1
|
Vatzia E, Paudyal B, Dema B, Carr BV, Sedaghat-Rostami E, Gubbins S, Sharma B, Moorhouse E, Morris S, Ulaszewska M, MacLoughlin R, Salguero FJ, Gilbert SC, Tchilian E. Aerosol immunization with influenza matrix, nucleoprotein, or both prevents lung disease in pig. NPJ Vaccines 2024; 9:188. [PMID: 39397062 PMCID: PMC11471855 DOI: 10.1038/s41541-024-00989-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024] Open
Abstract
Current influenza vaccines are strain-specific and require frequent updates to combat new strains, making a broadly protective influenza vaccine (BPIV) highly desirable. A promising strategy is to induce T-cell responses against internal proteins conserved across influenza strains. In this study, pH1N1 pre-exposed pigs were immunized by aerosol using viral vectored vaccines (ChAdOx2 and MVA) expressing matrix (M1) and nucleoprotein (NP). Following H3N2 challenge, all immunizations (M1, NP or NPM1) reduced lung pathology, but M1 alone offered the greatest protection. NP or NPM1 immunization induced both T-cell and antibody responses. M1 immunization generated no detectable antibodies but elicited M1-specific T-cell responses, suggesting T cell-mediated protection. Additionally, a single aerosol immunization with the ChAdOx vaccine encoding M1, NP and neuraminidase reduced lung pathology. These findings provide insights into BPIV development using a relevant large natural host, the pig.
Collapse
Affiliation(s)
| | | | - Barbara Dema
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | | | | | | | - Susan Morris
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Marta Ulaszewska
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | - Sarah C Gilbert
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | |
Collapse
|
2
|
Bissett C, Belij-Rammerstorfer S, Ulaszewska M, Smith H, Kailath R, Morris S, Powers C, Sebastian S, Sharpe HR, Allen ER, Wang Z, Cunliffe RF, Sallah HJ, Spencer AJ, Gilbert S, Tregoning JS, Lambe T. Systemic prime mucosal boost significantly increases protective efficacy of bivalent RSV influenza viral vectored vaccine. NPJ Vaccines 2024; 9:118. [PMID: 38926455 PMCID: PMC11208422 DOI: 10.1038/s41541-024-00912-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Although licensed vaccines against influenza virus have been successful in reducing pathogen-mediated disease, they have been less effective at preventing viral infection of the airways and current seasonal updates to influenza vaccines do not always successfully accommodate viral drift. Most licensed influenza and recently licensed RSV vaccines are administered via the intramuscular route. Alternative immunisation strategies, such as intranasal vaccinations, and "prime-pull" regimens, may deliver a more sterilising form of protection against respiratory viruses. A bivalent ChAdOx1-based vaccine (ChAdOx1-NP + M1-RSVF) encoding conserved nucleoprotein and matrix 1 proteins from influenza A virus and a modified pre-fusion stabilised RSV A F protein, was designed, developed and tested in preclinical animal models. The aim was to induce broad, cross-protective tissue-resident T cells against heterotypic influenza viruses and neutralising antibodies against RSV in the respiratory mucosa and systemically. When administered via an intramuscular prime-intranasal boost (IM-IN) regimen in mice, superior protection was generated against challenge with either RSV A, Influenza A H3N2 or H1N1. These results support further clinical development of a pan influenza & RSV vaccine administered in a prime-pull regimen.
Collapse
Affiliation(s)
- Cameron Bissett
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK.
| | | | - Marta Ulaszewska
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Holly Smith
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Reshma Kailath
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Susan Morris
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Claire Powers
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sarah Sebastian
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Hannah R Sharpe
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Elizabeth R Allen
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ziyin Wang
- Department of Infectious Disease, Imperial College London, London, UK
| | - Robert F Cunliffe
- Department of Infectious Disease, Imperial College London, London, UK
| | | | - Alexandra J Spencer
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Sarah Gilbert
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - John S Tregoning
- Department of Infectious Disease, Imperial College London, London, UK
| | - Teresa Lambe
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Ferrantelli F, Manfredi F, Chiozzini C, Leone P, Pugliese K, Spada M, Di Virgilio A, Giovannelli A, Valeri M, Cara A, Michelini Z, Andreotti M, Federico M. SARS-CoV-2-Specific CD8 + T-Cells in Blood but Not in the Lungs of Vaccinated K18-hACE2 Mice after Infection. Vaccines (Basel) 2023; 11:1433. [PMID: 37766110 PMCID: PMC10535545 DOI: 10.3390/vaccines11091433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/26/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 enters the host by infecting nasal ciliated cells. Then, the virus can spread towards the oropharyngeal cavity and the pulmonary tissues. The antiviral adaptive immunity is promptly induced in response to the virus's detection, with virus-specific T-lymphocytes appearing before antiviral antibodies. Both the breadth and potency of antiviral CD8+ T-cell immunity have a key role in containing viral spread and disease severity. Current anti-SARS-CoV-2 vaccines do not impede the virus's replication in the upper respiratory tract, and there is consensus on the fact that the best potency of the antiviral immune response in both blood and the upper respiratory tract can be reached upon infection in vaccinees (i.e., breakthrough infection). However, whether the antiviral CD8+ T-cells developing in response to the breakthrough infection in the upper respiratory tract diffuse to the lungs is also still largely unknown. To fill the gap, we checked the CD8+ T-cell immunity elicited after infection of K18-hACE2 transgenic mice both at 3 weeks and 3 months after anti-spike vaccination. Virus-specific CD8+ T-cell immunity was monitored in both blood and the lungs before and after infection. By investigating the de novo generation of the CD8+ T-cells specific for SARS-CoV-2 viral proteins, we found that both membrane (M) and/or nucleocapsid (N)-specific CD8+ T-cells were induced at comparable levels in the blood of both unvaccinated and vaccinated mice. Conversely, N-specific CD8+ T-cells were readily found in the lungs of the control mice but were either rare or absent in those of vaccinated mice. These results support the idea that the hybrid cell immunity developing after asymptomatic/mild breakthrough infection strengthens the antiviral cell immunity in the lungs only marginally, implying that the direct exposition of viral antigens is required for the induction of an efficient antiviral cell immunity in the lungs.
Collapse
Affiliation(s)
- Flavia Ferrantelli
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (F.F.); (F.M.); (C.C.); (P.L.); (K.P.); (A.C.); (Z.M.); (M.A.)
| | - Francesco Manfredi
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (F.F.); (F.M.); (C.C.); (P.L.); (K.P.); (A.C.); (Z.M.); (M.A.)
| | - Chiara Chiozzini
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (F.F.); (F.M.); (C.C.); (P.L.); (K.P.); (A.C.); (Z.M.); (M.A.)
| | - Patrizia Leone
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (F.F.); (F.M.); (C.C.); (P.L.); (K.P.); (A.C.); (Z.M.); (M.A.)
| | - Katherina Pugliese
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (F.F.); (F.M.); (C.C.); (P.L.); (K.P.); (A.C.); (Z.M.); (M.A.)
| | - Massimo Spada
- National Center for Animal Experimentation and Welfare, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (M.S.); (A.D.V.); (A.G.); (M.V.)
| | - Antonio Di Virgilio
- National Center for Animal Experimentation and Welfare, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (M.S.); (A.D.V.); (A.G.); (M.V.)
| | - Andrea Giovannelli
- National Center for Animal Experimentation and Welfare, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (M.S.); (A.D.V.); (A.G.); (M.V.)
| | - Mauro Valeri
- National Center for Animal Experimentation and Welfare, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (M.S.); (A.D.V.); (A.G.); (M.V.)
| | - Andrea Cara
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (F.F.); (F.M.); (C.C.); (P.L.); (K.P.); (A.C.); (Z.M.); (M.A.)
| | - Zuleika Michelini
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (F.F.); (F.M.); (C.C.); (P.L.); (K.P.); (A.C.); (Z.M.); (M.A.)
| | - Mauro Andreotti
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (F.F.); (F.M.); (C.C.); (P.L.); (K.P.); (A.C.); (Z.M.); (M.A.)
| | - Maurizio Federico
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (F.F.); (F.M.); (C.C.); (P.L.); (K.P.); (A.C.); (Z.M.); (M.A.)
| |
Collapse
|
4
|
Corleis B, Bastian M, Hoffmann D, Beer M, Dorhoi A. Animal models for COVID-19 and tuberculosis. Front Immunol 2023; 14:1223260. [PMID: 37638020 PMCID: PMC10451089 DOI: 10.3389/fimmu.2023.1223260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
Respiratory infections cause tremendous morbidity and mortality worldwide. Amongst these diseases, tuberculosis (TB), a bacterial illness caused by Mycobacterium tuberculosis which often affects the lung, and coronavirus disease 2019 (COVID-19) caused by the Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV-2), stand out as major drivers of epidemics of global concern. Despite their unrelated etiology and distinct pathology, these infections affect the same vital organ and share immunopathogenesis traits and an imperative demand to model the diseases at their various progression stages and localizations. Due to the clinical spectrum and heterogeneity of both diseases experimental infections were pursued in a variety of animal models. We summarize mammalian models employed in TB and COVID-19 experimental investigations, highlighting the diversity of rodent models and species peculiarities for each infection. We discuss the utility of non-human primates for translational research and emphasize on the benefits of non-conventional experimental models such as livestock. We epitomize advances facilitated by animal models with regard to understanding disease pathophysiology and immune responses. Finally, we highlight research areas necessitating optimized models and advocate that research of pulmonary infectious diseases could benefit from cross-fertilization between studies of apparently unrelated diseases, such as TB and COVID-19.
Collapse
Affiliation(s)
- Björn Corleis
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Max Bastian
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
- Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany
| |
Collapse
|
5
|
Vatzia E, Feest K, McNee A, Manjegowda T, Carr BV, Paudyal B, Chrun T, Maze EA, Mccarron A, Morris S, Everett HE, MacLoughlin R, Salguero FJ, Lambe T, Gilbert SC, Tchilian E. Immunization with matrix-, nucleoprotein and neuraminidase protects against H3N2 influenza challenge in pH1N1 pre-exposed pigs. NPJ Vaccines 2023; 8:19. [PMID: 36792640 PMCID: PMC9930017 DOI: 10.1038/s41541-023-00620-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
There is an urgent need for influenza vaccines providing broader protection that may decrease the need for annual immunization of the human population. We investigated the efficacy of heterologous prime boost immunization with chimpanzee adenovirus (ChAdOx2) and modified vaccinia Ankara (MVA) vectored vaccines, expressing conserved influenza virus nucleoprotein (NP), matrix protein 1 (M1) and neuraminidase (NA) in H1N1pdm09 pre-exposed pigs. We compared the efficacy of intra-nasal, aerosol and intra-muscular vaccine delivery against H3N2 influenza challenge. Aerosol prime boost immunization induced strong local lung T cell and antibody responses and abrogated viral shedding and lung pathology following H3N2 challenge. In contrast, intramuscular immunization induced powerful systemic responses and weak local lung responses but also abolished lung pathology and reduced viral shedding. These results provide valuable insights into the development of a broadly protective influenza vaccine in a highly relevant large animal model and will inform future vaccine and clinical trial design.
Collapse
Affiliation(s)
- Eleni Vatzia
- The Pirbright Institute, Pirbright, United Kingdom.
| | | | - Adam McNee
- The Pirbright Institute, Pirbright, United Kingdom
| | | | | | | | | | | | - Amy Mccarron
- The Pirbright Institute, Pirbright, United Kingdom
| | - Susan Morris
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Helen E Everett
- Animal and Plant Health Agency-Weybridge, New Haw, Addlestone, United Kingdom
| | | | - Francisco J Salguero
- United Kingdom Health Security Agency, UKHSA-Porton Down, Salisbury, United Kingdom
| | - Teresa Lambe
- Oxford Vaccine Group, Department of Paediatrics, Medical Sciences Division, University of Oxford and Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| | - Sarah C Gilbert
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
6
|
Federico M. How Do Anti-SARS-CoV-2 mRNA Vaccines Protect from Severe Disease? Int J Mol Sci 2022; 23:10374. [PMID: 36142284 PMCID: PMC9499329 DOI: 10.3390/ijms231810374] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022] Open
Abstract
COVID-19 pathogenesis develops in two phases. First, Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)-2 spreads within the epithelial cells of the mucosa of upper and, possibly, lower respiratory tracts. While the virus dissemination can be controlled by an emerging adaptive host immune response, if the virus diffuses to the pulmonary alveoli, a potentially lethal mechanism can arise in the second phase. It consists of an uncontrolled burst of cytokines/inflammatory factors (i.e., cytokine storm), leading to the insurgence of respiratory symptoms and, consequently, multi-organ failures. Messenger (m)RNA-based vaccines represent the most innovative approach in terms of prophylaxis against SARS-CoV-2-induced disease. The cumulating data indicate that the response to mRNA vaccines is basically ineffective to counteract the viral replication in the upper respiratory tracts, while showing efficacy in containing the development of severe disease. Considering that the antiviral immunity elicited by intramuscularly delivered mRNA vaccines is expected to show similar quantitative and qualitative features in upper and lower respiratory tracts, the different outcomes appear surprising and deserve accurate consideration. In this review, a still unexplored mechanism accounting for the mRNA vaccine effect against severe disease is proposed. Based on well-established experimental evidence, a possible inhibitory effect on alveolar macrophages as a consequence of the diffusion of the extracellular and/or cell-associated Spike protein can be envisioned as a key event counteracting the cytokine storm. This benefit, however, may be associated with defects in the immune functions of macrophages in other tissues whose possible consequences deserve careful evaluation.
Collapse
Affiliation(s)
- Maurizio Federico
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
| |
Collapse
|