1
|
Ulu BU, Hindilerden IY, Yigenoglu TN, Tiryaki TO, Erkurt MA, Korkmaz G, Namdaroglu S, Aksoy E, Korkmaz S, Seyhan M, Yilmaz S, Besisik SK, Dal MS, Ulas T, Altuntas F. Are mesenchymal stem cells still effective in acute GvHD management? Transfus Apher Sci 2024; 64:104051. [PMID: 39721135 DOI: 10.1016/j.transci.2024.104051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
OBJECTIVE Graft-versus-host disease (GvHD) is a common and serious complication following allogeneic hematopoietic stem cell transplantation (allo-HSCT), significantly impacting transplant efficacy. In the treatment of GvHD, numerous therapeutic approaches have been explored, with mesenchymal stem cells (MSCs) emerging as a prominent immunomodulatory option. We aimed to evaluate efficacy and outcomes of using MSCs for steroid refractory acute GVHD (SR-aGvHD) management. MATERIALS AND METHODS We retrospectively analyzed data from 36 patients' who received MSCs for treatment of SR-aGvHD following allo-HSCT between 2018 and 2024 from nine transplantation centers in Türkiye. The product consisted of umbilical cord-derived allogeneic MSCs, which were administered intravenously. RESULTS Our cohort was at the median age of 39 years (range: 19-61 years), with aGvHD diagnosed at a median of two months after allo-HSCT. More than half of the patients (58.3 %) classified as high-grade aGvHD according to the Minnesota risk scoring. Cord blood-derived MSCs were administered at a median dose of 3.45 (range: 0.8-5) million MSCs/kg, with a median of 3th (range: 2-5) line treatment. The rate of responses exceeding partial response (PR) was approximately 20 % at the first month, increasing to 24 % at the second month. The six-month survival rate was 33 %, with 46 % of mortality attributed to sepsis and 12.5 % related to GvHD. Multivariate analysis indicated that increasing age (≥35 years) and lower platelet counts (≤75 x109/L) were associated with higher mortality (p < 0.05). CONCLUSION MSC therapy has shown promising potential in improving response rates in aGvHD treatment, with efficacy enhanced by younger age and higher platelet counts.
Collapse
Affiliation(s)
- Bahar Uncu Ulu
- University of Health Sciences, Ankara Oncology Training and Research Hospital, Department of Hematology & Apheresis Unit, Ankara, Turkey.
| | - Ipek Yonal Hindilerden
- Istanbul University Istanbul Medical Faculty, Department of Internal Medicine, Division of Hematology, Istanbul, Turkey
| | - Tugce Nur Yigenoglu
- University of Health Sciences, Ankara Oncology Training and Research Hospital, Department of Hematology & Apheresis Unit, Ankara, Turkey
| | - Tarik Onur Tiryaki
- Istanbul University Istanbul Medical Faculty, Department of Internal Medicine, Division of Hematology, Istanbul, Turkey
| | - Mehmet Ali Erkurt
- Inonu University, Faculty of Medicine, Department of Hematology, Malatya, Turkey
| | - Gulten Korkmaz
- Ankara Bilkent City Hospital, Department of Hematology and Bone Marrow Transplantation Unit, Ankara, Turkey
| | - Sinem Namdaroglu
- Dokuz Eylul University, Faculty of Medicine, Department of Hematology, Izmir, Turkey
| | - Elif Aksoy
- University of Health Sciences, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Clinic of Hematology, Istanbul, Turkey
| | - Serdal Korkmaz
- University of Health Sciences, Kayseri Medical Faculty, Department of Hematology and Bone Marrow Transplantation Unit, Kayseri, Turkey
| | - Mert Seyhan
- University of Health Sciences, Ankara Oncology Training and Research Hospital, Department of Hematology & Apheresis Unit, Ankara, Turkey
| | - Seda Yilmaz
- University of Health Sciences, Konya Medical Faculty, Department of Hematology and Bone Marrow Transplantation Unit, Konya, Turkey
| | - Sevgi Kalayoglu Besisik
- Istanbul University Istanbul Medical Faculty, Department of Internal Medicine, Division of Hematology, Istanbul, Turkey
| | - Mehmet Sinan Dal
- University of Health Sciences, Ankara Oncology Training and Research Hospital, Department of Hematology & Apheresis Unit, Ankara, Turkey
| | - Turgay Ulas
- University of Health Sciences, Ankara Oncology Training and Research Hospital, Department of Hematology & Apheresis Unit, Ankara, Turkey
| | - Fevzi Altuntas
- University of Health Sciences, Ankara Oncology Training and Research Hospital, Department of Hematology & Apheresis Unit, Ankara, Turkey; Ankara Yildirim Beyazit University, School of Medicine, Department of Internal Medicine, Division of Hematology, Ankara, Turkey
| |
Collapse
|
2
|
Salybekov AA, Kinzhebay A, Kobayashi S. Cell therapy in kidney diseases: advancing treatments for renal regeneration. Front Cell Dev Biol 2024; 12:1505601. [PMID: 39723242 PMCID: PMC11669058 DOI: 10.3389/fcell.2024.1505601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/13/2024] [Indexed: 12/28/2024] Open
Abstract
Kidney diseases, including acute kidney injury (AKI) and chronic kidney disease (CKD), pose a significant global health challenge, with high morbidity and mortality rates driven by rising prevalence of risk factors such as diabetes and hypertension. Current therapeutic strategies are often limited, prompting the exploration of advanced cell therapies as potential solutions. This review provides a comprehensive overview of the state of cell therapies in kidney disease, tracing the progression from preclinical studies to clinical applications. Recent studies highlited that cell-based interventions offer kidney-protective properties through mechanisms such as paracrine signaling, immune modulation, and direct tissue integration, demonstrating potential in both AKI and CKD settings. Despite promising results, challenges remain in optimizing cell therapy protocols, including cell sourcing, delivery methods, and long-term outcomes. Finally, the review addresses on efforts to enhance cell function, optimize dosing, and refine delivery techniques to improve clinical outcomes in kidney disease management.
Collapse
Affiliation(s)
- Amankeldi A. Salybekov
- Qazaq Institute of Innovative Medicine, Regenerative Medicine Division, Cell and Gene Therapy Department, Astana, Kazakhstan
| | - Aiman Kinzhebay
- Qazaq Institute of Innovative Medicine, Regenerative Medicine Division, Cell and Gene Therapy Department, Astana, Kazakhstan
| | - Shuzo Kobayashi
- Kidney Diseases and Transplant Center, Shonan Kamakura General Hospital, Kamakura, Japan
| |
Collapse
|
3
|
Lombardo G, Lechanteur C, Briquet A, Seidel L, Willems E, Servais S, Baudoux E, Kerre T, Zachee P, Herman J, Janssen A, Muller J, Baron F, Beguin Y. Co-infusion of mesenchymal stromal cells to prevent GVHD after allogeneic hematopoietic cell transplantation from HLA-mismatched unrelated donors after reduced-intensity conditioning: a double-blind randomized study and literature review. Stem Cell Res Ther 2024; 15:461. [PMID: 39627816 PMCID: PMC11613890 DOI: 10.1186/s13287-024-04064-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/14/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSC) have immunomodulatory and hematopoiesis-supporting properties that could potentially benefit hematopoietic stem cell (HSC) engraftment and decrease the incidence and/or severity of graft-versus-host disease (GVHD). METHODS Based on our previous pilot study, we established a multicenter, prospective, randomized, double-blind trial evaluating the efficacy of co-infusing third-party MSC (1.5-3 × 106/kg) versus placebo on the day of HSC transplantation (HCT) to prevent GVHD in recipients of HLA-mismatched unrelated donors after reduced-intensity conditioning. RESULTS The study planned to include 120 patients to improve 1-year overall survival (OS) from 55 to 77% but was stopped after 9 years for low recruitment (n = 38). One-year OS was 74% in the MSC group and 80% in the placebo group. In multivariate analysis, the incidence of grade II-IV acute GVHD was significantly lower in patients receiving MSC (HR 0.332, 95% CI 0.124-0.890, p = 0.0284). No difference was observed in the incidences of chronic GVHD, infection or relapse, overall or progression-free survival at 1 year or long-term, or hematopoietic and immune reconstitution. CONCLUSIONS Despite premature study closure, the suggested beneficial effect of MSC co-transplantation for the prevention of acute GVHD in HLA-mismatched HCT warrants further investigation.
Collapse
Affiliation(s)
- Gérôme Lombardo
- Department of Clinical Hematology, CHU of Liège, 1 Avenue de L'hôpital, 4000, Liège, Belgium
| | - Chantal Lechanteur
- Laboratory of Cell and Gene Therapy, CHU and University of Liège, Liège, Belgium
| | - Alexandra Briquet
- Laboratory of Cell and Gene Therapy, CHU and University of Liège, Liège, Belgium
| | - Laurence Seidel
- Center for Biostatistics and Research Methods, CHU and University of Liège, Liège, Belgium
| | - Evelyne Willems
- Department of Clinical Hematology, CHU of Liège, 1 Avenue de L'hôpital, 4000, Liège, Belgium
| | - Sophie Servais
- Department of Clinical Hematology, CHU of Liège, 1 Avenue de L'hôpital, 4000, Liège, Belgium
| | - Etienne Baudoux
- Laboratory of Cell and Gene Therapy, CHU and University of Liège, Liège, Belgium
| | - Tessa Kerre
- Department of Clinical Hematology, Ghent University Hospital, Ghent, Belgium
| | - Pierre Zachee
- Department of Clinical Hematology, ZNA Stuivenberg, Antwerp, Belgium
| | - Julie Herman
- Department of Clinical Hematology, CHU of Liège, 1 Avenue de L'hôpital, 4000, Liège, Belgium
| | - Audrey Janssen
- Department of Clinical Hematology, CHU of Liège, 1 Avenue de L'hôpital, 4000, Liège, Belgium
| | - Joséphine Muller
- Department of Clinical Hematology, CHU of Liège, 1 Avenue de L'hôpital, 4000, Liège, Belgium
| | - Frédéric Baron
- Department of Clinical Hematology, CHU of Liège, 1 Avenue de L'hôpital, 4000, Liège, Belgium
| | - Yves Beguin
- Department of Clinical Hematology, CHU of Liège, 1 Avenue de L'hôpital, 4000, Liège, Belgium.
- Laboratory of Cell and Gene Therapy, CHU and University of Liège, Liège, Belgium.
| |
Collapse
|
4
|
Lahijani S, Rueda-Lara M, McAndrew N, Nelson AM, Guo M, Knight JM, Wiener L, Miran DM, Gray TF, Keane EP, Yek MH, Sannes TS, Applebaum AJ, Fank P, Babu P, Pozo-Kaderman C, Amonoo HL. A Biobehavioral Perspective on Caring for Allogeneic Hematopoietic Stem Cell Transplant Survivors with Graft-Versus-Host Disease. Transplant Cell Ther 2024; 30:S493-S512. [PMID: 39370233 DOI: 10.1016/j.jtct.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/25/2024] [Indexed: 10/08/2024]
Abstract
Among the potential complications of allogeneic hematopoietic stem cell transplantation (HSCT), graft-versus-host disease (GVHD) is common and associated with significant physical and psychosocial symptom burden. Despite substantial advances in GVHD treatment, the global immune suppression that frequently accompanies GVHD treatment also contributes to high rates of physical and emotional suffering and mortality. The complex manifestations of GVHD and its treatment warrant a multidisciplinary team-based approach to managing patients' multi-organ system comorbidities. A biobehavioral framework can enhance our understanding of the complex association between medications, physical symptoms, and psychosocial distress in patients with GVHD. Hence, for this perspective, we highlight the importance of addressing both the physical and psychosocial needs experienced by patients with GVHD and provide guidance on how to approach and manage those symptoms and concerns as part of comprehensive cancer care.
Collapse
Affiliation(s)
- Sheila Lahijani
- Department of Psychiatry, Stanford University School of Medicine and Stanford Cancer Center Psychosocial Oncology Program, Stanford, California
| | - Maria Rueda-Lara
- Department of Psychiatry, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Natalie McAndrew
- School of Nursing, College of Health Professions and Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin; Department of Patient Care Research, Froedtert & The Medical College of Wisconsin, Froedtert Hospital, Milwaukee, Wisconsin
| | - Ashley M Nelson
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Michelle Guo
- Harvard Medical School, Boston, Massachusetts; Department of Psychiatry, Brigham and Women's Hospital, Boston, Massachusetts
| | - Jennifer M Knight
- Departments of Psychiatry, Medicine, and Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Lori Wiener
- Pediatric Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland
| | - Damien M Miran
- Harvard Medical School, Boston, Massachusetts; Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Tamryn F Gray
- Harvard Medical School, Boston, Massachusetts; Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute, Boston, Massachusetts; Phyllis F. Cantor Center for Research in Nursing and Patient Care Services, Dana-Farber Cancer Institute, Boston, Massachusetts; Division of Stem Cell Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Boston, Massachusetts; Division of Palliative Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Emma P Keane
- Department of Psychiatry, Brigham and Women's Hospital, Boston, Massachusetts
| | - Ming Hwei Yek
- Department of Psychiatry, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Timothy S Sannes
- Department of Psychiatry, UMass Chan Medical School, Worcester, Massachusetts; UMass Memorial Cancer Center, Worcester, Massachusetts
| | - Allison J Applebaum
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Patricia Fank
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, Illinois
| | - Pallavi Babu
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, Illinois
| | - Cristina Pozo-Kaderman
- Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Hermioni L Amonoo
- Harvard Medical School, Boston, Massachusetts; Department of Psychiatry, Brigham and Women's Hospital, Boston, Massachusetts; Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute, Boston, Massachusetts.
| |
Collapse
|
5
|
Quarato ER, Salama NA, Calvi LM. Interplay Between Skeletal and Hematopoietic Cells in the Bone Marrow Microenvironment in Homeostasis and Aging. Curr Osteoporos Rep 2024; 22:416-432. [PMID: 38782850 DOI: 10.1007/s11914-024-00874-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/05/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE OF THE REVIEW In this review, we discuss the most recent scientific advances on the reciprocal regulatory interactions between the skeletal and hematopoietic stem cell niche, focusing on immunomodulation and its interplay with the cell's mitochondrial function, and how this impacts osteoimmune health during aging and disease. RECENT FINDINGS Osteoimmunology investigates interactions between cells that make up the skeletal stem cell niche and immune system. Much work has investigated the complexity of the bone marrow microenvironment with respect to the skeletal and hematopoietic stem cells that regulate skeletal formation and immune health respectively. It has now become clear that these cellular components cooperate to maintain homeostasis and that dysfunction in their interaction can lead to aging and disease. Having a deeper, mechanistic appreciation for osteoimmune regulation will lead to better research perspective and therapeutics with the potential to improve the aging process, skeletal and hematologic regeneration, and disease targeting.
Collapse
Affiliation(s)
- Emily R Quarato
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
| | - Noah A Salama
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.
| | - Laura M Calvi
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
6
|
Mintoft A, Vallatos A, Robertson NJ. Mesenchymal Stromal Cell therapy for Hypoxic Ischemic Encephalopathy: Future directions for combination therapy with hypothermia and/or melatonin. Semin Perinatol 2024; 48:151929. [PMID: 38902120 DOI: 10.1016/j.semperi.2024.151929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Hypoxic ischemic encephalopathy (HIE) remains a leading cause of neonatal mortality and lifelong disability across the world. While therapeutic hypothermia (HT) is beneficial, it is only partially protective and adjuvant treatments that further improve outcomes are urgently needed. In high-income countries where HT is standard care, novel treatments are tested in conjunction with HT. Mesenchymal stromal cells (MSC) represent a paradigm shift in brain protection, uniquely adapting to the host cellular microenvironment. MSC have low immunogenicity and potent paracrine effects stimulating the host tissue repair and regeneration and reducing inflammation and apoptosis. Preclinical studies in perinatal brain injury suggest that MSC are beneficial after hypoxia-ischemia (HI) and most preclinical studies of MSC with HT show protection. Preclinical and early phase clinical trials have shown that allogenic administration of MSC to neonates with perinatal stroke and HIE is safe and feasible but further safety and efficacy studies of HT with MSC in these populations are needed. Combination therapies that target all stages of the evolution of injury after HI (eg HT, melatonin and MSC) show promise for improving outcomes in HIE.
Collapse
Affiliation(s)
- Alison Mintoft
- Institute for Women's Health, University College London, London, UK
| | - Antoine Vallatos
- School of Psychology and Neuroscience, University of Glasgow; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Nicola J Robertson
- Institute for Women's Health, University College London, London, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
7
|
Česnik AB, Švajger U. The issue of heterogeneity of MSC-based advanced therapy medicinal products-a review. Front Cell Dev Biol 2024; 12:1400347. [PMID: 39129786 PMCID: PMC11310176 DOI: 10.3389/fcell.2024.1400347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
Mesenchymal stromal stem cells (MSCs) possess a remarkable potential for numerous clinical applications due to their unique properties including self-renewal, immunomodulation, paracrine actions and multilineage differentiation. However, the translation of MSC-based Advanced Therapy Medicinal Products (ATMPs) into the clinic has frequently met with inconsistent outcomes. One of the suspected reasons for this issue is the inherent and extensive variability that exists among such ATMPs, which makes the interpretation of their clinical efficacy difficult to assess, as well as to compare the results of various studies. This variability stems from numerous reasons including differences in tissue sources, donor attributes, variances in manufacturing protocols, as well as modes of administration. MSCs can be isolated from various tissues including bone marrow, umbilical cord, adipose tissue and others, each with its unique phenotypic and functional characteristics. While MSCs from different sources do share common features, they also exhibit distinct gene expression profiles and functional properites. Donor-specific factors such as age, sex, body mass index, and underlying health conditions can influence MSC phenotype, morphology, differentiation potential and function. Moreover, variations in preparation of MSC products introduces additional heterogeneity as a result of cell culture media composition, presence or absence of added growth factors, use of different serum supplements and culturing techniques. Once MSC products are formulated, storage protocols play a pivotal role in its efficacy. Factors that affect cell viability include cell concentration, delivery solution and importantly, post-thawing protocols where applicable. Ensuing, differences in administration protocols can critically affect the distribution and functionallity of administered cells. As MSC-based therapies continue to advance through numerous clinical trials, implication of strategies to reduce product heterogeneity is imperative. Central to addressing these challenges is the need for precise prediction of clinical responses, which require well-defined MSC populations and harmonized assessment of their specific functions. By addressing these issues by meaningful approaches, such as, e.g., MSC pooling, the field can overcome barriers to advance towards more consistent and effective MSC-based therapies.
Collapse
Affiliation(s)
- Ana Bajc Česnik
- Slovenian Institute for Transfusion Medicine, Department for Therapeutic Services, Ljubljana, Slovenia
| | - Urban Švajger
- Slovenian Institute for Transfusion Medicine, Department for Therapeutic Services, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
8
|
Zamanian MH, Norooznezhad AH, Hosseinkhani Z, Hassaninia D, Mansouri F, Vaziri S, Payandeh M, Heydarpour F, Kiani S, Shirvani M, Rajati M, Bakhtiari M, Esmaili F, Yarani R, Mansouri K. Human placental mesenchymal stromal cell-derived small extracellular vesicles as a treatment for severe COVID-19: A double-blind randomized controlled clinical trial. J Extracell Vesicles 2024; 13:e12492. [PMID: 39051747 PMCID: PMC11270582 DOI: 10.1002/jev2.12492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
The current study aimed to investigate the effects of human placental mesenchymal stromal cell-derived small extracellular vesicles (hPMSC-sEVs) as a treatment for COVID-19. This double-blind, randomized, controlled clinical trial was conducted on two groups of patients with COVID-19-associated acute respiratory distress syndrome. After randomization, the control group received standard treatment and placebo, and the intervention arm received standard treatment plus hPMSC-sEVs. The number of hospital deaths was considered the primary outcome. After meeting the exclusion and inclusion criteria, 21 and 24 patients were allocated to intervention and control arms, respectively. Besides admission SpO2 levels, which were significantly lower in the intervention arm (p = 0.008), all the baseline demo-biographic and laboratory variables were similar between the groups. It was shown that hPMSC-sEVs could significantly (p = 0.015) decrease the mortality ratio in the intervention group (4/21 [19.04%]) compared to the controls (13/24 [54.16%]). The mean time to death in the intervention and control groups was 28.06 and 11.10 days, respectively (p < 0.001). This study showed that hPMSC-sEVs are a possible treatment for critically ill patients with COVID-19.
Collapse
Affiliation(s)
| | - Amir Hossein Norooznezhad
- Medical Biology Research Centre, Health Technology InstituteKermanshah University of Medical SciencesKermanshahIran
| | - Zohreh Hosseinkhani
- Medical Biology Research Centre, Health Technology InstituteKermanshah University of Medical SciencesKermanshahIran
| | - Daryoush Hassaninia
- Infectious Diseases Research CenterKermanshah University of Medical SciencesKermanshahIran
| | - Feizollah Mansouri
- Infectious Diseases Research CenterKermanshah University of Medical SciencesKermanshahIran
| | - Siavash Vaziri
- Infectious Diseases Research CenterKermanshah University of Medical SciencesKermanshahIran
| | - Mehrdad Payandeh
- Bone Marrow Transplantation Department, School of Medicine, KermanshahUniversity of Medical SciencesKermanshahIran
| | - Fatemeh Heydarpour
- Medical Biology Research Centre, Health Technology InstituteKermanshah University of Medical SciencesKermanshahIran
| | - Sara Kiani
- Medical Biology Research Centre, Health Technology InstituteKermanshah University of Medical SciencesKermanshahIran
| | - Maria Shirvani
- Department of Infectious Disease, School of MedicineKermanshah University of Medical SciencesKermanshahIran
| | - Mojgan Rajati
- Motazedi Hospital, Kermanshah University of Medical SciencesKermanshahIran
| | - Mitra Bakhtiari
- Motazedi Hospital, Kermanshah University of Medical SciencesKermanshahIran
| | - Farzaneh Esmaili
- Motazedi Hospital, Kermanshah University of Medical SciencesKermanshahIran
| | - Reza Yarani
- Medical Biology Research Centre, Health Technology InstituteKermanshah University of Medical SciencesKermanshahIran
- Translational Type 1 Diabetes, Department of Clinical ResearchSteno Diabetes Center CopenhagenHerlevDenmark
| | - Kamran Mansouri
- Medical Biology Research Centre, Health Technology InstituteKermanshah University of Medical SciencesKermanshahIran
| |
Collapse
|
9
|
Kim N, Min GJ, Im KI, Nam YS, Song Y, Lee JS, Oh EJ, Chung NG, Jeon YW, Lee JW, Cho SG. Repeated Infusions of Bone-Marrow-Derived Mesenchymal Stem Cells over 8 Weeks for Steroid-Refractory Chronic Graft-versus-Host Disease: A Prospective, Phase I/II Clinical Study. Int J Mol Sci 2024; 25:6731. [PMID: 38928436 PMCID: PMC11204151 DOI: 10.3390/ijms25126731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Chronic graft-versus-host disease (cGVHD) is a long-term complication of allogeneic hematopoietic stem cell transplantation associated with poor quality of life and increased morbidity and mortality. Currently, there are several approved treatments for patients who do not respond to steroids, such as ruxolitinib. Nevertheless, a significant proportion of patients fail second-line treatment, indicating the need for novel approaches. Mesenchymal stem cells (MSCs) have been considered a potential treatment approach for steroid-refractory cGVHD. To evaluate the safety and efficacy of repeated infusions of MSCs, we administered intravenous MSCs every two weeks to ten patients with severe steroid-refractory cGVHD in a prospective phase I clinical trial. Each patient received a total of four doses, with each dose containing 1 × 106 cells/kg body weight from the same donor and same passage. Patients were assessed for their response to treatment using the 2014 National Institutes of Health (NIH) response criteria during each visit. Ten patients with diverse organ involvement were enrolled, collectively undergoing 40 infusions as planned. Remarkably, the MSC infusions were well tolerated without severe adverse events. Eight weeks after the initial MSC infusion, all ten patients showed partial responses characterized by the amelioration of clinical symptoms and enhancement of their quality of life. The overall response rate was 60%, with a complete response rate of 20% and a partial response (PR) rate of 40% at the last follow-up. Overall survival was 80%, with a median follow-up of 381 days. Two patients died due to relapse of their primary disease. Immunological analyses revealed a reduction in inflammatory markers, including Suppression of Tumorigenicity 2 (ST2), C-X-C motif chemokine ligand (CXCL)10, and Secreted phosphoprotein 1(SPP1), following the MSC treatment. Repeated MSC infusions proved to be both feasible and safe, and they may be an effective salvage therapy in patients with steroid-refractory cGVHD. Further large-scale clinical studies with long-term follow-up are needed in the future to determine the role of MSCs in cGVHD.
Collapse
Affiliation(s)
- Nayoun Kim
- Institute for Translational Research and Molecular Imaging, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (N.K.); (G.-J.M.); (K.-I.I.); (Y.-S.N.); (Y.S.); (J.-S.L.)
| | - Gi-June Min
- Institute for Translational Research and Molecular Imaging, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (N.K.); (G.-J.M.); (K.-I.I.); (Y.-S.N.); (Y.S.); (J.-S.L.)
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (N.-G.C.); (J.W.L.)
| | - Keon-Il Im
- Institute for Translational Research and Molecular Imaging, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (N.K.); (G.-J.M.); (K.-I.I.); (Y.-S.N.); (Y.S.); (J.-S.L.)
| | - Young-Sun Nam
- Institute for Translational Research and Molecular Imaging, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (N.K.); (G.-J.M.); (K.-I.I.); (Y.-S.N.); (Y.S.); (J.-S.L.)
| | - Yunejin Song
- Institute for Translational Research and Molecular Imaging, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (N.K.); (G.-J.M.); (K.-I.I.); (Y.-S.N.); (Y.S.); (J.-S.L.)
| | - Jun-Seok Lee
- Institute for Translational Research and Molecular Imaging, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (N.K.); (G.-J.M.); (K.-I.I.); (Y.-S.N.); (Y.S.); (J.-S.L.)
| | - Eun-Jee Oh
- Department of Laboratory Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Nack-Gyun Chung
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (N.-G.C.); (J.W.L.)
| | - Young-Woo Jeon
- Department of Hematology, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Jong Wook Lee
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (N.-G.C.); (J.W.L.)
| | - Seok-Goo Cho
- Institute for Translational Research and Molecular Imaging, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (N.K.); (G.-J.M.); (K.-I.I.); (Y.-S.N.); (Y.S.); (J.-S.L.)
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (N.-G.C.); (J.W.L.)
| |
Collapse
|
10
|
Gil S, Im KI, Kim N, Lee J, Na H, Min GJ, Cho SG. Mesenchymal stem cells preconditioned with a TLR5 agonist enhanced immunoregulatory effect through M2 macrophage polarization in a murine graft-versus-host disease model. Int J Med Sci 2024; 21:1649-1660. [PMID: 39006841 PMCID: PMC11241100 DOI: 10.7150/ijms.93121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/01/2024] [Indexed: 07/16/2024] Open
Abstract
Graft-versus-host disease (GVHD) is a common complication following hematopoietic stem cell transplantation and can be life-threatening. Mesenchymal stem cells (MSCs), adult stem cells with immunomodulatory properties, have been used as therapeutic agents in a variety of ways and have demonstrated efficacy against acute GVHD (aGVHD); however, variability in MSC pro- and anti-inflammatory properties and the limitation that they only exhibit immunosuppressive effects at high levels of inflammation have prevented their widespread clinical use. The outcomes of GVHD treated with MSCs in the clinic have been variable, and the underlying mechanisms remain unclear. Therefore, the unique biological effects of Toll-like receptor 5 (TLR5) agonists led us to compare and validate the efficacy of MSCs primed with KMRC011, a TLR5 agonist. KMRC011 is a stimulant that induces the secretion of cytokines, which play an important role in immune regulation. In this study, we found that MSCs pretreated with KMRC011 increased the secretion of immunosuppressive cytokines indoleamine 2,3-dioxygenase (IDO) and cyclooxygenase-2 (COX2) and increased the expression of M2 macrophage polarizing cytokines macrophage colony-stimulating factor (M-CSF) and interleukin 10 (IL-10) in vitro. We investigated the immunosuppressive effects of TLR5 agonist (KMRC011)-primed MSCs on lymphocytes and their preventive and therapeutic effects on an in vivo mouse aGVHD model. In vitro experiments showed that KMRC011-primed MSCs had enhanced immunosuppressive effects on lymphocyte proliferation. In vivo experiments showed that KMRC011-primed MSCs ameliorated GVHD severity in a mouse model of induced GVHD disease. Finally, macrophages harvested from the spleens of mice treated with KMRC011-primed MSCs showed a significant increase in the anti-inflammatory M2 phenotype. Overall, the results suggest that KMRC011-primed MSCs attenuated GVHD severity in mice by polarizing macrophages to the M2 phenotype and increasing the proportion of anti-inflammatory cells, opening new horizons for GVHD treatment.
Collapse
Affiliation(s)
- Sojin Gil
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Keon-Il Im
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, Republic of Korea
| | - Nayoun Kim
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, Republic of Korea
| | - Junseok Lee
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyemin Na
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Gi-June Min
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Hematology, Seoul St. Mary's Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seok-Goo Cho
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Hematology, Seoul St. Mary's Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
11
|
Marquez-Curtis LA, Elliott JAW. Mesenchymal stromal cells derived from various tissues: Biological, clinical and cryopreservation aspects: Update from 2015 review. Cryobiology 2024; 115:104856. [PMID: 38340887 DOI: 10.1016/j.cryobiol.2024.104856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Mesenchymal stromal cells (MSCs) have become one of the most investigated and applied cells for cellular therapy and regenerative medicine. In this update of our review published in 2015, we show that studies continue to abound regarding the characterization of MSCs to distinguish them from other similar cell types, the discovery of new tissue sources of MSCs, and the confirmation of their properties and functions that render them suitable as a therapeutic. Because cryopreservation is widely recognized as the only technology that would enable the on-demand availability of MSCs, here we show that although the traditional method of cryopreserving cells by slow cooling in the presence of 10% dimethyl sulfoxide (Me2SO) continues to be used by many, several novel MSC cryopreservation approaches have emerged. As in our previous review, we conclude from these recent reports that viable and functional MSCs from diverse tissues can be recovered after cryopreservation using a variety of cryoprotectants, freezing protocols, storage temperatures, and periods of storage. We also show that for logistical reasons there are now more studies devoted to the cryopreservation of tissues from which MSCs are derived. A new topic included in this review covers the application in COVID-19 of MSCs arising from their immunomodulatory and antiviral properties. Due to the inherent heterogeneity in MSC populations from different sources there is still no standardized procedure for their isolation, identification, functional characterization, cryopreservation, and route of administration, and not likely to be a "one-size-fits-all" approach in their applications in cell-based therapy and regenerative medicine.
Collapse
Affiliation(s)
- Leah A Marquez-Curtis
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada, T6G 1H9; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada, T6G 1C9
| | - Janet A W Elliott
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada, T6G 1H9; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada, T6G 1C9.
| |
Collapse
|
12
|
Kelly K, Bloor AJC, Griffin JE, Radia R, Yeung DT, Rasko JEJ. Two-year safety outcomes of iPS cell-derived mesenchymal stromal cells in acute steroid-resistant graft-versus-host disease. Nat Med 2024; 30:1556-1558. [PMID: 38778211 PMCID: PMC11186752 DOI: 10.1038/s41591-024-02990-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/10/2024] [Indexed: 05/25/2024]
Abstract
The first completed clinical trial of induced pluripotent stem cell (iPS cell)-derived cells was conducted in 15 participants with steroid-resistant acute graft-versus-host disease. After intravenous infusion of mesenchymal stromal cells (CYP-001 derived from a clone of human iPS cells), we reported the safety, tolerability and efficacy within the primary evaluation period at day 100. We now report results at the 2-year follow-up: 9 of 15 (60%) participants survived, which compares favorably with previously reported outcomes in studies of steroid-resistant acute graft-versus-host disease. Causes of death were complications commonly observed in recipients of allogeneic hematopoietic stem cell transplantation, and not considered by the investigators to be related to CYP-001 treatment. There were no serious adverse events, tumors or other safety concerns related to CYP-001. In conclusion, systemic delivery of iPS cell-derived cells was safe and well tolerated over 2 years of follow-up, with sustained outcomes up to 2 years after the first infusion. ClinicalTrials.gov registration: NCT02923375 .
Collapse
Affiliation(s)
- Kilian Kelly
- Cynata Therapeutics Limited, Cremorne, Victoria, Australia
| | - Adrian J C Bloor
- Haematology & Transplant Unit, The Christie NHS Foundation Trust, Manchester, UK
| | - James E Griffin
- Department of Bone Marrow Transplantation, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Rohini Radia
- Department of Haematology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - David T Yeung
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
- Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - John E J Rasko
- Central Clinical School, Faculty of Medicine & Health, University of Sydney, Sydney, New South Wales, Australia.
- Gene and Stem Cell Therapy Program Centenary Institute, University of Sydney, Sydney, New South Wales, Australia.
- Department of Cell and Molecular Therapies, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.
| |
Collapse
|
13
|
Murray A, Linn SM, Yu B, Novitzky-Basso I, Mattsson J, Kennah M, Elemary M, White J, Lemieux C, Jamani K, Kim DDH. Real-world experience with ruxolitinib therapy for steroid-refractory acute graft versus host disease. Bone Marrow Transplant 2024; 59:759-764. [PMID: 38402344 DOI: 10.1038/s41409-024-02249-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/12/2024] [Accepted: 02/12/2024] [Indexed: 02/26/2024]
Abstract
Acute graft versus host disease (aGVHD) is a complication of allogeneic hematopoietic stem cell transplant (HCT) and is associated with significant morbidity and mortality. Steroid refractory aGVHD (SR-aGVHD) carries a particularly grim prognosis. Ruxolitinib has shown promise for treatment of SR-aGVHD in a phase 3 trial; however, safety and efficacy data outside of the clinical trial setting is lacking. We performed a multicenter retrospective study to examine the response to ruxolitinib and its efficacy in patients with SR-aGVHD. We included 59 patients treated with ruxolitinib for SR-aGVHD between 2015 and 2022. Of these 59 patients, 36 patients (61.0%) achieved a complete (CR) or partial response (PR) at 28 days, while 31 patients (52.5%) obtained a CR/PR at day 56. Patients that achieved a CR or PR at day 28 had a higher rate of overall survival (OS; 69.2%), compared with patients that did not (31.6%; p = 0.037). OS at 12 months was 41.5%, with a median OS duration of 5.3 months. Failure free survival (FFS) at 12 months was 29.1%, with a median FFS of 2.6 months. Overall, this real-world experience data support ruxolitinib as the standard of care for SR-aGVHD in a non-controlled trial population.
Collapse
Affiliation(s)
- Alistair Murray
- Division of Hematology and Hematologic Malignancies, University of Calgary, Calgary, AB, Canada
| | - Swe Mar Linn
- Hans Messner Allogeneic Blood and Marrow Transplant Unit, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Benoit Yu
- Laval University, Quebec City, QC, Canada
| | - Igor Novitzky-Basso
- Hans Messner Allogeneic Blood and Marrow Transplant Unit, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Hematology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jonas Mattsson
- Hans Messner Allogeneic Blood and Marrow Transplant Unit, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Hematology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Michael Kennah
- Department of Hematology, The Ottawa Hospital, Ottawa, ON, Canada
| | - Mohamed Elemary
- University of Saskatchewan, Saskatoon, SK, Canada
- Saskatchewan Cancer Agency, Saskatoon, SK, Canada
| | - Jennifer White
- The Leukemia/Bone Marrow Transplant Program, Vancouver General Hospital, British Columbia Cancer Agency, Vancouver, BC, Canada
- University of British Columbia, Columbia, BC, Canada
| | - Christopher Lemieux
- Laval University, Quebec City, QC, Canada
- Division of Hematology and Medical Oncology, CHU de Québec -Université Laval, Quebec City, QC, Canada
| | - Kareem Jamani
- Division of Hematology and Hematologic Malignancies, University of Calgary, Calgary, AB, Canada
- Alberta Blood & Marrow Transplant Program, Tom-Baker Cancer Centre, Calgary, AB, Canada
| | - Dennis Dong Hwan Kim
- Hans Messner Allogeneic Blood and Marrow Transplant Unit, Princess Margaret Cancer Centre, Toronto, ON, Canada.
- Department of Hematology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
14
|
Mello DB, Mesquita FCP, Silva dos Santos D, Asensi KD, Dias ML, Campos de Carvalho AC, Goldenberg RCDS, Kasai-Brunswick TH. Mesenchymal Stromal Cell-Based Products: Challenges and Clinical Therapeutic Options. Int J Mol Sci 2024; 25:6063. [PMID: 38892249 PMCID: PMC11173248 DOI: 10.3390/ijms25116063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Mesenchymal stromal cell (MSC)-based advanced therapy medicinal products (ATMPs) are being tried in a vast range of clinical applications. These cells can be isolated from different donor tissues by using several methods, or they can even be derived from induced pluripotent stem cells or embryonic stem cells. However, ATMP heterogeneity may impact product identity and potency, and, consequently, clinical trial outcomes. In this review, we discuss these topics and the need to establish minimal criteria regarding the manufacturing of MSCs so that these innovative therapeutics may be better positioned to contribute to the advancement of regenerative medicine.
Collapse
Affiliation(s)
- Debora B. Mello
- National Center of Structural Biology and Bioimaging, CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.B.M.); (A.C.C.d.C.)
| | | | - Danúbia Silva dos Santos
- Center of Cellular Technology, National Institute of Cardiology, INC, Rio de Janeiro 22240-002, Brazil;
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.D.A.); (R.C.d.S.G.)
| | - Karina Dutra Asensi
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.D.A.); (R.C.d.S.G.)
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Marlon Lemos Dias
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Antonio Carlos Campos de Carvalho
- National Center of Structural Biology and Bioimaging, CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.B.M.); (A.C.C.d.C.)
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.D.A.); (R.C.d.S.G.)
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Regina Coeli dos Santos Goldenberg
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.D.A.); (R.C.d.S.G.)
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Tais Hanae Kasai-Brunswick
- National Center of Structural Biology and Bioimaging, CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.B.M.); (A.C.C.d.C.)
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.D.A.); (R.C.d.S.G.)
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
15
|
Wei S, Li M, Wang Q, Zhao Y, Du F, Chen Y, Deng S, Shen J, Wu K, Yang J, Sun Y, Gu L, Li X, Li W, Chen M, Ling X, Yu L, Xiao Z, Dong L, Wu X. Mesenchymal Stromal Cells: New Generation Treatment of Inflammatory Bowel Disease. J Inflamm Res 2024; 17:3307-3334. [PMID: 38800593 PMCID: PMC11128225 DOI: 10.2147/jir.s458103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract, which has a high recurrence rate and is incurable due to a lack of effective treatment. Mesenchymal stromal cells (MSCs) are a class of pluripotent stem cells that have recently received a lot of attention due to their strong self-renewal ability and immunomodulatory effects, and a large number of experimental and clinical models have confirmed the positive therapeutic effect of MSCs on IBD. In preclinical studies, MSC treatment for IBD relies on MSCs paracrine effects, cell-to-cell contact, and its mediated mitochondrial transfer for immune regulation. It also plays a therapeutic role in restoring the intestinal mucosal barrier through the homing effect, regulation of the intestinal microbiome, and repair of intestinal epithelial cells. In the latest clinical trials, the safety and efficacy of MSCs in the treatment of IBD have been confirmed by transfusion of autologous or allogeneic bone marrow, umbilical cord, and adipose MSCs, as well as their derived extracellular vesicles. However, regarding the stable and effective clinical use of MSCs, several concerns emerge, including the cell sources, clinical management (dose, route and frequency of administration, and pretreatment of MSCs) and adverse reactions. This article comprehensively summarizes the effects and mechanisms of MSCs in the treatment of IBD and its advantages over conventional drugs, as well as the latest clinical trial progress of MSCs in the treatment of IBD. The current challenges and future directions are also discussed. This review would add knowledge into the understanding of IBD treatment by applying MSCs.
Collapse
Affiliation(s)
- Shulin Wei
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Mingxing Li
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Qin Wang
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Yueshui Zhao
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Fukuan Du
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Yu Chen
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Shuai Deng
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Jing Shen
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Ke Wu
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Jiayue Yang
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Yuhong Sun
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Li Gu
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Xiaobing Li
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Wanping Li
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Meijuan Chen
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Xiao Ling
- Department of Obstetrics, Luzhou Maternal & Child Health Hospital (Luzhou Second People’s Hospital), Luzhou, Sichuan, 646100, People’s Republic of China
| | - Lei Yu
- Department of Obstetrics, Luzhou Maternal & Child Health Hospital (Luzhou Second People’s Hospital), Luzhou, Sichuan, 646100, People’s Republic of China
| | - Zhangang Xiao
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Lishu Dong
- Department of Obstetrics, Luzhou Maternal & Child Health Hospital (Luzhou Second People’s Hospital), Luzhou, Sichuan, 646100, People’s Republic of China
| | - Xu Wu
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| |
Collapse
|
16
|
Pérez-Torres Lobato M, Benitez-Carabante MI, Alonso L, Torrents S, Castillo Flores N, Uria Oficialdegui ML, Panesso M, Alonso-Martínez C, Oliveras M, Renedo-Miró B, Vives J, Diaz-de-Heredia C. Mesenchymal stromal cells in the treatment of pediatric hematopoietic cell transplantation-related complications (graft vs. host disease, hemorrhagic cystitis, graft failure and poor graft function): a single center experience. Front Pediatr 2024; 12:1375493. [PMID: 38783918 PMCID: PMC11112085 DOI: 10.3389/fped.2024.1375493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/28/2024] [Indexed: 05/25/2024] Open
Abstract
Objectives To describe mesenchymal stromal cells (MSCs) in the treatment of hematopoietic stem cell transplantation (HSCT) complications and to assess its safety and efficacy. Methods Single-center retrospective study (2016-2023). Patients under 20 years who received MSCs for the treatment of HSCT-related complications were included. Results Thirty patients (53.7% boys), median age at transplant 11 years (range 2-19) were included. MSCs indications were: graft-vs.-host disease (GVHD) in 18 patients (60%), of them 13 had acute GVHD (43.3%) and 5 chronic GVHD (16.7%); Grade 3-4 hemorrhagic cystitis (HC) in 4 (13.3%); poor graft function (PGF) in 6 (20%), 5 of them receiving MSCs with a CD34 stem cell-boost coinfusion; graft failure (GF) in 2 (6.7%), to enhance engraftment after a subsequent HSCT. Infusion-related-adverse-events were not reported. Overall response (OR) was 83% (25/30); 44% of responders (11/25) showed complete response (CR). OR for GVHD, HC, PGF and GF was 83.3%, 100%, 66.7% and 100% respectively. Response rate was 40% (95% CI: 20-55) and 79% (95% CI: 57-89) at 15 and 30 days. With a median follow-up of 21 months (IQR11-52.5), overall survival (OS) was 86% (95% CI: 74-100) and 79% (95% CI: 65-95) at 6 and 12 months post-MSCs infusion. Conclusion In our study, the most frequent indication of MSCs was refractory aGVHD (43.3%). Response rates were high (OR 83%) and safety profile was good.
Collapse
Affiliation(s)
- Maria Pérez-Torres Lobato
- Department of Paediatric Oncology and Haematology, Vall D'Hebron University Hospital, Barcelona, Spain
- Vall D'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Maria Isabel Benitez-Carabante
- Department of Paediatric Oncology and Haematology, Vall D'Hebron University Hospital, Barcelona, Spain
- Vall D'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Laura Alonso
- Department of Paediatric Oncology and Haematology, Vall D'Hebron University Hospital, Barcelona, Spain
- Vall D'Hebron Research Institute (VHIR), Barcelona, Spain
| | | | | | - Maria Luz Uria Oficialdegui
- Department of Paediatric Oncology and Haematology, Vall D'Hebron University Hospital, Barcelona, Spain
- Vall D'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Melissa Panesso
- Department of Paediatric Oncology and Haematology, Vall D'Hebron University Hospital, Barcelona, Spain
- Vall D'Hebron Research Institute (VHIR), Barcelona, Spain
| | | | - Maria Oliveras
- Department of Pharmacy, Vall D'Hebron University Hospital, Barcelona, Spain
| | - Berta Renedo-Miró
- Department of Pharmacy, Vall D'Hebron University Hospital, Barcelona, Spain
| | - Joaquim Vives
- Vall D'Hebron Research Institute (VHIR), Barcelona, Spain
- Banc de Sang I Teixits, Barcelona, Spain
- Department of Medicine, Faculty of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Cristina Diaz-de-Heredia
- Department of Paediatric Oncology and Haematology, Vall D'Hebron University Hospital, Barcelona, Spain
- Vall D'Hebron Research Institute (VHIR), Barcelona, Spain
| |
Collapse
|
17
|
Yetkin-Arik B, Jansen SA, Varderidou-Minasian S, Westendorp B, Skarp KP, Altelaar M, Lindemans CA, Lorenowicz MJ. Mesenchymal stromal/stem cells promote intestinal epithelium regeneration after chemotherapy-induced damage. Stem Cell Res Ther 2024; 15:125. [PMID: 38679715 PMCID: PMC11057078 DOI: 10.1186/s13287-024-03738-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/20/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Allogeneic hematopoietic stem cell transplantation (HSCT) is a curative treatment for leukemia and a range of non-malignant disorders. The success of the therapy is hampered by occurrence of acute graft-versus-host disease (aGvHD); an inflammatory response damaging recipient organs, with gut, liver, and skin being the most susceptible. Intestinal GvHD injury is often a life-threatening complication in patients unresponsive to steroid treatment. Allogeneic mesenchymal stromal/stem cell (MSC) infusions are a promising potential treatment for steroid-resistant aGvHD. Data from our institution and others demonstrate rescue of approximately 40-50% of aGvHD patients with MSCs in Phase I, II studies and minor side effects. Although promising, better understanding of MSC mode of action and patient response to MSC-based therapy is essential to improve this lifesaving treatment. METHODS Single cell human small intestine organoids were embedded in Matrigel, grown for 5 days and treated with busulfan for 48 h. Organoids damaged by treatment with busulfan or control organoids were co-cultured with 5000, 10,000, and 50,000 MSCs for 24 h, 48 h or 7 days and the analyses such as surface area determination, proliferation and apoptosis assessment, RNA sequencing and proteomics were performed. RESULTS Here, we developed a 3D co-culture model of human small intestinal organoids and MSCs, which allows to study the regenerative effects of MSCs on intestinal epithelium in a more physiologically relevant setting than existing in vitro systems. Using this model we mimicked chemotherapy-mediated damage of the intestinal epithelium. The treatment with busulfan, the chemotherapeutic commonly used as conditioning regiment before the HSCT, affected pathways regulating epithelial to mesenchymal transition, proliferation, and apoptosis in small intestinal organoids, as shown by transcriptomic and proteomic analysis. The co-culture of busulfan-treated intestinal organoids with MSCs reversed the effects of busulfan on the transcriptome and proteome of intestinal epithelium, which we also confirmed by functional evaluation of proliferation and apoptosis. CONCLUSIONS Collectively, we demonstrate that our in vitro co-culture system is a new valuable tool to facilitate the investigation of the molecular mechanisms behind the therapeutic effects of MSCs on damaged intestinal epithelium. This could benefit further optimization of the use of MSCs in HSCT patients.
Collapse
Affiliation(s)
- B Yetkin-Arik
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
- Regenerative Medicine Center, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Centre for Living Technologies, Alliance TU/E, WUR, UU, UMC Utrecht, Princetonlaan 6, 3584 CB, Utrecht, The Netherlands
| | - S A Jansen
- Regenerative Medicine Center, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Division of Pediatrics, University Medical Center Utrecht, Utrecht, The Netherlands
- Pediatric Stem Cell Transplantation, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - S Varderidou-Minasian
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
- Regenerative Medicine Center, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - B Westendorp
- Regenerative Medicine Center, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Division Cell Biology, Metabolism and Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - K-P Skarp
- Biomedical Primate Research Center, Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands
| | - M Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, and Utrecht Institute For Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - C A Lindemans
- Regenerative Medicine Center, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Division of Pediatrics, University Medical Center Utrecht, Utrecht, The Netherlands
- Pediatric Stem Cell Transplantation, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - M J Lorenowicz
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands.
- Regenerative Medicine Center, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.
- Biomedical Primate Research Center, Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands.
| |
Collapse
|
18
|
Maldonado VV, Pokharel S, Powell JG, Samsonraj RM. Phenotypic and Functional Characterization of Bovine Adipose-Derived Mesenchymal Stromal Cells. Animals (Basel) 2024; 14:1292. [PMID: 38731296 PMCID: PMC11083126 DOI: 10.3390/ani14091292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are increasingly trialed in cellular therapy applications in humans. They can also be applied to treat a range of diseases in animals, particularly in cattle to combat inflammatory conditions and aging-associated degenerative disorders. We sought to demonstrate the feasibility of obtaining MSCs from adipose tissue and characterizing them using established assays. METHODS Bovine adipose MSCs (BvAdMSCs) were isolated using in-house optimized tissue digestion protocols and characterized by performing a colony formation assay, cell growth assessments, cell surface marker analysis by immunocytochemistry and flow cytometry, osteogenic and adipogenic differentiation, and secretion of indoleamine 2,3-dioxygenease (IDO). RESULTS Our results demonstrate the feasibility of successful MSC isolation and culture expansion from bovine adipose tissues with characteristic features of colony formation, in vitro multilineage differentiation into osteogenic and adipogenic lineages, and cell surface marker expression of CD105, CD73, CD90, CD44, and CD166 with negative expression of CD45. BvAdMSCs secreted significant amounts of IDO with or without interferon-gamma stimulation, indicating ability for immunomodulation. CONCLUSIONS We report a viable approach to obtaining autologous adipose-derived MSCs that can be applied as potential adjuvant cell therapy for tissue repair and regeneration in cattle. Our methodology can be utilized by veterinary cell therapy labs for preparing MSCs for disease management in cattle.
Collapse
Affiliation(s)
- Vitali V. Maldonado
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (V.V.M.); (S.P.)
| | - Sriya Pokharel
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (V.V.M.); (S.P.)
| | - Jeremy G. Powell
- Department of Animal Science, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Rebekah M. Samsonraj
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (V.V.M.); (S.P.)
- Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, AR 72701, USA
- Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
19
|
Xiao R, Chen Y, Hu Z, Tang Q, Wang P, Zhou M, Wu L, Liang D. Identification of the Efficient Enhancer Elements in FVIII-Padua for Gene Therapy Study of Hemophilia A. Int J Mol Sci 2024; 25:3635. [PMID: 38612447 PMCID: PMC11011560 DOI: 10.3390/ijms25073635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Hemophilia A (HA) is a common X-linked recessive hereditary bleeding disorder. Coagulation factor VIII (FVIII) is insufficient in patients with HA due to the mutations in the F8 gene. The restoration of plasma levels of FVIII via both recombinant B-domain-deleted FVIII (BDD-FVIII) and B-domain-deleted F8 (BDDF8) transgenes was proven to be helpful. FVIII-Padua is a 23.4 kb tandem repeat mutation in the F8 associated with a high F8 gene expression and thrombogenesis. Here we screened a core enhancer element in FVIII-Padua for improving the F8 expression. In detail, we identified a 400 bp efficient enhancer element, C400, in FVIII-Padua for the first time. The core enhancer C400 extensively improved the transcription of BDDF8 driven by human elongation factor-1 alpha in HepG2, HeLa, HEK-293T and induced pluripotent stem cells (iPSCs) with different genetic backgrounds, as well as iPSCs-derived endothelial progenitor cells (iEPCs) and iPSCs-derived mesenchymal stem cells (iMSCs). The expression of FVIII protein was increased by C400, especially in iEPCs. Our research provides a novel molecular target to enhance expression of FVIII protein, which has scientific value and application prospects in both viral and nonviral HA gene therapy strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Desheng Liang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China; (R.X.); (Y.C.); (Z.H.); (M.Z.)
| |
Collapse
|
20
|
Gholamzad A, Khakpour N, Gholamzad M, Roudaki Sarvandani MR, Khosroshahi EM, Asadi S, Rashidi M, Hashemi M. Stem cell therapy for HTLV-1 induced adult T-cell leukemia/lymphoma (ATLL): A comprehensive review. Pathol Res Pract 2024; 255:155172. [PMID: 38340584 DOI: 10.1016/j.prp.2024.155172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
Adult T-cell leukemia/lymphoma (ATLL) is a rare and aggressive form of cancer associated with human T-cell lymphotropic virus type 1 (HTLV-1) infection. The emerging field of stem cell therapies for ATLL is discussed, highlighting the potential of hematopoietic stem cell transplantation (HSCT) and genetically modified stem cells. HSCT aims to eradicate malignant T-cells and restore a functional immune system through the infusion of healthy donor stem cells. Genetically modified stem cells show promise in enhancing their ability to target and eliminate ATLL cells. The article presents insights from preclinical studies and limited clinical trials, emphasizing the need for further research to establish the safety, efficacy, and long-term outcomes of stem cell therapies for ATLL and challenges associated with these innovative approaches are also explored. Overall, stem cell therapies hold significant potential in revolutionizing ATLL treatment, and ongoing clinical trials aim to determine their benefits in larger patient populations.
Collapse
Affiliation(s)
- Amir Gholamzad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Niloofar Khakpour
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrdad Gholamzad
- Department of Microbiology and Immunology, Faculty of Medicine, Islamic Azad University of Medical Science, Tehran, Iran.
| | | | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohsen Rashidi
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
21
|
Liu Y, Song S, Liu Y, Fu T, Guo Y, Liu R, Chen J, Lin Y, Cheng Y, Li Y, Guan T, Ling S, Zeng H. MSCohi-O lenses for long-term retention of mesenchymal stem cells on ocular surface as a therapeutic approach for chronic ocular graft-versus-host disease. Stem Cell Reports 2023; 18:2356-2369. [PMID: 37949071 PMCID: PMC10724054 DOI: 10.1016/j.stemcr.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023] Open
Abstract
Chronic ocular graft-versus-host disease (oGVHD) is a common complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT) and can lead to vision loss if not diagnosed and treated promptly. Currently, no approved drugs exist for oGVHD treatment. However, umbilical cord-derived mesenchymal stem cells (UCMSCs) have known immunoregulatory properties and have been employed in clinical trials for immune-mediated diseases. To address oGVHD, the application of UCMSCs to the ocular surface is a logical approach. Intravenous administration of UCMSCs poses risks, necessitating topical and local delivery. Retaining UCMSCs on the ocular surface remains a challenge. To overcome this, we invented mesenchymal stem cell-coating high oxygen-permeable hydrogel lenses combining UCMSCs and machinery to enable the long-term retention of UCMSCs on the ocular surface. Animal model experiments demonstrated that these lenses effectively retained UCMSCs, providing therapeutic benefits by decreasing corneal inflammation and damage, and inhibiting immune rejection and response, all crucial aspects in oGVHD treatment.
Collapse
Affiliation(s)
- Yuanyue Liu
- Department of Stem Cell Research and Development, Guangdong Procapzoom Biosciences, Inc, Guangdong, China
| | - Siqi Song
- Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Youyu Liu
- Department of Stem Cell Research and Development, Guangdong Procapzoom Biosciences, Inc, Guangdong, China
| | - Ting Fu
- Department of Stem Cell Research and Development, Guangdong Procapzoom Biosciences, Inc, Guangdong, China
| | - Yanzheng Guo
- Department of Stem Cell Research and Development, Guangdong Procapzoom Biosciences, Inc, Guangdong, China
| | - Ruoqing Liu
- Department of Stem Cell Research and Development, Guangdong Procapzoom Biosciences, Inc, Guangdong, China
| | - Jiexing Chen
- Department of Stem Cell Research and Development, Guangdong Procapzoom Biosciences, Inc, Guangdong, China
| | - Yanchun Lin
- Department of Stem Cell Research and Development, Guangdong Procapzoom Biosciences, Inc, Guangdong, China
| | - Yaqi Cheng
- Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Yun Li
- Department of Stem Cell Research and Development, Guangdong Procapzoom Biosciences, Inc, Guangdong, China
| | - Tian Guan
- Department of Stem Cell Research and Development, Guangdong Procapzoom Biosciences, Inc, Guangdong, China
| | - Shiqi Ling
- Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China.
| | - Haoyu Zeng
- Department of Stem Cell Research and Development, Guangdong Procapzoom Biosciences, Inc, Guangdong, China.
| |
Collapse
|
22
|
Tsai ET, Peng SY, Wu YR, Lin TC, Chen CY, Liu YH, Tseng YH, Hsiao YJ, Tseng HC, Lai WY, Lin YY, Yang YP, Chiou SH, Chen SP, Chien Y. HLA-Homozygous iPSC-Derived Mesenchymal Stem Cells Rescue Rotenone-Induced Experimental Leber's Hereditary Optic Neuropathy-like Models In Vitro and In Vivo. Cells 2023; 12:2617. [PMID: 37998352 PMCID: PMC10670753 DOI: 10.3390/cells12222617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) hold promise for cell-based therapy, yet the sourcing, quality, and invasive methods of MSCs impede their mass production and quality control. Induced pluripotent stem cell (iPSC)-derived MSCs (iMSCs) can be infinitely expanded, providing advantages over conventional MSCs in terms of meeting unmet clinical demands. METHODS The potential of MSC therapy for Leber's hereditary optic neuropathy (LHON) remains uncertain. In this study, we used HLA-homozygous induced pluripotent stem cells to generate iMSCs using a defined protocol, and we examined their therapeutic potential in rotenone-induced LHON-like models in vitro and in vivo. RESULTS The iMSCs did not cause any tumorigenic incidence or inflammation-related lesions after intravitreal transplantation, and they remained viable for at least nine days in the mouse recipient's eyes. In addition, iMSCs exhibited significant efficacy in safeguarding retinal ganglion cells (RGCs) from rotenone-induced cytotoxicity in vitro, and they ameliorated CGL+IPL layer thinning and RGC loss in vivo. Optical coherence tomography (OCT) and an electroretinogram demonstrated that iMSCs not only prevented RGC loss and impairments to the retinal architecture, but they also improved retinal electrophysiology performance. CONCLUSION The generation of iMSCs via the HLA homozygosity of iPSCs offers a compelling avenue for overcoming the current limitations of MSC-based therapies. The results underscore the potential of iMSCs when addressing retinal disorders, and they highlight their clinical significance, offering renewed hope for individuals affected by LHON and other inherited retinal conditions.
Collapse
Affiliation(s)
- En-Tung Tsai
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112201, Taiwan; (E.-T.T.)
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (S.-Y.P.); (Y.-R.W.); (Y.-H.L.); (Y.-J.H.); (Y.-Y.L.); (Y.-P.Y.)
| | - Shih-Yuan Peng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (S.-Y.P.); (Y.-R.W.); (Y.-H.L.); (Y.-J.H.); (Y.-Y.L.); (Y.-P.Y.)
| | - You-Ren Wu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (S.-Y.P.); (Y.-R.W.); (Y.-H.L.); (Y.-J.H.); (Y.-Y.L.); (Y.-P.Y.)
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Tai-Chi Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (S.-Y.P.); (Y.-R.W.); (Y.-H.L.); (Y.-J.H.); (Y.-Y.L.); (Y.-P.Y.)
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Chih-Ying Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (S.-Y.P.); (Y.-R.W.); (Y.-H.L.); (Y.-J.H.); (Y.-Y.L.); (Y.-P.Y.)
| | - Yu-Hao Liu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (S.-Y.P.); (Y.-R.W.); (Y.-H.L.); (Y.-J.H.); (Y.-Y.L.); (Y.-P.Y.)
| | - Yu-Hsin Tseng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (S.-Y.P.); (Y.-R.W.); (Y.-H.L.); (Y.-J.H.); (Y.-Y.L.); (Y.-P.Y.)
| | - Yu-Jer Hsiao
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (S.-Y.P.); (Y.-R.W.); (Y.-H.L.); (Y.-J.H.); (Y.-Y.L.); (Y.-P.Y.)
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Huan-Chin Tseng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (S.-Y.P.); (Y.-R.W.); (Y.-H.L.); (Y.-J.H.); (Y.-Y.L.); (Y.-P.Y.)
| | - Wei-Yi Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (S.-Y.P.); (Y.-R.W.); (Y.-H.L.); (Y.-J.H.); (Y.-Y.L.); (Y.-P.Y.)
| | - Yi-Ying Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (S.-Y.P.); (Y.-R.W.); (Y.-H.L.); (Y.-J.H.); (Y.-Y.L.); (Y.-P.Y.)
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (S.-Y.P.); (Y.-R.W.); (Y.-H.L.); (Y.-J.H.); (Y.-Y.L.); (Y.-P.Y.)
| | - Shih-Hwa Chiou
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112201, Taiwan; (E.-T.T.)
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (S.-Y.P.); (Y.-R.W.); (Y.-H.L.); (Y.-J.H.); (Y.-Y.L.); (Y.-P.Y.)
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Genomic Research Center, Academia Sinica, Taipei 115024, Taiwan
| | - Shih-Pin Chen
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112201, Taiwan; (E.-T.T.)
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (S.-Y.P.); (Y.-R.W.); (Y.-H.L.); (Y.-J.H.); (Y.-Y.L.); (Y.-P.Y.)
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (S.-Y.P.); (Y.-R.W.); (Y.-H.L.); (Y.-J.H.); (Y.-Y.L.); (Y.-P.Y.)
| |
Collapse
|
23
|
Ding Y, Liu C, Cai Y, Hou C, Chen G, Xu Y, Hu S, Wu D. The efficiency of human umbilical cord mesenchymal stem cells as a salvage treatment for steroid-refractory acute graft-versus-host disease. Clin Exp Med 2023; 23:2561-2570. [PMID: 36598673 DOI: 10.1007/s10238-022-00983-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/22/2022] [Indexed: 01/05/2023]
Abstract
Acute graft-versus-host disease (aGVHD) is a life-threatening complication after hematopoietic stem cell transplantation (HSCT) and is primarily treated with steroids. However, there is no standard treatment for steroid-refractory acute graft-versus-host disease (SR-aGVHD). Although mesenchymal stem cells (MSCs) have proven effective for SR-aGVHD, few reports have focused on human umbilical cord blood-derived MSCs (hUCB-MSCs). Here, we report on the efficiency of hUCB-MSCs as the salvage therapy for SR-aGVHD in 54 patients. The overall response rate (ORR) reached 59.3% (32/54) 28 days later. Twenty-four patients achieved complete remission (CR), and 8 achieved partial remission (PR). The median follow-up time after the initiation of hUCB-MSC treatment was 19.3 (0.6-59.0) months. The probability of overall survival (OS) and progression-free survival (PFS) was 60.9% (47.4-74.4%, 95% CI) and 58.8% (45.3-72.3%, 95% CI), respectively, while that of GVHD/relapse-free survival (GRFS) was only 30.8% (17.86-43.74%, 95% CI). Multivariate analysis revealed that response on Day 28 was an independent favorable prognostic factor (OS, P < 0.001; PFS, P < 0.001; GRFS, P = 0.001), but an age of ≥ 18 years suggested an unfavorable long-term prognosis (OS, P < 0.001; PFS, P < 0.001; GRFS, P = 0.003). In addition, liver involvement was adversely associated with PFS (P = 0.021) and GRFS (P = 0.009). An infused MNC ≥ 8.66 × 108/kg was also detrimental to GRFS (P = 0.031). Collectively, our results support hUCB-MSCs as an effective treatment for SR-aGVHD.
Collapse
Affiliation(s)
- Yihan Ding
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Department of Hematology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Chang Liu
- Department of Hematology, Jiangsu Children's Hematology and Oncology Center, Children's Hospital of Soochow University, Suzhou, China
| | - Yiming Cai
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Chang Hou
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Guanghua Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yang Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| | - Shaoyan Hu
- Department of Hematology, Jiangsu Children's Hematology and Oncology Center, Children's Hospital of Soochow University, Suzhou, China.
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| |
Collapse
|
24
|
Guarnier LP, Moro LG, Lívero FADR, de Faria CA, Azevedo MF, Roma BP, Albuquerque ER, Malagutti-Ferreira MJ, Rodrigues AGD, da Silva AA, Sekiya EJ, Ribeiro-Paes JT. Regenerative and translational medicine in COPD: hype and hope. Eur Respir Rev 2023; 32:220223. [PMID: 37495247 PMCID: PMC10369169 DOI: 10.1183/16000617.0223-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 05/23/2023] [Indexed: 07/28/2023] Open
Abstract
COPD is a common, preventable and usually progressive disease associated with an enhanced chronic inflammatory response in the airways and lung, generally caused by exposure to noxious particles and gases. It is a treatable disease characterised by persistent respiratory symptoms and airflow limitation due to abnormalities in the airways and/or alveoli. COPD is currently the third leading cause of death worldwide, representing a serious public health problem and a high social and economic burden. Despite significant advances, effective clinical treatments have not yet been achieved. In this scenario, cell-based therapies have emerged as potentially promising therapeutic approaches. However, there are only a few published studies of cell-based therapies in human patients with COPD and a small number of ongoing clinical trials registered on clinicaltrials.gov Despite the advances and interesting results, numerous doubts and questions remain about efficacy, mechanisms of action, culture conditions, doses, timing, route of administration and conditions related to homing and engraftment of the infused cells. This article presents the state of the art of cell-based therapy in COPD. Clinical trials that have already been completed and with published results are discussed in detail. We also discuss the questions that remain unanswered about cell-based regenerative and translational medicine for COPD.
Collapse
Affiliation(s)
- Lucas Pires Guarnier
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
- Laboratory of Genetics and Cell Therapy - GenTe Cel, Department of Biotechnology, São Paulo State University (UNESP), Assis, Brazil
| | - Lincoln Gozzi Moro
- Laboratory of Genetics and Cell Therapy - GenTe Cel, Department of Biotechnology, São Paulo State University (UNESP), Assis, Brazil
- Biomedical Sciences Institute, Butantan Institute, Technological Research Institute, University of São Paulo (USP), São Paulo, Brazil
| | | | | | - Mauricio Fogaça Azevedo
- Laboratory of Genetics and Cell Therapy - GenTe Cel, Department of Biotechnology, São Paulo State University (UNESP), Assis, Brazil
| | - Beatriz Pizoni Roma
- Laboratory of Genetics and Cell Therapy - GenTe Cel, Department of Biotechnology, São Paulo State University (UNESP), Assis, Brazil
| | | | - Maria José Malagutti-Ferreira
- Laboratory of Genetics and Cell Therapy - GenTe Cel, Department of Biotechnology, São Paulo State University (UNESP), Assis, Brazil
| | | | - Adelson Alves da Silva
- São Lucas Research and Education Institute (IEP - São Lucas), TechLife, São Paulo, Brazil
| | - Eliseo Joji Sekiya
- São Lucas Research and Education Institute (IEP - São Lucas), TechLife, São Paulo, Brazil
| | - João Tadeu Ribeiro-Paes
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
- Laboratory of Genetics and Cell Therapy - GenTe Cel, Department of Biotechnology, São Paulo State University (UNESP), Assis, Brazil
| |
Collapse
|
25
|
Guo BC, Wu KH, Chen CY, Lin WY, Chang YJ, Lee TA, Lin MJ, Wu HP. Mesenchymal Stem Cells in the Treatment of COVID-19. Int J Mol Sci 2023; 24:14800. [PMID: 37834246 PMCID: PMC10573267 DOI: 10.3390/ijms241914800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Since the emergence of the coronavirus disease 2019 (COVID-19) pandemic, many lives have been tragically lost to severe infections. The COVID-19 impact extends beyond the respiratory system, affecting various organs and functions. In severe cases, it can progress to acute respiratory distress syndrome (ARDS) and multi-organ failure, often fueled by an excessive immune response known as a cytokine storm. Mesenchymal stem cells (MSCs) have considerable potential because they can mitigate inflammation, modulate immune responses, and promote tissue regeneration. Accumulating evidence underscores the efficacy and safety of MSCs in treating severe COVID-19 and ARDS. Nonetheless, critical aspects, such as optimal routes of MSC administration, appropriate dosage, treatment intervals, management of extrapulmonary complications, and potential pediatric applications, warrant further exploration. These research avenues hold promise for enriching our understanding and refining the application of MSCs in confronting the multifaceted challenges posed by COVID-19.
Collapse
Affiliation(s)
- Bei-Cyuan Guo
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan;
| | - Kang-Hsi Wu
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 40201, Taiwan;
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Chun-Yu Chen
- Department of Emergency Medicine, Tungs’ Taichung Metro Harbor Hospital, Taichung 43503, Taiwan;
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 35664, Taiwan
| | - Wen-Ya Lin
- Department of Pediatrics, Taichung Veterans General Hospital, Taichung 43503, Taiwan
| | - Yu-Jun Chang
- Laboratory of Epidemiology and Biostastics, Changhua Christian Hospital, Changhua 50006, Taiwan;
| | - Tai-An Lee
- Department of Emergency Medicine, Chang Bing Show Chwan Memorial Hospital, Changhua 50544, Taiwan;
| | - Mao-Jen Lin
- Division of Cardiology, Department of Medicine, Taichung Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, Taichung 42743, Taiwan
- Department of Medicine, College of Medicine, Tzu Chi University, Hualien 97002, Taiwan
| | - Han-Ping Wu
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Pediatrics, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| |
Collapse
|
26
|
Herzig MC, Christy BA, Montgomery RK, Cantu-Garza C, Barrera GD, Lee JH, Mucha N, Talackine JR, Abaasah IA, Bynum JA, Cap AP. Short-term assays for mesenchymal stromal cell immunosuppression of T-lymphocytes. Front Immunol 2023; 14:1225047. [PMID: 37822938 PMCID: PMC10562633 DOI: 10.3389/fimmu.2023.1225047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/31/2023] [Indexed: 10/13/2023] Open
Abstract
Introduction Trauma patients are susceptible to coagulopathy and dysfunctional immune responses. Mesenchymal stromal cells (MSCs) are at the forefront of the cellular therapy revolution with profound immunomodulatory, regenerative, and therapeutic potential. Routine assays to assess immunomodulation activity examine MSC effects on proliferation of peripheral blood mononuclear cells (PBMCs) and take 3-7 days. Assays that could be done in a shorter period of time would be beneficial to allow more rapid comparison of different MSC donors. The studies presented here focused on assays for MSC suppression of mitogen-stimulated PBMC activation in time frames of 24 h or less. Methods Three potential assays were examined-assays of apoptosis focusing on caspase activation, assays of phosphatidyl serine externalization (PS+) on PBMCs, and measurement of tumor necrosis factor alpha (TNFα) levels using rapid ELISA methods. All assays used the same initial experimental conditions: cryopreserved PBMCs from 8 to 10 pooled donors, co-culture with and without MSCs in 96-well plates, and PBMC stimulation with mitogen for 2-72 h. Results Suppression of caspase activity in activated PBMCs by incubation with MSCs was not robust and was only significant at times after 24 h. Monitoring PS+ of live CD3+ or live CD4+/CD3+ mitogen-activated PBMCs was dose dependent, reproducible, robust, and evident at the earliest time point taken, 2 h, although no increase in the percentage of PS+ cells was seen with time. The ability of MSC in co-culture to suppress PBMC PS+ externalization compared favorably to two concomitant assays for MSC co-culture suppression of PBMC proliferation, at 72 h by ATP assay, or at 96 h by fluorescently labeled protein signal dilution. TNFα release by mitogen-activated PBMCs was dose dependent, reproducible, robust, and evident at the earliest time point taken, with accumulating signal over time. However, suppression levels with MSC co-culture was reliably seen only after 24 h. Discussion Takeaways from these studies are as follows: (1) while early measures of PBMC activation is evident at 2-6 h, immunosuppression was only reliably detected at 24 h; (2) PS externalization at 24 h is a surrogate assay for MSC immunomodulation; and (3) rapid ELISA assay detection of TNFα release by PBMCs is a robust and sensitive assay for MSC immunomodulation at 24 h.
Collapse
Affiliation(s)
- Maryanne C. Herzig
- Blood and Shock Research, US Army Institute of Surgical Research, Fort Sam Houston, TX, United States
| | - Barbara A. Christy
- Blood and Shock Research, US Army Institute of Surgical Research, Fort Sam Houston, TX, United States
| | - Robbie K. Montgomery
- Blood and Shock Research, US Army Institute of Surgical Research, Fort Sam Houston, TX, United States
| | - Carolina Cantu-Garza
- Blood and Shock Research, US Army Institute of Surgical Research, Fort Sam Houston, TX, United States
| | - Gema D. Barrera
- Blood and Shock Research, US Army Institute of Surgical Research, Fort Sam Houston, TX, United States
| | - Ji H. Lee
- Blood and Shock Research, US Army Institute of Surgical Research, Fort Sam Houston, TX, United States
| | - Nicholas Mucha
- Blood and Shock Research, US Army Institute of Surgical Research, Fort Sam Houston, TX, United States
| | - Jennifer R. Talackine
- Blood and Shock Research, US Army Institute of Surgical Research, Fort Sam Houston, TX, United States
| | - Isaac A. Abaasah
- Blood and Shock Research, US Army Institute of Surgical Research, Fort Sam Houston, TX, United States
| | - James A. Bynum
- Blood and Shock Research, US Army Institute of Surgical Research, Fort Sam Houston, TX, United States
- Department of Surgery, University of Texas, Health Science Center, San Antonio, TX, United States
| | - Andrew P. Cap
- Blood and Shock Research, US Army Institute of Surgical Research, Fort Sam Houston, TX, United States
| |
Collapse
|
27
|
Fernández-Garza LE, Barrera-Barrera SA, Barrera-Saldaña HA. Mesenchymal Stem Cell Therapies Approved by Regulatory Agencies around the World. Pharmaceuticals (Basel) 2023; 16:1334. [PMID: 37765141 PMCID: PMC10536665 DOI: 10.3390/ph16091334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 09/29/2023] Open
Abstract
Cellular therapy has used mesenchymal stem cells (MSCs), which in cell culture are multipotent progenitors capable of producing a variety of cells limited to the mesoderm layer. There are two types of MSC sources: (1) adult MSCs, which are obtained from bone marrow, adipose tissue, peripheral blood, and dental pulp; and (2) neonatal-tissue-derived MSCs, obtained from extra-embryonic tissues such as the placenta, amnion, and umbilical cord. Until April 2023, 1120 registered clinical trials had been using MSC therapies worldwide, but there are only 12 MSC therapies that have been approved by regulatory agencies for commercialization. Nine of the twelve MSC-approved products are from Asia, with Republic of Korea being the country with the most approved therapies. In the future, MSCs will play an important role in the treatment of many diseases. However, there are many issues to deal with before their application and usage in the medical field. Some strategies have been proposed to face these problems with the hope of reaching the objective of applying these MSC therapies at optimal therapeutic levels.
Collapse
Affiliation(s)
- Luis E. Fernández-Garza
- Laboratorio Nacional de Servicios Especializados de Investigación, Desarrollo e Innovación de Farmoquímicos y Biotecnológicos (LANSEIDI) del CONACyT, Sede Innbiogem SC, Monterrey 64630, Mexico; (L.E.F.-G.); (S.A.B.-B.)
- Departamento de Medicina Interna, Hospital General de Zona con Medicina Familiar No. 2 del Instituto Nacional del Seguro Social, Monterrey 64010, Mexico
| | - Silvia A. Barrera-Barrera
- Laboratorio Nacional de Servicios Especializados de Investigación, Desarrollo e Innovación de Farmoquímicos y Biotecnológicos (LANSEIDI) del CONACyT, Sede Innbiogem SC, Monterrey 64630, Mexico; (L.E.F.-G.); (S.A.B.-B.)
| | - Hugo A. Barrera-Saldaña
- Laboratorio Nacional de Servicios Especializados de Investigación, Desarrollo e Innovación de Farmoquímicos y Biotecnológicos (LANSEIDI) del CONACyT, Sede Innbiogem SC, Monterrey 64630, Mexico; (L.E.F.-G.); (S.A.B.-B.)
- Facultades de Medicina y Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico
- Columbia Investigación Científica, Panzacola 62, Colonia Villa Coyoacán, Alcaldía Coyoacán, Ciudad de Mexico 04010, Mexico
| |
Collapse
|
28
|
Wang YH, Chen EQ. Mesenchymal Stem Cell Therapy in Acute Liver Failure. Gut Liver 2023; 17:674-683. [PMID: 36843422 PMCID: PMC10502502 DOI: 10.5009/gnl220417] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 02/28/2023] Open
Abstract
Acute liver failure (ALF) is a severe liver disease syndrome with rapid deterioration and high mortality. Liver transplantation is the most effective treatment, but the lack of donor livers and the high cost of transplantation limit its broad application. In recent years, there has been no breakthrough in the treatment of ALF, and the application of stem cells in the treatment of ALF is a crucial research field. Mesenchymal stem cells (MSCs) are widely used in disease treatment research due to their abundant sources, low immunogenicity, and no ethical restrictions. Although MSCs are effective for treating ALF, the application of MSCs to ALF needs to be further studied and optimized. In this review, we discuss the potential mechanisms of MSCs therapy for ALF, summarize some methods to enhance the efficacy of MSCs, and explore optimal approaches for MSC transplantation.
Collapse
Affiliation(s)
- Yong-Hong Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - En-Qiang Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
29
|
He C, Yang C, Zeng Q, Liu Z, Wang F, Chen Q, Liu T. Umbilical cord-derived mesenchymal stem cells cultured in the MCL medium for aplastic anemia therapy. Stem Cell Res Ther 2023; 14:224. [PMID: 37649079 PMCID: PMC10470151 DOI: 10.1186/s13287-023-03417-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 07/18/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are a class of adult stem cells with self-renewal and multidirectional differentiation potential that may be a treatment for aplastic anemia (AA). METHOD Umbilical cord-derived MSCs were cultured in three media (Mesencult-XF, MCL, and StemPro MSC SFM CTS). HGF, PGE2, ANG-1, TGF-β1, IFN-γ, and TNF-α were detected using ELISA. The AA mouse model was built via post-irradiation lymphocyte infusion. After different treatments, routine blood, VEGF, and Tregs were detected every week. On day 28, all mice were killed, and their femurs were stained with HE. RESULTS Umbilical cord-derived MSCs cultured in the three media all conformed to the general characteristics of MSCs. HGF secreted by MSCs in the Mesencult-XF, and MCL was greater than that in the StemPro MSC SFM CTS; ANG-1 and TGF-β1 in the MCL were more than that in Mesencult-XF and StemPro MSC SFM CTS; PGE2 in the MCL and StemPro MSC SFM CTS was more than that in the Mesencult-XF. MSCs in the MCL and StemPro MSC SFM CTS inhibited IFN-γ and TNF-α more than those in the Mesencult-XF. The peripheral blood cell in the AA groups was at a low level while that in the MSC group recovered rapidly. The Treg ratio and VEGF level in the MSC group were higher than those in the AA group. The bone marrow (BM) recovered significantly after MSC infusion. CONCLUSION MSCs in the MCL were advantageous in supporting hematopoiesis and modulating immunity and had the potential for effective treatment of AA.
Collapse
Affiliation(s)
- Chuan He
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chao Yang
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-Life Stem Cell Biotech Inc., 15 Jinquan Road, Chengdu, 610036, China
| | - Qiang Zeng
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhigang Liu
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fangfang Wang
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiang Chen
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-Life Stem Cell Biotech Inc., 15 Jinquan Road, Chengdu, 610036, China.
| | - Ting Liu
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
30
|
Mendiratta M, Mendiratta M, Mohanty S, Sahoo RK, Prakash H. Breaking the graft-versus-host-disease barrier: Mesenchymal stromal/stem cells as precision healers. Int Rev Immunol 2023; 43:95-112. [PMID: 37639700 DOI: 10.1080/08830185.2023.2252007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Mesenchymal Stromal/Stem Cells (MSCs) are multipotent, non-hematopoietic progenitor cells with a wide range of immune modulation and regenerative potential which qualify them as a potential component of cell-based therapy for various autoimmune/chronic inflammatory ailments. Their immunomodulatory properties include the secretion of immunosuppressive cytokines, the ability to suppress T-cell activation and differentiation, and the induction of regulatory T-cells. Considering this and our interest, we here discuss the significance of MSC for the management of Graft-versus-Host-Disease (GvHD), one of the autoimmune manifestations in human. In pre-clinical models, MSCs have been shown to reduce the severity of GvHD symptoms, including skin and gut damage, which are the most common and debilitating manifestations of this disease. While initial clinical studies of MSCs in GvHD cases were promising, the results were variable in randomized studies. So, further studies are warranted to fully understand their potential benefits, safety profile, and optimal dosing regimens. Owing to these inevitable issues, here we discuss various mechanisms, and how MSCs can be employed in managing GvHD, as a cellular therapeutic approach for this disease.
Collapse
Affiliation(s)
- Mohini Mendiratta
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | | | - Sujata Mohanty
- Stem Cell Facility, All India Institute of Medical Sciences, New Delhi, India
| | - Ranjit Kumar Sahoo
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Hridayesh Prakash
- Amity Centre for Translational Research, Amity University, Noida, India
| |
Collapse
|
31
|
Rehman A, Nigam A, Laino L, Russo D, Todisco C, Esposito G, Svolacchia F, Giuzio F, Desiderio V, Ferraro G. Mesenchymal Stem Cells in Soft Tissue Regenerative Medicine: A Comprehensive Review. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1449. [PMID: 37629738 PMCID: PMC10456353 DOI: 10.3390/medicina59081449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023]
Abstract
Soft tissue regeneration holds significant promise for addressing various clinical challenges, ranging from craniofacial and oral tissue defects to blood vessels, muscle, and fibrous tissue regeneration. Mesenchymal stem cells (MSCs) have emerged as a promising tool in regenerative medicine due to their unique characteristics and potential to differentiate into multiple cell lineages. This comprehensive review explores the role of MSCs in different aspects of soft tissue regeneration, including their application in craniofacial and oral soft tissue regeneration, nerve regeneration, blood vessel regeneration, muscle regeneration, and fibrous tissue regeneration. By examining the latest research findings and clinical advancements, this article aims to provide insights into the current state of MSC-based therapies in soft tissue regenerative medicine.
Collapse
Affiliation(s)
- Ayesha Rehman
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via L. Armanni 5, 80138 Naples, Italy; (A.R.); (A.N.)
| | - Aditya Nigam
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via L. Armanni 5, 80138 Naples, Italy; (A.R.); (A.N.)
| | - Luigi Laino
- Multidisciplinary Department of Medicine for Surgery and Orthodontics, University of Campania “Luigi Vanvitelli”, Via L. Armanni 5, 80138 Naples, Italy; (L.L.); (D.R.); (G.F.)
| | - Diana Russo
- Multidisciplinary Department of Medicine for Surgery and Orthodontics, University of Campania “Luigi Vanvitelli”, Via L. Armanni 5, 80138 Naples, Italy; (L.L.); (D.R.); (G.F.)
| | | | | | - Fabiano Svolacchia
- Departments of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00118 Rome, Italy;
| | - Federica Giuzio
- Department of Sciences, University of Basilicata, Via Nazario Sauro 85, 85100 Potenza, Italy;
- U.O.S.D. of Plastic Surgery A.O.R “San Carlo”, 85100 Potenza, Italy
| | - Vincenzo Desiderio
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via L. Armanni 5, 80138 Naples, Italy; (A.R.); (A.N.)
| | - Giuseppe Ferraro
- Multidisciplinary Department of Medicine for Surgery and Orthodontics, University of Campania “Luigi Vanvitelli”, Via L. Armanni 5, 80138 Naples, Italy; (L.L.); (D.R.); (G.F.)
| |
Collapse
|
32
|
Caplan AI. The U.S. Food and Drug Administration, the mechanism of action, and other considerations for cell-based therapy candidates. Exp Biol Med (Maywood) 2023; 248:1173-1180. [PMID: 37632439 PMCID: PMC10583754 DOI: 10.1177/15353702231194250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2023] Open
Abstract
The focus of this Commentary is to introduce cell-based therapy in the context of how I believe the U.S. Food and Drug Administration (FDA) might establish criteria for the approval of clinical trials that could eventually lead to the final marketplace approval of these medically relevant, cell-based therapeutic products. It is important to emphasize that regulatory agencies have set up practices and procedures that are based on many years of evaluating pharmaceutically provided drugs. To consider cell-based therapies as single action drugs is inappropriate given the complexity of this technology. The regulatory agencies have been slowly reevaluating the criteria by which they allow clinical trials using cell-based therapies to proceed. This commentary focuses on a few key aspects of such considerations and provides suggestions for modifying the standard criteria.
Collapse
Affiliation(s)
- Arnold I Caplan
- Skeletal Research Center, Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
33
|
El Sayed R, Shankar KM, Mankame AR, Cox CS. Innovations in cell therapy in pediatric diseases: a narrative review. Transl Pediatr 2023; 12:1239-1257. [PMID: 37427072 PMCID: PMC10326759 DOI: 10.21037/tp-23-92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/25/2023] [Indexed: 07/11/2023] Open
Abstract
Background and Objective Stem cell therapy is a regenerative medicine modality that has the potential to decrease morbidity and mortality by promoting tissue regeneration or modulating the inflammatory response. An increase in the number of clinical trials investigating the efficacy and safety of stem cell therapy in pediatric diseases has led to advancements in this field. Currently, multiple sources and types of stem cells have been utilized in the treatment of pediatric diseases. This review aims to inform researchers and clinicians about preclinical and clinical stem cell therapy trials in pediatric patients. We discuss the different types of stem cells and the wide spectrum of stem cell therapy trials for pediatric diseases, with an emphasis on the outcomes and advancements in the field. Methods PubMed and clinicaltrials.gov databases were searched on October 28, 2022 using the following Medical Subject Headings (MeSH) terms "stem cell" or "stem cell therapy" with an age filter <18 years. Our search was limited to publications published between 2000 and 2022. Key Content and Findings Diverse sources of stem cells have different properties and mechanisms of action, which allow tailored application of stem cells according to the pathophysiology of the disease. Advancements in stem cell therapies for pediatric diseases have led to improvements in clinical outcomes in some pediatric diseases or in quality of life, such therapies represent a potential alternative to the current treatment modalities. Conclusions Stem cell therapy in pediatric diseases has shown promising results and outcomes. However, further studies focusing on the implementation and optimal treatment timeframe are needed. An increase in preclinical and clinical trials of stem cell therapy targeting pediatric patients is required to advance our therapeutic applications.
Collapse
Affiliation(s)
- Razan El Sayed
- Department of Pediatric Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Center for Translational Injury Research, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Department of Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Karan Michael Shankar
- Department of Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Atharwa Rajan Mankame
- Department of Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Charles S. Cox
- Department of Pediatric Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Center for Translational Injury Research, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Department of Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| |
Collapse
|
34
|
Gail LM, Schell KJ, Łacina P, Strobl J, Bolton SJ, Steinbakk Ulriksen E, Bogunia-Kubik K, Greinix H, Crossland RE, Inngjerdingen M, Stary G. Complex interactions of cellular players in chronic Graft-versus-Host Disease. Front Immunol 2023; 14:1199422. [PMID: 37435079 PMCID: PMC10332803 DOI: 10.3389/fimmu.2023.1199422] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/07/2023] [Indexed: 07/13/2023] Open
Abstract
Chronic Graft-versus-Host Disease is a life-threatening inflammatory condition that affects many patients after allogeneic hematopoietic stem cell transplantation. Although we have made substantial progress in understanding disease pathogenesis and the role of specific immune cell subsets, treatment options are still limited. To date, we lack a global understanding of the interplay between the different cellular players involved, in the affected tissues and at different stages of disease development and progression. In this review we summarize our current knowledge on pathogenic and protective mechanisms elicited by the major involved immune subsets, being T cells, B cells, NK cells and antigen presenting cells, as well as the microbiome, with a special focus on intercellular communication of these cell types via extracellular vesicles as up-and-coming fields in chronic Graft-versus-Host Disease research. Lastly, we discuss the importance of understanding systemic and local aberrant cell communication during disease for defining better biomarkers and therapeutic targets, eventually enabling the design of personalized treatment schemes.
Collapse
Affiliation(s)
- Laura Marie Gail
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Kimberly Julia Schell
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Piotr Łacina
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Johanna Strobl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Steven J. Bolton
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Hildegard Greinix
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria
| | - Rachel Emily Crossland
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
35
|
Lee SS, Vũ TT, Weiss AS, Yeo GC. Stress-induced senescence in mesenchymal stem cells: Triggers, hallmarks, and current rejuvenation approaches. Eur J Cell Biol 2023; 102:151331. [PMID: 37311287 DOI: 10.1016/j.ejcb.2023.151331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have emerged as promising cell-based therapies in the treatment of degenerative and inflammatory conditions. However, despite accumulating evidence of the breadth of MSC functional potency, their broad clinical translation is hampered by inconsistencies in therapeutic efficacy, which is at least partly due to the phenotypic and functional heterogeneity of MSC populations as they progress towards senescence in vitro. MSC senescence, a natural response to aging and stress, gives rise to altered cellular responses and functional decline. This review describes the key regenerative properties of MSCs; summarises the main triggers, mechanisms, and consequences of MSC senescence; and discusses current cellular and extracellular strategies to delay the onset or progression of senescence, or to rejuvenate biological functions lost to senescence.
Collapse
Affiliation(s)
- Sunny Shinchen Lee
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Thu Thuy Vũ
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Viet Nam
| | - Anthony S Weiss
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia; Sydney Nano Institute, The University of Sydney, NSW 2006, Australia
| | - Giselle C Yeo
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
36
|
Yang D, Hou X, Qian K, Li Y, Hu L, Li L, Han M, Yao C, Liu D. Efficacy and safety of human umbilical cord-derived mesenchymal stem cells (hUC-MSC PLEB001) for the treatment of grade II-IV steroid-refractory acute graft-versus-host disease: a study protocol for a multicenter, randomized, double-blind, placebo-controlled, phase II trial. Trials 2023; 24:306. [PMID: 37138332 PMCID: PMC10155385 DOI: 10.1186/s13063-023-07305-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 04/10/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Systemic corticosteroid therapy failure is quite common in patients with newly diagnosed acute graft-versus-host disease (aGVHD). Growing evidence has suggested that mesenchymal stem cell (MSC) therapy could be a promising treatment option for aGVHD due to its distinctive immunomodulating functions. However, there is a lack of randomized well-controlled clinical trials. METHODS This is a clinical trial protocol for a multicenter, randomized, double-blind, placebo-controlled phase II study. The aim of the trial is to evaluate the efficacy and safety of the administration of the human umbilical cord-derived MSC product hUC-MSC PLEB001 in patients with grade II-IV, steroid-refractory aGVHD. A total of 96 patients will be randomized 1:1 to receive MSC or placebo treatment twice per week for 4 weeks, in addition to second-line therapy according to institutional standards. Patients who achieve partial response (PR) at day 28 will be eligible to receive further infusions twice per week for an additional 4 weeks. DISCUSSION This study will evaluate the efficacy and safety of MSC therapy in patients who have failed first-line steroid treatment for grade II-IV aGVHD. TRIAL REGISTRATION Chinese Clinical Trial Registry (ChiCTR), ChiCTR2000035740. Registered on 16 August 2020.
Collapse
Affiliation(s)
- Donglin Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaoqiang Hou
- Platinumlife Biotechnology (Beijing) Co., Ltd., Beijing, China
| | - Kun Qian
- School of Medicine, Nankai University, Tianjin, China
| | - Yuhang Li
- Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Liangding Hu
- Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Liang Li
- Platinumlife Biotechnology (Beijing) Co., Ltd., Beijing, China
| | - Mingzhe Han
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Chen Yao
- Peking University Clinical Research Institute, Peking University First Hospital, Beijing, China.
| | - Daihong Liu
- School of Medicine, Nankai University, Tianjin, China.
- Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
37
|
Cimino M, Parreira P, Leiro V, Sousa A, Gonçalves RM, Barrias CC, Martins MCL. Enhancement of hMSC In Vitro Proliferation by Surface Immobilization of a Heparin-Binding Peptide. Molecules 2023; 28:molecules28083422. [PMID: 37110656 PMCID: PMC10146743 DOI: 10.3390/molecules28083422] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
The use of human Mesenchymal Stem Cells (hMSC) as therapeutic agents for advanced clinical therapies relies on their in vitro expansion. Over the last years, several efforts have been made to optimize hMSC culture protocols, namely by mimicking the cell physiological microenvironment, which strongly relies on signals provided by the extracellular matrix (ECM). ECM glycosaminoglycans, such as heparan-sulfate, sequester adhesive proteins and soluble growth factors at the cell membrane, orchestrating signaling pathways that control cell proliferation. Surfaces exposing the synthetic polypeptide poly(L-lysine, L-leucine) (pKL) have previously been shown to bind heparin from human plasma in a selective and concentration-dependent manner. To evaluate its effect on hMSC expansion, pKL was immobilized onto self-assembled monolayers (SAMs). The pKL-SAMs were able to bind heparin, fibronectin and other serum proteins, as demonstrated by quartz crystal microbalance with dissipation (QCM-D) studies. hMSC adhesion and proliferation were significantly increased in pKL-SAMs compared to controls, most probably related to increased heparin and fibronectin binding to pKL surfaces. This proof-of-concept study highlights the potential of pKL surfaces to improve hMSC in vitro expansion possible through selective heparin/serum protein binding at the cell-material interface.
Collapse
Affiliation(s)
- Maura Cimino
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e de Materiais, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Paula Parreira
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Victoria Leiro
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Aureliana Sousa
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Raquel M Gonçalves
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Cristina C Barrias
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - M Cristina L Martins
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
38
|
Donadel CD, Pires BG, André NC, Costa TCM, Orellana MD, Caruso SR, Seber A, Ginani VC, Gomes AA, Novis Y, Barros GMN, Vilella NC, Martinho GH, Vieira AK, Kondo AT, Hamerschlak N, Filho JS, Xavier EM, Fernandes JF, Rocha V, Covas DT, Calado RT, Guerino-Cunha RL, De Santis GC. Umbilical Cord Mesenchymal Stromal Cells for Steroid-Refractory Acute Graft-versus-Host Disease. Pharmaceuticals (Basel) 2023; 16:ph16040512. [PMID: 37111270 PMCID: PMC10144752 DOI: 10.3390/ph16040512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Background: Steroid-refractory acute graft-vs.-host disease (SR-aGVHD) is a complication of allogeneic hematopoietic stem cell transplantation with a dismal prognosis and for which there is no consensus-based second-line therapy. Ruxolitinib is not easily accessible in many countries. A possible therapy is the administration of mesenchymal stromal cells (MSCs). Methods: In this retrospective study, 52 patients with severe SR-aGVHD were treated with MSCs from umbilical cord (UC-MSCs) in nine institutions. Results: The median (range) age was 12.5 (0.3–65) years and the mean ± SD dose (×106/kg) was 4.73 ± 1.3 per infusion (median of four infusions). Overall (OR) and complete response (CR) rates on day 28 were 63.5% and 36.6%, respectively. Children (n = 35) had better OR (71.5% vs. 47.1%, p = 0.12), CR (48.6% vs. 11.8%, p = 0.03), overall survival (p = 0.0006), and relapse-free survival (p = 0.0014) than adults (n = 17). Acute adverse events (all of them mild or moderate) were detected in 32.7% of patients, with no significant difference in children and adult groups (p = 1.0). Conclusions: UC-MSCs are a feasible alternative therapy for SR-aGVHD, especially in children. The safety profile is favorable.
Collapse
Affiliation(s)
- Camila Derminio Donadel
- Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 05508-220, Brazil
| | - Bruno Garcia Pires
- Department of Medical Imaging, Hematology and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 05508-220, Brazil
| | - Nathália Cristine André
- Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 05508-220, Brazil
| | - Thalita Cristina Mello Costa
- Department of Medical Imaging, Hematology and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 05508-220, Brazil
| | - Maristela Delgado Orellana
- Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 05508-220, Brazil
| | - Sâmia Rigotto Caruso
- Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 05508-220, Brazil
| | - Adriana Seber
- Grupo de Apoio ao Adolescente e à Criança com Câncer (GRAACC), Universidade Federal de São Paulo (UNIFESP), São Paulo 04021-001, Brazil
- Hospital Samaritano, São Paulo 01232-010, Brazil
| | - Valéria Cortez Ginani
- Grupo de Apoio ao Adolescente e à Criança com Câncer (GRAACC), Universidade Federal de São Paulo (UNIFESP), São Paulo 04021-001, Brazil
- Hospital Samaritano, São Paulo 01232-010, Brazil
| | | | - Yana Novis
- Hospital Sírio Libanês, São Paulo 01308-050, Brazil
| | | | | | - Gláucia Helena Martinho
- Hospital das Clínicas da Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Brazil
| | - Ana Karine Vieira
- Hospital das Clínicas da Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Brazil
| | | | | | | | - Erick Menezes Xavier
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo 05403-010, Brazil
| | - Juliana Folloni Fernandes
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil
- Instituto da Criança do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Vanderson Rocha
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo 05403-010, Brazil
| | - Dimas Tadeu Covas
- Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 05508-220, Brazil
- Department of Medical Imaging, Hematology and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 05508-220, Brazil
| | - Rodrigo Tocantins Calado
- Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 05508-220, Brazil
- Department of Medical Imaging, Hematology and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 05508-220, Brazil
| | - Renato Luiz Guerino-Cunha
- Department of Medical Imaging, Hematology and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 05508-220, Brazil
| | - Gil Cunha De Santis
- Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 05508-220, Brazil
- Department of Medical Imaging, Hematology and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 05508-220, Brazil
| |
Collapse
|
39
|
Hess NJ, Kink JA, Hematti P. Exosomes, MDSCs and Tregs: A new frontier for GVHD prevention and treatment. Front Immunol 2023; 14:1143381. [PMID: 37063900 PMCID: PMC10090348 DOI: 10.3389/fimmu.2023.1143381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The development of graft versus host disease (GVHD) represents a long-standing complication of allogeneic hematopoietic cell transplantation (allo-HCT). Different approaches have been used to control the development of GVHD with most relying on variations of chemotherapy drugs to eliminate allo-reactive T cells. While these approaches have proven effective, it is generally accepted that safer, and less toxic GVHD prophylaxis drugs are required to reduce the health burden placed on allo-HCT recipients. In this review, we will summarize the emerging concepts revolving around three biologic-based therapies for GVHD using T regulatory cells (Tregs), myeloid-derived-suppressor-cells (MDSCs) and mesenchymal stromal cell (MSC) exosomes. This review will highlight how each specific modality is unique in its mechanism of action, but also share a common theme in their ability to preferentially activate and expand Treg populations in vivo. As these three GVHD prevention/treatment modalities continue their path toward clinical application, it is imperative the field understand both the biological advantages and disadvantages of each approach.
Collapse
Affiliation(s)
- Nicholas J. Hess
- Division of Hematology, Oncology and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States
| | - John A. Kink
- Division of Hematology, Oncology and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States
| | - Peiman Hematti
- Division of Hematology, Oncology and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States
| |
Collapse
|
40
|
Bu X, Wang J, Yin Z, Pan W, Liu L, Jin H, Liu Q, Zheng L, Sun H, Gao Y, Ping B. Human Amniotic Mesenchymal Stem Cells Alleviate aGVHD after allo-HSCT by Regulating Interactions between Gut Microbiota and Intestinal Immunity. Stem Cell Rev Rep 2023:10.1007/s12015-023-10522-4. [PMID: 36870009 PMCID: PMC10366239 DOI: 10.1007/s12015-023-10522-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 03/05/2023]
Abstract
Acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation poses one of the most vexing challenges. Gut microbiota dysbiosis can proceed aGVHD and mesenchymal stem cells (MSCs) have promising therapeutic potential for aGVHD. However, whether hAMSCs affect the gut microbiota during aGVHD mitigation remains unknown. Accordingly, we sought to define the effects and underlying mechanisms of human amniotic membrane-derived MSCs (hAMSCs) regulating the gut microbiota and intestinal immunity in aGVHD. By establishing humanized aGVHD mouse models and hAMSCs treatment, we found that hAMSCs significantly ameliorated aGVHD symptoms, reversed the immune imbalance of T cell subsets and cytokines, and restored intestinal barrier. Moreover, the diversity and composition of gut microbiota were improved upon treatment with hAMSCs. Spearman's correlation analysis showed that there was a correlation between the gut microbiota and tight junction proteins, immune cells as well as cytokines. Our research suggested that hAMSCs alleviated aGVHD by promoting gut microbiota normalization and regulating the interactions between the gut microbiota and intestinal barrier, immunity.
Collapse
Affiliation(s)
- Xiaoyin Bu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Hematology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Junhui Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhao Yin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Weifeng Pan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Liping Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hua Jin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Haitao Sun
- Department of Laboratory Medicine Clinical Biobank Center, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Ya Gao
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Baohong Ping
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Department of Hematology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
41
|
Inoue O, Goten C, Hashimuko D, Yamaguchi K, Takeda Y, Nomura A, Ootsuji H, Takashima S, Iino K, Takemura H, Halurkar M, Lim HW, Hwa V, Sanchez-Gurmaches J, Usui S, Takamura M. Single cell transcriptomics identifies adipose tissue CD271+ progenitors for enhanced angiogenesis in limb ischemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527726. [PMID: 36865239 PMCID: PMC9980009 DOI: 10.1101/2023.02.09.527726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Therapeutic angiogenesis using mesenchymal stem/stromal cell grafts have shown modest and controversial effects in preventing amputation for patients with critical limb ischemia. Through single-cell transcriptomic analysis of human tissues, we identified CD271 + progenitors specifically from subcutaneous adipose tissue (AT) as having the most prominent pro-angiogenic gene profile distinct from other stem cell populations. AT-CD271 + progenitors demonstrated robust in vivo angiogenic capacity, over conventional adipose stromal cell grafts, characterized by long-term engraftment, augmented tissue regeneration, and significant recovery of blood flow in a xenograft model of limb ischemia. Mechanistically, the angiogenic capacity of CD271 + progenitors is dependent on functional CD271 and mTOR signaling. Notably, the number and angiogenic capacity of CD271 + progenitors was strikingly reduced in insulin resistant donors. Our study highlights the identification of AT-CD271 + progenitors with in vivo superior efficacy for limb ischemia. Furthermore, we showcase comprehensive single-cell transcriptomics strategies for identification of suitable grafts for cell therapy. HIGHLIGHTS Adipose tissue stromal cells have a distinct angiogenic gene profile among human cell sources. CD271 + progenitors in adipose tissue have a prominent angiogenic gene profile. CD271 + progenitors show superior therapeutic capacities for limb ischemia. CD271 + progenitors are reduced and functionally impaired in insulin resistant donors. GRAPHICAL ABSTRACT
Collapse
|
42
|
Gudauskaitė G, Kairienė I, Ivaškienė T, Rascon J, Mobasheri A. Therapeutic Perspectives for the Clinical Application of Umbilical Cord Hematopoietic and Mesenchymal Stem Cells: Overcoming Complications Arising After Allogeneic Hematopoietic Stem Cell Transplantation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1409:111-126. [PMID: 35995905 DOI: 10.1007/5584_2022_726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
This review focuses on the therapeutic features of umbilical cord blood (UCB) cells as a source for allogeneic hematopoietic stem cell transplantation (aHSCT) in adult and child populations to treat malignant and nonmalignant hematologic diseases, genetic disorders, or pathologies of the immune system, when standard treatment (e.g., chemotherapy) is not effective or clinically contraindicated. In this article, we summarize the immunological properties and the advantages and disadvantages of using UCB stem cells and discuss a variety of treatment outcomes using different sources of stem cells from different donors both in adults and pediatric population. We also highlight the critical properties (total nucleated cell dose depending on HLA compatibility) of UCB cells that reach better survival rates, reveal the advantages of double versus single cord blood unit transplantation, and present recommendations from the most recent studies. Moreover, we summarize the mechanism of action and potential benefit of mesenchymal umbilical cord cells and indicate the most common posttransplantation complications.
Collapse
Affiliation(s)
- Greta Gudauskaitė
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Ignė Kairienė
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Tatjana Ivaškienė
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Jelena Rascon
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Ali Mobasheri
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
- World Health Organization Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium.
| |
Collapse
|
43
|
Doglio M, Crossland RE, Alho AC, Penack O, Dickinson AM, Stary G, Lacerda JF, Eissner G, Inngjerdingen M. Cell-based therapy in prophylaxis and treatment of chronic graft-versus-host disease. Front Immunol 2022; 13:1045168. [PMID: 36466922 PMCID: PMC9714556 DOI: 10.3389/fimmu.2022.1045168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/31/2022] [Indexed: 08/31/2023] Open
Abstract
Hematopoietic allogeneic stem cell transplantation (allo-SCT) is a curative option for patients with hematological malignancies. However, due to disparities in major and minor histocompatibility antigens between donor and recipient, severe inflammatory complications can occur, among which chronic graft-versus-host disease (cGVHD) can be life-threatening. A classical therapeutic approach to the prevention and treatment of cGVHD has been broad immunosuppression, but more recently adjuvant immunotherapies have been tested. This review summarizes and discusses immunomodulatory approaches with T cells, including chimeric antigen receptor (CAR) and regulatory T cells, with natural killer (NK) cells and innate lymphoid cells (ILCs), and finally with mesenchymal stromal cells (MSC) and extracellular vesicles thereof. Clinical studies and pre-clinical research results are presented likewise.
Collapse
Affiliation(s)
- Matteo Doglio
- Experimental Haematology Unit, Division of Immunology Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, Milan, Italy
| | - Rachel E. Crossland
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ana C. Alho
- JLacerda Lab, Hematology and Transplantation Immunology, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Serviço de Hematologia e Transplantação de Medula, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
| | - Olaf Penack
- Department of Hematology, Oncology, and Cancer Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Anne M. Dickinson
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- Alcyomics Ltd, Newcastle upon Tyne, United Kingdom
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - João F. Lacerda
- JLacerda Lab, Hematology and Transplantation Immunology, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Serviço de Hematologia e Transplantação de Medula, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
| | - Günther Eissner
- Systems Biology Ireland, School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Marit Inngjerdingen
- Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
44
|
Colombini A, Libonati F, Cangelosi D, Lopa S, De Luca P, Coviello DA, Moretti M, de Girolamo L. Inflammatory priming with IL-1β promotes the immunomodulatory behavior of adipose derived stem cells. Front Bioeng Biotechnol 2022; 10:1000879. [PMID: 36338130 PMCID: PMC9632288 DOI: 10.3389/fbioe.2022.1000879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/05/2022] [Indexed: 11/15/2023] Open
Abstract
Inflammatory processes contribute to osteoarthritis (OA) severity and progression. Mesenchymal stem cells, particularly those derived from adipose tissue (ASCs), are able to sense and control the inflammatory environment. This immunomodulatory potential can be boosted by different priming strategies based on inflammatory stimulation. The aim of the present study is to investigate the transcriptional modulation of a huge panel of genes and functionally verify the predicted immunomodulatory ability of ASCs after interleukin one beta (IL-1β) priming. ASCs were isolated from adipose tissue obtained from three donors and expanded. After stimulation with 1 ng/ml of IL-1β for 48 h, cells were collected for gene array and functional tests. Pooled cells from three donors were used for RNA extraction and gene array analysis. Gene Ontology (GO) enrichment analysis and Gene Set Enrichment Analysis (GSEA) were performed to assess the involvement of the modulated genes after priming in specific biological processes and pathways. Functional co-culture tests of ASCs with T cells and macrophages were performed to assess the ability of primed ASCs to modulate immune cell phenotype. Among the overall genes analyzed in the gene array, about the 18% were up- or down-regulated in ASCs after IL-1β priming. GO enrichment analysis of up- or down-regulated genes in ASCs after IL-1β priming allowed identifying specific pathways involved in the modulation of inflammation and extracellular matrix remodeling. The main processes enriched according to the GSEA are related to the inflammatory response and cell proliferative processes. Functional tests on immune cells showed that primed and non-primed ASCs induced a decrease in the CD3+ T lymphocytes survival rate and an anti-inflammatory macrophage polarization. In conclusion, IL-1β priming represents a tailored strategy to enhance the ability of ASCs to direct macrophages towards an anti-inflammatory phenotype and, consequently, improve the efficacy of ASCs in counteracting the OA inflammatory component.
Collapse
Affiliation(s)
| | - Francesca Libonati
- Orthopaedic Biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Davide Cangelosi
- Unità di Bioinformatica Clinica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Silvia Lopa
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Paola De Luca
- Orthopaedic Biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | | | - Matteo Moretti
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale, Laboratories for Translational Research (LRT), Bellinzona, Switzerland
- Department of Surgery, Ente Ospedaliero Cantonale, Service of Orthopaedics and Traumatology, Lugano, Switzerland
- Faculty of Biomedical Sciences, Euler Institute, Lugano, Switzerland
| | - Laura de Girolamo
- Orthopaedic Biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
45
|
hUC-MSCs Attenuate Acute Graft-Versus-Host Disease through Chi3l1 Repression of Th17 Differentiation. Stem Cells Int 2022; 2022:1052166. [PMID: 36277038 PMCID: PMC9582900 DOI: 10.1155/2022/1052166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/04/2022] [Indexed: 11/23/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have already demonstrated definitive evidence of their clinical benefits in acute graft-versus-host disease (aGvHD) and other inflammatory diseases. However, the comprehensive mechanism of MSCs' immunomodulation properties has not been elucidated. To reveal their potential immunosuppressive molecules, we used RNA sequencing to analyze gene expression in different tissue-derived MSCs, including human bone marrow, umbilical cord, amniotic membrane, and placenta, and found that chitinase-3-like protein 1 (Chi3l1) was highly expressed in human umbilical cord mesenchymal stem cells (hUC-MSCs). We found that hUC-MSCs treated with interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α) exhibited increased expression of Chi3l1 and concurrently repressed T-helper 17 cell (Th17) differentiation through inhibition of signal transducer and activator of transcription 3 (STAT3) activation. Furthermore, Chi3l1 knockdown hUC-MSCs exhibited impaired therapeutic efficacy in aGvHD mice with an increased inflammatory response by promoting Th17 cell differentiation, including an increase in IL-17A in the spleen, intestine, and serum. Collectively, these results reveal a new immunosuppressive molecule, Chi3l1, in hUC-MSCs in the treatment of aGvHD that regulates Th17 differentiation and inhibits STAT3 activation. These novel insights into the mechanisms of hUC-MSC immunoregulation may lead to the consistent production of hUC-MSCs with strong immunosuppressive functions and thus improved clinical utility.
Collapse
|
46
|
Stenger E, Giver CR, Langston A, Kota D, Das PK, Chinnadurai R, Galipeau J, Waller EK, Qayed M. Safety of autologous freshly expanded mesenchymal stromal cells for the treatment of graft-versus-host disease. Front Immunol 2022; 13:959658. [PMID: 36189324 PMCID: PMC9515357 DOI: 10.3389/fimmu.2022.959658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/11/2022] [Indexed: 11/26/2022] Open
Abstract
Despite the curative potential of hematopoietic cell transplantation (HCT) for hematologic malignancies, graft-versus-host disease (GVHD) remains a substantial cause of morbidity and mortality, particularly if treatment is refractory. Treatment with additional immunosuppression including steroids often leads to opportunistic infections and organ dysfunction. Novel therapies are greatly needed, specifically ones that lead to responses in treatment-refractory patients and are better tolerated. Mesenchymal stromal cells (MSCs) are non-hematopoietic tolerogenic cells present in normal bone marrow (BM), which can be expanded ex vivo to therapeutic doses. Their safety and efficacy have been assessed in inflammatory disorders including GVHD, but heterogeneity in clinical responses has led some to examine MSC manufacturing and administration procedures, which may impact in vivo efficacy. We hypothesized that autologous, early-passage, and culture-recovered (after freeze and thaw) MSCs would be safe and may have superior efficacy. In this phase I single-center trial, we assessed MSC safety and early efficacy of an escalating number of doses (2 × 106/kg doses; dose level 1, single dose; dose level 2, two weekly doses; dose level 3, four weekly doses) in patients aged ≥12 years with treatment-refractory acute or chronic GVHD. Eleven enrolled patients received some or all planned MSC infusions, with a median age at enrollment of 37 years. The most common primary HCT indication was leukemia, and the median time from HCT to first MSC infusion was 2.6 years. MSC infusion was well tolerated, with all severe adverse events expected and determined to be unlikely or definitely not related to the study. Thus, no dose-limiting toxicities occurred in the three dose levels. Three of four patients with acute GVHD (or overlap with acute features) had responses seen at any timepoint, ranging from partial to complete. In those with a chronic GVHD indication (n = 7), an overall response at 3 months was partial in five, stable in one, and progressive in one. No appreciable differences were seen between dose levels in peripheral blood lymphocyte subsets. In conclusion, autologous and culture-recovered MSCs were safe in the setting of refractory GVHD following HCT for hematologic malignancy, and clinical responses were most notable in patients with acute GVHD.
Collapse
Affiliation(s)
- Elizabeth Stenger
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University, Atlanta, GA, United States
| | - Cynthia R. Giver
- Bone Marrow and Stem Cell Transplant Center, Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Amelia Langston
- Bone Marrow and Stem Cell Transplant Center, Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Daniel Kota
- Bone Marrow and Stem Cell Transplant Center, Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Pankoj Kumar Das
- Bone Marrow and Stem Cell Transplant Center, Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Raghavan Chinnadurai
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, United States
| | - Jacques Galipeau
- Department of Medicine and Carbone Cancer Center, University of Wisconsin in Madison, Madison, WI, United States
| | - Edmund K. Waller
- Bone Marrow and Stem Cell Transplant Center, Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Muna Qayed
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University, Atlanta, GA, United States
- *Correspondence: Muna Qayed,
| |
Collapse
|
47
|
Wang Z, Sun Y, Shen R, Tang X, Xu Y, Zhang Y, Liu Y. Global scientific trends on the immunomodulation of mesenchymal stem cells in the 21st century: A bibliometric and visualized analysis. Front Immunol 2022; 13:984984. [PMID: 36090982 PMCID: PMC9449834 DOI: 10.3389/fimmu.2022.984984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/05/2022] [Indexed: 11/15/2022] Open
Abstract
Background Since the discovery of the immunomodulatory functions of mesenchymal stem cells (MSCs), their application in immunomodulation has attracted considerable attention, and an increasing number of studies have been conducted worldwide. Our research aimed to investigate the global status and trends in this field. Methods Publications on the immunomodulatory functions of MSCs from 1 January 2000 to 7 March 2022 were retrieved from the Web of Science Core Collection. The data were studied and indexed using the bibliometric methodology. Visualization analysis, co-authorship, co-occurrence analysis, and publication trends in MSC immunomodulation were conducted using the VOSviewer software. Results In total, 4,227 papers were included in the study. The number of publications and research interests has significantly increased globally. China published the highest number of related articles, while the US published articles with the highest number of citations. Stem Cell Research & Therapy had the highest number of publications. Sun Yat-sen University, Shanghai Jiao Tong University, Harvard University, and Seoul National University were the most contributive institutions. Furthermore, the studies were divided into four research hotspots for MSC immunomodulation: MSC immunomodulation in regenerative medicine, the effects and mechanisms of MSC immunomodulation, MSC therapy for immune diseases, and the cell source of MSCs. Conclusion This study indicates that the number of publications on MSC immunomodulation will increase in the future, and MSC immunomodulation mechanisms and clinical applications of MSC immunotherapy should be the next hotspots in this research field.
Collapse
Affiliation(s)
- Zhongqing Wang
- Department of Information Center, The First Hospital of China Medical University, Shenyang, China
| | - Yuqiang Sun
- Department of Emergency, The First Hospital of China Medical University, Shenyang, China
| | - Rou Shen
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xia Tang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yingxin Xu
- Department of Information Center, The First Hospital of China Medical University, Shenyang, China
| | - Ye Zhang
- Department of Information Center, The First Hospital of China Medical University, Shenyang, China
| | - Yao Liu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
- *Correspondence: Yao Liu,
| |
Collapse
|
48
|
Neuroinflammation in autism spectrum disorders: potential target for mesenchymal stem cell-based therapy. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2022. [DOI: 10.1186/s41983-022-00525-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Autism spectrum disorders (ASD) include a group of neurodevelopmental disorders characterised by repetitive behaviours and impairments in communication, emotional and social skills. This review gives an overview of ASD, focusing on the aetiological and clinical aspects. It also discusses the role of neuroinflammation in ASD, critically examines the current evidence on the therapeutic effects of MSCs in ASD and consolidates key findings in this area of research.
Results
Many environmental and genetic factors have been linked to the aetiology of ASD. It has become increasingly evident that neuroinflammation plays a role in ASD. Conventional treatment of ASD revolves around psychosocial approaches whereas recent studies have turned to alternative approaches such as mesenchymal stem cell (MSC)-based therapy, owing to the well-recognised immunomodulatory characteristics of MSCs. Preclinical and clinical studies have shown that MSCs were able to exert anti-inflammatory effects and alleviate ASD symptoms.
Conclusions
There are many preclinical studies that support the use of MSCs in ASD. However, there are relatively fewer clinical studies concerning the safety and efficacy of MSCs in ASD, which warrants more large-scale clinical studies for future research.
Collapse
|
49
|
Slatter MA, Gennery AR. Advances in the treatment of severe combined immunodeficiency. Clin Immunol 2022; 242:109084. [DOI: 10.1016/j.clim.2022.109084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/10/2022] [Accepted: 08/01/2022] [Indexed: 11/03/2022]
|
50
|
Link-Rachner CS, Sockel K, Schuetz C. Established and Emerging Treatments of Skin GvHD. Front Immunol 2022; 13:838494. [PMID: 35185931 PMCID: PMC8847139 DOI: 10.3389/fimmu.2022.838494] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/11/2022] [Indexed: 01/14/2023] Open
Abstract
Graft-versus-host disease (GvHD) of the skin is a severe allo-immune reaction and complication following allogeneic stem cell transplantation. Over the past years, intensive pre-clinical research has led to an improved understanding of the pathophysiology of acute and to a lesser extend chronic GvHD. This has translated into the approval of several new agents for the treatment of both forms of GvHD. This review summarizes the most recent advances in underlying pathomechanisms, clinical trials and newly approved agents for GvHD, with a special focus on skin involvement.
Collapse
Affiliation(s)
- Cornelia S Link-Rachner
- Medizinische Klinik und Poliklinik I, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Katja Sockel
- Medizinische Klinik und Poliklinik I, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Catharina Schuetz
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|