | - Tien-Ying Hsiang
- University of Washington, 7284, Department of Immunology, Seattle, Washington, United States
| | - Sucheol Gil
- University of Washington, 7284, Department of Medicine, Seattle, Washington, United States
| | - Audrey Germond
- University of Washington, 7284, Washington National Primate Research Center , Seattle, Washington, United States
| | - Connie Fountain
- University of Washington, 7284, WaNPRC, Seattle, Washington, United States
| | - Audrey Baldessari
- University of Washington, 7284, WaNPRC, Seattle, Washington, United States
| | - Steve Roffler
- Academia Sinica Division Of Humanities and Social Sciences, 485001, Institute of Biomedical Sciences, Taipei, Taiwan,
| | - Hans-Peter Kiem
- Fred Hutchinson Cancer Research Center, 7286, Clinical Research Division, 1100 Fairview Avenue N, D1-100, Seattle, Washington, United States, 98109-1024
- University of Washington School of Medicine, 12353, Seattle, United States, 98195-6340
| | - Deborah Fuller
- University of Washington, 7284, Department of Microbiology, Seattle, Washington, United States
| | - Andre Lieber
- University of Washington, 7284, Department of Medicine, Box 357720, Seattle, Washington, United States, 98195
- University of Washington
| |
Collapse
|