1
|
Hu H, Zhou F, Ma X, Brokstad KA, Kolmar L, Girardot C, Benes V, Cox RJ, Merten CA. Targeted barcoding of variable antibody domains and individual transcriptomes of the human B-cell repertoire using Link-Seq. PNAS NEXUS 2025; 4:pgaf006. [PMID: 39867668 PMCID: PMC11759286 DOI: 10.1093/pnasnexus/pgaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 12/18/2024] [Indexed: 01/28/2025]
Abstract
Here, we present Link-Seq, a highly efficient droplet microfluidic method for combined sequencing of antibody-encoding genes and the transcriptome of individual B cells at large scale. The method is based on 3' barcoding of the transcriptome and subsequent single-molecule PCR in droplets, which freely shift the barcode along specific gene regions, such as the antibody heavy- and light-chain genes. Using the immune repertoire of COVID-19 patients and healthy donors as a model system, we obtain up to 91.7% correctly paired immunoglobulin heavy and light chains. Furthermore, we map the V(D)J usage and obtain sensitivities comparable with the current gold-standard 10× Genomics commercial systems while offering full flexibility in experimental setup and significant cost savings. A further unique feature of Link-Seq is the possibility of barcoding multiple target genes in a site-specific manner. Based on the open character of the platform and its conceptual advantages, we expect Link-Seq to become a versatile tool for single-cell analysis, especially for applications requiring additional processing steps that cannot be implemented on commercially available platforms.
Collapse
Affiliation(s)
- Hongxing Hu
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, 69117 Germany
| | - Fan Zhou
- Department of Clinical Sciences, Influenza Centre, University of Bergen, Bergen, N5021, Norway
| | - Xiaoli Ma
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Karl Albert Brokstad
- Department of Clinical Sciences, Influenza Centre, University of Bergen, Bergen, N5021, Norway
- Department of Safety, Chemistry and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences (HVL), Bergen, N5020, Norway
| | - Leonie Kolmar
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Charles Girardot
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, 69117 Germany
| | - Vladimir Benes
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, 69117 Germany
| | - Rebecca J Cox
- Department of Clinical Sciences, Influenza Centre, University of Bergen, Bergen, N5021, Norway
- Department of Microbiology, Haukeland University Hospital, Bergen, N5021, Norway
| | - Christoph A Merten
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
2
|
Mikolajczyk R, Diexer S, Klee B, Pfrommer L, Purschke O, Fricke J, Ahnert P, Gabrysch S, Gottschick C, Bohn B, Brenner H, Buck C, Castell S, Gastell S, Greiser KH, Harth V, Heise JK, Holleczek B, Kaaks R, Keil T, Krist L, Leitzmann M, Lieb W, Meinke-Franze C, Michels KB, Velásquez IM, Obi N, Panreck L, Peters A, Pischon T, Schikowski T, Schmidt B, Standl M, Stang A, Völzke H, Weber A, Zeeb H, Karch A. Likelihood of Post-COVID Condition in people with hybrid immunity; data from the German National Cohort (NAKO). J Infect 2024; 89:106206. [PMID: 38897239 DOI: 10.1016/j.jinf.2024.106206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
OBJECTIVES The risk of Post-COVID-19 condition (PCC) under hybrid immunity remains unclear. METHODS Using data from the German National Cohort (NAKO Gesundheitsstudie), we investigated risk factors for self-reported post-infection symptoms (any PCC is defined as having at least one symptom, and high symptom burden PCC as having nine or more symptoms). RESULTS Sixty percent of 109,707 participants reported at least one previous SARS-CoV-2 infection; 35% reported having had any symptoms 4-12 months after infection; among them 23% reported nine or more symptoms. Individuals, who did not develop PCC after their first infection, had a strongly reduced risk for PCC after their second infection (50%) and a temporary risk reduction, which waned over 9 months after the preceding infection. The risk of developing PCC strongly depended on the virus variant. Within variants, there was no effect of the number of preceding vaccinations, apart from a strong protection by the fourth vaccination compared to three vaccinations for the Omicron variant (odds ratio = 0.52; 95% confidence interval 0.45-0.61). CONCLUSIONS Previous infections without PCC and a fourth vaccination were associated with a lower risk of PCC after a new infection, indicating diminished risk under hybrid immunity. The two components of risk reduction after a preceding infection suggest different immunological mechanisms.
Collapse
Affiliation(s)
- Rafael Mikolajczyk
- Institute for Medical Epidemiology, Biometrics, and Informatics, Interdisciplinary Centre for Health Sciences, Medical Faculty of the Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| | - Sophie Diexer
- Institute for Medical Epidemiology, Biometrics, and Informatics, Interdisciplinary Centre for Health Sciences, Medical Faculty of the Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Bianca Klee
- Institute for Medical Epidemiology, Biometrics, and Informatics, Interdisciplinary Centre for Health Sciences, Medical Faculty of the Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Laura Pfrommer
- Institute for Medical Epidemiology, Biometrics, and Informatics, Interdisciplinary Centre for Health Sciences, Medical Faculty of the Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Oliver Purschke
- Institute for Medical Epidemiology, Biometrics, and Informatics, Interdisciplinary Centre for Health Sciences, Medical Faculty of the Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Julia Fricke
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Ahnert
- Institute for Medical Informatics, Statistics and Epidemiology, Universität Leipzig, Leipzig, Germany
| | - Sabine Gabrysch
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Public Health, Berlin, Germany; Research Department 2, Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany; Heidelberg Institute of Global Health, Heidelberg University, Heidelberg, Germany
| | - Cornelia Gottschick
- Institute for Medical Epidemiology, Biometrics, and Informatics, Interdisciplinary Centre for Health Sciences, Medical Faculty of the Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Christoph Buck
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | - Stefanie Castell
- Department for Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sylvia Gastell
- NAKO Study Centre, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | | | - Volker Harth
- Institute for Occupational and Maritime Medicine Hamburg (ZfAM), University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Jana-Kristin Heise
- Department for Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Rudolf Kaaks
- Division of Cancer Epidemiology, DKFZ Heidelberg, Heidelberg, Germany
| | - Thomas Keil
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, Berlin, Germany; Institute of Clinical Epidemiology and Biometry, University of Würzburg, Würzburg, Germany; State Institute of Health I, Bavarian Health and Food Safety Authority, Erlangen, Germany
| | - Lilian Krist
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Leitzmann
- Institute of Epidemiology and Preventive Medicine, Regensburg, Germany
| | - Wolfgang Lieb
- Institute of Epidemiology, Kiel University, Kiel, Germany
| | - Claudia Meinke-Franze
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Karin B Michels
- Institute for Prevention and Cancer Epidemiology, Faculty of Medicine and Medical Centre, University of Freiburg, Freiburg, Germany
| | - Ilais Moreno Velásquez
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Molecular Epidemiology Research Group, Berlin, Germany
| | - Nadia Obi
- Institute for Occupational and Maritime Medicine Hamburg (ZfAM), University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany
| | | | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Centre for Environmental Health (GmbH), Neuherberg, Germany; Chair of Epidemiology, Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tobias Pischon
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Molecular Epidemiology Research Group, Berlin, Germany
| | - Tamara Schikowski
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Börge Schmidt
- Institute for Medical Informatics, Biometry and Epidemiology, University of Duisburg-Essen, Essen, Germany
| | - Marie Standl
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Centre for Environmental Health (GmbH), Neuherberg, Germany; German Centre for Lung Research (DZL), Munich, Germany
| | - Andreas Stang
- Institute for Medical Informatics, Biometry and Epidemiology, University of Duisburg-Essen, Essen, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Andrea Weber
- Institute of Epidemiology and Preventive Medicine, Regensburg, Germany
| | - Hajo Zeeb
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany; Health Sciences Bremen, University of Bremen, Bremen, Germany
| | - André Karch
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| |
Collapse
|
3
|
Schmidt-Barbo P, Kalweit G, Naouar M, Paschold L, Willscher E, Schultheiß C, Märkl B, Dirnhofer S, Tzankov A, Binder M, Kalweit M. Detection of disease-specific signatures in B cell repertoires of lymphomas using machine learning. PLoS Comput Biol 2024; 20:e1011570. [PMID: 38954728 PMCID: PMC11249212 DOI: 10.1371/journal.pcbi.1011570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 07/15/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024] Open
Abstract
The classification of B cell lymphomas-mainly based on light microscopy evaluation by a pathologist-requires many years of training. Since the B cell receptor (BCR) of the lymphoma clonotype and the microenvironmental immune architecture are important features discriminating different lymphoma subsets, we asked whether BCR repertoire next-generation sequencing (NGS) of lymphoma-infiltrated tissues in conjunction with machine learning algorithms could have diagnostic utility in the subclassification of these cancers. We trained a random forest and a linear classifier via logistic regression based on patterns of clonal distribution, VDJ gene usage and physico-chemical properties of the top-n most frequently represented clonotypes in the BCR repertoires of 620 paradigmatic lymphoma samples-nodular lymphocyte predominant B cell lymphoma (NLPBL), diffuse large B cell lymphoma (DLBCL) and chronic lymphocytic leukemia (CLL)-alongside with 291 control samples. With regard to DLBCL and CLL, the models demonstrated optimal performance when utilizing only the most prevalent clonotype for classification, while in NLPBL-that has a dominant background of non-malignant bystander cells-a broader array of clonotypes enhanced model accuracy. Surprisingly, the straightforward logistic regression model performed best in this seemingly complex classification problem, suggesting linear separability in our chosen dimensions. It achieved a weighted F1-score of 0.84 on a test cohort including 125 samples from all three lymphoma entities and 58 samples from healthy individuals. Together, we provide proof-of-concept that at least the 3 studied lymphoma entities can be differentiated from each other using BCR repertoire NGS on lymphoma-infiltrated tissues by a trained machine learning model.
Collapse
MESH Headings
- Humans
- Machine Learning
- Receptors, Antigen, B-Cell/genetics
- High-Throughput Nucleotide Sequencing/methods
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Computational Biology/methods
- Lymphoma, B-Cell/genetics
- B-Lymphocytes/metabolism
- B-Lymphocytes/immunology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/classification
- Algorithms
Collapse
Affiliation(s)
- Paul Schmidt-Barbo
- Department of Biomedicine, Translational Immuno-Oncology, University Hospital Basel, Basel, Switzerland
- Collaborative Research Institute Intelligent Oncology (CRIION), Freiburg, Germany
| | - Gabriel Kalweit
- Collaborative Research Institute Intelligent Oncology (CRIION), Freiburg, Germany
- Neurorobotics Lab, University of Freiburg, Freiburg, Germany
| | - Mehdi Naouar
- Collaborative Research Institute Intelligent Oncology (CRIION), Freiburg, Germany
- Neurorobotics Lab, University of Freiburg, Freiburg, Germany
| | - Lisa Paschold
- Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Edith Willscher
- Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Christoph Schultheiß
- Department of Biomedicine, Translational Immuno-Oncology, University Hospital Basel, Basel, Switzerland
| | - Bruno Märkl
- Pathology, University Hospital Augsburg, Augsburg, Germany
| | | | | | - Mascha Binder
- Department of Biomedicine, Translational Immuno-Oncology, University Hospital Basel, Basel, Switzerland
- Collaborative Research Institute Intelligent Oncology (CRIION), Freiburg, Germany
- Medical Oncology, University Hospital Basel, Basel, Switzerland
| | - Maria Kalweit
- Collaborative Research Institute Intelligent Oncology (CRIION), Freiburg, Germany
- Neurorobotics Lab, University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Park S, Choi J, Lee Y, Noh J, Kim N, Lee J, Cho G, Kim S, Yoo DK, Kang CK, Choe PG, Kim NJ, Park WB, Kim S, Oh MD, Kwon S, Chung J. An ancestral SARS-CoV-2 vaccine induces anti-Omicron variants antibodies by hypermutation. Nat Commun 2024; 15:3368. [PMID: 38643233 PMCID: PMC11032360 DOI: 10.1038/s41467-024-47743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/10/2024] [Indexed: 04/22/2024] Open
Abstract
The immune escape of Omicron variants significantly subsides by the third dose of an mRNA vaccine. However, it is unclear how Omicron variant-neutralizing antibodies develop under repeated vaccination. We analyze blood samples from 41 BNT162b2 vaccinees following the course of three injections and analyze their B-cell receptor (BCR) repertoires at six time points in total. The concomitant reactivity to both ancestral and Omicron receptor-binding domain (RBD) is achieved by a limited number of BCR clonotypes depending on the accumulation of somatic hypermutation (SHM) after the third dose. Our findings suggest that SHM accumulation in the BCR space to broaden its specificity for unseen antigens is a counterprotective mechanism against virus variant immune escape.
Collapse
Affiliation(s)
- Seoryeong Park
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Interdisciplinary Program in Cancer Biology Major, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jaewon Choi
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University, Seoul, Republic of Korea
| | - Yonghee Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Jinsung Noh
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
- Bio-MAX Institute, Seoul National University, Seoul, Republic of Korea
| | - Namphil Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - JinAh Lee
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam, Republic of Korea
| | - Geummi Cho
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sujeong Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Duck Kyun Yoo
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chang Kyung Kang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Pyoeng Gyun Choe
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Nam Joong Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Wan Beom Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seungtaek Kim
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam, Republic of Korea.
| | - Myoung-Don Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Sunghoon Kwon
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Republic of Korea.
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea.
- Bio-MAX Institute, Seoul National University, Seoul, Republic of Korea.
| | - Junho Chung
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Interdisciplinary Program in Cancer Biology Major, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Fischer C, Willscher E, Paschold L, Gottschick C, Klee B, Diexer S, Bosurgi L, Dutzmann J, Sedding D, Frese T, Girndt M, Hoell JI, Gekle M, Addo MM, Schulze Zur Wiesch J, Mikolajczyk R, Binder M, Schultheiß C. SARS-CoV-2 vaccination may mitigate dysregulation of IL-1/IL-18 and gastrointestinal symptoms of the post-COVID-19 condition. NPJ Vaccines 2024; 9:23. [PMID: 38316833 PMCID: PMC10844289 DOI: 10.1038/s41541-024-00815-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/24/2024] [Indexed: 02/07/2024] Open
Abstract
The rapid development of safe and effective vaccines helped to prevent severe disease courses after SARS-CoV-2 infection and to mitigate the progression of the COVID-19 pandemic. While there is evidence that vaccination may reduce the risk of developing post-COVID-19 conditions (PCC), this effect may depend on the viral variant. Therapeutic effects of post-infection vaccination have been discussed but the data for individuals with PCC remains inconclusive. In addition, extremely rare side effects after SARS-CoV-2 vaccination may resemble the heterogeneous PCC phenotype. Here, we analyze the plasma levels of 25 cytokines and SARS-CoV-2 directed antibodies in 540 individuals with or without PCC relative to one or two mRNA-based COVID-19 vaccinations as well as in 20 uninfected individuals one month after their initial mRNA-based COVID-19 vaccination. While none of the SARS-CoV-2 naïve individuals reported any persisting sequelae or exhibited PCC-like dysregulation of plasma cytokines, we detected lower levels of IL-1β and IL-18 in patients with ongoing PCC who received one or two vaccinations at a median of six months after infection as compared to unvaccinated PCC patients. This reduction correlated with less frequent reporting of persisting gastrointestinal symptoms. These data suggest that post-infection vaccination in patients with PCC might be beneficial in a subgroup of individuals displaying gastrointestinal symptoms.
Collapse
Affiliation(s)
- Claudia Fischer
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland
- Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University, and University Hospital Basel, Basel, Switzerland
| | - Edith Willscher
- Department of Internal Medicine IV, Oncology/Hematology, Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Lisa Paschold
- Department of Internal Medicine IV, Oncology/Hematology, Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Cornelia Gottschick
- Institute for Medical Epidemiology, Biometrics, and Informatics (IMEBI), Interdisciplinary Center for Health Sciences, Medical School of the Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Bianca Klee
- Institute for Medical Epidemiology, Biometrics, and Informatics (IMEBI), Interdisciplinary Center for Health Sciences, Medical School of the Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Sophie Diexer
- Institute for Medical Epidemiology, Biometrics, and Informatics (IMEBI), Interdisciplinary Center for Health Sciences, Medical School of the Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Lidia Bosurgi
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jochen Dutzmann
- Mid-German Heart Center, Department of Cardiology and Intensive Care Medicine, University Hospital, Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Daniel Sedding
- Mid-German Heart Center, Department of Cardiology and Intensive Care Medicine, University Hospital, Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Thomas Frese
- Institute of General Practice and Family Medicine, Martin-Luther-University Halle-Wittenberg, Halle, (Saale), Germany
| | - Matthias Girndt
- Department of Internal Medicine II, Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Jessica I Hoell
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Michael Gekle
- Julius Bernstein-Institute of Physiology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Marylyn M Addo
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Braunschweig, Germany
- University Medical Center Hamburg-Eppendorf, Institute for Infection Research and Vaccine Development (IIRVD), Hamburg, Germany
| | | | - Rafael Mikolajczyk
- Institute for Medical Epidemiology, Biometrics, and Informatics (IMEBI), Interdisciplinary Center for Health Sciences, Medical School of the Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Mascha Binder
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland
- Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University, and University Hospital Basel, Basel, Switzerland
| | - Christoph Schultheiß
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland.
- Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University, and University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
6
|
Laquintana V, Mottini C, Marchesi F, Marcozzi B, Terrenato I, Sperandio E, de Latouliere L, Carrieri F, Pimpinelli F, Pontone M, Pellini R, Campo F, Conti L, Accetta C, Mandoj C, Petrone F, Di Bella O, Vujovic B, Morrone A, Compagnone M, Principato E, Pinto E, Papa E, Falcucci P, La Malfa A, Pallocca M, De Marco F, Piaggio G, Ciliberto G, Mengarelli A, di Martino S. Dynamics of humoral and cellular response to three doses of anti-SARS-CoV-2 BNT162b2 vaccine in patients with hematological malignancies and older subjects. Front Immunol 2024; 14:1221587. [PMID: 38343436 PMCID: PMC10853639 DOI: 10.3389/fimmu.2023.1221587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/27/2023] [Indexed: 02/15/2024] Open
Abstract
Background Few data are available about the durability of the response, the induction of neutralizing antibodies, and the cellular response upon the third dose of the anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine in hemato-oncological patients. Objective To investigate the antibody and cellular response to the BNT162b2 vaccine in patients with hematological malignancy. Methods We measured SARS-CoV-2 anti-spike antibodies, anti-Omicron neutralizing antibodies, and T-cell responses 1 month after the third dose of vaccine in 93 fragile patients with hematological malignancy (FHM), 51 fragile not oncological subjects (FNO) aged 80-92, and 47 employees of the hospital (healthcare workers, (HW), aged 23-66 years. Blood samples were collected at day 0 (T0), 21 (T1), 35 (T2), 84 (T3), 168 (T4), 351 (T pre-3D), and 381 (T post-3D) after the first dose of vaccine. Serum IgG antibodies against S1/S2 antigens of SARS-CoV-2 spike protein were measured at every time point. Neutralizing antibodies were measured at T2, T3 (anti-Alpha), T4 (anti-Delta), and T post-3D (anti-Omicron). T cell response was assessed at T post-3D. Results An increase in anti-S1/S2 antigen antibodies compared to T0 was observed in the three groups at T post-3D. After the third vaccine dose, the median antibody level of FHM subjects was higher than after the second dose and above the putative protection threshold, although lower than in the other groups. The neutralizing activity of antibodies against the Omicron variant of the virus was tested at T2 and T post-3D. 42.3% of FHM, 80,0% of FNO, and 90,0% of HW had anti-Omicron neutralizing antibodies at T post-3D. To get more insight into the breadth of antibody responses, we analyzed neutralizing capacity against BA.4/BA.5, BF.7, BQ.1, XBB.1.5 since also for the Omicron variants, different mutations have been reported especially for the spike protein. The memory T-cell response was lower in FHM than in FNO and HW cohorts. Data on breakthrough infections and deaths suggested that the positivity threshold of the test is protective after the third dose of the vaccine in all cohorts. Conclusion FHM have a relevant response to the BNT162b2 vaccine, with increasing antibody levels after the third dose coupled with, although low, a T-cell response. FHM need repeated vaccine doses to attain a protective immunological response.
Collapse
Affiliation(s)
- Valentina Laquintana
- UOC Anatomy Pathology, Biobank IRCCS Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Carla Mottini
- UOSD SAFU, IRCCS Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Francesco Marchesi
- UOSD Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Benedetta Marcozzi
- UOSD Clinical Trial Center, Biostatistic and Bionformatic, IRCCS Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Irene Terrenato
- UOSD Clinical Trial Center, Biostatistic and Bionformatic, IRCCS Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Eleonora Sperandio
- UOSD Clinical Trial Center, Biostatistic and Bionformatic, IRCCS Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Luisa de Latouliere
- UOSD SAFU, IRCCS Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Francesca Carrieri
- UOC D.I.T.R.A.R. IRCCS Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Fulvia Pimpinelli
- UOSD of Microbiology and Virology, IRCCS San Gallicano Dermatological Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Martina Pontone
- UOSD of Microbiology and Virology, IRCCS San Gallicano Dermatological Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Raul Pellini
- UOC Otolaryngology Head and Neck Surgery, IRCCS Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Flaminia Campo
- UOC Otolaryngology Head and Neck Surgery, IRCCS Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Laura Conti
- UOSD Clinical Pathology, IRCCS Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Celeste Accetta
- UOC Anatomy Pathology, Biobank IRCCS Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Chiara Mandoj
- UOSD Clinical Pathology, IRCCS Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Fabrizio Petrone
- UOC D.I.T.R.A.R. IRCCS Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Ornella Di Bella
- Medical Direction, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Branka Vujovic
- Medical Direction, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Aldo Morrone
- Scientific Direction, IRCCS San Gallicano Dermatological Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | | | | | | | - Elena Papa
- UOSD Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Paolo Falcucci
- UOSD Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Antonia La Malfa
- Pharmacy Unit, IRCCS Regina Elena National Cancer Institute and San Gallicano Institute, Rome, Italy
| | - Matteo Pallocca
- UOSD Clinical Trial Center, Biostatistic and Bionformatic, IRCCS Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Federico De Marco
- UOSD SAFU, IRCCS Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Giulia Piaggio
- UOSD SAFU, IRCCS Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Gennaro Ciliberto
- Scientific Direction, IRCCS Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Andrea Mengarelli
- UOSD Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Simona di Martino
- UOC Anatomy Pathology, Biobank IRCCS Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| |
Collapse
|
7
|
Assawakosri S, Kanokudom S, Suntronwong N, Chansaenroj J, Auphimai C, Nilyanimit P, Vichaiwattana P, Thongmee T, Duangchinda T, Chantima W, Pakchotanon P, Srimuan D, Thatsanathorn T, Klinfueng S, Sudhinaraset N, Wanlapakorn N, Mongkolsapaya J, Honsawek S, Poovorawan Y. Immunogenicity and durability against Omicron BA.1, BA.2 and BA.4/5 variants at 3-4 months after a heterologous COVID-19 booster vaccine in healthy adults with a two-doses CoronaVac vaccination. Heliyon 2024; 10:e23892. [PMID: 38226248 PMCID: PMC10788509 DOI: 10.1016/j.heliyon.2023.e23892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/01/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024] Open
Abstract
Background Several countries have authorized a booster vaccine campaign to combat the spread of COVID-19. Data on persistence of booster vaccine-induced immunity against new Omicron subvariants are still limited. Therefore, our study aimed to determine the serological immune response of COVID-19 booster after CoronaVac-priming. Methods A total of 187 CoronaVac-primed participants were enrolled and received an inactivated (BBIBP), viral vector (AZD1222) or mRNA vaccine (full-/half-dose BNT162B2, full-/half-dose mRNA-1273) as a booster dose. The persistence of humoral immunity both binding and neutralizing antibodies against wild-type and Omicron was determined on day 90-120 after booster. Results A waning of total RBD immunoglobulin (Ig) levels, anti-RBD IgG, and neutralizing antibodies against Omicron BA.1, BA.2, and BA.4/5 variants was observed 90-120 days after booster vaccination. Participants who received mRNA-1273 had the highest persistence of the immunogenicity response, followed by BNT162b2, AZD1222, and BBIBP-CorV. The responses between full and half doses of mRNA-1273 were comparable. The percentage reduction of binding antibody ranged from 50 % to 75 % among all booster vaccine. Conclusions The antibody response substantially waned after 90-120 days post-booster dose. The heterologous mRNA and the viral vector booster demonstrated higher detectable rate of humoral immune responses against the Omicron variant compared to the inactivated BBIBP booster. Nevertheless, an additional fourth dose is recommended to maintain immune response against infection.
Collapse
Affiliation(s)
- Suvichada Assawakosri
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Osteoarthritis and Musculoskeleton, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Sitthichai Kanokudom
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Osteoarthritis and Musculoskeleton, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Nungruthai Suntronwong
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jira Chansaenroj
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chompoonut Auphimai
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pornjarim Nilyanimit
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Preeyaporn Vichaiwattana
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanunrat Thongmee
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thaneeya Duangchinda
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology, National Science and Development Agency, NSTDA, Pathum Thani 12120, Thailand
| | - Warangkana Chantima
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pattarakul Pakchotanon
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology, National Science and Development Agency, NSTDA, Pathum Thani 12120, Thailand
| | - Donchida Srimuan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thaksaporn Thatsanathorn
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sirapa Klinfueng
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Natthinee Sudhinaraset
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nasamon Wanlapakorn
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Juthathip Mongkolsapaya
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Sittisak Honsawek
- Center of Excellence in Osteoarthritis and Musculoskeleton, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- FRS(T), the Royal Society of Thailand, Sanam Sueapa, Dusit, Bangkok 10330, Thailand
| |
Collapse
|
8
|
Weber T, Dähling S, Rose S, Affeldt P, Vanshylla K, Ullrich L, Gieselmann L, Teipel F, Gruell H, Di Cristanziano V, Kim DS, Georgiou G, Koch M, Kreer C, Klein F. Enhanced SARS-CoV-2 humoral immunity following breakthrough infection builds upon the preexisting memory B cell pool. Sci Immunol 2023; 8:eadk5845. [PMID: 37976348 DOI: 10.1126/sciimmunol.adk5845] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
The human immune response must continuously adapt to newly emerging SARS-CoV-2 variants. To investigate how B cells respond to repeated SARS-CoV-2 antigen exposure by Wu01 booster vaccination and Omicron breakthrough infection, we performed a molecular longitudinal analysis of the memory B cell pool. We demonstrate that a subsequent breakthrough infection substantially increases the frequency of B cells encoding SARS-CoV-2-neutralizing antibodies. However, this is not primarily attributable to maturation, but to selection of preexisting B cell clones. Moreover, broadly reactive memory B cells arose early and even neutralized highly mutated variants like XBB.1.5 that the individuals had not encountered. Together, our data show that SARS-CoV-2 immunity is largely imprinted on Wu01 over the course of multiple antigen contacts but can respond to new variants through preexisting diversity.
Collapse
Affiliation(s)
- Timm Weber
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sabrina Dähling
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Svea Rose
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Patrick Affeldt
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Kanika Vanshylla
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Leon Ullrich
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lutz Gieselmann
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Finn Teipel
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Henning Gruell
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Veronica Di Cristanziano
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Dae Sung Kim
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - George Georgiou
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA
- Department of Chemical Engineering and Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, USA
- Department of Oncology, University of Texas Dell Medical School, Austin, Texas, USA
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Center for Biochemistry, Medical Faculty and University of Cologne, Cologne, Germany
| | - Christoph Kreer
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Florian Klein
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
9
|
Nakayama EE, Shioda T. SARS-CoV-2 Related Antibody-Dependent Enhancement Phenomena In Vitro and In Vivo. Microorganisms 2023; 11:microorganisms11041015. [PMID: 37110438 PMCID: PMC10145615 DOI: 10.3390/microorganisms11041015] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Antibody-dependent enhancement (ADE) is a phenomenon in which antibodies produced in the body after infection or vaccination may enhance subsequent viral infections in vitro and in vivo. Although rare, symptoms of viral diseases are also enhanced by ADE following infection or vaccination in vivo. This is thought to be due to the production of antibodies with low neutralizing activity that bind to the virus and facilitate viral entry, or antigen-antibody complexes that cause airway inflammation, or a predominance of T-helper 2 cells among the immune system cells which leads to excessive eosinophilic tissue infiltration. Notably, ADE of infection and ADE of disease are different phenomena that overlap. In this article, we will describe the three types of ADE: (1) Fc receptor (FcR)-dependent ADE of infection in macrophages, (2) FcR-independent ADE of infection in other cells, and (3) FcR-dependent ADE of cytokine production in macrophages. We will describe their relationship to vaccination and natural infection, and discuss the possible involvement of ADE phenomena in COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Emi E Nakayama
- Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
| | - Tatsuo Shioda
- Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
10
|
Claaß LV, Mayr P, Paschold L, Weber T, Terziev D, Jehs B, Brill R, Dober J, Märkl B, Wickenhauser C, Czapiewski P, Trepel M, Claus R, Binder M. No association of malignant B-cell non-Hodgkin lymphomas with ipsilateral SARS-CoV-2 vaccination. Cancer Med 2023; 12:9313-9321. [PMID: 36775947 PMCID: PMC10166887 DOI: 10.1002/cam4.5687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/10/2023] [Accepted: 02/01/2023] [Indexed: 02/14/2023] Open
Abstract
PURPOSE SARS-CoV-2 vaccines cause acute ipsilateral lymph node swelling in an important proportion of vaccines. Thus far, no malignant lymphadenopathies have been reported in temporal context to vaccination in the ipsilateral draining lymph node areas. EXPERIMENTAL DESIGN Prompted by two cases with unilateral axillary lymphomas that occurred ipsilaterally to prior SARS-CoV-2 vaccination, we systematically retrieved all B-cell non-Hodgkin lymphomas at two German University Medical Centers diagnosed before and after introduction of SARS-CoV-2 vaccines in Germany. Available lymphoma tissue (n=19) was subjected to next-generation immunosequencing of the IGH locus. Malignant clonotypes were mined in the CoVabDab database and published data sets from 342 uninfected individuals, 55 individuals 28 days after anti-SARS-CoV-2 vaccination and 139 individuals with acute COVID-19 together encompassing over 1 million CDR3 sequences in total. RESULTS Of 313 newly diagnosed cases in the two centers and observation periods, 27 unilateral manifestations in the defined deltoid draining regions were identified. The majority thereof were diffuse large B-cell lymphomas (18 of 27 cases). Eleven unilateral cases were diagnosed in the era of SARS-CoV-2 vaccination and 16 in the control period before introduction of such vaccines. Of the 11 unilateral lymphomas that occurred during the vaccination period, ten had received a SARS-CoV-2 vaccine prior to lymphoma diagnosis. These cases were further evaluated. While left-sided were more frequent than right-sided lymphomas (19 vs 8 cases), no statistically significant association of vaccination site and laterality of the lymphoma manifestation was found. The unilateral lymphomas showed a normal range of B-cell receptors typically found in these lymphoma subtypes with no evidence for anti-SARS-CoV-2 sequences in the malignant clonotype. CONCLUSIONS Together, we found no evidence that the current SARS-CoV-2 vaccines could serve as a trigger for lymphomagenesis in the draining lymph node areas of the deltoid region used for vaccination.
Collapse
Affiliation(s)
- Luise Victoria Claaß
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Patrick Mayr
- Department of Hematology and Oncology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Lisa Paschold
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Thomas Weber
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Denis Terziev
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Bertram Jehs
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Richard Brill
- Clinic and Policlinic of Radiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Johannes Dober
- Clinic and Policlinic of Radiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Bruno Märkl
- General Pathology and Molecular Diagnostics, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Claudia Wickenhauser
- Institute of Pathology, University Hospital Halle (Saale), Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Piotr Czapiewski
- Department of Pathology, Medical Faculty, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany.,Department of Pathology Dessau Medical Centre, Institute of Pathology, Dessau, Germany
| | - Martin Trepel
- Department of Hematology and Oncology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Rainer Claus
- General Pathology and Molecular Diagnostics, Medical Faculty, University of Augsburg, Augsburg, Germany.,Comprehensive Cancer Center Augsburg (CCCA), Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Mascha Binder
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
11
|
Nicolas A, Sannier G, Dubé M, Nayrac M, Tauzin A, Painter MM, Goel RR, Laporte M, Gendron-Lepage G, Medjahed H, Williams JC, Brassard N, Niessl J, Gokool L, Morrisseau C, Arlotto P, Tremblay C, Martel-Laferrière V, Finzi A, Greenplate AR, Wherry EJ, Kaufmann DE. An extended SARS-CoV-2 mRNA vaccine prime-boost interval enhances B cell immunity with limited impact on T cells. iScience 2023; 26:105904. [PMID: 36594081 PMCID: PMC9797215 DOI: 10.1016/j.isci.2022.105904] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/10/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Spacing the first two doses of SARS-CoV-2 mRNA vaccines beyond 3-4 weeks raised initial concerns about vaccine efficacy. While studies have since shown that long-interval regimens induce robust antibody responses, their impact on B and T cell immunity is poorly known. Here, we compare SARS-CoV-2 naive donors B and T cell responses to two mRNA vaccine doses administered 3-4 versus 16 weeks apart. After boost, the longer interval results in a higher magnitude and a more mature phenotype of RBD-specific B cells. While the two geographically distinct cohorts present quantitative and qualitative differences in T cell responses at baseline and after priming, the second dose led to convergent features with overall similar magnitude, phenotype, and function of CD4+ and CD8+ T cell responses at post-boost memory time points. Therefore, compared to standard regimens, a 16-week interval has a favorable impact on the B cell compartment but minimally affects T cell immunity.
Collapse
Affiliation(s)
- Alexandre Nicolas
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9 Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Gérémy Sannier
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9 Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Mathieu Dubé
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9 Canada
| | - Manon Nayrac
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9 Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Alexandra Tauzin
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9 Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Mark M. Painter
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Immune Health®, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rishi R. Goel
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Immune Health®, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | - Justine C. Williams
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Julia Niessl
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9 Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Laurie Gokool
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9 Canada
| | | | | | - Cécile Tremblay
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9 Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Valérie Martel-Laferrière
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9 Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9 Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Allison R. Greenplate
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Immune Health®, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - E. John Wherry
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Immune Health®, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel E. Kaufmann
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9 Canada
- Département de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Division of Infectious Diseases, Department of Medicine, University Hospital of Lausanne and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
12
|
Azzi L, Dalla Gasperina D, Veronesi G, Shallak M, Maurino V, Baj A, Gianfagna F, Cavallo P, Dentali F, Tettamanti L, Maggi F, Maffioli LS, Tagliabue A, Accolla RS, Forlani G. Mucosal immune response after the booster dose of the BNT162b2 COVID-19 vaccine. EBioMedicine 2023; 88:104435. [PMID: 36628844 PMCID: PMC9828819 DOI: 10.1016/j.ebiom.2022.104435] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND To date, only a few studies reported data regarding the development of mucosal immune response after the BNT162b2-booster vaccination. METHODS Samples of both serum and saliva of 50 healthcare workers were collected at the day of the booster dose (T3) and after two weeks (T4). Anti-S1-protein IgG and IgA antibody titres and the neutralizing antibodies against the Wuhan wild-type Receptor-Binding Domain in both serum and saliva were measured by quantitative and competitive ELISA, respectively. Data were compared with those recorded after the primary vaccination cycle (T2). Neutralizing antibodies against the variants of concern were measured in those individuals with anti-Wuhan neutralizing antibodies in their saliva. FINDINGS After eight months from the second dose, IgG decreased in both serum (T2GMC: 23,838.5 ng/ml; T3GMC: 1473.8 ng/ml) and saliva (T2GMC: 12.9 ng/ml; T3GMC: 0.3 ng/ml). Consistently, serum IgA decreased (T2GMC: 48.6 ng/ml; T3GMC: 6.4 ng/ml); however, salivary IgA showed a different behaviour and increased (T2GMC: 0.06 ng/ml; T3GMC: 0.41 ng/ml), indicating a delayed activation of mucosal immunity. The booster elicited higher titres of both IgG and IgA when compared with the primary cycle, in both serum (IgG T4GMC: 98,493.9 ng/ml; IgA T4GMC: 187.5 ng/ml) and saliva (IgG T4GMC: 21.9 ng/ml; IgA T4GMC: 0.65 ng/ml). Moreover, the booster re-established the neutralizing activity in the serum of all individuals, not only against the Wuhan wild-type antigen (N = 50; INH: 91.6%) but also against the variants (Delta INH: 91.3%; Delta Plus INH: 89.8%; Omicron BA.1 INH: 85.1%). By contrast, the salivary neutralizing activity was high against the Wuhan antigen in 72% of individuals (N = 36, INH: 62.2%), but decreased against the variants, especially against the Omicron BA.1 variant (Delta N = 27, INH: 43.1%; Delta Plus N = 24, INH: 35.2%; Omicron BA.1 N = 4; INH: 4.7%). This was suggestive for a different behaviour of systemic immunity observed in serum with respect to mucosal immunity described in saliva (Wald chi-square test, 3 df of interaction between variants and sample type = 308.2, p < 0.0001). INTERPRETATION The BNT162b2-booster vaccination elicits a strong systemic immune response but fails in activating an effective mucosal immunity against the Omicron BA.1 variant. FUNDING This work was funded by the Department of Medicine and Surgery, University of Insubria, and supported by Fondazione Umberto Veronesi (COVID-19 Insieme per la ricerca di tutti, 2020), Italy.
Collapse
Affiliation(s)
- Lorenzo Azzi
- Azienda Socio-Sanitaria Territoriale dei Sette Laghi, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Daniela Dalla Gasperina
- Azienda Socio-Sanitaria Territoriale dei Sette Laghi, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Giovanni Veronesi
- Research Centre in Epidemiology and Preventive Medicine (EPIMED), Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Mariam Shallak
- Laboratory of General Pathology and Immunology “Giovanna Tosi”, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Vittorio Maurino
- Azienda Socio-Sanitaria Territoriale dei Sette Laghi, Department of Biotechnologies and Life Sciences, University of Insubria, Varese, Italy
| | - Andreina Baj
- Azienda Socio-Sanitaria Territoriale dei Sette Laghi, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Francesco Gianfagna
- Research Centre in Epidemiology and Preventive Medicine (EPIMED), Department of Medicine and Surgery, University of Insubria, Varese, Italy,Mediterranea Cardiocentro, Naples, Italy
| | - Pierpaolo Cavallo
- Department of Physics, University of Salerno, Fisciano (SA), Italy,Institute for Complex Systems, National Research Council, Rome, Italy
| | - Francesco Dentali
- Azienda Socio-Sanitaria Territoriale dei Sette Laghi, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Lucia Tettamanti
- Azienda Socio-Sanitaria Territoriale dei Sette Laghi, Department of Biotechnologies and Life Sciences, University of Insubria, Varese, Italy
| | - Fabrizio Maggi
- Azienda Socio-Sanitaria Territoriale dei Sette Laghi, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | | | - Angelo Tagliabue
- Azienda Socio-Sanitaria Territoriale dei Sette Laghi, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Roberto Sergio Accolla
- Laboratory of General Pathology and Immunology “Giovanna Tosi”, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Greta Forlani
- Laboratory of General Pathology and Immunology "Giovanna Tosi", Department of Medicine and Surgery, University of Insubria, Varese, Italy.
| |
Collapse
|
13
|
Assawakosri S, Kanokudom S, Chansaenroj J, Suntronwong N, Auphimai C, Nilyanimit P, Vichaiwattana P, Thongmee T, Duangchinda T, Chantima W, Pakchotanon P, Srimuan D, Thatsanatorn T, Klinfueng S, Sudhinaraset N, Mongkolsapaya J, Wanlapakorn N, Honsawek S, Poovorawan Y. Persistence of immunity against Omicron BA.1 and BA.2 variants following homologous and heterologous COVID-19 booster vaccines in healthy adults after a two-dose AZD1222 vaccination. Int J Infect Dis 2022; 122:793-801. [PMID: 35863731 PMCID: PMC9293855 DOI: 10.1016/j.ijid.2022.07.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVES The SARS-CoV-2 Omicron variant presents numerous mutations potentially able to evade neutralizing antibodies (NAbs) elicited by COVID-19 vaccines. Therefore, this study aimed to provide evidence on a heterologous booster strategy to overcome the waning immunity against Omicron variants. METHODS Participants who completed the Oxford/AstraZeneca (hereafter AZD1222) vaccine dose for 5-7 months were enrolled. The reactogenicity and persistence of immunogenicity in both humoral and cellular response after a homologous or heterologous booster with the AZD1222 and messenger RNA (mRNA) vaccines (BNT162b2, full, or half-dose mRNA-1273) administered 6 months after primary vaccination were determined. RESULTS A total of 229 individuals enrolled, and waning of immunity was observed 5-7 months after the AZD1222-primed vaccinations. Total receptor-binding domain (RBD) immunoglobulin (Ig) levels, anti-RBD IgG, and focus reduction neutralization test against Omicron BA.1 and BA.2 variants and T cell response peaked at 14-28 days after booster vaccination. Both the full and half dose of mRNA-1273 induced the highest response, followed by BNT162b2 and AZD1222. At 90 days, the persistence of immunogenicity was observed among all mRNA-boosted individuals. Adverse events were acceptable for all vaccines. CONCLUSION A heterologous mRNA booster provided a significantly superior boost of binding and NAbs levels against the Omicron variant compared with a homologous booster in individuals with AZD1222-primed vaccinations.
Collapse
Affiliation(s)
- Suvichada Assawakosri
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Osteoarthritis and Musculoskeletal, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Sitthichai Kanokudom
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Osteoarthritis and Musculoskeletal, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Jira Chansaenroj
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nungruthai Suntronwong
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chompoonut Auphimai
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pornjarim Nilyanimit
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Preeyaporn Vichaiwattana
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanunrat Thongmee
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thaneeya Duangchinda
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Development Agency, NSTDA, Pathum Thani 12120, Thailand
| | - Warangkana Chantima
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pattarakul Pakchotanon
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Development Agency, NSTDA, Pathum Thani 12120, Thailand
| | - Donchida Srimuan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thaksaporn Thatsanatorn
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sirapa Klinfueng
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Natthinee Sudhinaraset
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Juthathip Mongkolsapaya
- Wellcome Center for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Nasamon Wanlapakorn
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sittisak Honsawek
- Center of Excellence in Osteoarthritis and Musculoskeletal, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, 10330, Thailand.
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand; Fellow of Royal Society of Thailand (FRS[T]), the Royal Society of Thailand, Sanam Sueapa, Dusit, Bangkok, Thailand.
| |
Collapse
|
14
|
Schultheiß C, Willscher E, Paschold L, Gottschick C, Klee B, Henkes SS, Bosurgi L, Dutzmann J, Sedding D, Frese T, Girndt M, Höll JI, Gekle M, Mikolajczyk R, Binder M. The IL-1β, IL-6, and TNF cytokine triad is associated with post-acute sequelae of COVID-19. Cell Rep Med 2022; 3:100663. [PMID: 35732153 PMCID: PMC9214726 DOI: 10.1016/j.xcrm.2022.100663] [Citation(s) in RCA: 211] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/28/2022] [Accepted: 05/25/2022] [Indexed: 02/07/2023]
Abstract
Post-acute sequelae of COVID-19 (PASC) is emerging as global problem with unknown molecular drivers. Using a digital epidemiology approach, we recruited 8,077 individuals to the cohort study for digital health research in Germany (DigiHero) to respond to a basic questionnaire followed by a PASC-focused survey and blood sampling. We report the first 318 participants, the majority thereof after mild infections. Of those, 67.8% report PASC, predominantly consisting of fatigue, dyspnea, and concentration deficit, which persists in 60% over the mean 8-month follow-up period and resolves independently of post-infection vaccination. PASC is not associated with autoantibodies, but with elevated IL-1β, IL-6, and TNF plasma levels, which we confirm in a validation cohort with 333 additional participants and a longer time from infection of 10 months. Blood profiling and single-cell data from early infection suggest the induction of these cytokines in COVID-19 lung pro-inflammatory macrophages creating a self-sustaining feedback loop. We report a post-COVID-19 digital epidemiology study with biomarker analysis (n = 651) PASC persists in 60% of participants up to 24 months after mild COVID-19 PASC is associated with high IL-1β, IL-6, and TNF levels but not autoantibodies Overactivated monocytes/macrophages are likely the source of cytokine production
Collapse
Affiliation(s)
- Christoph Schultheiß
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Edith Willscher
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Lisa Paschold
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Cornelia Gottschick
- Institute for Medical Epidemiology, Biometrics and Informatics (IMEBI), Interdisciplinary Center for Health Sciences, Medical School of the Martin-Luther University Halle-Wittenberg, Magdeburger Strasse 8, 06097 Halle (Saale), Germany
| | - Bianca Klee
- Institute for Medical Epidemiology, Biometrics and Informatics (IMEBI), Interdisciplinary Center for Health Sciences, Medical School of the Martin-Luther University Halle-Wittenberg, Magdeburger Strasse 8, 06097 Halle (Saale), Germany
| | - Svenja-Sibylla Henkes
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Lidia Bosurgi
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany; Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Strasse 74, 20359 Hamburg, Germany
| | - Jochen Dutzmann
- Mid-German Heart Center, Department of Cardiology and Intensive Care Medicine, University Hospital, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Daniel Sedding
- Mid-German Heart Center, Department of Cardiology and Intensive Care Medicine, University Hospital, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Thomas Frese
- Institute of General Practice and Family Medicine, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 8, 06112 Halle (Saale), Germany
| | - Matthias Girndt
- Department of Internal Medicine II, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Jessica I Höll
- Pediatric Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Michael Gekle
- Julius Bernstein-Institute of Physiology, Faculty of Medicine, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, 06110 Halle (Saale), Germany
| | - Rafael Mikolajczyk
- Institute for Medical Epidemiology, Biometrics and Informatics (IMEBI), Interdisciplinary Center for Health Sciences, Medical School of the Martin-Luther University Halle-Wittenberg, Magdeburger Strasse 8, 06097 Halle (Saale), Germany
| | - Mascha Binder
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany.
| |
Collapse
|