1
|
Nardo D, Maddox EG, Riley JL. Cell therapies for viral diseases: a new frontier. Semin Immunopathol 2025; 47:5. [PMID: 39747475 PMCID: PMC11695571 DOI: 10.1007/s00281-024-01031-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025]
Abstract
Despite advances in medicine and antimicrobial research, viral infections continue to pose a major threat to human health. While major strides have been made in generating vaccines and small molecules to combat emerging pathogens, new modalities of treatment are warranted in diseases where there is a lack of treatment options, or where treatment cannot fully eradicate pathogens, as in HIV infection. Cellular therapies, some of which are FDA approved for treating cancer, take advantage of our developing understanding of the immune system, and harness this knowledge to enhance, or direct, immune responses toward infectious agents. As with cancer, viruses that evade immunity, do so by avoiding immune recognition or by redirecting the cellular responses that would eradicate them. As such, infusing virus specific immune cells has the potential to improve patient outcomes and should be investigated as a potential tool in the arsenal to fight infection. The present manuscript summarizes key findings made using cellular therapies for the treatment of viral infections, focusing on the potential that these strategies might have in controlling disease.
Collapse
Affiliation(s)
- David Nardo
- Department of Microbiology and Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Emileigh G Maddox
- Department of Microbiology and Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - James L Riley
- Department of Microbiology and Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
2
|
Larson EC, Ellis AL, Rodgers MA, Gubernat AK, Gleim JL, Moriarty RV, Balgeman AJ, de Menezes YT, Ameel CL, Fillmore DJ, Pergalske SM, Juno JA, Maiello P, Chishti HB, Lin PL, Godfrey DI, Kent SJ, Pellicci DG, Ndhlovu LC, O'Connor SL, Scanga CA. Transiently boosting Vγ9+Vδ2+ γδ T cells early in Mtb coinfection of SIV-infected juvenile macaques does not improve Mtb host resistance. Infect Immun 2024; 92:e0031324. [PMID: 39475292 PMCID: PMC11629613 DOI: 10.1128/iai.00313-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/01/2024] [Indexed: 11/06/2024] Open
Abstract
Children living with HIV have a higher risk of developing tuberculosis (TB), a disease caused by the bacterium Mycobacterium tuberculosis (Mtb). Gamma delta (γδ) T cells in the context of HIV/Mtb coinfection have been understudied in children despite in vitro evidence suggesting γδ T cells assist with Mtb control. We investigated whether boosting a specific subset of γδ T cells, phosphoantigen-reactive Vγ9+Vδ2+ cells, could improve TB outcome using a nonhuman primate model of pediatric HIV/Mtb coinfection. Juvenile Mauritian cynomolgus macaques (MCM), equivalent to 4- to 8-year-old children, were infected intravenously (i.v.) with SIV. After 6 months, MCM were coinfected with a low dose of Mtb and then randomized to receive zoledronate (ZOL), a drug that increases phosphoantigen levels, (n = 5; i.v.) at 3 and 17 days after Mtb accompanied by recombinant human IL-2 (s.c.) for 5 days following each ZOL injection. A similarly coinfected MCM group (n = 5) was injected with saline as a control. Vγ9+Vδ2+ γδ T cell frequencies spiked in the blood, but not airways, of ZOL+IL-2-treated MCM following the first dose, however, were refractory to the second dose. At necropsy 8 weeks after Mtb, ZOL+IL-2 treatment did not reduce pathology or bacterial burden. γδ T cell subset frequencies in granulomas did not differ between treatment groups. These data show that transiently boosting peripheral γδ T cells with ZOL+IL-2 soon after Mtb coinfection of SIV-infected MCM did not improve Mtb host defense.
Collapse
Affiliation(s)
- Erica C. Larson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Amy L. Ellis
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mark A. Rodgers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Abigail K. Gubernat
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Janelle L. Gleim
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ryan V. Moriarty
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alexis J. Balgeman
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Yonne T. de Menezes
- Department of Immunobiology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Cassaundra L. Ameel
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Daniel J. Fillmore
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Skyler M. Pergalske
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jennifer A. Juno
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Harris B. Chishti
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Philana Ling Lin
- Department of Pediatrics, UPMC’s Children’s Hospital of the University of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Stephen J. Kent
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Centre Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Daniel G. Pellicci
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Lishomwa C. Ndhlovu
- Department of Medicine, Division of Infectious Disease, Weill Cornell Medicine, New York, New York, USA
| | - Shelby L. O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Charles A. Scanga
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Shekarkar Azgomi M, Badami GD, Di Caro M, Tamburini B, Fallo M, Dieli C, Ebrahimi K, Dieli F, La Manna MP, Caccamo N. Deep Immunoprofiling of Large-Scale Tuberculosis Dataset at Single Cell Resolution Reveals a CD81 bright γδ T Cell Population Associated with Latency. Cells 2024; 13:1529. [PMID: 39329713 PMCID: PMC11430301 DOI: 10.3390/cells13181529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/28/2024] [Accepted: 09/07/2024] [Indexed: 09/28/2024] Open
Abstract
Tuberculosis (TB) remains one of the leading causes of death among infectious diseases, with 10.6 million new cases and 1.3 million deaths reported in 2022, according to the most recent WHO report. Early studies have shown an expansion of γδ T cells following TB infection in both experimental models and humans, indicating their abundance among lung lymphocytes and suggesting a role in protective immune responses against Mycobacterium tuberculosis (M. tuberculosis) infection. In this study, we hypothesized that distinct subsets of γδ T cells are associated with either protection against or disease progression in TB. To explore this, we applied large-scale scRNA-seq and bulk RNA-seq data integration to define the phenotypic and molecular characteristics of peripheral blood γδ T cells. Our analysis identified five unique γδ T subclusters, each with distinct functional profiles. Notably, we identified a unique cluster significantly enriched in the TCR signaling pathway, with high CD81 expression as a conserved marker. This distinct molecular signature suggests a specialized role for this cluster in immune signaling and regulation of immune response against M. tuberculosis. Flow cytometry confirmed our in silico results, showing that the mean fluorescence intensity (MFI) values of CD81 expression on γδ T cells were significantly increased in individuals with latent TB infection (TBI) compared to those with active TB (ATB). This finding underscores the importance of CD81 and its associated signaling mechanisms in modulating the activity and function of γδ T cells under TBI conditions, providing insights into potential therapeutic targets for TB management.
Collapse
Affiliation(s)
- Mojtaba Shekarkar Azgomi
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (B.N.D.), University of Palermo, 90127 Palermo, Italy
| | - Giusto Davide Badami
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (B.N.D.), University of Palermo, 90127 Palermo, Italy
| | - Miriam Di Caro
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (B.N.D.), University of Palermo, 90127 Palermo, Italy
| | - Bartolo Tamburini
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy
- Department of Health Promotion, Mother and Childcare, Internal Medicine and Medical Specialties, University of Palermo, 90129 Palermo, Italy
| | - Miriana Fallo
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy
| | - Costanza Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy
| | - Kiana Ebrahimi
- Faculté d'Ingénierie et Management de la Santé (ILIS), Université de Lille, 59120 Loos, France
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (B.N.D.), University of Palermo, 90127 Palermo, Italy
| | - Marco Pio La Manna
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (B.N.D.), University of Palermo, 90127 Palermo, Italy
| | - Nadia Caccamo
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (B.N.D.), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
4
|
Larson EC, Ellis AL, Rodgers MA, Gubernat AK, Gleim JL, Moriarty RV, Balgeman AJ, de Menezes YT, Ameel CL, Fillmore DJ, Pergalske SM, Juno JA, Maiello P, Chishti HB, Lin PL, Godfrey DI, Kent SJ, Pellicci DG, Ndhlovu LC, O’Connor SL, Scanga CA. Transiently boosting Vγ9+Vδ2+ γδ T cells early in Mtb coinfection of SIV-infected juvenile macaques does not improve Mtb host resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.22.604654. [PMID: 39091843 PMCID: PMC11291075 DOI: 10.1101/2024.07.22.604654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Children living with HIV have a higher risk of developing tuberculosis (TB), a disease caused by the bacterium Mycobacterium tuberculosis (Mtb). Gamma delta (γδ) T cells in the context of HIV/Mtb coinfection have been understudied in children, despite in vitro evidence suggesting γδ T cells assist with Mtb control. We investigated whether boosting a specific subset of γδ T cells, phosphoantigen-reactive Vγ9+Vδ2+ cells, could improve TB outcome using a nonhuman primate model of pediatric HIV/Mtb coinfection. Juvenile Mauritian cynomolgus macaques (MCM), equivalent to 4-8-year-old children, were infected intravenously (i.v.) with SIV. After 6 months, MCM were coinfected with a low dose of Mtb and then randomized to receive zoledronate (ZOL), a drug that increases phosphoantigen levels, (n=5; i.v.) at 3- and 17- days after Mtb accompanied by recombinant human IL-2 (s.c.) for 5 days following each ZOL injection. A similarly coinfected MCM group (n=5) was injected with saline as a control. Vγ9+Vδ2+ γδ T cell frequencies spiked in the blood, but not airways, of ZOL+IL-2-treated MCM following the first dose, however, were refractory to the second dose. At necropsy eight weeks after Mtb, ZOL+IL-2 treatment did not reduce pathology or bacterial burden. γδ T cell subset frequencies in granulomas did not differ between treatment groups. These data show that transiently boosting peripheral γδ T cells with ZOL+IL-2 soon after Mtb coinfection of SIV-infected MCM did not improve Mtb host defense.
Collapse
Affiliation(s)
- Erica C. Larson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Amy L. Ellis
- Department of Pathology and Laboratory Medicine, University of Wisconsin - Madison, Wisconsin, USA
| | - Mark A. Rodgers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Abigail K. Gubernat
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Janelle L. Gleim
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ryan V. Moriarty
- Department of Pathology and Laboratory Medicine, University of Wisconsin - Madison, Wisconsin, USA
| | - Alexis J. Balgeman
- Department of Pathology and Laboratory Medicine, University of Wisconsin - Madison, Wisconsin, USA
| | - Yonne T. de Menezes
- Department of Immunobiology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Cassaundra L. Ameel
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Daniel J. Fillmore
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Skyler M. Pergalske
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jennifer A. Juno
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Harris B. Chishti
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Philana Ling Lin
- Department of Pediatrics, UPMC’s Children’s Hospital of the University of Pittsburgh of UPMC, Pittsburgh, PA
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Stephen J. Kent
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Centre Clinical School, Monash University, Melbourne, VIC, Australia
| | - Daniel G. Pellicci
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Lishomwa C. Ndhlovu
- Department of Medicine, Division of Infectious Disease, Weill Cornell Medicine, New York, New York, USA
| | - Shelby L. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin - Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, University of Wisconsin - Madison, Wisconsin, USA
| | - Charles A. Scanga
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Khanna H, Gupta S, Sheikh Y. Cell-Mediated Immune Response Against Mycobacterium tuberculosis and Its Potential Therapeutic Impact. J Interferon Cytokine Res 2024; 44:244-259. [PMID: 38607324 DOI: 10.1089/jir.2024.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
Cell-mediated immune response is critical for Mycobacterium tuberculosis (M.tb) control. Understanding of pathophysiology and role played by different cell mediators is essential for vaccine development and better management of patients with M.tb. A complex array of cytokines and chemokines are involved in the immune response against M.tb; however, their relative contribution in protection remains to be further explored. The purpose of this review is to summarize the current understanding regarding the cytokine and chemokine profiles in M.tb infection in order to assist research in the field to pursue new direction in prevention and control. We have also summarized recent findings on vaccine trials that have been developed and or are under trials that are targeting these molecules.
Collapse
Affiliation(s)
- Harshika Khanna
- Department of Pediatrics, King George's Medical University, Lucknow, India
| | | | - Yasmeen Sheikh
- Department of Pediatrics, King George's Medical University, Lucknow, India
| |
Collapse
|
6
|
Koga S, Takazono T, Namie H, Okuno D, Ito Y, Nakada N, Hirayama T, Takeda K, Ide S, Iwanaga N, Tashiro M, Sakamoto N, Watanabe A, Izumikawa K, Yanagihara K, Tanaka Y, Mukae H. Human Vγ9Vδ2 T cells exhibit antifungal activity against Aspergillus fumigatus and other filamentous fungi. Microbiol Spectr 2024; 12:e0361423. [PMID: 38426765 PMCID: PMC10986472 DOI: 10.1128/spectrum.03614-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/11/2024] [Indexed: 03/02/2024] Open
Abstract
Invasive aspergillosis (IA) and mucormycosis are life-threatening diseases, especially among immunocompromised patients. Drug-resistant Aspergillus fumigatus strains have been isolated worldwide, which can pose a serious clinical problem. As IA mainly occurs in patients with compromised immune systems, the ideal therapeutic approach should aim to bolster the immune system. In this study, we focused on Vγ9Vδ2 T cells that exhibit immune effector functions and examined the possibility of harnessing this unconventional T cell subset as a novel therapeutic modality for IA. A potent antifungal effect was observed when A. fumigatus (Af293) hyphae were challenged by Vγ9Vδ2 T cells derived from peripheral blood. In addition, Vγ9Vδ2 T cells exhibited antifungal activity against hyphae of all Aspergillus spp., Cunninghamella bertholletiae, and Rhizopus microsporus but not against their conidia. Furthermore, Vγ9Vδ2 T cells also exhibited antifungal activity against azole-resistant A. fumigatus, indicating that Vγ9Vδ2 T cells could be used for treating drug-resistant A. fumigatus. The antifungal activity of Vγ9Vδ2 T cells depended on cell-to-cell contact with A. fumigatus hyphae, and degranulation characterized by CD107a mobilization seems essential for this activity against A. fumigatus. Vγ9Vδ2 T cells could be developed as a novel modality for treating IA or mucormycosis. IMPORTANCE Invasive aspergillosis (IA) and mucormycosis are often resistant to treatment with conventional antifungal agents and have a high mortality rate. Additionally, effective antifungal treatment is hindered by drug toxicity, given that both fungal and human cells are eukaryotic, and antifungal agents are also likely to act on human cells, resulting in adverse effects. Therefore, the development of novel therapeutic agents specifically targeting fungi is challenging. This study demonstrated the antifungal activity of Vγ9Vδ2 T cells against various Aspergillus spp. and several Mucorales in vitro and discussed the mechanism underlying their antifungal activity. We indicate that adoptive immunotherapy using Vγ9Vδ2 T cells may offer a new therapeutic approach to IA.
Collapse
Affiliation(s)
- Satoru Koga
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Takahiro Takazono
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hodaka Namie
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Daisuke Okuno
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Yuya Ito
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Nana Nakada
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
- Health Center, Nagasaki University, Nagasaki, Japan
| | - Tatsuro Hirayama
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
- Department of Pharmacotherapeutics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazuaki Takeda
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Shotaro Ide
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
- Infectious Diseases Experts Training Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Naoki Iwanaga
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Masato Tashiro
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Noriho Sakamoto
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Akira Watanabe
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Koichi Izumikawa
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, Nagasaki, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| |
Collapse
|
7
|
Yang J, Zhu X, Feng J. The Changes in the Quantity of Lymphocyte Subpopulations during the Process of Sepsis. Int J Mol Sci 2024; 25:1902. [PMID: 38339179 PMCID: PMC10855580 DOI: 10.3390/ijms25031902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Sepsis remains a global challenge, especially in low- and middle-income countries, where there is an urgent need for easily accessible and cost-effective biomarkers to predict the occurrence and prognosis of sepsis. Lymphocyte counts are easy to measure clinically, and a large body of animal and clinical research has shown that lymphocyte counts are closely related to the incidence and prognosis of sepsis. This review extensively collected experimental articles related to lymphocyte counts since the unification of the definition of sepsis. The article categorizes and discusses the relationship between absolute lymphocyte counts, intrinsic lymphocyte subsets, effector T-lymphocytes, B-lymphocytes, dendritic cells, and the incidence and prognosis of sepsis. The results indicate that comparisons of absolute lymphocyte counts alone are meaningless. However, in addition to absolute lymphocyte counts, innate lymphocyte subsets, effector T-cells, B-lymphocytes, and dendritic cells have shown certain research value in related studies.
Collapse
Affiliation(s)
- Jiale Yang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Jun Feng
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
8
|
Hu Y, Hu Q, Li Y, Lu L, Xiang Z, Yin Z, Kabelitz D, Wu Y. γδ T cells: origin and fate, subsets, diseases and immunotherapy. Signal Transduct Target Ther 2023; 8:434. [PMID: 37989744 PMCID: PMC10663641 DOI: 10.1038/s41392-023-01653-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 11/23/2023] Open
Abstract
The intricacy of diseases, shaped by intrinsic processes like immune system exhaustion and hyperactivation, highlights the potential of immune renormalization as a promising strategy in disease treatment. In recent years, our primary focus has centered on γδ T cell-based immunotherapy, particularly pioneering the use of allogeneic Vδ2+ γδ T cells for treating late-stage solid tumors and tuberculosis patients. However, we recognize untapped potential and optimization opportunities to fully harness γδ T cell effector functions in immunotherapy. This review aims to thoroughly examine γδ T cell immunology and its role in diseases. Initially, we elucidate functional differences between γδ T cells and their αβ T cell counterparts. We also provide an overview of major milestones in γδ T cell research since their discovery in 1984. Furthermore, we delve into the intricate biological processes governing their origin, development, fate decisions, and T cell receptor (TCR) rearrangement within the thymus. By examining the mechanisms underlying the anti-tumor functions of distinct γδ T cell subtypes based on γδTCR structure or cytokine release, we emphasize the importance of accurate subtyping in understanding γδ T cell function. We also explore the microenvironment-dependent functions of γδ T cell subsets, particularly in infectious diseases, autoimmune conditions, hematological malignancies, and solid tumors. Finally, we propose future strategies for utilizing allogeneic γδ T cells in tumor immunotherapy. Through this comprehensive review, we aim to provide readers with a holistic understanding of the molecular fundamentals and translational research frontiers of γδ T cells, ultimately contributing to further advancements in harnessing the therapeutic potential of γδ T cells.
Collapse
Affiliation(s)
- Yi Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Qinglin Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Zheng Xiang
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Zhinan Yin
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University Kiel, Kiel, Germany.
| | - Yangzhe Wu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China.
| |
Collapse
|
9
|
Putera I, Schrijver B, Ten Berge JCEM, Gupta V, La Distia Nora R, Agrawal R, van Hagen PM, Rombach SM, Dik WA. The immune response in tubercular uveitis and its implications for treatment: From anti-tubercular treatment to host-directed therapies. Prog Retin Eye Res 2023:101189. [PMID: 37236420 DOI: 10.1016/j.preteyeres.2023.101189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 05/28/2023]
Abstract
Tubercular uveitis (TB-uveitis) remains a conundrum in the uveitis field, which is mainly related to the diverse clinical phenotypes of TB-uveitis. Moreover, it remains difficult to differentiate whether Mycobacterium tuberculosis (Mtb) is present in the ocular tissues, elicits a heightened immune response without Mtb invasion in ocular tissues, or even induces an anti-retinal autoimmune response. Gaps in the immuno-pathological knowledge of TB-uveitis likely delay timely diagnosis and appropriate management. In the last decade, the immunopathophysiology of TB-uveitis and its clinical management, including experts' consensus to treat or not to treat certain conditions with anti-tubercular treatment (ATT), have been extensively investigated. In the meantime, research on TB treatment, in general, is shifting more toward host-directed therapies (HDT). Given the complexities of the host-Mtb interaction, enhancement of the host immune response is expected to boost the effectiveness of ATT and help overcome the rising burden of drug-resistant Mtb strains in the population. This review will summarize the current knowledge on the immunopathophysiology of TB-uveitis and recent advances in treatment modalities and outcomes of TB-uveitis, capturing results gathered from high- and low-burden TB countries with ATT as the mainstay of treatment. Moreover, we outline the recent progress of HDT development in the pulmonary TB field and discuss the possibility of its applicability to TB-uveitis. The concept of HDT might help direct future development of efficacious therapy for TB-uveitis, although more in-depth research on the immunoregulation of this disease is still necessary.
Collapse
Affiliation(s)
- Ikhwanuliman Putera
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Internal Medicine, Section Allergy and Clinical Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands; Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Ophthalmology, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia.
| | - Benjamin Schrijver
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Vishali Gupta
- Retina and Uvea Services, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Rina La Distia Nora
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Ophthalmology, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Rupesh Agrawal
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke NUS University, Singapore; Singapore Eye Research Institute, Singapore; Moorfields Eye Hospital, London, United Kingdom
| | - P Martin van Hagen
- Department of Internal Medicine, Section Allergy and Clinical Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands; Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - S M Rombach
- Department of Internal Medicine, Section Allergy and Clinical Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Willem A Dik
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
10
|
Velasco-de Andrés M, Muñoz-Sánchez G, Carrillo-Serradell L, Gutiérrez-Hernández MDM, Català C, Isamat M, Lozano F. Chimeric antigen receptor-based therapies beyond cancer. Eur J Immunol 2023; 53:e2250184. [PMID: 36649259 DOI: 10.1002/eji.202250184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/29/2022] [Accepted: 01/16/2023] [Indexed: 01/18/2023]
Abstract
Adoptive cell transfer (ACT) therapies have gained renewed interest in the field of immunotherapy following the advent of chimeric antigen receptor (CAR) technology. This immunological breakthrough requires immune cell engineering with an artificial surface protein receptor for antigen-specific recognition coupled to an intracellular protein domain for cell activating functions. CAR-based ACT has successfully solved some hematological malignancies, and it is expected that other tumors may soon benefit from this approach. However, the potential of CAR technology is such that other immune-mediated disorders are beginning to profit from it. This review will focus on CAR-based ACT therapeutic areas other than oncology such as infection, allergy, autoimmunity, transplantation, and fibrotic repair. Herein, we discuss the results and limitations of preclinical and clinical studies in that regard.
Collapse
Affiliation(s)
| | - Guillermo Muñoz-Sánchez
- Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, Spain
| | | | | | - Cristina Català
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marcos Isamat
- Sepsia Therapeutics S.L., L'Hospitalet de Llobregat, Spain
| | - Francisco Lozano
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, Spain
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Hu Y, Chen D, Hong M, Liu J, Li Y, Hao J, Lu L, Yin Z, Wu Y. Apoptosis, Pyroptosis, and Ferroptosis Conspiringly Induce Immunosuppressive Hepatocellular Carcinoma Microenvironment and γδ T-Cell Imbalance. Front Immunol 2022; 13:845974. [PMID: 35444645 PMCID: PMC9013882 DOI: 10.3389/fimmu.2022.845974] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is highly malignant and prone to metastasize due to the heterogeneous and immunosuppressive tumor microenvironment (TME). Programmed cell deaths (PCDs) including apoptosis, ferroptosis, and pyroptosis routinely occur in the HCC TME and participate in tumorigenesis. However, how apoptosis, ferroptosis, and pyroptosis are involved in constructions of the immunosuppressive TME and their underlying cross-talk remains to be further unveiled. In this work, we deciphered the immunosuppressive landscape of HCC TME, which demonstrated high expressions of inhibitory checkpoint molecules and infiltration of protumor immune cells but low infiltration of antitumor effector immune cells. Further investigations unequivocally revealed that marker genes of apoptosis, ferroptosis, and pyroptosis are closely correlated with expressions and infiltrations of inhibitory checkpoint molecules and immune cells and that higher "-optosis" links to poorer patient prognosis. Notably, such three types of "-optosis" interact with each other at both the gene and protein levels, suggesting that they conspiringly induce the establishment of the immunosuppressive HCC TME. Interestingly, examinations of circulating γδ T cells in HCC patients revealed a noticeable dysfunction phenotype. The strikingly elevated ratio of the Vδ1+ versus the Vδ2+ subset suggested that the Vδ1+/Vδ2+ ratio would be a potential biomarker for the diagnosis and prognosis in HCC patients. Altogether, this work thoroughly decrypted the underlying correlations between apoptosis, ferroptosis, and pyroptosis and the formation of immunosuppressive HCC TME and, meanwhile, indicated that allogeneic Vδ2+ γδ T-cell transfer would be a promising adjuvant strategy for renormalizing circulating γδ T cell and thus achieving sound clinical efficacy against HCC.
Collapse
Affiliation(s)
- Yi Hu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China.,Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Dan Chen
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Minjing Hong
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Jing Liu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Yijia Li
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Jianlei Hao
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Zhinan Yin
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Yangzhe Wu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| |
Collapse
|