1
|
Zhao W, Bai B, Li H, Feng Y, Sun J, Fang Y, Zheng P, Zhang G. The role of oxidative stress-related genes in idiopathic pulmonary fibrosis. Sci Rep 2025; 15:5954. [PMID: 39966531 DOI: 10.1038/s41598-025-89770-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 02/07/2025] [Indexed: 02/20/2025] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an age-related interstitial lung disease of unknown cause. Oxidative stress, an imbalance between oxidants and antioxidants, is implicated in IPF pathogenesis and prognosis but needs further study. We used transcriptome sequencing data (GSE70866) and oxidative stress-related genes from GeneCards. A prognostic risk model for IPF patients was constructed using LASSO. Functional and pathway differences were analyzed between risk score groups, along with comparisons of immune cells and functions. An IPF rat model with vitamin D3 (VD3) intervention was also established. Finally, we used IL-4 to induce M2 macrophages to explore the mechanism of action of CCL2. We identified 483 DEGs and 50 oxidative stress-related DEGs (OSDEGs). Single-factor COX regression identified 34 prognostic OSDEGs, and LASSO identified an 8-gene signature for the risk model. The high-risk group had more CD8 + T cells, macrophages, APC costimulation, and cytokine-cytokine receptor activity. CCL2 was significantly correlated with macrophages in IPF. VD3 inhibited the TGF-β signaling pathway and reduced macrophage M2 infiltration in the rat model. In the IL-4 induced M2 macrophage model, we found that M2 macrophages produced more CCL2, and the production of CCL2 was significantly reduced after VD3 intervention. We established prognostic markers of eight oxidative stress-related genes. The risk score effectively predicts adverse outcomes in IPF. VD3 may alleviate IPF by reducing macrophage infiltration and inhibiting the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Wenfei Zhao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, People's Republic of China
| | - Bing Bai
- Fuhua Street Branch of the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 453000, Henan, People's Republic of China
- Henan Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450002, People's Republic of China
| | - Hongyun Li
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 453000, Henan, People's Republic of China
| | - Yonghai Feng
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 453000, Henan, People's Republic of China
| | - Jun Sun
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yang Fang
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Pengyuan Zheng
- Henan Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450002, People's Republic of China.
| | - Guojun Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, People's Republic of China.
| |
Collapse
|
2
|
Luo X, Li C, Qin G. Multiple machine learning-based integrations of multi-omics data to identify molecular subtypes and construct a prognostic model for HNSCC. Hereditas 2025; 162:17. [PMID: 39910672 PMCID: PMC11800565 DOI: 10.1186/s41065-025-00380-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/27/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Immunotherapy has introduced new breakthroughs in improving the survival of head and neck squamous cell carcinoma (HNSCC) patients, yet drug resistance remains a critical challenge. Developing personalized treatment strategies based on the molecular heterogeneity of HNSCC is essential to enhance therapeutic efficacy and prognosis. METHODS We integrated four HNSCC datasets (TCGA-HNSCC, GSE27020, GSE41613, and GSE65858) from TCGA and GEO databases. Using 10 multi-omics consensus clustering algorithms via the MOVICS package, we identified two molecular subtypes (CS1 and CS2) and validated their stability. A machine learning-driven prognostic signature was constructed by combining 101 algorithms, ultimately selecting 30 prognosis-related genes (PRGs) with the Elastic Net model. This signature was further linked to immune infiltration, functional pathways, and therapeutic sensitivity. RESULTS CS1 exhibited superior survival outcomes in both TCGA and META-HNSCC cohorts. The PRG-based signature stratified patients into low- and high-risk groups, with the low-risk group showing prolonged survival, enhanced immune cell infiltration (B cells, T cells, monocytes), and activated immune functions (cytolytic activity, T cell co-stimulation). High-risk patients were more sensitive to radiotherapy and chemotherapy (e.g., Cisplatin, 5-Fluorouracil), while low-risk patients responded better to immunotherapy and targeted therapies. CONCLUSION Our study delineates two molecular subtypes of HNSCC and establishes a robust prognostic model using multi-omics data and machine learning. These findings provide a framework for personalized treatment selection, offering clinical insights to optimize therapeutic strategies for HNSCC patients.
Collapse
Affiliation(s)
- Xiaoqin Luo
- Department of Otolaryngology, University of Electronic Science and Technology of China, Chengdu, 611731, China
- Department of Otolaryngology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Department of Otolaryngology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
- Head and Neck Surgery Department, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Chao Li
- Department of Otolaryngology, University of Electronic Science and Technology of China, Chengdu, 611731, China.
- Department of Otolaryngology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
- Head and Neck Surgery Department, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Gang Qin
- Department of Otolaryngology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
3
|
Liao K, Zhu M, Guo L, Gao Z, Cheng J, Sun B, Qian Y, Lin B, Zhang J, Qian T, Jiang Y, Xu Y, Zhong Q, Wang X. Assessment of prognosis and responsiveness to immunotherapy in colorectal cancer patients based on the level of immune cell infiltration. Front Immunol 2025; 16:1514238. [PMID: 39963131 PMCID: PMC11830669 DOI: 10.3389/fimmu.2025.1514238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/14/2025] [Indexed: 02/20/2025] Open
Abstract
Objective To build a new prognostic risk assessment model based on immune cell co-expression networks for predicting overall survival and evaluating the efficacy of immunotherapy for colon cancer patients. Methods The Cancer Genome Atlas (TCGA) database was used to obtain mRNA expression profiling data, clinical information, and somatic mutation data from colorectal cancer patients. The degree of tumor immune cell infiltration of the samples was analyzed using the CIBERSORT algorithm. Co-expression of immune-related genes was analyzed using weighted correlation network analysis (WGCNA) and gene modules were identified. Prognosis-related genes were screened and models were constructed using LASSO-Cox analysis. The models were validated by survival analysis. The prognostic potential of the models was quantitatively assessed using Cox regression analysis and the development of column line plots. Immunotherapy sensitivity analysis was performed using CIBERSORT and TIMER algorithms. Gene biofunction analysis was performed using Gene set enrichment analysis (GSEA) and Gene set variation analysis (GSVA). And the chemotherapeutic response to different drugs was assessed. Results We established a novel prognostic model utilizing the WGCNA method, which demonstrated robust predictive accuracy for patient survival. The high-risk subgroup in our model exhibited elevated immune cell infiltration coupled with a higher tumor mutation burden, but the difference in response to immunotherapy was not significant compared to the low-risk group. Furthermore, we identified distinct chemotherapy responses to 39 drugs between these risk subgroups. Conclusion This study revealed a significant correlation between high levels of immune infiltration and unfavorable prognosis in patients with colon cancer. Furthermore, an accurate prognostic risk prediction model based on the co-expression of relevant genes by immune cells was developed, enabling precise prediction of survival of colon cancer patients. These findings offer valuable insights for accurate prognostication and comprehensive management of individuals diagnosed with colon cancer.
Collapse
Affiliation(s)
- Kaili Liao
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Minqi Zhu
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Lei Guo
- The 2 Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zijun Gao
- The 2 Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jinting Cheng
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Bing Sun
- Queen Mary College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yihui Qian
- The 2 Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Bingying Lin
- Queen Mary College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jingyan Zhang
- Queen Mary College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Tingyi Qian
- The 1 Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yixin Jiang
- Queen Mary College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yanmei Xu
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Qionghui Zhong
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiaozhong Wang
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
4
|
Wu X, Liu B, Deng SZ, Xiong T, Dai L, Cheng B. Disulfidptosis-related immune patterns predict prognosis and characterize the tumor microenvironment in oral squamous cell carcinoma. BMC Oral Health 2025; 25:180. [PMID: 39894803 PMCID: PMC11789412 DOI: 10.1186/s12903-024-05279-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/29/2024] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND Establishing a prognostic risk model based on immunological and disulfidptosis signatures enables precise prognosis prediction of oral squamous cell carcinoma (OSCC). METHODS Differentially expressed immune and disulfidptosis genes were identified in OSCC and normal tissues. We examined the model's clinical applicability and its relationship to immune cell infiltration. Additionally, the risk score, ssGSEA, ESTIMATE, and CIBERSORT were used to evaluate the intrinsic molecular subtypes, immunological checkpoints, abundances of tumor-infiltrating immune cell types and proportions between the two risk groups. GO-KEGG and GSVA analyses were performed to identify enriched pathways. RESULTS We analyzed the correlation immune genes based on the 14 disulfidptosis-related genes, and found 379 disulfidptosis-related immune genes (DRIGs). After univariate Cox regression we obtained 30 DRIGs and least absolute shrinkage and selection operator (LASSO) regression to reduce the number of genes to 16. Finally we created a nine-DRIGs risk model, of which four were upregulated and five were downregulated. The analysis results showed that disulfidptosis was tightly related to immune cells, immunological-related pathways, the tumor microenvironment (TME), immune checkpoints, human leukocyte antigen (HLA), and tumor mutational burden (TMB). The nomogram, integrating the risk score and clinical factors, accurately predicted overall survival. CONCLUSIONS This novel risk model highlights the role of disulfidptosis-related immune genes in OSCC prognosis. With this model, we can more accurately predict the prognosis of patients with OSCC, as well as assess the potential effects of their TME and immunotherapy.
Collapse
Affiliation(s)
- Xuechen Wu
- Department of Stomatology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Boxin Liu
- Department of Blood Transfusion, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Shi-Zhou Deng
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Tengteng Xiong
- Department of Stomatology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Lin Dai
- Department of Stomatology, Wuhan No.1 Hospital, Wuhan, China.
| | - Bo Cheng
- Department of Stomatology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China.
| |
Collapse
|
5
|
Li C, Lv Z, Li C, Yang S, Liu F, Zhang T, Wang L, Zhang W, Deng R, Xu G, Luo H, Zhao Y, Lv J, Zhang C. Heterogeneity analysis and prognostic model construction of HPV negative oral squamous cell carcinoma T cells using ScRNA-seq and bulk-RNA analysis. Funct Integr Genomics 2025; 25:25. [PMID: 39849233 PMCID: PMC11759468 DOI: 10.1007/s10142-024-01525-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/08/2024] [Accepted: 12/31/2024] [Indexed: 01/25/2025]
Abstract
BACKGROUND T cells are involved in every stage of tumor development and significantly influence the tumor microenvironment (TME). Our objective was to assess T-cell marker gene expression profiles, develop a predictive risk model for human papilloma virus (HPV)-negative oral squamous cell carcinoma (OSCC) utilizing these genes, and examine the correlation between the risk score and the immunotherapy response. METHODS We acquired scRNA-seq data for HPV-negative OSCC from the GEO datasets. We performed cell‒cell communication, trajectory, and pathway enrichment analyses of T-cell-associated genes. In addition, we constructed and validated a T-cell-associated gene prognostic model for HPV-negative OSCC patients using TCGA and GEO data and assessed the immune infiltration status of HPV-negative OSCC patients .qRT-PCR was used to detect the expression level of prognosis-related genes in different risk groups. RESULTS ScRNA-seq was conducted on 28,000 cells derived from 14 HPV-negative OSCC samples and 6 normal samples. We identified 4,635 T cells from these cells and identified 774 differentially expressed genes(DEGs) associated with T cells across five distinct T-cell subtypes. Through the integration of bulk-RNAseq data, we established a prognostic model based on DEGs related to T cells. By separating patients into high-risk and low-risk groups according to these prognostic related genes, we can accurately predict their survival rates and the immune infiltration status of the TME.qRT-PCR results showed that compared with the patients of low risk group, the expression of PMEPA1, SH2D2A, SMS and PRDX4 were significantly up-regulated in high risk group. CONCLUSION This study provides a resource for understanding the heterogeneity of T cells in HPV-negative OSCC patients and associated prognostic risk models. It provides new insights for predicting survival and level of immune infiltration in patients with HPV-negative OSCC.
Collapse
Affiliation(s)
- Chunyan Li
- Department of Oncology, the First People's Hospital of Qujing City/the Qujing Affiliated Hospital of Kunming Medical University, 1 Yuanlin Road, Qujing, Yunnan, China
| | - Zengbo Lv
- Department of Oncology, the First People's Hospital of Qujing City/the Qujing Affiliated Hospital of Kunming Medical University, 1 Yuanlin Road, Qujing, Yunnan, China
| | - Chongxin Li
- Department of Oncology, the First People's Hospital of Qujing City/the Qujing Affiliated Hospital of Kunming Medical University, 1 Yuanlin Road, Qujing, Yunnan, China
| | - Shixuan Yang
- Department of Oncology, the First People's Hospital of Qujing City/the Qujing Affiliated Hospital of Kunming Medical University, 1 Yuanlin Road, Qujing, Yunnan, China
| | - Feineng Liu
- Department of Oncology, the First People's Hospital of Qujing City/the Qujing Affiliated Hospital of Kunming Medical University, 1 Yuanlin Road, Qujing, Yunnan, China
| | - Tengfei Zhang
- Department of Oncology, the First People's Hospital of Qujing City/the Qujing Affiliated Hospital of Kunming Medical University, 1 Yuanlin Road, Qujing, Yunnan, China
| | - Lin Wang
- Department of Oncology, the First People's Hospital of Qujing City/the Qujing Affiliated Hospital of Kunming Medical University, 1 Yuanlin Road, Qujing, Yunnan, China
| | - Wen Zhang
- Department of Oncology, the First People's Hospital of Qujing City/the Qujing Affiliated Hospital of Kunming Medical University, 1 Yuanlin Road, Qujing, Yunnan, China
| | - Ruoyu Deng
- Department of Oncology, the First People's Hospital of Qujing City/the Qujing Affiliated Hospital of Kunming Medical University, 1 Yuanlin Road, Qujing, Yunnan, China
| | - Guoyu Xu
- Department of Oncology, the First People's Hospital of Qujing City/the Qujing Affiliated Hospital of Kunming Medical University, 1 Yuanlin Road, Qujing, Yunnan, China
| | - Huan Luo
- Department of Oncology, the First People's Hospital of Qujing City/the Qujing Affiliated Hospital of Kunming Medical University, 1 Yuanlin Road, Qujing, Yunnan, China
| | - Yinhong Zhao
- Department of Oncology, the First People's Hospital of Qujing City/the Qujing Affiliated Hospital of Kunming Medical University, 1 Yuanlin Road, Qujing, Yunnan, China
| | - Jialing Lv
- Department of Oncology, the First People's Hospital of Qujing City/the Qujing Affiliated Hospital of Kunming Medical University, 1 Yuanlin Road, Qujing, Yunnan, China.
| | - Chao Zhang
- Department of Oncology, the First People's Hospital of Qujing City/the Qujing Affiliated Hospital of Kunming Medical University, 1 Yuanlin Road, Qujing, Yunnan, China.
| |
Collapse
|
6
|
Wang J, Yan S. Integration of histone modification-based risk signature with drug sensitivity analysis reveals novel therapeutic strategies for lower-grade glioma. Front Pharmacol 2025; 15:1523779. [PMID: 39872055 PMCID: PMC11770009 DOI: 10.3389/fphar.2024.1523779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/18/2024] [Indexed: 01/29/2025] Open
Abstract
Background Lower-grade glioma (LGG) exhibits significant heterogeneity in clinical outcomes, and current prognostic markers have limited predictive value. Despite the growing recognition of histone modifications in tumor progression, their role in LGG remains poorly understood. This study aimed to develop a histone modification-based risk signature and investigate its relationship with drug sensitivity to guide personalized treatment strategies. Methods We performed single-cell RNA sequencing analysis on LGG samples (n = 4) to characterize histone modification patterns. Through integrative analysis of TCGA-LGG (n = 513) and CGGA datasets (n = 693 and n = 325), we constructed a histone modification-related risk signature (HMRS) using machine learning approaches. The model's performance was validated in multiple independent cohorts. We further conducted comprehensive analyses of molecular mechanisms, immune microenvironment, and drug sensitivity associated with the risk stratification. Results We identified distinct histone modification patterns across five major cell populations in LGG and developed a robust 20-gene HMRS from 129 candidate genes that effectively stratified patients into high- and low-risk groups with significantly different survival outcomes (training set: AUC = 0.77, 0.73, and 0.71 for 1-, 3-, and 5-year survival; P < 0.001). Integration of HMRS with clinical features further improved prognostic accuracy (C-index >0.70). High-risk tumors showed activation of TGF-β and IL6-JAK-STAT3 signaling pathways, and distinct mutation profiles including TP53 (63% vs 28%), IDH1 (68% vs 85%), and ATRX (46% vs 20%) mutations. The high-risk group demonstrated significantly elevated immune and stromal scores (P < 0.001), with distinct patterns of immune cell infiltration, particularly in memory CD4+ T cells (P < 0.001) and CD8+ T cells (P = 0.001). Drug sensitivity analysis revealed significant differential responses to six therapeutic agents including Temozolomide and targeted drugs (P < 0.05). Conclusion Our study establishes a novel histone modification-based prognostic model that not only accurately predicts LGG patient outcomes but also reveals potential therapeutic targets. The identified associations between risk stratification and drug sensitivity provide valuable insights for personalized treatment strategies. This integrated approach offers a promising framework for improving LGG patient care through molecular-based risk assessment and treatment selection.
Collapse
Affiliation(s)
- Jingyuan Wang
- Department of Neurological Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shuai Yan
- Department of Neurological Function Examination, Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
7
|
Mohd Faizal NF, Shai S, Savaliya BP, Karen-Ng LP, Kumari R, Kumar R, Vincent-Chong VK. A Narrative Review of Prognostic Gene Signatures in Oral Squamous Cell Carcinoma Using LASSO Cox Regression. Biomedicines 2025; 13:134. [PMID: 39857718 PMCID: PMC11759772 DOI: 10.3390/biomedicines13010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/28/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common malignancies of the head and neck squamous cell carcinoma (HNSCC). HNSCC is recognized as the eighth most commonly occurring cancer globally in men. It is essential to distinguish between cancers arising in the head and neck regions due to significant differences in their etiologies, treatment approaches, and prognoses. As the Cancer Genome Atlas (TCGA) dataset is available in HNSCC, the survival analysis prognosis of OSCC patients based on the TCGA dataset for discovering gene expression-based prognostic biomarkers is limited. To address this paucity, we aimed to provide comprehensive evidence by recruiting studies that have reported new biomarkers/signatures to establish a prognostic model to predict the survival of OSCC patients. Using PubMed search, we have identified 34 studies that have been using the least absolute shrinkage and selection operator (LASSO)-based Cox regression analyses to establish signature prognosis that related to different pathways in OSCC from the past 4 years. Our review was focused on summarizing these signatures and implications for targeted therapy using FDA-approved drugs. Furthermore, we conducted an analysis of the LASSO Cox regression gene signatures. Our findings revealed 13 studies that correlated a greater number of regulatory T cells (Tregs) cells in protective gene signatures with increased recurrence-free and overall survival rates. Conversely, two studies displayed an opposing trend in cases of OSCC. We will also explore how the dysregulation of these signatures impacts immune status, promoting tumor immune evasion or, conversely, enhancing immune surveillance. Overall, this review will provide new insight for future anti-cancer therapies based on the potential gene that is associated with poor prognosis in OSCC.
Collapse
Affiliation(s)
- Nur Fatinazwa Mohd Faizal
- Oral Cancer Research & Coordinating Centre (OCRCC), Faculty of Dentistry, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (N.F.M.F.); (L.P.K.-N.)
| | - Saptarsi Shai
- Baylor College of Medicine, Texas Children’s Hospital, Houston, TX 77030, USA;
| | - Bansi P. Savaliya
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55901, USA;
| | - Lee Peng Karen-Ng
- Oral Cancer Research & Coordinating Centre (OCRCC), Faculty of Dentistry, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (N.F.M.F.); (L.P.K.-N.)
| | - Rupa Kumari
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Rahul Kumar
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Vui King Vincent-Chong
- Center for Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
8
|
Liu C, Li H, Hu X, Yan M, Fu Z, Zhang H, Wang Y, Du N. Spermine Synthase : A Potential Prognostic Marker for Lower-Grade Gliomas. J Korean Neurosurg Soc 2025; 68:75-96. [PMID: 39492653 PMCID: PMC11725456 DOI: 10.3340/jkns.2024.0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 11/05/2024] Open
Abstract
OBJECTIVE The objective of this study was to assess the relationship between spermine synthase (SMS) expression, tumor occurrence, and prognosis in lower-grade gliomas (LGGs). METHODS A total of 523 LGG patients and 1152 normal brain tissues were included as controls. Mann-Whitney U test was performed to evaluate SMS expression in the LGG group. Functional annotation analysis was conducted to explore the biological processes associated with high SMS expression. Immune cell infiltration analysis was performed to examine the correlation between SMS expression and immune cell types. The association between SMS expression and clinical and pathological features was assessed using Spearman correlation analysis. In vitro experiments were conducted to investigate the effects of overexpressing or downregulating SMS on cell proliferation, apoptosis, migration, invasion, and key proteins in the protein kinase B (AKT)/epithelialmesenchymal transition signaling pathway. RESULTS The study revealed a significant upregulation of SMS expression in LGGs compared to normal brain tissues. High SMS expression was associated with certain clinical and pathological features, including older age, astrocytoma, higher World Health Organization grade, poor disease-specific survival, disease progression, non-1p/19q codeletion, and wild-type isocitrate dehydrogenase. Cox regression analysis identified SMS as a risk factor for overall survival. Bioinformatics analysis showed enrichment of eosinophils, T cells, and macrophages in LGG samples, while proportions of dendritic (DC) cells, plasmacytoid DC (pDC) cells, and CD8+ T cells were decreased. CONCLUSION High SMS expression in LGGs may promote tumor occurrence through cellular proliferation and modulation of immune cell infiltration. These findings suggest the prognostic value of SMS in predicting clinical outcomes for LGG patients.
Collapse
Affiliation(s)
- Chen Liu
- Medical School of Chinese PLA, Beijing, China
- Department of Radiotherapy, Air Force Medical Center, The Fourth Military Medical University, PLA, Beijing, China
- Department of Oncology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hongqi Li
- Department of Radiotherapy, Air Force Medical Center, The Fourth Military Medical University, PLA, Beijing, China
| | - Xiaolong Hu
- Department of Radiation Oncology, Beijing Geriatric Hospital, Beijing, China
| | - Maohui Yan
- Department of Radiotherapy, Air Force Medical Center, The Fourth Military Medical University, PLA, Beijing, China
| | - Zhiguang Fu
- Department of Radiotherapy, Air Force Medical Center, The Fourth Military Medical University, PLA, Beijing, China
| | - Hengheng Zhang
- Department of Radiotherapy, Air Force Medical Center, The Fourth Military Medical University, PLA, Beijing, China
| | - Yingjie Wang
- Department of Radiotherapy, Air Force Medical Center, The Fourth Military Medical University, PLA, Beijing, China
| | - Nan Du
- Medical School of Chinese PLA, Beijing, China
- Department of Oncology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
9
|
Wang J, Cui Z, Song Q, Yang K, Chen Y, Peng S. Integrating single-cell RNA-seq and bulk RNA-seq to construct a neutrophil prognostic model for predicting prognosis and immune response in oral squamous cell carcinoma. Hum Genomics 2024; 18:140. [PMID: 39726033 DOI: 10.1186/s40246-024-00712-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is an aggressive malignancy with poor prognosis. Neutrophil infiltration has been associated with unfavorable outcomes in OSCC, but the underlying molecular mechanisms remain unclear. METHODS This study integrated single-cell transcriptomics (scRNA-seq) with bulk RNA-seq data to analyze neutrophil infiltration patterns in OSCC and identify key gene modules using weighted gene co-expression network analysis (hdWGCNA). A prognostic model was developed based on univariate and Lasso-Cox regression analyses, stratifying patients into high- and low-risk groups. Immune landscape and drug sensitivity analyses were conducted to explore group-specific differences. Additionally, Mendelian randomization analysis was employed to identify genes causally related to OSCC progression. RESULTS Several key pathways associated with neutrophil interactions in OSCC progression were identified, leading to the construction of a prognostic model based on significant module genes. The model demonstrated strong predictive performance in distinguishing survival rates between high- and low-risk groups. Immune landscape analysis revealed significant differences in cell infiltration patterns and TIDE scores between the groups. Drug sensitivity analysis highlighted differences in drug responsiveness between high- and low-risk groups. CONCLUSION This study elucidates the critical role of neutrophils and their associated gene modules in OSCC progression. The prognostic model provides a novel reference for patient stratification and targeted therapy. These findings offer potential new targets for OSCC diagnosis, prognosis, and immunotherapy.
Collapse
Affiliation(s)
- Jinhang Wang
- Department of Stomatology, The Second Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Zifeng Cui
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qiwen Song
- Department of Stomatology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Kaicheng Yang
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yanping Chen
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shixiong Peng
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
10
|
Lian H, Wang J, Yan S, Chen K, Jin L. An integrative analysis based on multiple cell death patterns identifies an immunosuppressive subtype and establishes a prognostic signature in lower-grade glioma. Ann Med 2024; 56:2412831. [PMID: 39387560 PMCID: PMC11469432 DOI: 10.1080/07853890.2024.2412831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/19/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Cell death modulates the biological behaviors of tumors. However, the comprehensive role of the multiple forms of cell death in lower-grade glioma (LGG) is unknown. METHODS We collected the transcriptional data of LGG patients from public repositories to comprehensively examine six cell death patterns (autophagy, apoptosis, cuproptosis, necroptosis, ferroptosis, and pyroptosis) in LGG samples and systematically correlated these patterns with patient survival, underlying biological processes, and drug sensitivity using serial bioinformatics analysis, clinical sample validation and in vitro assays. RESULTS We identified and independently validated three reproducible cell death-based clusters associated with distinct clinical outcomes and tumor microenvironment characteristics. The Tumor Immune Dysfunction and Exclusion algorithm was applied for predicting how these three clusters would respond to immune checkpoint blockade (ICB) therapy; we found potential resistance of cluster B to ICB therapy. We also performed drug screening to identify cluster-specific drugs. Furthermore, a scoring system, designated as the CDPM score, was developed to estimate the cell death patterns of patients with LGG; this system could predict both LGG patients' prognosis and immunotherapy efficacy. By performing multiplex immunofluorescence staining, we validated the correlations of GNAL expression with the molecular and clinical features of LGG in an independent LGG cohort. Finally, in vitro assays showed that GNAL promoted apoptosis and inhibited the proliferation of LGG cells. CONCLUSION The new cell death-based subtype system indicates several features of LGG biology and reveals novel insights into the use of precision medicine for treating LGG. The CDPM score could be used to predict the immunotherapy response and prognosis of LGG patients; moreover, it could indicate a novel direction for improving LGG management.
Collapse
Affiliation(s)
- Hao Lian
- Department of Traditional Chinese Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajia Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan Yan
- Pudong New District, Huamu Community Health Service Center, Shanghai, P.R. China
| | - Kui Chen
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lilun Jin
- Department of Traditional Chinese Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Mo X, Ji F, Chen J, Yi C, Wang F. Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms. J Microbiol Biotechnol 2024; 34:2362-2375. [PMID: 39344350 PMCID: PMC11637838 DOI: 10.4014/jmb.2407.07052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/25/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024]
Abstract
As a treatment for esophageal squamous cell carcinoma (ESCC), which is common and fatal, mitophagy is a conserved cellular mechanism that selectively removes damaged mitochondria and is crucial for cellular homeostasis. While tumor development and resistance to anticancer therapies are related to ESCC, their role in ESCC remains unclear. Here, we investigated the relationship between mitophagy-related genes (MRGs) and ESCC to provide novel insights into the role of mitophagy in ESCC prognosis and diagnosis prediction. First, we identified MRGs from the GeneCards database and examined them at both the single-cell and transcriptome levels. Key genes were selected and a prognostic model was constructed using least absolute shrinkage and selection operator analysis. External validation was performed using the GSE53624 dataset and Kaplan-Meier survival analysis was performed to identify PYCARD as a gene significantly associated with survival in ESCC. We then examined the effect of PYCARD on ESCC cell proliferation and migration and identified 169 MRGs at the single-cell and transcriptome levels, as well as the high-risk groups associated with cancer-related pathways. Thirteen key genes were selected for model construction via multiple machine learning algorithms. PYCARD, which is upregulated in patients with ESCC, was negatively correlated with prognosis and its knockdown inhibited ESCC cell proliferation and migration. Our ESCC prediction model based on mitophagy-related genes demonstrated promising results and provides more options for the management and clinical treatment of ESCC patients. Moreover, targeting or regulating PYCARD levels might offer new therapeutic strategies for ESCC patients in clinical settings.
Collapse
Affiliation(s)
- Xuzhi Mo
- Department of Thoracic Surgery, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying 257088, P.R. China
| | - Feng Ji
- Department of Thoracic Surgery, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying 257088, P.R. China
| | - Jianguang Chen
- Department of Thoracic Surgery, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying 257088, P.R. China
| | - Chengcheng Yi
- Department of Thoracic Surgery, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying 257088, P.R. China
| | - Fang Wang
- Department of Oncology, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying 257088, P.R. China
| |
Collapse
|
12
|
Fu K, Su J, Zhou Y, Chen X, Hu X. The role of epigenetic regulation in pancreatic ductal adenocarcinoma progression and drug response: an integrative genomic and pharmacological prognostic prediction model. Front Pharmacol 2024; 15:1498031. [PMID: 39640482 PMCID: PMC11618540 DOI: 10.3389/fphar.2024.1498031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with poor prognosis. Epigenetic dysregulation plays a crucial role in PDAC progression, but its comprehensive landscape and clinical implications remain unclear. Methods We integrated single-cell RNA sequencing, bulk RNA sequencing, and clinical data from multiple public databases. Single-cell analysis was performed using Seurat and hdWGCNA packages to reveal cell heterogeneity and epigenetic features. Weighted gene co-expression network analysis (WGCNA) identified key epigenetic modules. A machine learning-based prognostic model was constructed using multiple algorithms, including Lasso and Random Survival Forest. We further analyzed mutations, immune microenvironment, and drug sensitivity associated with the epigenetic risk score. Results Single-cell analysis revealed distinct epigenetic patterns across different cell types in PDAC. WGCNA identified key modules associated with histone modifications and DNA methylation. Our machine learning model, based on 17 epigenetic genes, showed robust prognostic value (AUC >0.7 for 1-, 3-, and 5-year survival) and outperformed existing models. High-risk patients exhibited distinct mutation patterns, including higher frequencies of KRAS and TP53 mutations. Low-risk patients showed higher immune and stromal scores, with increased infiltration of CD8+ T cells and M2 macrophages. Drug sensitivity analysis revealed differential responses to various therapeutic agents between high- and low-risk groups, with low-risk patients showing higher sensitivity to EGFR and MEK inhibitors. Conclusion Our study provides a comprehensive landscape of epigenetic regulation in PDAC at single-cell resolution and establishes a robust epigenetics-based prognostic model. The integration of epigenetic features with mutation profiles, immune microenvironment, and drug sensitivity offers new insights into PDAC heterogeneity and potential therapeutic strategies. These findings pave the way for personalized medicine in PDAC management and highlight the importance of epigenetic regulation in cancer research.
Collapse
Affiliation(s)
| | | | | | | | - Xiao Hu
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
13
|
Weng L, Cheng Z, Qiu Z, Shi J, Chen L, He C, Wang L, Jin F. Integration of bioinformatics analysis reveals ZNF248 as a potential prognostic and immunotherapeutic biomarker for LIHC: machine learning and experimental evidence. Am J Cancer Res 2024; 14:5230-5250. [PMID: 39659932 PMCID: PMC11626259 DOI: 10.62347/cdus5096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/27/2024] [Indexed: 12/12/2024] Open
Abstract
Liver hepatocellular carcinoma (LIHC) is a major contributor to cancer-related mortality worldwide, posing substantial diagnostic and therapeutic challenges. Although zinc finger proteins (ZNFs) are known to play a role in LIHC, the specific function of ZNF248 remains poorly understood. In this study, we analyzed genomic and clinical data from The Cancer Genome Atlas (TCGA) to elucidate the role of ZNF248 through differential expression analysis, bioenrichment, immune response correlation, and drug sensitivity evaluation. Machine learning was employed to identify prognostic signatures derived from ZNF248, which were further validated using Receiver Operating Characteristic (ROC) analysis. Functional assays, including Western blot and rescue experiments, were performed to assess the impact of ZNF248 on the PI3K/AKT signaling pathway. Our results demonstrate that ZNF248 is significantly overexpressed in LIHC patients and is associated with poor prognosis. Bioenrichment analysis revealed activation of oncogenic pathways, and elevated ZNF248 expression correlated with increased immune cell infiltration and enhanced immune scores, thereby influencing both immunotherapy response and drug sensitivity. Functional assays further confirmed that ZNF248 promotes LIHC progression and invasion, while silencing ZNF248 inhibited the PI3K/AKT pathway - a phenomenon reversible by the AKT activator SC79. These findings suggest that ZNF248 contributes to LIHC progression through the PI3K/AKT pathway and may represent a novel immunotherapeutic target and prognostic biomarker for LIHC.
Collapse
Affiliation(s)
- Lifang Weng
- Department of Gastroenterology, Cangshan Hospital, The 900Th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army Fuzhou, Fujian, The People's Republic of China
| | - Zhicheng Cheng
- Department of Gastroenterology, Cangshan Hospital, The 900Th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army Fuzhou, Fujian, The People's Republic of China
| | - Zhisong Qiu
- Department of Gastroenterology, Cangshan Hospital, The 900Th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army Fuzhou, Fujian, The People's Republic of China
| | - Jin Shi
- Department of Gastroenterology, Cangshan Hospital, The 900Th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army Fuzhou, Fujian, The People's Republic of China
| | - Libin Chen
- Department of Gastroenterology, Cangshan Hospital, The 900Th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army Fuzhou, Fujian, The People's Republic of China
| | - Chunsheng He
- Department of Gastroenterology, Cangshan Hospital, The 900Th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army Fuzhou, Fujian, The People's Republic of China
| | - Lijuan Wang
- Department of Gastroenterology, Cangshan Hospital, The 900Th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army Fuzhou, Fujian, The People's Republic of China
| | - Feng Jin
- Department of Gastroenterology, Cangshan Hospital, The 900Th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army Fuzhou, Fujian, The People's Republic of China
| |
Collapse
|
14
|
Xie M, Li X, Qi C, Zhang Y, Li G, Xue Y, Chen G. Feature genes identification and immune infiltration assessment in abdominal aortic aneurysm using WGCNA and machine learning algorithms. Front Cardiovasc Med 2024; 11:1497170. [PMID: 39600608 PMCID: PMC11588672 DOI: 10.3389/fcvm.2024.1497170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Objective Abdominal aortic aneurysm (AAA) is a life-threatening vascular condition. This study aimed to discover new indicators for the early detection of AAA and explore the possible involvement of immune cell activity in its development. Methods Sourced from the Gene Expression Omnibus, the AAA microarray datasets GSE47472 and GSE57691 were combined to generate the training set. Additionally, a separate dataset (GSE7084) was designated as the validation set. Enrichment analyses were carried out to explore the underlying biological mechanisms using Disease Ontology, Kyoto Encyclopedia of Genes and Genomes, and Gene Ontology. We then utilized weighted gene co-expression network analysis (WGCNA) along with 3 machine learning techniques: least absolute shrinkage and selection operator, support vector machine-recursive feature elimination, and random forest, to identify feature genes for AAA. Moreover, data were validated using the receiver operating characteristic (ROC) curve, with feature genes defined as those having an area under the curve above 85% and a p-value below 0.05. Finally, the single sample gene set enrichment analysis algorithm was applied to probe the immune landscape in AAA and its connection to the selected feature genes. Results We discovered 72 differentially expressed genes (DEGs) when comparing healthy and AAA samples, including 36 upregulated and 36 downregulated genes. Functional enrichment analysis revealed that the DEGs associated with AAA are primarily involved in inflammatory regulation and immune response. By intersecting the result of 3 machine learning algorithms and WGCNA, 3 feature genes were identified, including MRAP2, PPP1R14A, and PLN genes. The diagnostic performance of all these genes was strong, as revealed by the ROC analysis. A significant increase in 15 immune cell types in AAA samples was observed, based on the analysis of immune cell infiltration. In addition, the 3 feature genes show a strong linkage with different types of immune cells. Conclusion Three feature genes (MRAP2, PPP1R14A, and PLN) related to the development of AAA were identified. These genes are linked to immune cell activity and the inflammatory microenvironment, providing potential biomarkers for early detection and a basis for further research into AAA progression.
Collapse
Affiliation(s)
- Ming Xie
- Department of Pharmacy, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu, China
| | - Xiandeng Li
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Congwei Qi
- Department of Pharmacy, Jianhu County People’s Hospital, Jianhu, Jiangsu, China
| | - Yufeng Zhang
- Department of Vascular Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
- Postdoctoral Workstation, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Pulmonary and Critical Care Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu, China
| | - Gang Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Yong Xue
- Department of Cardiology, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu, China
| | - Guobao Chen
- Department of Pharmacy, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu, China
| |
Collapse
|
15
|
Liang W, Bai Y, Zhang H, Mo Y, Li X, Huang J, Lei Y, Gao F, Dong M, Li S, Liang J. Identification and Analysis of Potential Biomarkers Associated with Neutrophil Extracellular Traps in Cervicitis. Biochem Genet 2024:10.1007/s10528-024-10919-x. [PMID: 39419909 DOI: 10.1007/s10528-024-10919-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/14/2024] [Indexed: 10/19/2024]
Abstract
Early diagnosis of cervicitis is important. Previous studies have found that neutrophil extracellular traps (NETs) play pro-inflammatory and anti-inflammatory roles in many diseases, suggesting that they may be involved in the inflammation of the uterine cervix and NETs-related genes may serve as biomarkers of cervicitis. However, what NETs-related genes are associated with cervicitis remains to be determined. Transcriptome analysis was performed using samples of exfoliated cervical cells from 15 patients with cervicitis and 15 patients without cervicitis as the control group. First, the intersection of differentially expressed genes (DEGs) and neutrophil extracellular trap-related genes (NETRGs) were taken to obtain genes, followed by functional enrichment analysis. We obtained hub genes through two machine learning algorithms. We then performed Artificial Neural Network (ANN) and nomogram construction, confusion matrix, receiver operating characteristic (ROC), gene set enrichment analysis (GSEA), and immune cell infiltration analysis. Moreover, we constructed ceRNA network, mRNA-transcription factor (TF) network, and hub genes-drug network. We obtained 19 intersecting genes by intersecting 1398 DEGs and 136 NETRGs. 5 hub genes were obtained through 2 machine learning algorithms, namely PKM, ATG7, CTSG, RIPK3, and ENO1. Confusion matrix and ROC curve evaluation ANN model showed high accuracy and stability. A nomogram containing the 5 hub genes was established to assess the disease rate in patients. The correlation analysis revealed that the expression of ATG7 was synergistic with RIPK3. The GSEA showed that most of the hub genes were related to ECM receptor interactions. It was predicted that the ceRNA network contained 2 hub genes, 3 targeted miRNAs, and 27 targeted lnRNAs, and that 5 mRNAs were regulated by 28 TFs. In addition, 36 small molecule drugs that target hub genes may improve the treatment of cervicitis. In this study, five hub genes (PKM, ATG7, CTSG, RIPK3, ENO1) provided new directions for the diagnosis and treatment of patients with cervicitis.
Collapse
Affiliation(s)
- Wantao Liang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Yanyuan Bai
- Guangxi University of Chinese Medicine, Nanning, 530001, Guangxi, China
| | - Hua Zhang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Yan Mo
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Xiufang Li
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Junming Huang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Yangliu Lei
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Fangping Gao
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Mengmeng Dong
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Shan Li
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Juan Liang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China.
| |
Collapse
|
16
|
Lin X, Liu J, Zhang N, Zhou D, Liu Y. Decoding the immune microenvironment: unveiling CD8 + T cell-related biomarkers and developing a prognostic signature for personalized glioma treatment. Cancer Cell Int 2024; 24:331. [PMID: 39354483 PMCID: PMC11443942 DOI: 10.1186/s12935-024-03517-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/25/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Gliomas are aggressive brain tumors with poor prognosis. Understanding the tumor immune microenvironment (TIME) in gliomas is essential for developing effective immunotherapies. This study aimed to identify TIME-related biomarkers in glioma using bioinformatic analysis of RNA-seq data. METHODS In this study, we employed weighted gene co-expression network analysis (WGCNA) on bulk RNA-seq data to identify TIME-related genes. To identify prognostic genes, we performed univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression analyses. Based on these genes, we constructed a prognostic signature and delineated risk groups. To validate the prognostic signature, external validation was conducted. RESULTS CD8 + T cell infiltration was strongly correlated with glioma patient prognosis. We identified 115 CD8 + T cell-related genes through integrative analysis of bulk-seq data. CDCA5, KIF11, and KIF4A were found to be significant immune-related genes (IRGs) associated with overall survival in glioma patients and served as independent prognostic factors. We developed a prognostic nomogram that incorporated these genes, age, gender, and grade, providing a reliable tool for clinicians to predict patient survival probabilities. The nomogram's predictions were supported by calibration plots, further validating its accuracy. CONCLUSION In conclusion, our study identifies CD8 + T cell infiltration as a strong predictor of glioma patient outcomes and highlights the prognostic value of genes. The developed prognostic nomogram, incorporating these genes along with clinical factors, provides a reliable tool for predicting patient survival probabilities and has important implications for personalized treatment decisions in glioma.
Collapse
Affiliation(s)
- Xiaofang Lin
- Laboratory Department of Zengcheng Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianqiang Liu
- Department of Neurosurgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Ni Zhang
- Department of Physical Medicine and Rehabilitation, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 106 Zhongshan 2nd Road, Guangzhou, 510080, China.
| | - Dexiang Zhou
- Department of Neurosurgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan 2nd Road, Guangzhou, 510080, China.
| | - Yakang Liu
- Department of Physical Medicine and Rehabilitation, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 106 Zhongshan 2nd Road, Guangzhou, 510080, China.
| |
Collapse
|
17
|
He J, Liu A, Shen H, Jiang Y, Gao M, Yu L, Du W, Zhang X, Fu F. Shared diagnostic genes and potential mechanisms between polycystic ovary syndrome and recurrent miscarriage revealed by integrated transcriptomics analysis and machine learning. Front Endocrinol (Lausanne) 2024; 15:1335106. [PMID: 39398336 PMCID: PMC11466764 DOI: 10.3389/fendo.2024.1335106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Objective More and more studies have found that polycystic ovary syndrome (PCOS) is significantly associated with recurrent spontaneous abortion (RSA), but the specific mechanism is not yet clear. Methods Based on the GEO database, we downloaded the PCOS (GSE10946, GSE6798 and GSE137684) and RSA (GSE165004, GSE26787 and GSE22490) datasets and performed differential analysis, weighted gene co-expression network (WGCNA), functional enrichment, and machine learning, respectively, on the datasets of the two diseases, Nomogram and integrated bioinformatics analysis such as immune infiltration analysis. Finally, the reliability of the diagnostic gene was verified by external verification and collection of human specimens. Results In this study, PCOS and RSA datasets were obtained from Gene Expression Omnibus (GEO) database, and a total of 23 shared genes were obtained by differential analysis and WGCNA analysis. GO results showed that the shared genes were mainly enriched in the functions of lipid catabolism and cell cycle transition (G1/S). DO enrichment revealed that shared genes are mainly involved in ovarian diseases, lipid metabolism disorders and psychological disorders. KEGG analysis showed significant enrichment of Regulation of lipolysis in adipocytes, Prolactin signaling pathway, FoxO signaling pathway, Hippo signaling pathway and other pathways. A diagnostic gene FAM166 B was obtained by machine learning and Nomogram screening, which mainly played an important role in Cellular component. GSEA analysis revealed that FAM166B may be involved in the development of PCOS and RSA by regulating the cell cycle, amino acid metabolism, lipid metabolism, and carbohydrate metabolism. CIBERSORT analysis showed that the high expression of FAM166 B was closely related to the imbalance of multiple immune cells. Further verification by qPCR suggested that FAM166 B could be used as a common marker of PCOS and RSA. Conclusions In summary, this study identified FAM166B as a common biomarker for PCOS and RSA, and conducted in-depth research and analysis of this gene, providing new data for basic experimental research and early prognosis, diagnosis and treatment of clinical diseases.
Collapse
Affiliation(s)
- Juanjuan He
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Ahui Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Haofei Shen
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yanbiao Jiang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Min Gao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Liulin Yu
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Wenjing Du
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xuehong Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Fen Fu
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
18
|
Jensen JM, Sjöstedt SMS, Carmona JL, Ahlborn LB, Vieira FG, Nielsen FC, Kiss K, Grønhøj C, von Buchwald C. Genomic alterations in the stepwise progression from normal mucosa to metastasizing oral squamous cell carcinoma. Front Oncol 2024; 14:1450361. [PMID: 39324009 PMCID: PMC11422351 DOI: 10.3389/fonc.2024.1450361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024] Open
Abstract
Introduction The aim of this study was to investigate the genomic changes that occur in the development from dysplasia, cancer and to regional metastases in patients with oral cavity squamous cell carcinoma (OSCC). Material and methods We included OSCC patients with lymph node metastases at diagnosis, treated with primary surgery at Rigshospitalet, University of Copenhagen in the period 2007-2014. The resected tumor specimens were evaluated by a pathologist, who marked areas of morphologically normal tissue and dysplasia surrounding the cancer, two areas from the cancer tissue, and one area within the lymph node metastases. From these areas a punch biopsy was taken, and DNA from each sample was extracted and sequenced using Illumina's TSO500 HT cancer panel. Results From 51 OSCC patients, 255 samples were included, comprising a wide variety of genomic alterations. Substantial intratumor heterogeneity was found. The most commonly mutated gene was TP53, mutated in 65% of all samples. Only two patients had no TP53 mutation in any samples. We found that morphologically normal appearing mucosa as well as surrounding dysplasia also contained malignant mutations, supporting the theory of field cancerization. There was a significant lower average tumor mutational burden (TMB) in the lymph node metastases compared to the primary tumors, supporting the theory of clonal selection. Conclusion Substantial inter- and intratumor genomic heterogeneity was found. Mutation of TP53 was the most common and was present in all but two patients. Our data strongly supports the theory of clonal selection and the theory of field cancerization.
Collapse
Affiliation(s)
- Jakob Myllerup Jensen
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Sannia Mia Svenningsen Sjöstedt
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department Clinical Physiology and Nuclear Medicine, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital, Hvidovre, Denmark
| | - Javiera Laing Carmona
- Department of Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lise Barlebo Ahlborn
- Department of Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Filipe Garrett Vieira
- Department of Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Finn Cilius Nielsen
- Department of Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Katalin Kiss
- Department of Pathology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Christian Grønhøj
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Christian von Buchwald
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Liu W, Jia B, Wang Z, Li C, Li N, Tang J, Wang J. Unveiling the role of PSMA5 in glioma progression and prognosis. Discov Oncol 2024; 15:414. [PMID: 39240463 PMCID: PMC11379840 DOI: 10.1007/s12672-024-01296-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024] Open
Abstract
Glioma is the most aggressive intracranial malignancy and is associated with poor survival rates and limited quality of life, impairing neuropsychological function and cognitive competence in survivors. The Proteasome Subunit Alpha Type-5 (PSMA5) is a multicatalytic proteinase complex that has been linked with tumor progression but is rarely reported in glioma. This study investigates the expression pattern, prognostic characteristics, and potential biological functions of PSMA5 in glioma. PSMA5 was significantly overexpressed in 28 types of cancer when compared to normal tissue. Furthermore, elevated levels of PSMA5 were observed in patients with wild-type isocitrate dehydrogenase 1 and exhibited a positive correlation with tumor grade. It was also found to be a standalone predictor of outcomes in glioma patients. Additionally, inhibiting PSMA5-induced cell cycle arrest may provide a therapeutic option for glioma.
Collapse
Affiliation(s)
- Wei Liu
- Department of Neurosurgery, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Neurosurgery, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, China
| | - Bo Jia
- Department of Neurosurgery, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Neurosurgery, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, China
| | - Zan Wang
- Department of Neurosurgery, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Neurosurgery, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, China
| | - Chengcai Li
- Department of Neurosurgery, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Neurosurgery, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, China
| | - Nanding Li
- Department of Neurosurgery, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Neurosurgery, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, China
| | - Jie Tang
- Department of Neurosurgery, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, China.
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Jiwei Wang
- Department of Neurosurgery, The First Hospital of Hebei Medical University, Shijiazhuang, China.
- Department of Neurosurgery, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, China.
| |
Collapse
|
20
|
Mao C, Gong L, Kang W. Effect and mechanism of resveratrol on ferroptosis mediated by p53/SLC7A11 in oral squamous cell carcinoma. BMC Oral Health 2024; 24:773. [PMID: 38987730 PMCID: PMC11238462 DOI: 10.1186/s12903-024-04395-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/21/2024] [Indexed: 07/12/2024] Open
Abstract
OBJECTIVE Resveratrol (Res) is a natural phytoestrogen with antitumor activity. This study sought to investigate the role of Res in ferroptosis in oral squamous cell carcinoma (OSCC). METHODS Normal human oral keratinocyte (HOK)/oral OSCC (CAL-27/SCC-9) cell lines were treated with different doses of Res. Res toxicity was determined by MTT assay, with half maximal inhibitory concentration values of Res on CAL-27 and SCC-9 cells calculated. Cell viability/colony formation efficiency/migration/invasion/cycle were assessed by CCK-8/colony formation assay/transwell assay/flow cytometry. The expression of p53 protein in the nucleus and cytoplasm, glutathione peroxidase 4 (GPX4) expression, and SLC7A11 messenger RNA (mRNA) and protein expression levels were determined by Western blot and RT-qPCR. Fe2+ content, reactive oxygen species (ROS) level, reduced glutathione (GSH), and lactate dehydrogenase (LDH) release were assessed. RESULTS Medium- to low-dose Res had no toxic effect on HOK cells, while high-dose Res markedly reduced HOK cell viability. Res significantly suppressed the viability of OSCC cells (CAL-27 and SCC-9). Res inhibited OSCC cell colony formation/migration/invasion, and induced G1 phase arrest. Res caused the translocation of p53 protein to the nucleus, obviously increased Fe2+ content, ROS level and LDH release, decreased GSH content and GPX4 protein expression, and induced ferroptosis. Down-regulation of p53 partially reversed the inhibitory effects of Res on CAL-27 cell malignant behaviors. Res inhibited SLC7A11 transcription by promoting p53 entry into the nucleus. SLC7A11 overexpression negated the the regulatory effects of p53 knockout on the role of Res in OSCC cell malignant behaviors and ferroptosis. CONCLUSION Res accelerated ferroptosis and inhibited malignant behaviors in OSCC cells by regulating p53/SLC7A11.
Collapse
Affiliation(s)
- Chen Mao
- Department of Stomatology, Loudi Central Hospital of Hunan Province, 51 Changqing Middle Street, Loudi, 417000, Hunan, China.
| | - Liqiang Gong
- Department of Stomatology, Loudi Central Hospital of Hunan Province, 51 Changqing Middle Street, Loudi, 417000, Hunan, China
| | - Wenming Kang
- Department of Stomatology, Loudi Central Hospital of Hunan Province, 51 Changqing Middle Street, Loudi, 417000, Hunan, China
| |
Collapse
|
21
|
Zhong J, Yuan H, Yang J, Du Y, Li Z, Liu X, Yang H, Wang Z, Wang Z, Jiang L, Ren Z, Li H, Li Z, Liu Y. Bioinformatics and system biology approach to identify potential common pathogenesis for COVID-19 infection and sarcopenia. Front Med (Lausanne) 2024; 11:1378846. [PMID: 38978778 PMCID: PMC11228343 DOI: 10.3389/fmed.2024.1378846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024] Open
Abstract
Sarcopenia is a condition characterized by age-related loss of muscle mass and strength. Increasing evidence suggests that patients with sarcopenia have higher rates of coronavirus 2019 (COVID-19) infection and poorer post-infection outcomes. However, the exact mechanism and connections between the two is unknown. In this study, we used high-throughput data from the GEO database for sarcopenia (GSE111016) and COVID-19 (GSE171110) to identify common differentially expressed genes (DEGs). We conducted GO and KEGG pathway analyses, as well as PPI network analysis on these DEGs. Using seven algorithms from the Cytoscape plug-in cytoHubba, we identified 15 common hub genes. Further analyses included enrichment, PPI interaction, TF-gene and miRNA-gene regulatory networks, gene-disease associations, and drug prediction. Additionally, we evaluated immune cell infiltration with CIBERSORT and assessed the diagnostic accuracy of hub genes for sarcopenia and COVID-19 using ROC curves. In total, we identified 66 DEGs (34 up-regulated and 32 down-regulated) and 15 hub genes associated with sarcopenia and COVID-19. GO and KEGG analyses revealed functions and pathways between the two diseases. TF-genes and TF-miRNA regulatory network suggest that FOXOC1 and hsa-mir-155-5p may be identified as key regulators, while gene-disease analysis showed strong correlations with hub genes in schizophrenia and bipolar disorder. Immune infiltration showed a correlation between the degree of immune infiltration and the level of infiltration of different immune cell subpopulations of hub genes in different datasets. The ROC curves for ALDH1L2 and KLF5 genes demonstrated their potential as diagnostic markers for both sarcopenia and COVID-19. This study suggests that sarcopenia and COVID-19 may share pathogenic pathways, and these pathways and hub genes offer new targets and strategies for early diagnosis, effective treatment, and tailored therapies for sarcopenia patients with COVID-19.
Collapse
Affiliation(s)
- Jun Zhong
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Hui Yuan
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Jinghong Yang
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Yimin Du
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Zheng Li
- Department of Orthopedics, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xu Liu
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Haibo Yang
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhaojun Wang
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Zi Wang
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Lujun Jiang
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhiqiang Ren
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Hongliang Li
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhong Li
- Department of Orthopedics, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yanshi Liu
- Department of Orthopedics, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
22
|
Wang W, Liu D, Yao J, Yuan Z, Yan L, Cao B. ANXA5: A Key Regulator of Immune Cell Infiltration in Hepatocellular Carcinoma. Med Sci Monit 2024; 30:e943523. [PMID: 38824386 PMCID: PMC11155417 DOI: 10.12659/msm.943523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/10/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) poses a significant threat to human life and is the most prevalent form of liver cancer. The intricate interplay between apoptosis, a common form of programmed cell death, and its role in immune regulation stands as a crucial mechanism influencing tumor metastasis. MATERIAL AND METHODS Utilizing HCC samples from the TCGA database and 61 anoikis-related genes (ARGs) sourced from GeneCards, we analyzed the relationship between ARGs and immune cell infiltration in HCC. Subsequently, we identified long non-coding RNAs (lncRNAs) associated with ARGs, using the least absolute shrinkage and selection operator (LASSO) regression analysis to construct a robust prognostic model. The predictive capabilities of the model were then validated through examination in a single-cell dataset. RESULTS Our constructed prognostic model, derived from lncRNAs linked to ARGs, comprised 11 significant lncRNAs: NRAV, MCM3AP-AS1, OTUD6B-AS1, AC026356.1, AC009133.1, DDX11-AS1, AC108463.2, MIR4435-2HG, WARS2-AS1, LINC01094, and HCG18. The risk score assigned to HCC samples demonstrated associations with immune indicators and the infiltration of immune cells. Further, we identified Annexin A5 (ANXA5) as the pivotal gene among ARGs, with it exerting a prominent role in regulating the lncRNA gene signature. Our validation in a single-cell database elucidated the involvement of ANXA5 in immune cell infiltration, specifically in the regulation of mononuclear cells. CONCLUSIONS This study delves into the intricate correlation between ARGs and immune cell infiltration in HCC, culminating in the development of a novel prognostic model reliant on 11 ARGs-associated lncRNAs. Furthermore, our findings highlight ANXA5 as a promising target for immune regulation in HCC, offering new perspectives for immune therapy in the context of HCC.
Collapse
|
23
|
Sun Y, Li Y, Zhou W, Liu Z. MicroRNA expression as a prognostic biomarker of tongue squamous cell carcinoma (TSCC): a systematic review and meta-analysis. BMC Oral Health 2024; 24:406. [PMID: 38556858 PMCID: PMC10981818 DOI: 10.1186/s12903-024-04182-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/26/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Recent studies have indicated that microRNA (miRNA) expression in tumour tissues has prognostic significance in Tongue squamous cell carcinoma (TSCC) patients. This study explored the possible prognostic value of miRNAs for TSCC based on published research. METHODS A comprehensive literature search of multiple databases was conducted according to predefined eligibility criteria. Data were extracted from the included studies by two researchers, and HR results were determined based on Kaplan‒Meier curves according to the Tierney method. The Newcastle‒Ottawa Scale (NOS) and GRADE (Grading of Recommendations Assessment, Development, and Evaluation) pro-GDT were applied to assess the quality of all studies. Publication bias was estimated by funnel plot, Egger's rank correlation test and sensitivity analysis. RESULTS Eleven studies (891patients) were included, of which 6 reported up-regulated miRNAs and 7 mentioned down-regulated miRNAs. The pooled hazard ratio (HR) from the prognostic indicator overall survival (OS) was 1.34 (1.25-1.44), p < 0.00001, indicating a significant difference in miRNA expression between TSCC patients with better or worse prognosis. CONCLUSION MiRNAs may have high prognostic value and could be used as prognostic biomarkers of TSCC.
Collapse
Affiliation(s)
- Yiwei Sun
- School of Stomatology, Binzhou Medical University, No. 346 The Guanhai Road Yantai, Yantai, Shandong Province, 264003, China
| | - Yuxiao Li
- The Second School of Clinical Medicine, Binzhou Medical University, No. 346 The Guanhai Road Yantai, Yantai, Shandong Province, 264003, China
| | - Wenjuan Zhou
- The affiliated Yantai Stomatological Hospital, Binzhou Medical University, Yantai, 264000, China.
- Yantai Engineering Research Center for Digital Technology of Stomatology, Yantai, 264000, China.
- Characteristic Laboratories of Colleges and Universities in Shandong Province for Digital Stomatology, Yantai, 264003, China.
| | - Zhonghao Liu
- The affiliated Yantai Stomatological Hospital, Binzhou Medical University, Yantai, 264000, China.
- Yantai Engineering Research Center for Digital Technology of Stomatology, Yantai, 264000, China.
- Characteristic Laboratories of Colleges and Universities in Shandong Province for Digital Stomatology, Yantai, 264003, China.
| |
Collapse
|
24
|
Liu J, Lu J, Wang G, Gu L, Li W. Prognostic characteristics of a six-gene signature based on ssGSEA in sarcoma. Aging (Albany NY) 2024; 16:1536-1554. [PMID: 38240704 PMCID: PMC10866427 DOI: 10.18632/aging.205443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/07/2023] [Indexed: 02/06/2024]
Abstract
BACKGROUND Sarcoma is a rare malignant tumor originating of the interstitial or connective tissue with a poor prognosis. Next-generation sequencing technology offers new opportunities for accurate diagnosis and treatment of sarcomas. There is an urgent need for new gene signature to predict prognosis and evaluate treatment outcomes. METHODS We used transcriptome data from the Cancer Genome Atlas (TCGA) database and single sample gene set enrichment analysis (ssGSEA) to explore the cancer hallmarks most associated with prognosis in sarcoma patients. Then, weighted gene coexpression network analysis, univariate COX regression analysis and random forest algorithm were used to construct prognostic gene characteristics. Finally, the prognostic value of gene markers was validated in the TCGA and Integrated Gene Expression (GEO) (GSE17118) datasets, respectively. RESULTS MYC targets V1 and V2 are the main cancer hallmarks affecting the overall survival (OS) of sarcoma patients. A six-gene signature including VEGFA, HMGB3, FASN, RCC1, NETO2 and BIRC5 were constructed. Kaplan-Meier analysis suggested that higher risk scores based on the six-gene signature associated with poorer OS (P < 0.001). The receiver Operating characteristic curve showed that the risk score based on the six-gene signature was a good predictor of sarcoma, with an area under the curve (AUC) greater than 0.73. In addition, the prognostic value of the six-gene signature was validated in GSE17118 with an AUC greater than 0.72. CONCLUSION This six-gene signature is an independent prognostic factor in patients with sarcoma and is expected to be a potential therapeutic target for sarcoma.
Collapse
Affiliation(s)
- Jun Liu
- Department of Clinical Laboratory, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan 523005, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515000, China
| | - Jianjun Lu
- Department of Quality Control and Evaluation, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Gefei Wang
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515000, China
| | - Liming Gu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515000, China
| | - Wenli Li
- Department of Clinical Laboratory, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan 523005, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515000, China
| |
Collapse
|
25
|
Lai H, Xiang X, Long X, Chen Z, Liu Y, Huang X. Multi-omics and single-cell sequencing analyses reveal the potential significance of circadian pathways in cancer therapy. Expert Rev Mol Diagn 2024; 24:107-121. [PMID: 38288973 DOI: 10.1080/14737159.2023.2296668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/24/2023] [Indexed: 02/22/2024]
Abstract
BACKGROUND Circadian rhythm disturbance is an independent risk factor for cancer. However, few studies have been reported on circadian rhythm related genes (CRGs) in cancer, so it is important to further explore the impact of CRGs in pan-cancer. RESEARCH DESIGN AND METHODS The Cancer Genome Atlas database was used to collect cancer-related data such as copy number variation, single nucleotide variants, methylation, and survival differences. Immunohistochemistry (IHC) was used to verify the expression of circadian rhythm hub genes. The circadian pathway scores (CRS) were calculated using single-sample gene enrichment analysis. TIMER and GEPIA databases were used for immune-cell integration and assessment. Single-cell sequencing data was used to evaluate the abundance of CRS in tumor microenvironment cells. RESULTS In this study, we found that the expression of circadian pathway varies between tumors. CSNK1E was significantly up-regulated in most tumors and CRY2 was significantly down-regulated in most tumors. The protein interaction network suggested CRY2 as the core gene and IHC verified its significant low expression in KIRC. In addition, CRGs were found to be protective factors in most tumors and have the potential to act as specific immune markers in different tumors. CRS was significantly lower in abundance in most tumors. CRS was significantly associated with overall survival in tumor patients and associated with the expression of many immune cells in the tumor immune microenvironment. CRS is significantly associated with tumor mutational burden and microsatellite instability scores in most tumors and may serve as a potential immunotherapeutic marker. CONCLUSIONS The circadian rhythm pathway may be a breakthrough point in regulating the tumor microenvironment meanwhile a suitable immunotherapy method in the future.
Collapse
Affiliation(s)
- Hao Lai
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Xiaoyun Xiang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Xingqing Long
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Zuyuan Chen
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Yanling Liu
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Xiaoliang Huang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| |
Collapse
|
26
|
Yang B, Xie P, Huai H, Li J. Comprehensive analysis of necroptotic patterns and associated immune landscapes in individualized treatment of skin cutaneous melanoma. Sci Rep 2023; 13:21094. [PMID: 38036577 PMCID: PMC10689831 DOI: 10.1038/s41598-023-48374-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/25/2023] [Indexed: 12/02/2023] Open
Abstract
Skin cutaneous melanoma (SKCM) constitutes a malignant cutaneous neoplasm characterized by an exceedingly unfavorable prognosis. Over the past years, necroptosis, a manifestation of inflammatory programmed cell demise, has gained substantial traction in its application. However, a conclusive correlation between the expression of necroptosis-related genes (NRGs) and SKCM patient's prognosis remains elusive. In this endeavor, we have undertaken an integrative analysis of genomic data, aiming to provide an exhaustive evaluation of the intricate interplay between melanoma necroptosis and immune-infiltration nuances within the tumor microenvironment. Through meticulous scrutiny, we have endeavored to discern the prognostic potency harbored by individual necroptosis-associated genes. Our efforts culminated in the establishment of a risk stratification framework, allowing for the appraisal of necroptosis irregularities within each afflicted cutaneous melanoma patient. Notably, those SKCM patients classified within the low-risk cohort exhibited a markedly elevated survival quotient, in stark contrast to their high-risk counterparts (p < 0.001). Remarkably, the low-risk cohort not only displayed a more favorable survival rate but also exhibited an enhanced responsiveness to immunotherapeutic interventions, relative to their high-risk counterparts. The outcomes of this investigation proffer insights into a conceivable mechanistic underpinning linking necroptosis-related attributes to the intricacies of the tumor microenvironment. This prompts a conjecture regarding the plausible association between necroptosis characteristics and the broader tumor microenvironmental milieu. However, it is imperative to emphasize that the pursuit of discerning whether the expression profiles of NRG genes can indeed be regarded as viable therapeutic targets necessitates further comprehensive exploration and scrutiny. In conclusion, our study sheds light on the intricate interrelationship between necroptosis-related factors and the tumor microenvironment, potentially opening avenues for therapeutic interventions. However, the prospect of translating these findings into clinical applications mandates rigorous investigation.
Collapse
Affiliation(s)
- Bo Yang
- Department of Ophthalmology, Chengdu Aier Eye Hospital, Chengdu, Sichuan, China
| | - Pan Xie
- Department of Plastic and Burns Surgery, National Key Clinical Construction Specialty, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Hongyu Huai
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Junpeng Li
- Department of Plastic and Burns Surgery, National Key Clinical Construction Specialty, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
27
|
Xi Z, Yang T, Huang T, Zhou J, Yang P. Identification and Preliminary Clinical Validation of Key Extracellular Proteins as the Potential Biomarkers in Hashimoto's Thyroiditis by Comprehensive Analysis. Biomedicines 2023; 11:3127. [PMID: 38137348 PMCID: PMC10740579 DOI: 10.3390/biomedicines11123127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/04/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Hashimoto's thyroiditis (HT) is an autoimmune disruption manifested by immune cell infiltration in thyroid tissue and the production of antibodies against thyroid-specific antigens, such as the thyroid peroxidase antibody (TPOAb) and thyroglobulin antibody (TGAb). TPOAb and TGAb are commonly used in clinical tests; however, handy indicators of the diagnosis and progression of HT are still scarce. Extracellular proteins are glycosylated and are likely to enter body fluids and become readily available and detectable biomarkers. Our research aimed to discover extracellular biomarkers and potential treatment targets associated with HT through integrated bioinformatics analysis and clinical sample validations. A total of 19 extracellular protein-differentially expressed genes (EP-DEGs) were screened by the GSE138198 dataset from the Gene Expression Omnibus (GEO) database and protein annotation databases. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to analyze the function and pathway of EP-DEGs. STRING, Cytoscape, MCODE, and Cytohubba were used to construct a protein-protein interaction (PPI) network and screen key EP-DEGs. Six key EP-DEGs (CCL5, GZMK, CXCL9, CXCL10, CXCL11, and CXCL13) were further validated in the GSE29315 dataset and the diagnostic curves were evaluated, which all showed high diagnostic accuracy (AUC > 0.95) for HT. Immune profiling revealed the correlation of the six key EP-DEGs and the pivotal immune cells in HT, such as CD8+ T cells, dendritic cells, and Th2 cells. Further, we also confirmed the key EP-DEGs in clinical thyroid samples. Our study may provide bioinformatics and clinical evidence for revealing the pathogenesis of HT and improving the potential diagnosis biomarkers and therapeutic strategies for HT.
Collapse
Affiliation(s)
| | | | | | - Jun Zhou
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Peng Yang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
28
|
Yu X, Xu L, Zhou Y, Zhou X, Yang L, Zhou Y. NUP62CL as an Immunological and Prognostic Biomarker of Oral Squamous Cell Carcinoma. J Inflamm Res 2023; 16:3799-3809. [PMID: 37663758 PMCID: PMC10474866 DOI: 10.2147/jir.s426277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is the most common head and neck malignancy with a high mortality rate and poor prognosis. The exploration and understanding of biomarkers will help to further improve the diagnosis and treatment of OSCC. Methods Tumor tissue samples from 319 OSCC patients were retrospectively collected, along with their clinical information. In combination with bioinformatics tools and multiplex immunohistochemistry (mIHC) analyses, we evaluated NUP62CL protein expression and its relationship to tumor-infiltrating immune cells (TIICs) and immune checkpoints in the tumor microenvironment (TME), as well as its association with clinical features and prognosis of OSCC. Results We identified high-NUP62CL expression in OSCC tissues, and high-NUP62CL protein expression was associated with large tumor size, advanced clinical stage and poor prognosis. In addition, NUP62CL protein expression was positively associated with the abundance of CD3+CD4+ T cells (P<0.01), CD3+CD8+ T cells (P<0.01), CD56+ NK cells (P<0.05), CD68+CD86+ macrophages (P<0.01) and CD68+CD163+ macrophages (P<0.01), as well as the immune checkpoints, including PD-1 (P<0.001), PD-L1 (P<0.001), and CTLA-4 (P<0.001) protein expression. Conclusion In conclusion, NUP62CL could be an effective prognostic and immunological biomarker for OSCC patients.
Collapse
Affiliation(s)
- Xin Yu
- Department of Orthodontics and Periodontology, Affiliated Nantong Stomatological Hospital of Nantong University, Nantong, People’s Republic of China
| | - Lijun Xu
- Department of Clinical Biobank & Institute of Oncology, Affiliated Hospital of Nantong University & Medical School of Nantong University, Nantong, People’s Republic of China
| | - Yongqiang Zhou
- Department of Oral and Maxillofacial Surgery, Affiliated Nantong Stomatological Hospital of Nantong University, Nantong, People’s Republic of China
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, Nantong, People’s Republic of China
| | - Lei Yang
- Department of Clinical Biobank & Institute of Oncology, Affiliated Hospital of Nantong University & Medical School of Nantong University, Nantong, People’s Republic of China
| | - Yan Zhou
- Department of Orthodontics and Periodontology, Affiliated Nantong Stomatological Hospital of Nantong University, Nantong, People’s Republic of China
| |
Collapse
|
29
|
Shen X, Su Z, Dou Y, Song X. A novel investigation into an E2F transcription factor-related prognostic model with seven signatures for colon cancer patients. IET Syst Biol 2023; 17:187-197. [PMID: 37431829 PMCID: PMC10439494 DOI: 10.1049/syb2.12069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/12/2023] Open
Abstract
The pathogenesis of colon cancer, a common gastrointestinal tumour, involves complicated factors, especially a series of cell cycle-related genes. E2F transcription factors during the cell cycle play an essential role in the occurrence of colon cancer. It is meaningful to establish an efficient prognostic model of colon cancer targeting cellular E2F-associated genes. This has not been reported previously. The authors first aimed to explore the links of E2F genes with the clinical outcomes of colon cancer patients by integrating data from the TCGA-COAD (n = 521), GSE17536 (n = 177) and GSE39582 (n = 585) cohorts. The Cox regression and Lasso modelling approach to identify a novel colon cancer prognostic model involving several hub genes (CDKN2A, GSPT1, PNN, POLD3, PPP1R8, PTTG1 and RFC1) were utilised. Moreover, an E2F-related nomogram that efficiently predicted the survival rates of colon cancer patients was created. Additionally, the authors first identified two E2F tumour clusters, which showed distinct prognostic features. Interestingly, the potential links of E2F-based classification and 'protein secretion' issues of multiorgans and tumour infiltration of 'T-cell regulatory (Tregs)' and 'CD56dim natural killer cell' were detected. The authors' findings are of potential clinical significance for the prognosis assessment and mechanistic exploration of colon cancer.
Collapse
Affiliation(s)
- Xiaoyong Shen
- National Demonstration Center for Experimental Basic Medicine EducationSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Zheng Su
- National Demonstration Center for Experimental Basic Medicine EducationSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Yan Dou
- National Demonstration Center for Experimental Basic Medicine EducationSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Xin Song
- National Demonstration Center for Experimental Basic Medicine EducationSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| |
Collapse
|
30
|
Corti A, De Cecco L, Cavalieri S, Lenoci D, Pistore F, Calareso G, Mattavelli D, de Graaf P, Leemans CR, Brakenhoff RH, Ravanelli M, Poli T, Licitra L, Corino V, Mainardi L. MRI-based radiomic prognostic signature for locally advanced oral cavity squamous cell carcinoma: development, testing and comparison with genomic prognostic signatures. Biomark Res 2023; 11:69. [PMID: 37455307 DOI: 10.1186/s40364-023-00494-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/03/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND . At present, the prognostic prediction in advanced oral cavity squamous cell carcinoma (OCSCC) is based on the tumor-node-metastasis (TNM) staging system, and the most used imaging modality in these patients is magnetic resonance image (MRI). With the aim to improve the prediction, we developed an MRI-based radiomic signature as a prognostic marker for overall survival (OS) in OCSCC patients and compared it with published gene expression signatures for prognosis of OS in head and neck cancer patients, replicated herein on our OCSCC dataset. METHODS For each patient, 1072 radiomic features were extracted from T1 and T2-weighted MRI (T1w and T2w). Features selection was performed, and an optimal set of five of them was used to fit a Cox proportional hazard regression model for OS. The radiomic signature was developed on a multi-centric locally advanced OCSCC retrospective dataset (n = 123) and validated on a prospective cohort (n = 108). RESULTS The performance of the signature was evaluated in terms of C-index (0.68 (IQR 0.66-0.70)), hazard ratio (HR 2.64 (95% CI 1.62-4.31)), and high/low risk group stratification (log-rank p < 0.001, Kaplan-Meier curves). When tested on a multi-centric prospective cohort (n = 108), the signature had a C-index of 0.62 (IQR 0.58-0.64) and outperformed the clinical and pathologic TNM stage and six out of seven gene expression prognostic signatures. In addition, the significant difference of the radiomic signature between stages III and IVa/b in patients receiving surgery suggests a potential association of MRI features with the pathologic stage. CONCLUSIONS Overall, the present study suggests that MRI signatures, containing non-invasive and cost-effective remarkable information, could be exploited as prognostic tools.
Collapse
Affiliation(s)
- Anna Corti
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.
| | - Loris De Cecco
- Integrated Biology of Rare Tumors, Department of Research, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Stefano Cavalieri
- Head and Neck Medical Oncology Department, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli studi di Milano, Milan, Italy
| | - Deborah Lenoci
- Integrated Biology of Rare Tumors, Department of Research, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Federico Pistore
- Head and Neck Medical Oncology Department, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Giuseppina Calareso
- Radiology Department, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Davide Mattavelli
- Unit of Otorhinolaryngology-Head and Neck Surgery, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, ASST Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| | - Pim de Graaf
- Amsterdam UMC location Vrije Universiteit, Radiology and Nuclear Medicine, de Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - C René Leemans
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit, Otolaryngology-Head and Neck Surgery, de Boelelaan 1117, Amsterdam, The Netherlands
| | - Ruud H Brakenhoff
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit, Otolaryngology-Head and Neck Surgery, de Boelelaan 1117, Amsterdam, The Netherlands
| | - Marco Ravanelli
- Unit of Radiology, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, ASST Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| | - Tito Poli
- Maxillo-Facial Surgery Division, Head and Neck Department, University Hospital of Parma, Parma, Italy
| | - Lisa Licitra
- Head and Neck Medical Oncology Department, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli studi di Milano, Milan, Italy
| | - Valentina Corino
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
- Cardiotech Lab, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Luca Mainardi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
31
|
Zhu Y, Tao L, Liu J, Wang Y, Huang H, Jiang Y, Qian W. Construction of a prognostic model for triple-negative breast cancer based on immune-related genes, and associations between the tumor immune microenvironment and immunological therapy. Cancer Med 2023; 12:15704-15719. [PMID: 37306188 PMCID: PMC10417082 DOI: 10.1002/cam4.6176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/10/2023] [Accepted: 05/19/2023] [Indexed: 06/13/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the subtype of breast cancer with the worst prognosis, and it is highly heterogeneous. There is growing evidence that the tumor immune microenvironment (TIME) plays a crucial role in tumor development, maintenance, and treatment responses. Notably however, the full effects of the TIME on prognosis, TIME characteristics, and immunotherapy responses in TNBC patients have not been fully elucidated. METHODS Gene Expression Omnibus and The Cancer Genome Atlas data were used to data analysis. Single-cell sequencing and tissue microarray analysis were used to investigate gene expression. The concentrations and distributions of immune cell types were determined and analyzed using the CIBERSORT strategy. Tumor immune dysfunction and exclusion score and the IMvigor210 cohort were used to estimate the sensitivity of TNBC patients with different prognostic statuses to immune checkpoint treatment. RESULTS Five immune-related genes associated with TNBC prognosis (IL6ST, NR2F1, CKLF, TCF7L2, and HSPA2) was identified and a prognostic evaluation model was constructed based on those genes. The respective areas under the curve of the prognostic nomogram model at 3 and 5 years were 0.791 and 0.859. The group with a lower nomogram score, with a better prognosis survival status and clinical treatment benefit rate. CONCLUSION A prognostic model for TNBC that was closely related to the immune landscape and therapeutic responses was constructed. This model may help clinicians to make more precise and personalized treatment decisions pertaining to TNBC patients.
Collapse
Affiliation(s)
- Yue Zhu
- Department of Breast and Thyroid Surgerythe Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical UniversitySuzhouChina
| | - Lin‐Feng Tao
- Department of Critical Care Medicinethe Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical UniversitySuzhouChina
| | - Jin‐Yan Liu
- Department of Breast and Thyroid Surgerythe Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical UniversitySuzhouChina
| | - Yi‐Xuan Wang
- Department of Breast and Thyroid Surgerythe Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical UniversitySuzhouChina
| | - Hai Huang
- Department of Breast and Thyroid Surgerythe Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical UniversitySuzhouChina
| | - Yan‐Nan Jiang
- Department of Breast and Thyroid Surgerythe Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical UniversitySuzhouChina
| | - Wei‐Feng Qian
- Department of Breast and Thyroid Surgerythe Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical UniversitySuzhouChina
| |
Collapse
|
32
|
Guo YC, Fu ZY, Ding ZJ. Immune infiltration associated C1q acts as a novel prognostic biomarker of cutaneous melanoma. Medicine (Baltimore) 2023; 102:e33088. [PMID: 36897727 PMCID: PMC9997796 DOI: 10.1097/md.0000000000033088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/03/2023] [Indexed: 03/11/2023] Open
Abstract
C1q (complement C1q A chain, complement C1q B chain, and complement C1q C chain) is a recognized component of the classical complement pathway that influences the prognosis of various cancers. However, the effects of C1q on cutaneous melanoma (SKCM) outcomes and immune infiltration remain unknown. Gene expression profiling interactive analysis 2 and the human protein atlas were used to evaluate differential expression of C1q mRNA and protein. The relationship between C1q expression and clinicopathological features was also examined. The genetic alterations of C1q and their impact on survival were analyzed using the cbioportal database. The Kaplan-Meier approach was used to assess the significance of C1q in individuals with SKCM. The cluster profiler R package and the cancer single-cell state atlas database were used to investigate the function and mechanism of C1q in SKCM. The relationship between C1q and immune cell infiltration was estimated using single-sample gene set enrichment analysis. C1q expression was increased, and predicted a favorable prognosis. High C1q expression correlated with clinicopathological T stage, pathological stage, overall survival, and disease specific survival events. Moreover, C1q genetic alterations range from 2.7% to 4%, with no impact on prognosis. According to the enrichment analysis, C1q and immune-related pathways were closely connected. The link between complement C1q B chain and the functional state of inflammation was determined using the cancer single-cell state atlas database. In particular, C1q expression was significantly associated with infiltration of most immune cells and checkpoints PDCD1, CD274, and HAVCR2. The results of this study suggest that C1q is associated with prognosis and immune cell infiltration, supporting its value as a diagnostic and prognostic biomarker.
Collapse
Affiliation(s)
- Yi-Cheng Guo
- Dermatology Hospital of Jiangxi Province, Nanchang, China
- Jiangxi Province Clinical Research Center for Skin Diseases, Nanchang, China
- Candidate Branch of National Clinical Research Center for Skin Diseases, Nanchang, Jiangxi, China
| | - Zhi-Yuan Fu
- Dermatology Hospital of Jiangxi Province, Nanchang, China
| | - Zhi-Jun Ding
- Jiangxi Province Clinical Research Center for Skin Diseases, Nanchang, China
| |
Collapse
|
33
|
Xu L, Li F, Jiang M, Li Z, Xu D, Jing J, Wang J, Ding J. Immunosuppression by Inflammation-Stimulated Amplification of Myeloid-Derived Suppressor Cells and Changes in Expression of Immune Checkpoint HHLA2 in Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2023; 18:139-153. [PMID: 36846109 PMCID: PMC9946009 DOI: 10.2147/copd.s394327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/02/2023] [Indexed: 02/20/2023] Open
Abstract
Background The interaction between immune checkpoint and myeloid-derived suppressor cells (MDSCs) play a significant role in inflammatory diseases. But their correlation with chronic obstructive pulmonary disease (COPD) remains unclear. Methods The differentially expressed immune checkpoints and immunocytes in the airway tissues of COPD patients were identified by bioinformatics analysis, followed by correlation analysis and identification of immune-related differential genes for Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis. The results of bioinformatics analysis were verified by ELISA and Real-Time PCR and transcriptome sequencing of the peripheral blood of both COPD patients and healthy subjects. Results The results of the bioinformatics analysis showed that the level of MDSCs in airway tissue and peripheral blood of COPD patients was higher than that of healthy controls. The expression of CSF1 in airway tissue and peripheral blood of COPD patients increased, and CYBB was increased in airway tissue and decreased in peripheral blood of COPD patients. The expression of HHLA2 in the airway tissue decreased in COPD patients, and showed a negative correlation with MDSCs, with a correlation coefficient of -0.37. The peripheral blood flow cytometry results indicated that MDSCs and Treg cells of COPD patients were higher than those in the healthy control group. The results of peripheral blood ELISA and RT-PCR showed that the HHLA2 and CSF1 levels in COPD patients were higher than those in the healthy control group. Conclusion In COPD, the bone marrow is stimulated to produce MDSCs, and a large number of MDSCs migrate to airway tissue through peripheral blood and cooperate with HHLA2 to exert an immunosuppressive effect. Whether MDSCs play an immunosuppressive effect during migration needs to be further confirmed.
Collapse
Affiliation(s)
- Lijuan Xu
- The Fourth Clinical Medical College, Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Fengsen Li
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Min Jiang
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Zheng Li
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Dan Xu
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Jing Jing
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Jing Wang
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, People’s Republic of China,Correspondence: Jing Wang, Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, People’s Republic of China, Tel +86-13999908413, Email
| | - Jianbing Ding
- Department of Immunology, College of Basic Medicine, Xinjiang Medical University, Urumqi, People’s Republic of China,Jianbing Ding, Department of Immunology, College of Basic Medicine, Xinjiang Medical University, Urumqi, People’s Republic of China, Tel +86-13999847738, Email
| |
Collapse
|
34
|
Wang L, Wang L, He P. Comprehensive analysis of immune-related gene signature based on ssGSEA algorithms in the prognosis and immune landscape of hepatocellular carcinoma. Front Genet 2022; 13:1064432. [PMID: 36568383 PMCID: PMC9780543 DOI: 10.3389/fgene.2022.1064432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is a malignancy with a poor prognosis. This study aimed to distinguish patients with HCC having distinct tumour immune microenvironment (TIME) features and construct an immune-related gene signature (IRGs) to assess prognosis and provide a basis for personalised therapies. Methods: Transcriptomic data of patients with HCC were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. We assessed the immune cell infiltration in each HCC specimen using single sample gene set enrichment analysis (ssGSEA) and classified all patients with HCC into high- and low-immune clusters using a hierarchical clustering algorithm. The ESTIMATE and CIBERSORT computational methods were employed to verify the stability and effectiveness of the immune clusters. Subsequently, the differentially expressed genes (DEGs) of the high- and low-immune clusters and the immune-related genes intersected to obtain the immune-related DEGs. The least absolute shrinkage and selection operator (LASSO) was then employed to screen the optimal genes for the construction of a prognostic predictive signature and to divide patients into high- and low-risk subgroups. The predictive efficacy of the IRGs was further confirmed using Kaplan-Meier survival curves, univariate and multifactorial Cox regression and time-dependent ROC curves in the TCGA and GSE14520 validation cohorts. Furthermore, we developed a nomogram to predict the prognosis. Tumour mutation burden (TMB) was also analysed in the risk groups. Additionally, gene ontology and gene set variation analysis were used for biological function and pathway exploration. Lastly, drug sensitivity analyses were employed to investigate prospective therapeutics in the two risk populations. Results: Immune cluster analysis based on ssGSEA could well distinguish the TIME characteristics of patients with HCC. The stromal score, immune score and ESTIMATE score were all lower in the low-immune cluster. Meanwhile, most of the immune checkpoint-related genes and HLA family genes were overexpressed in the high-immune cluster, suggesting that this cluster could be a beneficial population for immune checkpoint inhibitors therapy. There were 1,617 DEGs between the two immune clusters, of which 414 genes intersected with immune-associated genes. Furthermore, Cox regression analysis revealed 49 DEGs that were associated with survival. Then, 19 DEGs were screened using the LASSO algorithm for IRGs construction and patients were classified into high- and low-risk groups. Both the constructed signature and nomogram had good prognostic predictive efficacy. The signature-based risk score was an independent prognostic predictor in both the TCGA and GSE14520 cohorts. Additionally, there was no significant difference in TMB between the two risk populations. Lastly, the half-maximal inhibitory concentrations of certain chemotherapeutic and targeted therapeutic agents differed between the two risk groups. Conclusion: Our study provides a personalized tool for predicting the prognosis and TIME landscape of HCC and a basis for developing personalised treatment regimens.
Collapse
Affiliation(s)
- Liangliang Wang
- Chemoradiotherapy Center of Oncology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China,Department of Chemoradiotherapy, The Affiliated People’s Hospital of Ningbo University, Ningbo, China,*Correspondence: Liangliang Wang,
| | - Li Wang
- Department of General Surgery, Ningbo Yinzhou No. 2 Hospital, Ningbo, China
| | - Peihong He
- Beilun Traditional Chinese Medicine Hospital, Ningbo, China
| |
Collapse
|